
Faculty of Science and Technology
Department of Computer Science

Variable Dependency Graph Summarization

Marie Therese Mikalsen
INF-3981 Master’s Thesis in Computer Science - June 2024

Supervisors

Main supervisor: Elisavet Kozyri UiT The Arctic University of Norway,
Faculty of Science and Technology,
Department of Computer Science

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2024 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

“We are surrounded by data, but starved for insights.”
–Jay Baer

“The goal is to turn data into information, and information into insight.”
–Carly Fiorina

Abstract
In personalized software, collected user data is used to give a tailored user
experience. A user might be interested in understanding how their data (in-
puts) resulted in their personalized output. The Variable Dependency Graph
(VDG) can explain how inputs of a program flow to the output. However,
with increasing program size, there is a need for summarizing the VDGs and
understanding these summarizations.

The first contribution of this thesis is the exploration of a fitting technique
to summarize the VDG for a user. The result of the search was the technique
TG-SUM, which supports all the VDGs graph characteristics that this thesis
identified, as well as facilitates the visualization for a user. The second contri-
bution of this thesis was to help a user interpret the VDG summarization by
experimenting with how different code patterns tend to be summarized.

Acknowledgements
First and foremost, I want to thankmy supervisor Elisavet Kozyri for her support,
guidance, and expertise throughout my thesis. Her insights and suggestions
have been invaluable for this research and working with her has been a won-
derful experience. I also want to thank my partner, friends, and family for their
love and support.

Contents
Abstract iii

Acknowledgements v

List of Figures ix

List of Tables xi

List of Listings xiii

List of Abbreviations xv

1 Introduction 1
1.1 Thesis statement . 3
1.2 Contribution . 3
1.3 Context . 4
1.4 Thesis Outline . 4

2 Background 5
2.1 Dependency Analysis . 5

2.1.1 Dependencies . 5
2.1.2 Control Flow Graph (CFG) 6
2.1.3 Static Single Assignment (SSA) 6

2.2 Graph Summarization . 7
2.2.1 Graphs . 8

3 Investigating variable dependency graph summarization 9
3.1 Dependency tool . 9
3.2 Graph Summarization field 10

3.2.1 Graph Clustering . 11
3.2.2 Statistical Inference 11
3.2.3 Goal-Driven Summarization 11

4 Choosing a Graph Summarization Technique 13

vii

viii contents

4.1 VDG Characteristics . 13
4.2 Identify Fitting Techniques 14

4.2.1 Clustering . 14
4.2.2 Statistical Inference 16
4.2.3 Goal-Driven . 17
4.2.4 The Chosen Summarization Technique 19

5 Design 21
5.1 TG-SUM . 21
5.2 Dependecy tool Modification 22

5.2.1 Modified Type Rules 22
5.2.2 While statements . 25
5.2.3 File format for summarization tool 25

6 Interpreting the VDG summarization 27
6.1 Graph Structures . 28

6.1.1 Linear . 28
6.1.2 Many-to-One . 28
6.1.3 One-to-Many . 29
6.1.4 All-to-All . 30
6.1.5 One-to-All-to-One 31
6.1.6 Some-to-Some . 32
6.1.7 Some-to-Some-to-One 34
6.1.8 While . 36

6.2 Testing Graph Structure Combinations in Programs 36
6.2.1 Introduction Code 36
6.2.2 Program Code 1 . 37
6.2.3 Program Code 2 . 38
6.2.4 Program Code 3 . 40

7 Discussion 43
7.1 Summarizing the VDG . 43
7.2 Interpreting the VDG summarization 45
7.3 Future Work . 46

7.3.1 Dependency Tool . 46
7.3.2 VDG Characteristics 46
7.3.3 TG-SUM . 46
7.3.4 Framework . 47

8 Conclusion 49

Bibliography 51

A Declaration of the usage of AI tools 55

List of Figures
1.1 VDG from the code in Listing 1.1 2

2.1 CFG examples . 6

4.1 Cluster summarization of the graph in figure 1.1 15
4.2 Summarization of the graph in figure 1.1 with the technique

by Dunne and Shneiderman 16
4.3 Graph from figure 1.1 as RDF graph 18
4.4 Summarizations with the technique presented by Goasdoué

et al. 18

6.1 Linear structure . 28
6.2 Many-to-one structure . 29
6.3 Summarization of the graph structure in figure 6.2 29
6.4 One-to-many structure . 30
6.5 Summarization of the graph structure in figure 6.4 30
6.6 Many-to-many structure 31
6.7 Summarization of the graph structure in figure 6.6 31
6.8 One-to-all-to-one structure 32
6.9 Summarization of the graph structure in figure 6.8 32
6.10 Some-to-some structure . 33
6.11 Summarization of the graph structure in figure 6.10 33
6.12 Some-to-some-to-one structure 35
6.13 Summarizations of the graph structure in figure 6.12 35
6.14 While graph structure . 36
6.15 VDG from code in listing 6.14 38
6.16 Summarization of the VDG in figure 6.15 38
6.17 VDG from the code in listing 6.15 40
6.18 Summarization of the VDG in figure 6.17 40
6.19 VDG from the code in listing 6.16 42
6.20 Summarization of the VDG in figure 6.19 42

ix

List of Tables
2.1 Graph Characteristics . 8

6.1 Glyph Interpretation . 28

xi

List of Listings
1.1 C program to determine daily calorie need 2

2.1 Code example that can lead to false dependecies 7

3.1 While example . 10

5.1 Assignment rule example 23
5.2 If rule example . 23

6.1 Code resulting in the structure in figure 6.1 28
6.2 Code resulting in the structure in figure 6.2 29
6.3 Explicit dependecies resulting in the structure in figure 6.4 . 30
6.4 Implicit dependecies resulting in the structure in figure 6.4 . 30
6.5 Explicit dependecies resulting in the structure in figure 6.6 . 31
6.6 Implicit dependecies resulting in the structure in figure 6.6 . 31
6.7 Explicit dependecies resulting in the structure in figure 6.8 . 32
6.8 Implicit dependecies resulting in the structure in figure 6.8 . 32
6.9 Explicit dependecies resulting in the structure in figure 6.10 33
6.10 Implicit dependecies resulting in the structure in figure 6.10 33
6.11 Explicit dependecies resulting in the structure in figure 6.12 35
6.12 Implicit dependecies resulting in the structure in figure 6.12 35
6.13 While loop . 36
6.14 Program to determine Gym Membership Cost this month . . 37
6.15 Program to calculate ticket price 39
6.16 Program to calculate GPA 41

xiii

List of Abbreviations
CFG Control Flow Graph

SSA Static Single Assignment

VDG Variable Dependency Graph

xv

1
Introduction
Our daily routines are increasingly influenced by software, with smartwatches
analyzing our sleep, streaming services suggesting music and movies, applica-
tions help manage our finances, etc. These types of software leverages data
collected about us to personalize our experience. While software personaliza-
tion enhances user experience, the users are left unaware of how their data
leads to their personalized output. With an increase in this software, users of
the software might be interested in understanding how their collected data
(inputs) results in their personalized output.

An explanation of how the inputs flow to the output(s) can be illustrated
in a Variable Dependency Graph (VDG), where the nodes correspond to the
program variables and the edges correspond to the dependencies between
them. An analysis of a VDG makes it possible to understand the data flow
from a program’s inputs to its output(s). A VDG can be generated for a
program with the use of dependency analysis. However, as the program’s size
increases, the VDG size correspondingly increases, causing the graphs to be
less understandable for humans.

1

2 chapter 1 introduction

Listing 1.1: C program to determine daily calorie need
in t main () {

char gender ;
in t age , weight , height , a c t i v i t y L e v e l ;
f l oa t bmr , d a i l yCa l o r i e s ;
(r e c e i v e input)
i f (gender == ’M ’ gender == ’m ’) {

bmr = 88.362 + (13 .397 ∗ weight)
+ (4.799 ∗ height) − (5 .677 ∗ age) ;

} else (gender == ’ F ’ gender == ’ f ’) {
bmr = 447.593 + (9.247 ∗ weight)
+ (3.098 ∗ height) − (4 .330 ∗ age) ;

}

// A c t i v i t y l e v e l can be from 1−5
i f (a c t i v i t y L e v e l == 1) {

da i l yCa l o r i e s = bmr ∗ 1 . 2 ;
} else i f (a c t i v i t y L e v e l == 2) {

da i l yCa l o r i e s = bmr ∗ 1 . 3 7 5 ;
} else i f (a c t i v i t y L e v e l == 3) {

da i l yCa l o r i e s = bmr ∗ 1 . 5 5 ;
} else i f (a c t i v i t y L e v e l == 4) {

da i l yCa l o r i e s = bmr ∗ 1 . 7 25 ;
} else i f (a c t i v i t y L e v e l == 5) {

da i l yCa l o r i e s = bmr ∗ 1 . 9 ;
}
(p r i n t r e s u l t)
return 0;

}

"weight:5""height:5""gender:4"

"bmr:24""bmr:26"

"age:5"

"activityLevel:5"

"dailyCalories:43""dailyCalories:39""dailyCalories:41""dailyCalories:45""dailyCalories:47"

Figure 1.1: VDG from the code in Listing 1.1

1.1 thesis statement 3

To illustrate the potential complexity of a VDG, we consider a program col-
lecting data about a user´s gender, age, weight, height, and activity level to
calculate the user’s daily calorie needs. The program can be viewed in listing 1.1.
This program has been generated using ChatUit [2], with a prompt to create a
program calculating a user’s daily calorie need based on personal inputs. The
VDG generated from the program can be viewed in figure 1.1. Looking at the
graph, it can be seen that a quite small program can result in a graph that
could benefit from simplification.

With large graphs, there is a need for summarization without losing valuable
information for the user. In a preceding project [3], a search was performed
for graph summarization techniques applied to dependency graphs similar
to VDGs. The search discovered that graph summarization techniques have
not been explored for the case of VDGs. Therefore, that project created two
building blocks to find a fitting technique for VDGs. The first was a modified
dependency tool to generate VDGs based on the input of program code, and
the second was an overview of the graph summarization field.

1.1 Thesis statement

With the result from the preceding project [3], this thesis investigates how a
VDG can be summarized without losing valuable information for a user. After
finding a fitting technique for the VDG, this thesis also wants to help users
interpret the summarization. With these intentions, this thesis aims to address
the following research questions:

1. How can a variable dependency graph of a program be summarized to
decrease its size without losing valuable information for a user?

2. How can a user interpret the summarization of a variable dependency
graph?

1.2 Contribution

This thesis has primarily two contributions, first, a fitting summarization tech-
nique to fulfil research question 1. Second, experimentation of how different
code patterns are summarized to help the user interpret the summarization to
fulfil research question 2.

4 chapter 1 introduction

1.3 Context

The thesis is written in the context of the Cyber Security Group (CSG) at the
University of Tromsø. The CSG group has three closely related research areas:
fundamental systems, system support for healthy human beings and system
support for sustainability [1]. Both for fundamental and sustainable systems
there is a need for trust. Included under trust is transparency, where a system’s
explainability can help achieve transparency, and explainability can be attained
through data flow control. This thesis falls under the CSG group work in trust,
with the main purpose of explainability.

1.4 Thesis Outline

The remainder of the thesis outline:

Chapter 2: Background introduces foundational concepts pertinent to
the thesis.

Chapter 3: Investigating variable dependency graph summarization
presents the preceding project of this thesis.

Chapter 4: Choosing a Graph Summarization Technique explains the
process of researching and identifying graph summarization techniques
fitting for VDGs and the choice of summarization technique.

Chapter 5: Design presents the design of the chosen technique and the
dependency tool modifications.

Chapter 6: Interpreting the VDG summarization experiments with
the summarization technique to help users interpret the VDG summa-
rization.

Chapter 7: Discussion discusses the choices and results of the thesis
and how they satisfy the research questions, and makes suggestions for
future work.

Chapter 8: Conclusion summarizes the thesis.

2
Background
2.1 Dependency Analysis

With the help of dependency analysis, program parts that are dependent on
each other can be identified. Dependency analysis of programs has been used
for compiler optimization [4, 5, 6] and to enhance program understanding
[7] for many years. In compiler optimization, dependency analysis can help
support different optimizations e.g. uncover possible parallelism opportunities
[5]. On the other hand, dependency analysis for a better understanding of a
program can improve maintainability, security and trust [7].

Notice how this thesis uses dependency analysis to enhance the program
understanding at a variable level. This analysis results in a VDG, where nodes
are variables and edges are dependencies between them.

2.1.1 Dependencies

Dependencies between variables in a program can either be explicit or implicit.
An explicit dependency between variables is when one variable uses another
variable in its assignment. In the assignment 𝑎 = 𝑏, the variable 𝑎 explicitly
depends on variable 𝑏, resulting in a VDG where 𝑏 → 𝑎. Implicit dependencies
occur within conditional commands, e.g. if statements. In the if statement
𝑖 𝑓 𝑎 > 0 𝑡ℎ𝑒𝑛 𝑏 = 2, the variable 𝑏 implicitly depends on variable 𝑎, resulting
in a VDG where 𝑎 → 𝑏.

5

6 chapter 2 background

2.1.2 Control Flow Graph (CFG)

The control flow of a program is the order the program is executed, and a
control flow analysis can be used for compiler optimization [8, 9]. The control
flow of a program can be represented in a Control Flow Graph (CFG). Each
node in the CFG consists of consecutively executed code called basic blocks,
while the edges are the transfer of control between basic blocks. Examples of
control transfer in a program are conditional commands (e.g. if and while
statements), function calls, goto statements, and return statements.

b = 0
if (a > 0)

c = b

b = 1

(a) CFG for
if statements

c = b

b += a
a += 1

Block 0while(a>0)

(b) CFG for
while statements

Figure 2.1: CFG examples

As an example, when encountering an if statement a program will either enter
it (when the condition is true) or not (when the condition is false). A CFG
when encountering an if statement can be viewed in figure 2.1a. For a while
statement a program will also either enter it or not, however, if it was entered it
will at the end link back to the while condition to check whether the condition
has changed. An example of a CFG for a while statement can be viewed in
figure 2.1b.

2.1.3 Static Single Assignment (SSA)

In Static Single Assignment (SSA) form variables are unique and can therefore
only be assigned once. When translating into SSA form, each reassignment
of a variable results in a new variable being created. SSA has been applied
for compiler optimization [9, 10], and in the paper What’s In a Name? [11]
examples are shown of how SSA can remove false dependencies in program
code.

2.2 graph summarization 7

Listing 2.1: Code example that can lead to false dependecies

1 in t main () {
2 in t a = 5;
3 in t b = a ∗ 2;

. . .
26 b = 2;
27 in t c = b + 3;
28 }

To illustrate how SSA removes false dependencies view listing 2.1. In this code,
variable 𝑏 uses variable 𝑎 in its first assignment. Later in the code, variable
𝑏 is reassigned with no dependencies, before variable 𝑐 uses variable 𝑏 in its
assignment. Without SSA, the VDG from this code would be 𝑎 → 𝑏 → 𝑐.
However, since 𝑏 has been reassigned with no dependencies before 𝑐 uses it
this leads to a false dependency between the variables 𝑎 and 𝑐. Applying SSA
would remove this false dependency and the resulting VDGs could be 𝑎1 → 𝑏1
and 𝑏2 → 𝑐1.

When applying SSA to capture dependencies with conditional commands
present, there is a need for a CFG. Looking back at the CFG example in
figure 2.1a, when the variable 𝑐 uses the variable 𝑏 in its assignment it can
either be the variable 𝑏 assigned before the if statement or inside if statement.
Viewing the CFG for the while statement in figure 2.1b, when variable 𝑏 is
assigned, it is dependent on variable 𝑎 assigned before the while statement,
and on 𝑎 assigned inside the loop (e.g. on the second+ iteration). Therefore,
as the assignment in the loop can occur several times (several iterations of the
loop) it is more complex to support.

2.2 Graph Summarization

Graphs help visualize data and are particularly useful with interconnected
datasets1. With the increasing amount of interconnected data, the necessity
for simplification became apparent [15, 16] and a method to simplify these
datasets are with graph summarization.

1. The term interconnected datasets [15, 16] is used in the graph summarization field to refer
to datasets where the data items are linked to each other through various relationships
(e.g., social networks)

8 chapter 2 background

2.2.1 Graphs

A graph consists of a tuple (𝑉 , 𝐸) where 𝑉 is the set of vertices or nodes, and
𝐸 is the set of edges connecting the nodes. Graphs have various characteristics
[15, 17], and several are presented in table 2.1.

Table 2.1: Graph Characteristics

Characteristic Counterpart Description
Static Dynamic A static graph is unchanging, whereas

a dynamic graph can change over time.
Directed Undirected The edges have a direction (→) in

directed graphs, whereas the edges
are bidirectional (−) in an undirected
graph.

Weighted Unweighted The edges in a weighted graph have
weights, indicating edges have different
amounts of significance. Whereas the
edges in an unweighted graph have no
weights.

Labelled Unlabelled In a labelled graph nodes and/or edges
have labels, whereas there are no labels
in an unlabelled graph.

Cyclic Acyclic In a cyclic graph, a node is reachable
from itself, whereas there are no cycles
in an acyclic graph.

Simple Non-
simple/Multi-
graphs

Simple graphs have no loops ormultiple
edges between two nodes,whereas non-
simple graphs/multi-graphs can have
them.

3
Investigating variable
dependency graph
summarization
This chapter presents the report Investigating variable dependency graph summa-
rization [3], which was the result of my capstone project in 2023. This capstone
project resulted in a modified dependency tool to capture the variable depen-
dency graph from a program code and an overview of the graph summarization
field.

3.1 Dependency tool

Before choosing a dependency tool the desired properties of the dependency
analysis had to be decided. With dependency analysis, we wanted to capture
both the explicit and implicit dependencies. Another desired property was SSA,
to remove false dependencies. With SSA, the need for a CFG followed, resulting
in the desired properties: explicit dependencies, implicit dependencies, SSA
and CFG.

The modified dependency tool in the capstone project was srcSlice [12, 13]. src-
Slice is a lightweight tool for static program analysis. It was chosen because it is

9

10chapter 3 investigating variable dependency graph summarization

open-source, allows modification, and captures explicit dependencies between
variables. srcSlice has also been used by other research papers, including one
using it to generate VDGs [14]. The expected input file for srcSlice is an XML
format provided by a tool from the same authors named srcML, where srcML
supports conversion of C, C++, C# and JAVA.

srcSlice had to be modified to capture implicit dependencies, CFG and SSA.
Modified srcSlice worked at a function level and supported variable assignments,
if statements (including else if) and simple while statements at delivery. It
did not support conditional commands inside while statements. Type rules
were used to explain how dependencies were captured by the tool. However,
the type rules did not include the implementation of SSA.

Listing 3.1: While example

1 in t main () {
2 in t a = 5;
3 while (a < 10){
4 a += 2;
5 }
6 }

In the capstone project, SSA was implemented by including the line number
in the variable name when assigned. As mentioned, supporting SSA inside
while statements are complex as there can be several iterations. With the
capstone project´s implementation of SSA in mind, look at listing 3.1. Here
the dependency analysis will at the first analysis of the loop, capture the
dependency 𝑎2 → 𝑎4 both explicitly and implicitly. However, on a potential
second iteration of the loop, the dependency would be 𝑎4 → 𝑎4. Therefore,
with SSA implemented there is a need for a second execution of the dependency
analysis on the loop to capture both of these dependencies. Two executions
of the dependency analysis are sufficient as the variable’s name won’t change
after the second analysis.

3.2 Graph Summarization field

Obtaining an overview of the graph summarization field in the capstone project
was based on three recent surveys from 2018 [15], 2020 [16], and 2023 [17].
Division of the summarization methods into categories was based on the two
latter. The methods are divided into graph clustering, statistical inference,
and goal-driven summarization. The newest techniques under Graph Neural
Network (GNN) were not included in this overview.

3.2 graph summarization field 11

3.2.1 Graph Clustering

In clustering techniques clusters are identified within the graph. Nodes in the
cluster should be closely connected to each other, and be sparsely connected
to the other nodes. Clustering is often divided into structural and attribute
clustering. Structural clustering bases itself on a graph´s structure such as the
topology and connectivity of nodes. In attributed clustering, nodes’ attributes
are used when finding clusters and this is particularly useful when the nodes
have rich attribute information.

3.2.2 Statistical Inference

Statistical inference techniques are divided into pattern mining and sampling.
In pattern mining, patterns such as frequent subgraphs are identified in a
graph or a graph database. In sampling techniques, the result is a sample of the
original graph, and such techniques are often used to estimate graph properties
when processing the entire graph is expensive [17].

3.2.3 Goal-Driven Summarization

Goal-driven techniques create a summarization to meet a specific goal, and
under this are query-driven and utility-driven techniques. In query-driven
techniques, the summary graph consists of the query-relevant parts of the
original graph. Utility-driven techniques summarize a graph where the main
goal is to preserve a desired utility. Influence-based techniques, often applied
on social networks, have the main goal of preserving the most influential
nodes and/or edges within the graph, and were placed under the utility-driven
techniques in the capstone project.

4
Choosing a Graph
Summarization Technique

This chapter explains the process of finding a summarization technique fitting
for the VDGs outputted by our modified dependency tool.

4.1 VDG Characteristics

The VDG produced by our modified dependency tool is static, as it does not
change over time, and unweighted, meaning no edges have more impact than
others. The graph is directed, as a statement 𝑥 = 𝑦 would mean a flow of
information from 𝑦 to 𝑥 , but not a flow from 𝑥 to 𝑦. The nodes in the graph
are labelled with their name, while the edges have no labels. In a program, a
variable can give information to itself (e.g. 𝑎 = 𝑎 + 1), and therefore self-loops
may occur, resulting in a cyclic and non-simple graph.

13

14 chapter 4 choosing a graph summarization technique

4.2 Identify Fitting Techniques

The VDGs produced by the dependency tool are static, directed, unweighted,
labelled, and can have self-loops. All of these characteristics should be ac-
counted for when choosing a fitting summarization technique. Another aspect
is that the purpose of the summarization is to summarize to ease visualization
without losing too much information for the user. Therefore, a fitting technique
should fulfil or be modified to fulfil the criteria listed below:

1. VDG characteristics

2. Visualization without losing too much information for a user

4.2.1 Clustering

Within the clustering techniques, the structural clustering techniques are more
fitting as the nodes in our VDGs do not have rich attribute information. Clus-
tering is among the most popular summarization techniques [15], and there
are many techniques to choose between. However, the search narrows since
most techniques are designed for simple undirected graphs [15, 20]. When
exploring clustering techniques complying with one or both of the criteria
listed above, papers such as Graph summarization with quality guarantees1 [19]
and Summarizing Labeled Multi-graphs2 [20] were found.

In the paper by Riondato et al. [19], the graph summary aims to enhance query
efficiency. This is achieved by storing a lossy or lossless graph summary in the
main memory that can accurately answer queries. The technique applies to
simple, static, undirected graphs, as well as accommodates unweighted graphs,
weighted graphs, and self-loops. This technique would need modifications to
support directed and labelled graphs, where the paper mentions measures for
supporting directed graphs.

TG-SUM [20] generates a lossless summary to enhance the visualization and
is designed to support several different graph characteristics. The technique
applies to static graphs and accommodates undirected, directed, unweighted,
weighted, unlabeled, and labelled graphs, as well as edge multiplicities and
self-loops. With all these graph characteristics supported, there is no need to
alter this technique to support the outputted VDGs.

1. Source code available at: https://github.com/rionda/graphsumm
2. Source code available at: https://github.com/DimBer/TGsum

https://github.com/rionda/graphsumm
https://github.com/DimBer/TGsum

4.2 identify f itt ing techniques 15

Both of these papers had their code for the summarization techniques available.
Therefore, it was possible to easily experiment with how they summarized
VDGs produced by our tool. One VDG used in experiments is the VDG from the
introduction (figure 1.1). The technique by Riondato et al. would not summarize
the graph without any input parameters (e.g., supernodes in the summary),
while TG-SUM summarized this graph into four clusters.

bmr:24, bmr:26

daileyCalories:39,daileyCalories:41,
daileyCalories:45,daileyCalories:47

 age:5, gender:4,
weight:5, height:5

activityLevel:5

(a) Summary with technique by Riondato et al.

 bmr:24,
 bmr:26

daileyCalories:39,
daileyCalories:41,
daileyCalories:45,
daileyCalories:47

 age:5, gender:4,
weight:5, height:5

activityLevel:5

(b) Summary with TG-SUM

Figure 4.1: Cluster summarization of the graph in figure 1.1

Since TG-SUM resulted in four clusters, the input of four supernodes was tested
in the technique by Riondato et al. for several runs. The result was the same
four clusters as found by TG-SUM at each run. Several runs were also tested
for different inputs of supernodes, and in these cases, the nodes in the clusters
were more likely to vary from each run. This could indicate that the clustering
with four supernodes is the optimal summarization.

In figure 4.1a, the summarization with the technique by Riondato et al. can
be viewed with the input parameter of four supernodes. While in figure 4.1b,
the summarization by TG-SUM is presented. Comparing the summarizations,
it can be seen that the technique by Riondato et al. does not support directed
graphs and that TG-SUM has added features to enhance the visualization e.g.
size of supernodes and glyphs.

16 chapter 4 choosing a graph summarization technique

4.2.2 Statistical Inference

With the statistical inference techniques, pattern mining techniques are of
more interest than sampling techniques. Sampling techniques sample part of
the graph and would therefore not comply with the purpose of visualization
without too much information loss. Pattern mining techniques on the other
hand can simplify the visualization of a graph by identifying and summarizing
frequent patterns/subgraphs into glyphs. With a balance between simplification
and information preservation, the purpose of visualization without too much
information loss could be achieved.

When exploring pattern mining techniques complying with one or both of
the criteria listed above, the paper Motif Simplification: Improving Network
Visualization Readability with Fan, Connector, and Clique Glyphs [21] by Dunne
and Shneiderman was found. In the paper, a pattern mining technique identifies
patterns and replaces them with meaningful glyphs. This technique supports
static undirected graphs and has been made available as part of the NodeXL
network analysis tool [22]. NodeXL is a plugin for Microsoft Excel that works
on the Windows operating system and has a free and paid version.

Figure 4.2: Summarization of the graph in figure 1.1 with the technique by Dunne and
Shneiderman

With the free version of NodeXL, it was possible to experiment with how the
technique summarized VDGs produced by our tool. In figure 4.2, the graph
from the introduction (figure 1.1) has been summarized with the technique.
Viewing the figure, two glyphs have been found, one glyph for all the inputs
to the "bmr" variables and the other glyph for all the output variables. The
edges in the graph do have a direction as the NodeXL tool has the option of
selecting whether a graph is directed or undirected. Still, the technique expects
an undirected input graph [15, 21].

4.2 identify f itt ing techniques 17

4.2.3 Goal-Driven

Within the goal-driven techniques, utility-driven techniques are more fitting
than query-driven techniques. Query-driven techniques retrieve the query-
relevant parts of the graph and would therefore not comply with the purpose
of visualization without too much information loss. As mentioned, several
techniques can fall under utility-driven techniques, where techniques such as
clustering can be used to preserve the utility. Whether these techniques are
defined as the technique used to preserve the utility, or as a utility-driven
technique can differ.

When exploring utility-driven techniques complying with one or both of the
criteria listed above, papers such as DepComm: Graph Summarization on System
Audit Logs for Attack Investigation [18] and RDF graph summarization for first-
sight structure discovery3 [26] were found.

DepComm [18] applies summarization on dependency graphs to accelerate the
analysis of the graph. At first glance, DepComm seemed to fit both criteria well.
However, since their dependency graph is generated from system audit logs
and the summarization is tailored to their purpose of attack investigations it
cannot be used to fulfil our criteria.

The paper by Goasdoué et al. [26] aims to summarize Resource Description
Frameworks (RDF) graphs to enhance the first-sight analysis of the graph. An
RDF graph has data triples, where e.g. Jane studies English would result in
the triplets (Jane, studies, English). For the VDG, this could be converted from
𝑥 → 𝑦 to be represented as (x, dep, y). As the paper had the code for the
summarization techniques available, it was possible to experiment with how
they summarized VDGs produced by our tool. One VDG used in experiments
is the VDG from the introduction (figure 1.1).

In figure 4.3a, the graph from the introduction can be viewed as an RDF graph
with one type of dependency between variables. While in figure 4.3b, the
graph from the introduction can be viewed as an RDF graph with a distinction
between explicit and implicit dependencies. The technique´s summarizations
of these RDF graphs can be viewed in figure 6.13.

The summarization with one dependency type viewed in figure 6.13a resulted
in three supernodes. The first supernode consists of all input nodes (nodes
with outgoing edges), the second supernode of the middle nodes (nodes with
incoming and outgoing edges), and the last supernode of the output nodes
(nodes with incoming edges). The summarization with two dependency types

3. Source code available at: https://gitlab.inria.fr/cedar/RDFQuotient

https://gitlab.inria.fr/cedar/RDFQuotient

18 chapter 4 choosing a graph summarization technique

(a) One type of dependencies between variables

(b) Distinction between explicit and implicit dependencies between variables

Figure 4.3: Graph from figure 1.1 as RDF graph

(a) Summary of one type of dependencies be-
tween variables

(b) Summary with distinction between ex-
plicit and implicit dependencies between
variables

Figure 4.4: Summarizations with the technique presented by Goasdoué et al.

4.2 identify f itt ing techniques 19

viewed in figure 6.13b resulted in four supernodes. The difference from the
summary in figure 6.13a is that the first supernodes containing the input nodes
were divided into two supernodes, where the input nodes either have explicit
or implicit dependency types.

Other techniques explored under utility-driven techniques are influence-based
techniques. This technique has often been applied to social networks. In
social networks, people influence people, while in a VDG, it can be viewed as
variables that influence other variables. Some influence-based techniques for
static directed graphs are CSI [23], SPINE [24], and VEGAS [25].

CSI and SPINE use past information propagation from the social network in
their algorithms. This gives them a temporal aspect, as they use temporal
activities in the network when summarizing [15]. This log of past propaga-
tion cannot be generated with our static analysis of the program code, and
the temporal aspect is not wanted. Therefore, both CSI and SPINE were not
appropriate.

VEGAS does not use information propagation and is fit for labelled graphs.
The VEGAS algorithm summarizes citation networks to enhance visualization
based on a user’s interest. This algorithm starts with selecting a source node,
which can be one of the papers in the citation network, and then summarizes
based on the selected source node. As this technique summarizes based on a
source node it does not comply with the purpose of visualization without too
much information loss.

4.2.4 The Chosen Summarization Technique

Looking at the experimentation of the clustering techniques it can be seen
that TG-SUM is a better fit than the technique by Riondato et al. The reason
is that TG-SUM supports all the VDG graph characteristics (criterion 1) and
has a supergraph output with visualization enhancements (supports criterion
2 better).

In the pattern mining technique by Dunne and Shneiderman, the glyphs found
are the same as two of the supernodes by the clustering techniques. Compared
to TG-SUM, this summarization technique also has visualization enhancements,
with the use of glyphs and sizes corresponding to the contained nodes (criterion
2). One of the differences in the techniques is that TG-SUM supports more of
the graph characteristics of the outputted VDG e.g. directed edges, and self-
loops (criterion 1). As TG-SUM has the benefits of the visualization properties
and has more support for the outputted VDGs characteristics it is the better
choice of the two.

20 chapter 4 choosing a graph summarization technique

The experimentations with the RDF summarization technique show that the
algorithms take the incoming edges, the outgoing edges, and the edge labels
into account when summarizing. The summarization results show false edges
e.g. the supernode includes the node "acitivityLevel:5" and points to the su-
pernode containing "bmr:24". A conclusion from experimenting with such a
summarization technique could be that the labels of edges in a VDG have less
importance than the graph´s structure.

After exploring several techniques of different categories, the TG-SUM tech-
nique was chosen. TG-SUM is lossless, supports all the graph characteristics of
the outputted VDG, and has multiple features for enhanced visualization. With
all these traits, the technique outcompeted the other graph summarization
techniques found.

5
Design
In this chapter, the design of the chosen technique TG-SUM is presented, as
well as the modifications made to the dependency tool in this thesis.

5.1 TG-SUM

TG-SUM [20] is a graph summarization technique that generates a lossless
supergraph to enhance the visualization, where it is designed to support several
different graph characteristics. The output from TG-SUM is a summary graph
file, where the supernode contains a label, the number of nodes it consists of,
a glyph, and the number of edges it summarizes. The glyph representing the
super node can be a clique, in-star, out-star, or disconnected set.

This technique utilizes the two-part Minimum Description Length (MDL)
paradigm to find the summarization that minimizes the total description cost.
The total description includes the bits to encode the summary graph and the
bits to encode the corrections needed to restore the original graph.

When searching for a summary a two-step process is applied where they first
find possible groups of nodes, they named candidate sets, before deciding
which candidate sets to merge into super nodes. MDL is used to determine
whether a candidate is good. A good candidate should be large (reduce the

21

22 chapter 5 design

bits to encode the summary graph) and have high quality (not increasing the
bits required to encode corrections too much).

Candidate sets are ordered in a list based on their size and quality before
the list is processed and the candidates are merged into supernodes. In this
process, the total cost is monitored, and a candidate set is only merged if it
does not decrease the quality of the summarization too much. A benefit of
this merging process is the ability to summarize at multiple resolutions. For
measuring the quality of candidates, the technique has extended the Jaccard
similarity metric to support directed graphs. The grouping of nodes is based
on their similarity by utilizing Locality Sensitive Hashing (LSH).

5.2 Dependecy tool Modification

5.2.1 Modified Type Rules

Type rules were created in the capstone project [3] to explain how the de-
pendency tool captured the dependencies between variables. These rules have
been expanded to be more accurate. In this expansion, a new term named
active locations is introduced. Active locations refer to the current versions a
variable can be at the given time of a program. Looking back at listing 2.1, the
active versions of 𝑏 on lines 4 to 26 would be 𝑏1, while the active version of 𝑏
from line 26 would be 𝑏2.

In the type system,𝐺 is the set of dependencies so far in the program (𝑎ℓ → 𝑏ℓ ,
etc.), 𝑉 is the set of active locations of a variable at that time in the program
(𝑎:ℓ1, ℓ2, etc.), 𝑐𝑡𝑥 is the set of variables implicitly influencing the program at
that time of the program (e.g. inside an if statement with the condition 𝑎 > 0
the 𝑐𝑡𝑥 would consist of 𝑎ℓ), e is for the variables in an expression, and c for
commands. The function 𝐿𝐴(𝑥,𝑉) in the type system has the input of a variable
𝑥 and the active variables in 𝑉 . The output is the active variable versions in 𝑉
(e.g. 𝐿(𝑎,𝑉) returns 𝑎:ℓ1 and 𝑎:ℓ2). The notation 𝑐𝑡𝑥,𝐺,𝑉 ⊢ c,𝐺 ′,𝑉 ′ signifies
that according to the context 𝑐𝑡𝑥 , set of dependencies 𝐺 , and set of active
variables 𝑉 , the command c is type correct and results in the new set of
dependencies 𝐺 ′ and the new set of active variables 𝑉 ′.

𝐺 ′ = 𝐺 ∪ {𝑐𝑡𝑥 → xℓ 𝐿𝐴(e,𝑉) → xℓ } 𝑉 ′ = 𝑉 [𝑥 ↦→ ℓ]
𝑐𝑡𝑥,𝐺,𝑉 ⊢ ℓ : x:=e, 𝐺 ′,𝑉 ′ (5.1)

The assignment rule for the type system can be viewed in equation 5.1. The
explicit dependencies are captured with 𝐿𝐴(𝑒,𝑉) → 𝑥𝑙 , here the function 𝐿𝐴

5.2 dependecy tool modif ication 23

is used to find the currently active locations of the variable(s) in e and the
active variable(s) is added as a dependency to 𝑥𝑙 . The implicit dependencies
are captured with 𝑐𝑡𝑥 → 𝑥𝑙 , and the active variable version of 𝑥 is added or
with the statement 𝑉 ′ = 𝑉 [𝑥 ↦→ ℓ], which indicates that the active location of
variable 𝑥 is set to location ℓ .

Listing 5.1: Assignment rule example

1 in t main () {
2 in t a = 5;
3 in t b = a ;
4 }

In listing 5.1, the assignment rule would first be applied to variable 𝑎, where
there would be no dependencies, so 𝐺 would remain empty. However, the set
of active variable versions 𝑉 would be updated with 𝑎:2. On the assignment
of 𝑏, 𝑏:3 would be added to 𝑉 , and the function 𝐿𝐴(𝑎,𝑉) would output 𝑎2,
resulting in the dependency 𝑎2 → 𝑏3.

𝑐𝑡𝑥 ′ = 𝑐𝑡𝑥 ∪ 𝐿𝐴(e,𝑉) 𝑐𝑡𝑥 ′,𝐺,𝑉 ⊢ c1, 𝐺1,𝑉1 𝑐𝑡𝑥 ′,𝐺,𝑉 ⊢ c2, 𝐺2,𝑉2
𝑐𝑡𝑥,𝐺,𝑉 , ⊢ ℓ : if e then c1 else c2 end, 𝐺1 ⊔𝐺2,𝑉1 ⊔𝑉2

(5.2)

The type rule of if statements can be viewed in equation 5.2. Commands inside
the if statements are correct if the variable(s) in the condition is captured in
the context. Therefore, when an if statement is encountered the function 𝐿𝐴

is used to find the currently active locations of the condition variable(s) (e
in the equation) and augment the context with these when the commands in
the if statement are analysed. After the analysis of the branches, the set of
dependencies from the different branches are merged and the active locations
of variables from the different branches are merged.

Listing 5.2: If rule example

1 in t main () {
2 in t a = 5;
3 in t b = 0;
4 i f (a > 0){
5 b = 1 ;
6 } else {
7 b = 2;
8 }
9 in t c = b ;
10 }

24 chapter 5 design

In listing 5.2, the assignment rule would first be applied to variables 𝑎 and 𝑏

before the if statement is encountered. The if rule would then ensure that the
condition variable 𝑎:2 is added to the context during the if statement with
the use of function 𝐿𝐴(𝑎,𝑉). When the commands inside the if statements
have been analysed 𝑉1 will have replaced 𝑏:3 with 𝑏:5, and 𝐺1 will consist
of 𝑎:2 → 𝑏:5. In the else however, 𝑉2 will have replaced 𝑏:3 with 𝑏:7, and
𝐺2 will consist of 𝑎:2 → 𝑏:7. After the merging, the resulting 𝑉 consist of
(𝑏:5, 7), while the resulting 𝐺 consists of (𝑎:2 → 𝑏:5, 𝑎:2 → 𝑏:7). When the
assignment rule is executed on variable 𝑐, the function 𝐿𝐴(𝑏,𝑉) will return
𝑏:5 and 𝑏:7 leading to the dependencies 𝑏:5 → 𝑐:9 and 𝑏:7 → 𝑐:9.

ctx1 = ctx ∪ 𝐿𝐴(𝑒,𝑉) 𝑐𝑡𝑥1,𝐺,𝑉 ⊢ c, 𝐺1,𝑉1
ctx2 = ctx ∪ 𝐿𝐴(𝑒,𝑉1) 𝑐𝑡𝑥2,𝐺1,𝑉1 ⊢ c, 𝐺2,𝑉2

𝑐𝑡𝑥,𝐺,𝑉 ⊢ ℓ : while e do c end, 𝐺 ⊔𝐺2,𝑉 ⊔𝑉2 (5.3)

Equation 5.3 shows the type rule for a while statement. The body of a while
loop needs two analyses to be correct, as explained with listing 3.1 in a pre-
vious chapter. Similarly as in the if statements, commands inside the while
statements are correct if the variable(s) in the condition is captured in the
context. Therefore, when a while statement is encountered the function 𝐿𝐴

is used to find the currently active locations of the condition variable(s) (e in
the equation) and augment the context with these when the commands in the
while statement are analyzed.

After the first analysis, a second analysis is started with the set of dependencies
and active variable locations from the first analysis. After the second analysis,
the set of dependencies from the second analysis and before encountering
the while statement are merged (𝐺 ⊔ 𝐺2). The active locations of variables
from the second analysis and before encountering the while statement are
also merged (𝑉 ⊔𝑉2). The reason is that the program might or might not have
entered the while.

Looking back at listing 3.1, the assignment rule would first ensure 𝑉 added
𝑎:2. When encountering the while statement, the while rule would add 𝑎:2 to
its 𝑐𝑡𝑥 , and during the first analysis capturing the dependency 𝑎2 → 𝑎4, both
explicitly and implicitly, as well as replacing the active version of 𝑎 in 𝑉 to 𝑎:4.
In the second analysis, the function 𝐿𝐴(𝑎,𝑉) would return 𝑎4 and capture the
dependency 𝑎4 → 𝑎4, both explicitly and implicitly.

Notice how this thesis uses the implementation of SSA and CFG to implement
the type system rules, where SSA is implemented with the use of the line
number the variable is assigned, and the CFG is used to know when and what
to merge with conditional commands.

5.2 dependecy tool modif ication 25

5.2.2 While statements

The while implementation from the capstone project was not sufficient and
needed modification to support if and while statements inside it. While state-
ments need a second analysis, and one solution could have been to do a second
parse through the while loops, straight after it finished. However, as srcSlice
uses a SAX parser to parse through the XML document, and this parser retains
no memory, this was not an option. Since changing the parser would be too
much work the solution was to save the events occurring inside thewhile loops
and do a second run-through of these events. This implementation modification
ensures the program supports the type rule in equation (5.3).

5.2.3 File format for summarization tool

The summarization tool expected two files, one label file and one edge list
(graph file). The label file consists of node IDs and their labels, while the edge
list consists of two node IDs in the format "𝑠𝑜𝑢𝑟𝑐𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 ". As an example, the
dependency 𝑎2 → 𝑏3, where node 𝑎2 had ID 1 and node 𝑏3 had ID 2, would
result in "1 2". For the tool to be able to produce these files, each variable first
needed to have an identity number. This identity number is given as they are
encountered in the program.

While experimenting with the summarization technique it was also noticed
that the order of the edge list could in some cases alter the result of the
summarization. For this reason, the edge list is sorted to ensure a consistent
summarization result. An option to reverse the ordering has also been added
to support more experimentation.

6
Interpreting the VDG
summarization

In this chapter, we experiment with the summarization technique TG-SUM
to help users interpret VDG summarization. When analyzing code, we identi-
fied VDG structures that correspond to distinctive code patterns. These code
patterns occurred within the source code analyzed but could also occur in
real-world scenarios. This chapter will start by presenting the identified graph
structures, how they tend to be summarized, and code patterns that result
in the graph structures. After we know how the graph structures tend to be
summarized, we will present graph structure combinations in programs to
show examples of how the found summarization tendencies transfer to larger
graphs with several structures.

TG-SUM supports four different node shapes in the summarizations, a circle
for nodes not in a cluster, a square for cliques, a triangle for in- and out-
stars, and a hexagon for disconnected sets. The different glyphs summarize
different underlying structures, and it is useful to understand these structures
to interpret the summarization better. Therefore, an explanation is provided
for the supported glyphs in table 6.1.

27

28 chapter 6 interpreting the vdg summarization

Table 6.1: Glyph Interpretation

Glyph Description
Clique All the nodes in the cluster are connected.
In-stars One central node has outgoing edges to all the other

nodes in the cluster.
Out-star One central node with incoming edges from all the

other nodes in the cluster.
Disconnected Set No edges between the nodes in the cluster.

6.1 Graph Structures

6.1.1 Linear

A linear graph structure can occur in the VDG when a variable uses one
variable in its assignment, and that variable already used one other variable
in its assignment, and so on. An example code resulting in a linear graph
structure can be viewed in listing 6.1, and the linear graph structure is provided
in figure 6.1. The experimentation with the linear graph structure revealed that
the structure tends not to be summarized.

Listing 6.1: Code resulting in the structure
in figure 6.1

in t main () {
in t a = 5;
in t b = a ∗ 2;
in t c = b ∗ 3;
. . .
return 0;

}

n

Figure 6.1: Linear structure

6.1.2 Many-to-One

Figure 6.2 shows a graph structure with many input nodes pointing to one
output node. This is present in a VDG when one variable uses several other
variables in its assignment. Listing 6.2 provides a code example resulting in
the graph structure. Experimentation with this graph structure revealed that
it tends to be summarized as one supernode with an in-star glyph (triangle),
where the central node of the cluster is the output node. The summarization
can be viewed in figure 6.3.

6.1 graph structures 29

Listing 6.2: Code resulting in the structure
in figure 6.2

in t main () {
in t a = 2;
in t b = 3;
. . .
in t sum = a + b + . . . ;
return 0;

}
n

Figure 6.2: Many-to-one structure

Node 3

Figure 6.3: Summarization of the graph structure in figure 6.2

6.1.3 One-to-Many

A graph structure with one input node pointing to several output nodes (pre-
sented in figure 6.4) can be found in a VDG with explicit and implicit depen-
dencies. In the explicit dependency case, this structure occurs when several
variables use the same variable in their assignments. A code example with ex-
plicit dependencies resulting in the structure can be viewed in listing 6.3.

In the implicit dependency case, this structure occurs when one variable is
used in the conditional command for the entire if statement. Then variables
are assigned within the statement. An example code is provided in listing 6.4.
The experiments uncovered that the structure tends to be summarized as one
supernode with an out-star glyph (triangle), where the central node of the
cluster is the input node. The summarization of this structure can be viewed
in figure 6.5.

30 chapter 6 interpreting the vdg summarization

Listing 6.3: Explicit depen-
decies resulting in the struc-
ture in figure 6.4

in t main () {
in t a = 5;
in t b = a + 1 ;
in t c = a + 2;
. . .
return 0;

}

Listing 6.4: Implicit depende-
cies resulting in the structure
in figure 6.4

in t main () {
in t a = [0 ,n] ;
in t r e s = 0;
i f (a==0){

re s = 1 ;
} else i f (a==1){

re s = 2;
} . . .
return 0;

}

n

Figure 6.4: One-to-many
structure

Node 3

Figure 6.5: Summarization of the graph structure in figure 6.4

6.1.4 All-to-All

A graph structure with each input node pointing to all output nodes can be
viewed in figure 6.6. This graph structure can occur in a VDG with explicit and
implicit dependencies. However, this structure was discovered when analyzing
if statements (implicit dependencies). With implicit dependencies, the structure
occurs when several variables are used in the conditional command for the
entire if statement, and then variables are assigned within the statement. An
example can be found in listing 6.6.

After discovering this structure from implicit dependencies, consideration was
given to the possibility of the structure deriving from explicit dependencies.
The conclusion was that this structure could occur with explicit dependencies if
several variables used the same variables in its assignment. Listing 6.5 provides
a code example with explicit dependencies. Looking at this example compared
to the implicit code example, this example seems more contrived (e.g. why
would 𝑏1 not just be assigned 𝑎1 (𝑏1 = 𝑎1)). However, the example is included
to demonstrate the possibility of it occurring.

6.1 graph structures 31

The tendencies discovered with experimentation of this structure are that it
tends to summarize input nodes with all the same outgoing edges as one
disconnected set (hexagon) and that it tends to summarize output nodes
with all the same incoming edges as one disconnected set. This leads to the
summarization viewed in figure 6.7.

Listing 6.5: Explicit depen-
decies resulting in the struc-
ture in figure 6.6

in t main () {
in t a = 1 ;
in t b = 2;
. . .
in t a1 =

a + b + . . . ;
in t b1 =

a + b + . . . ;
. . .
return 0;

}

Listing 6.6: Implicit depende-
cies resulting in the structure
in figure 6.6

in t main () {
in t a = 1 ;
in t b = 2;
. . .
in t r e s = 0;
i f (a>0 && b>1

&& . . .) {
re s = 1 ;

} else i f (a>1 &&
b>2 && . . .) {
re s = 2;

} . . .
return 0;

}

nn

Figure 6.6: Many-to-many
structure

Figure 6.7: Summarization of the graph structure in figure 6.6

6.1.5 One-to-All-to-One

Figure 6.8 shows a graph structure with one input node pointing to all middle
nodes, then each middle node pointing to one output node. This structure
can be derived from both explicit and implicit dependencies. In the explicit
scenario, this structure occurs when several variables use the same variable
in their assignments, and then these variables are used by one variable in its
assignment. An example is provided in listing 6.7.

In the implicit scenario, this structure occurs when one variable is used in the
conditional command for the entire if statement. Then the same variable is

32 chapter 6 interpreting the vdg summarization

reassigned in each branch before it is used by another variable, in its assignment,
outside the if statement. View listing 6.8 for an example code with implicit
dependencies. The experimentation revealed that middle nodes with the same
incoming and outgoing edges tend to be summarized as one disconnected set
(hexagon). Figure 6.9 shows the summarization.

Listing 6.7: Explicit depen-
decies resulting in the struc-
ture in figure 6.8

in t main () {
in t a = 5;
in t b = a ∗2;
in t c = a ∗3;
. . .
in t r e s =
b + c + . . . ;

return 0;
}

Listing 6.8: Implicit depen-
decies resulting in the struc-
ture in figure 6.8

in t main () {
in t a = [0 ,n] ;
in t b = 0;
i f (a==0){

b = 1 ;
} . . .
else i f (a==1)
. . .
else {

b = n ;
} . . .
in t r e s = b ;
return 0;

}

n

Figure 6.8: One-to-all-to-one
structure

Figure 6.9: Summarization of the graph structure in figure 6.8

6.1.6 Some-to-Some

Figure 6.10 presents a graph structure with several input nodes with different
outgoing edges to several output nodes. Both explicit and implicit dependen-
cies can lead to this structure. This structure was discovered when analyzing
if statements (implicit dependencies). The structures occur with implicit de-
pendencies when different conditional command variables are used for each
branch of the if statement. Then a variable is assigned in each branch. Listing
6.10 provides a code example with implicit dependencies.

6.1 graph structures 33

Consideration was then given to the possibility of this structure deriving from
explicit dependencies. For explicit dependencies, the structure could occur if
one variable used 𝑛 variables in its assignment, the next variable used 𝑛 − 1,
and so on. An example can be viewed in listing 6.9. This example is included
to demonstrate the possibility of it occurring, but it seems more contrived than
the implicit dependency example.

In this structure, input nodes with the most outgoing edges tend to be sum-
marized as one disconnected set (hexagon), and output nodes with the most
incoming edges tend to be summarized as one disconnected set. The resulting
summarization can be viewed in figure 6.11.

Listing 6.9: Explicit depen-
decies resulting in the struc-
ture in figure 6.10

in t main () {
in t a = 1 ;
in t b = 2;
. . .
in t a1 =

a + b + . . . ;
in t b1 =

b + . . . ;
. . .
return 0;

}

Listing 6.10: Implicit depen-
decies resulting in the struc-
ture in figure 6.10

in t main () {
in t a = 1 ;
in t b = 2;
. . .
in t r e s = 0;
i f (a>0){

re s = 1 ;
} else i f (b>2){

re s = 2;
} . . .
else {

re s = 20;
}
return 0;

}

n

n

Figure 6.10: Some-to-some
structure

Figure 6.11: Summarization of the graph structure in figure 6.10

34 chapter 6 interpreting the vdg summarization

6.1.7 Some-to-Some-to-One

A graph structure with several input nodes with different outgoing edges to
several middle nodes each pointing to one output node can be viewed in figure
6.12. This structure was discovered when analyzing implicit dependencies. The
structure occurs when different conditional command variables are used for
each branch of the if statement. Then a variable is assigned in each branch
before they are used by another variable, in its assignment, outside the if
statement. One code example with implicit dependencies resulting in the
structure is provided in listing 6.12.

The structure could also occur with explicit dependencies if one variable used
𝑛 variables in its assignment, the next variable used 𝑛 − 1, and so on. Then
all these variables would have to be used by a variable in its assignment. An
example with explicit dependencies is provided in listing 6.11. This example is
included to demonstrate the possibility of it occurring. However, it seems more
contrived than the implicit dependency example.

The experimentation of this graph structure had more varying summarization
results, both by adding more nodes to the structure and by changing the
order of the edge list inputted to the technique. In some cases, it would be
summarized similarly to the some-to-some structure above, where the input
nodes with the most outgoing edges and middle nodes with the most incoming
edges were clustered together. However, two other summarization tendencies
did occur several times, both can be viewed in figure 6.13.

In figure 6.13a, one of the clusters consists of the input node with the most
outgoing edges, the middle nodes with the least incoming edges, and the output
node. This cluster is represented as an in-star, where the central node is the
input node. The other cluster in this summarization consists of the middle
nodes with the most incoming edges and is represented by a disconnected
set.

In figure 6.13b however, the in-star cluster with an outgoing edge (represented
as a clique if there were only two nodes in the cluster) consists of almost
the same nodes as the in-star in figure 6.13a, except the output node is not
included. The other cluster in this figure consists of the middle nodes with the
most incoming edges and the output node. This cluster was represented by an
out-star glyph, where the central node is the output node. Comparing the two
summarizations, the difference is in which cluster the output node has been
placed.

Another thing worth mentioning is how adding more output nodes with the
same incoming edges altered the summarization. The technique would then

6.1 graph structures 35

prioritize summarizing the output nodes as a disconnected set, the middle
nodes with the most incoming edges as a disconnected set, and the input node
with the most outgoing edges together with the middle nodes with the least
incoming edges as an in-star (more than two nodes in the cluster) or a clique
(when only two nodes in the cluster).

Listing 6.11: Explicit depen-
decies resulting in the struc-
ture in figure 6.12

in t main () {
in t a = 1 ;
in t b = 2;
. . .
in t a1 =

a + b + . . . ;
in t b1 =

b + . . . ;
. . .
in t r e s =

a1 + b1 + . . . ;
return 0;

}

Listing 6.12: Implicit depende-
cies resulting in the structure
in figure 6.12

in t main () {
in t a = 1 ;
in t b = 2;
. . .
in t r e s = 0;
i f (a>0){

re s = 1 ;
} else i f (b>2){

re s = 2;
} . . .
else {

re s = 20;
}
in t output = res ;
return 0;

}

n

n

Figure 6.12: Some-to-some-
to-one structure

(a) Summarization 1 (b) Summarization 2

Figure 6.13: Summarizations of the graph structure in figure 6.12

36 chapter 6 interpreting the vdg summarization

6.1.8 While

The graph structure from a simplewhile statement can be viewed in figure 6.14,
and the code resulting in the graph is provided in listing 6.13. Notice how by
removing the while loop, the alteration to the VDG would be that the self-loop
of variable 𝑖:4 would be removed. The experimentation with the while graph
structure revealed that this type of structure tends not to be summarized.

Listing 6.13: While loop
1 in t main () {
2 in t i = 0;
3 while (i <10){
4 i+=1;
5 }
6 return 0;
7 }

i:2 i:4

Figure 6.14: While graph structure

6.2 Testing Graph Structure Combinations in
Programs

6.2.1 Introduction Code

In the code from the introduction viewed in listing 1.1, a program was created
to determine daily calorie intake. The VDG from the program code can be
viewed in figure 1.1, and the summarization of the graph in figure 4.1b.

Viewing this summarization, the input nodes with the same outgoing edges
(𝑎𝑔𝑒, 𝑔𝑒𝑛𝑑𝑒𝑟,𝑤𝑒𝑖𝑔ℎ𝑡, ℎ𝑒𝑖𝑔ℎ𝑡) are summarized as a disconnected set, the middle
nodes with the same incoming and outgoing edges are summarized (𝑏𝑚𝑟) as
a disconnected set, and the output nodes with the same incoming edges are
summarized (𝑑𝑎𝑖𝑙𝑦𝐶𝑎𝑙𝑜𝑟𝑖𝑒𝑠) as a disconnected set. The node with different
incoming and outgoing edges (𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝐿𝑒𝑣𝑒𝑙) was not included in a cluster.
This summarization conforms with the tendencies observed in the all-to-all
and one-to-all-to-one structures.

6.2 testing graph structure combinations in programs 37

6.2.2 Program Code 1

The program in listing 6.14 results in the VDG viewed in figure 6.15. This graph
structure is a combination of the graph structures viewed in many-to-one
and some-to-some structures. The program determines the gym membership
cost for a month, the many-to-one structure occurs when the cost per month
is calculated based on attended classes and the normal monthly price. The
some-to-some structure occurs when the final cost is calculated, where a
discount is applied to the normal monthly price based on the customer’s
membership.

The summarization of the graph can be viewed in figure 6.16. Viewing the sum-
marization, the many-to-one structure was summarized as one out-star glyph.
In the some-to-some structure, the input nodes with the most outgoing edges
are summarized as one disconnected set and the output nodes with the most
incoming edges are summarized as one disconnected set. This summarization
conforms with the tendencies observed in the many-to-one and some-to-some
structures.

Listing 6.14: Program to determine Gym Membership Cost this month
in t main () {
in t gymMemnershipPerMonth = 250;
in t a t tendedClas ses ;
char basicMember [3] ;
char premiumMember [3] ;
char VIPMember [3] ;
(r e c e i v e input s)
in t costMonth = gymMembPerMonth+(at tendedClas ses ∗30) ;
f l oa t f inalMonthCost ;
i f (strcmp (VIPMember , " yes ") == 0){

f inalMonthCost = costMonth ∗0 .8 ;
} else i f (strcmp (premiumMember , " yes ") == 0){

f inalMonthCost = costMonth ∗0 .9 ;
} else i f (strcmp (basicMember , " yes ") == 0){

f inalMonthCost = costMonth ∗ 1 ;
}
(p r i n t r e s u l t)
return 0;

}

38 chapter 6 interpreting the vdg summarization

gymMemnershipPerMonth:7attendedClasses:8

basicMember:9premiumMember:10VIPMember:11

finalMonthCost:35finalMonthCost:32finalMonthCost:29

costMonth:25

Figure 6.15: VDG from code in listing 6.14

costMonth:25,

attendedClasses:8,
gymMembPerMonth:7

finalMonthCost:29

premiumMember:10,
VIPMember:11

finalMonthCost:32,
finalMonthCost:35

basicMember:9

Figure 6.16: Summarization of the VDG in figure 6.15

6.2.3 Program Code 2

The program presented in listing 6.15 results in the VDG viewed in figure 6.17.
This graph structure is a combination of the graph structures viewed in linear,
some-to-some-to-one, and one-to-many. The program determines the ticket
price based on collected points and ticket type. The linear structure occurs
when calculating the discount based on the user’s points. The some-to-some-to-
one structure occurs when determining the ticket discount based on the ticket
type and then using the ticket discount to calculate the ticket price. While the
many-to-one structure occurs when the new points are determined based on
the final ticket price.

Viewing the summarization in figure 6.18, the linear structure was not sum-
marized, the some-to-some-to-one structure was summarized similarly to one
of the summarizations experienced when experimenting with some-to-some-
to-one structure, viewed in figure 6.13b. Lastly, the many-to-one structure
was summarized as one in-star glyph. This summarization conforms with

6.2 testing graph structure combinations in programs 39

the tendencies observed in the linear, some-to-some-to-one and many-to-one
structures.

Listing 6.15: Program to calculate ticket price
in t main () {
in t po in t s ;
char ch i l d [3] ;
char teen [3] ;
char s en io r [3] ;
char s tudent [3] ;
(r e c e i v e input s)
in t t i c k e t _d i s c oun t ;
i f (strcmp (ch i ld , " yes ") == 0){

t i c k e t _d i s c oun t = 4;
} else i f (strcmp (teen , " yes ") == 0){

t i c k e t _d i s c oun t = 3;
} else i f (strcmp (senior , " yes ") == 0){

t i c k e t _d i s c oun t = 3;
} else i f (strcmp (student , " yes ") == 0){

t i c k e t _d i s c oun t = 2;
} else {

t i c k e t _d i s c oun t = 0;
}
in t t i c k e t _ p r i c e = 5 − t i c k e t _d i s c oun t ;
in t d i scount_wi th_po in t s = po in t s ∗0 . 0 1 ;
f l oa t f i n a l _ t i c k e t _ p r i c e =

t i c k e t _ p r i c e−d i scount_wi th_po in t s ;
in t new_points ;
i f (f i n a l _ t i c k e t _ p r i c e > 2){

new_points = 3;
} else {

new_points = 1 ;
}
(p r i n t r e s u l t)
return 0;

}

40 chapter 6 interpreting the vdg summarization

new_points:51new_points:49

final_ticket_price:45

ticket_price:43

student:9senior:8teen:7

ticket_discount:40ticket_discount:37ticket_discount:34ticket_discount:31ticket_discount:28

child:6

discount_with_points:44

points:5

Figure 6.17: VDG from the code in listing 6.15

senior:9

ticket_price:44,
ticket_discount:35,
ticket_discount:38,
ticket_discount:41

 final_ticket_price:46,

 new_points:50,
new_points:52

 child:7,
ticket_discount:29,
ticket_discount:32

points:6

teen:8 student:10

 discount
_with_points:45

Figure 6.18: Summarization of the VDG in figure 6.17

6.2.4 Program Code 3

The program viewed in listing 6.16 results in the VDG in figure 6.19. In this
program, a structure that tends to be summarized is placed inside a while
structure that tends not to be summarized. This program determines the Grade
Point Average (GPA) based on inputted grades. The structure placed inside the
while statement is similar to a one-to-all-to-one structure, however, there is
more than one input, making it an all-to-all-to-one structure. Without thewhile
statement the input nodes would be summarized as one disconnect glyph, and
the middle nodes (variables defined in if statement) would be summarized as
one disconnected set.

The summarization of the graph is presented in figure 6.20. In the summa-

6.2 testing graph structure combinations in programs 41

rization, the input nodes have been summarized as one disconnected set, and
all the middle nodes assigned in the if statement are summarized as a clique
with a self-loop. As mentioned above, without the while statement this clique
would have been a disconnected set. However, within a while loop all the
middle nodes have outgoing edges to itself and all the other middle nodes
inside the if statement, making the clique glyph more fitting, and a self-loop
necessary. The iterator in the while statement has not been summarized, but
the iterator’s definition outside thewhile statement has been summarized with
the other input nodes. However, the structure of the while statement with the
first iterator pointing to the second definition in the loop that again points to
itself has not been summarized.

This summarization conforms with the tendencies observed in the while struc-
ture andwith the clusters in the all-to-all-to-one clusters. However, since placing
it inside a while statement resulted in all the middle nodes having edges to
each other and itself, the glyph was replaced with a clique and a self-loop
added.

Listing 6.16: Program to calculate GPA

in t main () {
in t num_grades = 8;
char grades [num_grades] ;
(r e c e i v e input s)
in t i = 0;
in t GPA = 0;
while (i < num_grades){

i f (grades [i] == ’A ’){
GPA += 5;

} else i f (grades [i] == ’B ’){
GPA += 4;

} else i f (grades [i] == ’C ’){
GPA += 3;

} else i f (grades [i] == ’D ’){
GPA += 2;

} else i f (grades [i] == ’E ’){
GPA += 1 ;

}
i += 1 ;

}
GPA = GPA/num_grades ;
(p r i n t r e s u l t)
return 0;

}

42 chapter 6 interpreting the vdg summarization

GPA:41

GPA:37

GPA:54

num_grades:2

i:51

i:36

grades:3

GPA:49

GPA:47

GPA:45

GPA:43

Figure 6.19: VDG from the code in listing 6.16

 num_grades:2,
 grades:3, i:36,

 GPA:37

GPA:41, GPA:43, GPA:45,
GPA:47, GPA:49

i:51

GPA:54

Figure 6.20: Summarization of the VDG in figure 6.19

7
Discussion
This chapter will discuss the choices and results of the thesis and how they
satisfy the research questions from Chapter 1.1, as well as make suggestions for
future work.

7.1 Summarizing the VDG

The first research question was how the VDG of a program could be summarized
to decrease its size without losing valuable information for a user. Answering
this research question required a tool to generate VDGs and exploration of the
different techniques in the graph summarization field. My previous capstone
project [3] started this process by finding and modifying a tool to generate
VDGs with our desired properties from a program code, and by getting an
overview of the graph summarization field.

In this thesis, the contribution to the dependency tool was expanding the
type system to be more accurate, refactoring the implementation to support
conditional commands insidewhile statements, and outputting the files needed
by the chosen technique TG-SUM.

When choosing a graph summarization technique, the newest techniques under
GraphNeural Networks (GNN)were not considered. Themain reason is that the
complexity of these models can make it hard to know how the summarization

43

44 chapter 7 discussion

is derived. Therefore, as the main point of this thesis is to explain how the
input results in the output, choosing a summarization technique where it can
be hard to explain how the summarization is derived would be counterintuitive
to the thesis purpose.

An extensive exploration was done in Chapter 4 to find a fitting summarization
technique. Two criteria were created to determine whether a technique was
a good fit. The first criterion was that the technique needed to support VDG
characteristics, and the second criterion was to generate a summarization
without losing too much information for the user. One of the arguments for not
choosing several techniques was that the summarization output had too much
information loss. To achieve a summarization without too much information
loss we were looking for an overview of the entire graph (supergraph output)
and not a sample of the graph or a customized summarization.

The result of our exploration was the technique TG-SUM. TG-SUM is lossless,
outputs a supergraph, supports the VDGs graph characteristics, and hasmultiple
features for enhanced visualization. With these traits, TG-SUM were able to
fulfil the research question above.

Another interpretation of the research question, however, could be that the
valuable information for a user is information the user is interested in. With this
interpretation a technique such as VEGAS [25], where the summarization is
based on user interest, would have been a better choice. In this case, there are
two scenarios where we could know the user’s interest and use this knowledge
when summarizing.

In the first scenario, the summarization is personalized using collected data
about the user. Then we need to remember that the VDG in this thesis is
used to increase a user´s understanding of the program with explainability. A
personalization of the summarization based on collected data would leave the
users unaware of which of their collected data altered the summarization.
Following this direction would therefore be counterintuitive to the thesis
purpose.

In the second scenario, the summarization is based on user input. Then a user
would be required to decide what they deem interesting or not, where they
might not have enough knowledge to make such a decision. Therefore, creating
an overview of the entire graph seemed the best approach. However, a user
input summarization technique could be a good addition. This would allow
the user to take a closer look at what they deemed interesting after reviewing
the summarization overview.

7.2 interpreting the vdg summarization 45

7.2 Interpreting the VDG summarization

The second research question of this thesis was how to help a user interpret
the VDG summarization. The contribution to answering this research question
can be found in Chapter 6. For a user to interpret the summarization, they
should have an underlying knowledge of what program code might be behind
the summarization. Therefore, when analysing source code supported by our
modified dependency tool (variable assignments, if statements and while
statements), VDG structures corresponding to distinctive code patterns were
identified. Afterwards, experimentation was done to show how these graph
structures tend to summarize. With this process, the user has been helped to
understand which graph structures are behind the summarization and which
code pattern(s) can lead to this graph structure.

In addition to this knowledge, some graph structure combinations were tested
to check whether this altered the previous findings. In the programs with graph
structure combinations, most of the found tendencies were transferred to these
combinations. One difference, however, was the summarization when placing
graph structures inside a while loop. The while loop created edges between
what outside the loop would have been a disconnected set. This resulted
in the same cluster but with a clique glyph instead. Further exploration of
how different graph structures behave inside a while statement could be
interesting.

The graph structure combinations were presented with real-world programs in-
stead of abstract programs. The main reason was to give a better understanding
of how and where these graph structures could occur in the real world.

In some of the graph structures, it could be seen that two different code
examples (explicit and implicit dependencies) lead to the same graph structure.
As mentioned, some of these explicit examples seemed more contrived (all-to-
all, some-to-some, and some-to-some-to-one). However, in the one-to-many and
one-to-all-to-one structure, it cannot be distinguished between the two code
examples with explicit and implicit dependencies. Therefore, these scenarios
could justify making a distinction between explicit and implicit dependencies
in the VDG.

In the graph structure some-to-some-to-one, the experimentation revealed
different summarizations by altering the order of the edge list or adding more
nodes. Before experimenting with this structure there was no ordering of
the edge list. However, since this structure’s summarization could be altered
between analyses of the same code it was decided to order the edge list,
to ensure a consistent summarization result. The edge list provided by the
dependency tool can be in two directions, to enable experimentation with the

46 chapter 7 discussion

order of the list in a more controlled environment.

A theory for why the order of the edge list could alter the output could be that
it depends on which candidate sets are found at which time by the technique.
The candidate sets are said to be ordered based on size or quality, but if this
metric is quite similar it might just be about which candidate set was found at
which time. This could be investigated and confirmed in the future by taking
a deep dive into TG-SUM. However, that different parameters altered only the
some-to-some-to-one structure could indicate that it was more difficult to find
an optimal summarization in this case.

7.3 Future Work

7.3.1 Dependency Tool

The modified dependency tool supports at this time variable assignments, if
statements (including else if), and while statements. In the future, it could be
expanded to support e.g. switch expressions, for loops, for each loops, and
do while loops. Another aspect is that the modified dependency tool works at
a function level. It would be beneficial to support analysis across functions and
files to experiment with larger VDGs.

7.3.2 VDG Characteristics

As mentioned, some graph structures in the VDG could derive from both
explicit and implicit dependencies. Therefore, a potential future work could be
to separate between explicit and implicit dependencies to distinguish between
the scenarios. One solution could be to label the edges with "explicit" or
"implicit". Edge labeling is however not supported by TG-SUM and alteration
would be required.

7.3.3 TG-SUM

In this thesis, no alteration has been made to TG-SUM. Potential future work for
TG-SUM could be to extend the outputted summarization file or to include an
extra file with the supernode IDs and the nodes included in it. This information
is today printed to the terminal. Another addition to the tool could be to make
a system for labelling the supernodes when there are nodes with different
labels in one supernode.

7.3 future work 47

7.3.4 Framework

A potential future direction could be to create a framework for users. In this
framework, a user could start by inputting a program code that results in the
original VDG. The user could then choose to apply summarization resulting in
the output from TG-SUM.

As briefly mentioned, it could also be a good addition to have a summarization
technique that retrieves parts of the graph based on user input. Then the
user could, after reviewing an overview, choose which part of the graph they
wanted to take a closer look at. Such a summarization could be achieved with
e.g. VEGAS, a query-driven approach or snowball sampling.

8
Conclusion
The first contribution of this thesis was an extensive search for a technique that
can summarize a VDG without losing too much information for a user. A tool to
generate VDGs from a program code was needed to conduct this search. In my
preceding capstone project [3], a tool named srcSlice was found and modified
to generate VDGs with our desired properties. The modification in the capstone
project and this thesis made it possible to generate VDGs at a function level
for variable assignments, if statements and while statements.

Criteria were made to help decide whether techniques were fitting. The first
criterion was to support all the VDG´s graph characteristics, and the second
was visualization without too much information loss for a user. The result of
our exploration was the technique TG-SUM. Where TG-SUM supported all
the VDGs graph characteristics, had a lossless supergraph output, and several
features for enhanced visualization.

The second contribution of this thesis was to help a user interpret the VDG
summarization produced by the technique. When analysing code supported
by the modified dependency tool, VDG structures corresponding to distinctive
code patterns were identified. We then presented the graph structures, code
examples resulting in the graph structures, and their summarization. With
this knowledge, the user can understand not only what graph structures are
behind the supernodes in the summarization, but also which code pattern(s)
are behind the graph structure.

49

Bibliography
[1] UiT - The Arctic University. Cyber Security Group (CSG). Retrieved April

12, 2024 from https://uit.no/research/csg.

[2] IT department at UiT The Arctic University of Norway. 2023. ChatUiT (Oct
10 version) [Large language model]. https://chat.uit.no

[3] Marie Mikalsen. 2023. Investigating variable dependency graph summa-
rization. UiT - The Arctic University of Norway. Unpublished report.

[4] Paul B. Schneck. 1973. A survey of compiler optimization techniques.
In Proceedings of the ACM annual conference (ACM ’73). Association for
Computing Machinery, New York, NY, USA, 106–113. DOI:https://doi.
org/10.1145/800192.805690

[5] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The program
dependence graph and its use in optimization. ACM Trans. Program. Lang.
Syst. 9, 3, 319–349. DOI:https://doi.org/10.1145/24039.24041

[6] Ken Kennedy and John R. Allen. 2001. Optimizing compilers for modern
architectures: a dependence-based approach. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA.

[7] Norman Wilde. 1990 Understanding program dependencies. Carnegie
Mellon University, Software Engineering Institute.

[8] Frances E. Allen. 1970. Control flow analysis. In Proceedings of a sym-
posium on Compiler optimization. Association for Computing Machinery,
New York, NY, USA, 1–19. DOI:https://doi.org/10.1145/800028.808479

[9] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F.
Kenneth Zadeck. 1991. Efficiently computing static single assignment form
and the control dependence graph. ACM Trans. Program. Lang. Syst. 13,
4, 451–490. DOI:https://doi.org/10.1145/115372.115320

51

https://uit.no/research/csg
https://chat.uit.no
https://doi.org/10.1145/800192.805690
https://doi.org/10.1145/800192.805690
https://doi.org/10.1145/24039.24041
https://doi.org/10.1145/800028.808479
https://doi.org/10.1145/115372.115320

52 bibl iography

[10] Ron Cytron, Andy Lowry, and F. Kenneth Zadeck. 1986. Code motion
of control structures in high-level languages. In Proceedings of the 13th
ACM SIGACT-SIGPLAN symposium on Principles of programming languages
(POPL ’86). Association for Computing Machinery, New York, NY, USA,
70–85. DOI:https://doi.org/10.1145/512644.512651

[11] Ron Cytron and Jeanne Ferrante. 1987. What’s In a Name? -or- The Value
of Renaming for Parallelism Detection and Storage Allocation. Interna-
tional Conference on Parallel Processing.

[12] Hakam W. Alomari, Michael L. Collard, Jonathan I. Maletic, Nouh Al-
hindawi, and Omar Meqdadi. 2014. srcSlice: very efficient and scalable
forward static slicing. Journal of Software: Evolution and Process 26, 11,
931-961. DOI:https://doi.org/10.1002/smr.1651

[13] Christian D. Newman, Tessandra Sage, Michael L. Collard, Hakam W.
Alomari, and Jonathan I. Maletic. 2016. SrcSlice: a tool for efficient static
forward slicing. In Proceedings of the 38th International Conference on Soft-
ware Engineering Companion (2016). Association for Computing Machin-
ery, New York, NY, USA, 621–624. DOI:https://doi.org/10.1145/2889160.
2889173

[14] Thu-Trang Nguyen, Hue Nguyen, Quang-Cuong Bui, Pham N, Hung, Dinh-
Hieu Vo and Shigeki Takeuchi. 2020. Practical approach to access the
impact of global variables on program parallelism. 2020 International
Conference on Advanced Computing and Applications (ACOMP), Quy Nhon,
Vietnam, 79-86. DOI:https://doi.org/10.1109/ACOMP50827.2020.00019

[15] Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. 2018. Graph
Summarization Methods and Applications: A Survey. ACM Comput. Surv.
51, 3, Article 62 (May 2019), 1-34. DOI:https://doi.org/10.1145/3186727

[16] Angela Bonifati, Stefania Dumbrava, and Haridimos Kondylakis.
2020. Graph summarization. arXiv:2004.14794. DOI:https://doi.org/10.
48550/arXiv.2004.14794

[17] Nasrin Shabani, Jia Wu, Amin Beheshti, Quan Z. Sheng, Jin Foo, Venus
Haghighi, Ambreen Hanif, and Maryam Shahabikargar. 2023. A Compre-
hensive Survey on Graph Summarization with Graph Neural Networks.
arXiv:2302.06114. DOI:https://doi.org/10.48550/arXiv.2302.06114

https://doi.org/10.1145/512644.512651
https://doi.org/10.1002/smr.1651
https://doi.org/10.1145/2889160.2889173
https://doi.org/10.1145/2889160.2889173
https://doi.org/10.1109/ACOMP50827.2020.00019
https://doi.org/10.1145/3186727
https://doi.org/10.48550/arXiv.2004.14794
https://doi.org/10.48550/arXiv.2004.14794
https://doi.org/10.48550/arXiv.2302.06114

bibl iography 53

[18] Zhiqiang Xu, Pengcheng Fang, Changlin Liu, Xusheng Xiao, Yu Wen, and
DanMeng. 2022. DEPCOMM: Graph Summarization on System Audit Logs
for Attack Investigation. 2022 IEEE Symposium on Security and Privacy
(SP), San Francisco, CA, USA, 540-557. DOI:https://doi.org/10.1109/
SP46214.2022.9833632

[19] Matteo Riondato, David Garcia-Soriano, and Francesco Bonchi. 2014.
Graph summarization with quality guarantees. 2014 IEEE International
Conference on Data Mining, Shenzhen, China, 2014, 947-952. DOI:https:
//doi.org/10.1007/s10618-016-0468-8

[20] Dimitris Berberidis, Pierre J. Liang, and Leman Akoglu. 2023. Sum-
marizing Labeled Multi-graphs. In Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases. 53-68. DOI:https:
//doi.org/10.1007/978-3-031-26390-3_4

[21] Cody Dunne and Ben Shneiderman. 2013. Motif simplification: improving
network visualization readability with fan, connector, and clique glyphs.
In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’13). Association for Computing Machinery, New York, NY,
USA, 3247–3256. DOI:https://doi.org/10.1145/2470654.2466444

[22] Marc A. Smith, Ben Shneiderman,NatasaMilic-Frayling, EduardaMendes
Rodrigues, Vladimir Barash, Cody Dunne, Tony Capone, Adam Perer, and
Eric Gleave. 2009. Analyzing (social media) networks with NodeXL. In
Proceedings of the fourth international conference on Communities and
technologies (CT ’09). Association for Computing Machinery, New York,
NY, USA, 255–264. DOI:https://doi.org/10.1145/1556460.1556497

[23] Yasir Mehmood, Nicola Barbieri, Francesco Bonchi, and Antti Ukko-
nen. 2013. CSI: Community-Level Social Influence Analysis. In Ma-
chine Learning and Knowledge Discovery in Databases. Springer, 48–63.
DOI:https://doi.org/10.1007/978-3-642-40991-2_4

[24] Michael Mathioudakis, Francesco Bonchi, Carlos Castillo, Aristides Gionis,
and Antti Ukkonen. 2011. Sparsification of influence networks. In Proceed-
ings of the 17th ACM SIGKDD international conference on Knowledge discov-
ery and data mining (KDD ’11). Association for Computing Machinery, New
York, NY, USA, 529–537. DOI:https://doi.org/10.1145/2020408.2020492

[25] Lei Shi, Hanghang Tong, Jie Tang, and Chuang Lin. 2015. VEGAS: Visual
influence graph summarization on citation networks. IEEE Transactions
on Knowledge and Data Engineering, vol. 27, no. 12, 3417-3431. DOI:https:
//doi.org/10.1109/TKDE.2015.2453957

https://doi.org/10.1109/SP46214.2022.9833632
https://doi.org/10.1109/SP46214.2022.9833632
https://doi.org/10.1007/s10618-016-0468-8
https://doi.org/10.1007/s10618-016-0468-8
https://doi.org/10.1007/978-3-031-26390-3_4
https://doi.org/10.1007/978-3-031-26390-3_4
https://doi.org/10.1145/2470654.2466444
https://doi.org/10.1145/1556460.1556497
https://doi.org/10.1007/978-3-642-40991-2_4
https://doi.org/10.1145/2020408.2020492
https://doi.org/10.1109/TKDE.2015.2453957
https://doi.org/10.1109/TKDE.2015.2453957

54 bibl iography

[26] François Goasdoué, Paweł Guzewicz, and Ioana Manolescu. 2020. RDF
graph summarization for first-sight structure discovery. The VLDB Journal
29, 1191–1218. DOI:https://doi.org/10.1007/s00778-020-00611-y

https://doi.org/10.1007/s00778-020-00611-y

A
Declaration of the usage of
AI tools

In this thesis, AI tools have been used to speed up the process of creating real-
world code examples. As mentioned, in Chapter 1, AI was used to generate a
program calculating a user’s daily calorie need based on personal inputs.

In Chapter 6, AI was used to speed up the generation of real-world examples
for program codes 1 and 2. In this process, I first created the graph structure
combination desired, before creating the program with variables. This program
was then inputted to AI and the AI was prompted to generate a real-world
example resulting in the same variable dependencies. The resulting programs
from the AI either did not generate the same VDG or made no sense. Therefore,
I decided to get inspired by some of its suggestions and made alterations to
get the desired graph structures with a real-world example.

55

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	1 Introduction
	1.1 Thesis statement
	1.2 Contribution
	1.3 Context
	1.4 Thesis Outline

	2 Background
	2.1 Dependency Analysis
	2.1.1 Dependencies
	2.1.2 Control Flow Graph (CFG)
	2.1.3 Static Single Assignment (SSA)

	2.2 Graph Summarization
	2.2.1 Graphs

	3 Investigating variable dependency graph summarization
	3.1 Dependency tool
	3.2 Graph Summarization field
	3.2.1 Graph Clustering
	3.2.2 Statistical Inference
	3.2.3 Goal-Driven Summarization

	4 Choosing a Graph Summarization Technique
	4.1 VDG Characteristics
	4.2 Identify Fitting Techniques
	4.2.1 Clustering
	4.2.2 Statistical Inference
	4.2.3 Goal-Driven
	4.2.4 The Chosen Summarization Technique

	5 Design
	5.1 TG-SUM
	5.2 Dependecy tool Modification
	5.2.1 Modified Type Rules
	5.2.2 While statements
	5.2.3 File format for summarization tool

	6 Interpreting the VDG summarization
	6.1 Graph Structures
	6.1.1 Linear
	6.1.2 Many-to-One
	6.1.3 One-to-Many
	6.1.4 All-to-All
	6.1.5 One-to-All-to-One
	6.1.6 Some-to-Some
	6.1.7 Some-to-Some-to-One
	6.1.8 While

	6.2 Testing Graph Structure Combinations in Programs
	6.2.1 Introduction Code
	6.2.2 Program Code 1
	6.2.3 Program Code 2
	6.2.4 Program Code 3

	7 Discussion
	7.1 Summarizing the VDG
	7.2 Interpreting the VDG summarization
	7.3 Future Work
	7.3.1 Dependency Tool
	7.3.2 VDG Characteristics
	7.3.3 TG-SUM
	7.3.4 Framework

	8 Conclusion
	Bibliography
	A Declaration of the usage of AI tools

