
Faculty of Science and Technology
Department of Physics and Technology

Propagating information like waves in GNNs

Tobias S. Myrmel Antonsen
FYS-3941 Master’s thesis in applied physics and mathematics 30 SP
June 2024

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2024 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

Abstract
Various deep learning architectures are appearing in the field of machine learn-
ing with the goal of being able to handle various types of data, or solving
inherent problems within the networks. In this thesis, we propose the idea of
creating architectures based on physics partial differential equations (PDEs),
where we transfer the known properties of PDEs as a method of introducing
inductive bias to the model architectures. We test this idea by comparing
the oversmoothing process in graph neural networks to heat diffusion, and
constructing new architectures based on the wave equation to reduce the
effects of oversmoothing. The experiments suggests that the proposed archi-
tectures posses similar properties to wave propagation, implying that the idea
of inheriting properties from physics PDEs is a viable method.

Acknowledgements
First, I would like to thank my supervisor for the assistance with this thesis,
Benjamin Ricaud. Your indisputable excitement for deep learning, and espe-
cially graphs, has been an inspiration for me during this project. Our numerous
meetings and discussions has critical for enhancing my own understanding
and strengthening my excitement for this field.

Secondly, I would like to acknowledge value of my friends during my time as a
student. Be it spending our time discussing machine learning, politics or some
random banter, you have been critical in giving a valuable and memorable
experience as a student. I would like to mainly thank Iver Nørve, Christian
Salomonsen and Sigurd Hanssen for the considerable assistance and support
during this thesis. And of course, I can not forget to thank my partner Sandra
Walle for the unyielding support.

Contents
Abstract i

Acknowledgements iii

List of Figures vii

List of Tables ix

1 Introduction 1

2 Background theory 5
2.1 Graph data . 5

2.1.1 The Graph Laplacian 6
2.2 Neural networks . 7

2.2.1 Loss functions . 8
2.2.2 Activation functions 9
2.2.3 Optimiser and learning rate scheduler 10
2.2.4 Inductive bias . 10
2.2.5 Graph neural networks 10

2.3 Partial differential equations (PDEs) 13
2.3.1 The Laplacian operator in PDEs 13
2.3.2 Heat equation . 13
2.3.3 Wave equation . 14

2.4 The Cora citation network 15
2.5 PyTorch . 16

2.5.1 PyTorch geometric 17
2.6 Declaration of previous work and AI assistance 17

3 Physics-inspired architectures 19
3.1 Motivation . 19

3.1.1 Diffusion in Graph Convolutional Networks 20
3.1.2 GNN layers as waves 22

3.2 Neural bølge operator . 24
3.3 Bølgenet . 26

v

vi contents

3.4 Hypothesised effect on oversmoothing with wave equation
properties . 28

4 Method of testing 31
4.1 Noise graphs experiment 31
4.2 Cora experiment: The Cora citation network 34
4.3 Comparing to other architectures 35

5 Results 39
5.1 Noise experiment results 39

5.1.1 Neural bølge operator model 40
5.1.2 Bølgenet model . 41
5.1.3 ResGraph model . 42
5.1.4 Basic GCN model 43

5.2 Cora experiment results . 44
5.2.1 Neural bølge operator 44
5.2.2 Bølgenet model . 45
5.2.3 ResGraph and basic GCN model 47
5.2.4 Dirichlet energy . 48

6 Discussion 51
6.1 The performance of Bølgenet and Neural bølge operator . . 51

6.1.1 The experiments . 52
6.2 Problems with the experiments 58
6.3 Other models with similar ideas: PDE-GCN 59
6.4 The effect on the physics-based models idea 59
6.5 Further work . 60

7 Conclusion 63

Bibliography 65

8 Appendix 69
8.1 Table of results for the Noise experiment 69

8.1.1 Neural wave operator 69
8.1.2 Bølgenet . 70

8.2 Table results for the Cora experiment 70

List of Figures
2.1 Undirected social media graph 6
2.2 Cora citation graph . 16

3.1 Proposed architecture: Neural bølge operator 25
3.2 Proposed architecture: Bølgenet 27

4.1 Noise graph . 32
4.2 ResGraph: A ResNet inspired architecture in GNNs 36
4.3 Standard GCN architecture 36

5.1 Noise experiment results: Neural bølge operator 40
5.2 Noise experiment results: Bølgenet 41
5.3 Noise experiment results: ResGraph 42
5.4 Noise experiment results: Basic GCN model 43
5.5 Cora experiment results: Neural bølge operator 44
5.6 Loss curves for the Neural bølge operator models in the Cora

experiment . 45
5.7 Cora experiment results: Bølgenet 46
5.8 Loss curves for the Bølgenet models in the Cora experiment . 46
5.9 Cora experiment results: ResGraph, Basic GCN and Basic GCN

without bias . 47
5.10 Dirichlet energy results . 48

6.1 Noise experiment results: All models 52
6.2 Cora experiment results: All models 56

vii

List of Tables
2.1 Classes in the Cora citation graph 15

3.1 Parameter for Neural bølge operator 25
3.2 Parameter table for Bølgenet 27

4.1 Noise experiment: Data split 33
4.2 Noise experiment: Training parameters 33
4.3 Cora experiment: Training parameters 35

8.1 Specific Noise experiment results: Neural bølge operator . . 69
8.2 Specific Noise experiment results: Bølgenet 70
8.3 Specific Cora experiment results 70

ix

1
Introduction
In deep learning, the architecture of a network has a significant impact on the
models performance and capabilities. Different architectures allow networks
process data in unique and complex manners, allowing the models to learn
complex patterns within verious types of data. Various architectures have been
emerging over the years, each with different properties that allows for the
creation of models specialised for different tasks. Amongst these are some
renowned architectures like ResNet [15] and transformers [31]. Many archi-
tectures are constructed based on what the properties of the models should
be, often based on reasoning rather than a theoretical reasoning. In this the-
sis, we have an idea regarding a method of constructing model architectures
where we can know the properties of a model architecture before testing. With
this idea, we can construct architectures tailored for whatever problem we
encounter. The idea is basing the properties of a model architecture in physics.
By using partial differential equations (PDEs) representing physical systems,
we can create model architectures that inherit the properties of the physical
system.

Graph neural networks (GNNs) [11, 30] are increasing in popularity as a
powerful deep learning model for handling graph structured data. Graph data
is more complex than simple table data, as the different instances in the data
has some relation to each other. GNNs are capable of utilising these relations,
making them very popular in various fields of science. GNN models can be used
in any case where data-points has some relation to other data-points, be it some
direct connection, dependency or physical adjacency. Some examples of where

1

2 chapter 1 introduction

GNNs are used are social media [24], chemistry [7, 18], weather prediction
[20], data analysis [9] and much more. A known problem within GNNs is
oversmoothing [5, 26], where the ability to handle relational information also
results in loss of unique information with the increase of aggregation layers.
Oversmoothing is not a bug or an unintended flaw, but rather an inherent
effect that occurs with the aggregation of vertices in GNNs. When aggregation
performed, each vertex combines the information of the neighbouring vertices,
along with itself, and is updated. By performing multiple aggregation steps, the
vertices aggregate information of a larger range within the graphs. This results
in each vertex converging to a state of similarity, meaning that the vertices
become indistinguishable with large amount of aggregation layers. This is an
unavoidable problem in standard GNN models, as the aggregation of vertices
is vital for the utilisation of the relational information in graphs.

Numerous attempts has been made to reduce the effects of oversmoothing.
Various methods like changing the aggregation method, or the architecture of
the GNNs have been attempted to solve the oversmoothing problem. Amongst
thesemethods ideas like applying gates [21, 27], applying attention on relational
embeddings [19], manipulating the weights [23], applying skip-connections
[35], using differential equations [8] andmany other ideas have been presented.
This thesis presents the idea of using differential equations that represent
physics, as an inspiration for the architectures we will propose. Applying
differential equations to deep learning models is not a new concept, as it has
been researched and used in many cases [8, 12, 29]. The difference is that we
will use partial differential physics equations to construct architectures with
an inductive bias to handle the oversmoothing problem.

In this thesis,we present the idea of using physics PDEs construct architectures
that inherit the properties of the PDE, and therefore the properties of the
physical system. We will present this idea through the oversmoothing problem
in GNNs. By comparing graph convolutional network (GCN) layers to heat
diffusion, we find that the properties of GNNs are similar to the properties of
heat diffusion system. With this, we will establish a connection between the
partial differential equation for heat diffusion with the standard GCN layer. By
investigating the properties, we are inspired to create a model layer function
that applies an other PDE, with different properties. The architectures we
are proposing to reduce oversmoothing in GNNs based on this method are
the Neural bølge operator and Bølgenet, where both are created to inherit
properties from the wave equation. Neural bølge operator is directly based on
the wave equation, while Bølgenet is a modified version, but is still constructed
to inherit the properties. The reasoning for choosing the wave equation is the
systems property of not converging to some equilibrium state, in contrast to
heat diffusion. The property of waves propagating indefinitely is the inspiration
to attempt to reduce the effects of oversmoothing.

3

We show how to design neural network architectures such that the prop-
erties can be related to physical concepts. This project thesis show that by
creating model architectures directly from, or inspired by, physical systems, we
can have the models inherit the properties of the systems. By doing this, we
have a method of introducing inductive bias when constructing model archi-
tectures to handle specific tasks. This allows us have a theoretical background
in the choice of architecture for a task, and therefore have knowledge the
properties of the models before testing. We use oversmoothing in GNNs to
validate the method, but this idea can be applied arbitrarily. The are numerous
PDEs that can be used introduce inductive bias into model architectures by
inheriting their properties.

2
Background theory
2.1 Graph data

Graphs are structures that represents sets of objects that have some relation
to each other. In the field of data and machine learning, graphs is used to
represent data that consisting of data-points (vertices), and the distinctive
property of graphs is that the vertices have relations to other vertices. A graph
is defined by these sets of vertices, where the relations (edges), are represented
as connections between the vertices. An example of a graph structure is an
online social media network, where a user has an account and they can follow
other accounts. In this socialmedia graph network, each vertex would represent
a user account, and the relations between the users is the following. Each user
has an outgoing connection to the users they follow, and incoming connections
to users that follow them. This is an example of a directed graph, where the
connections only goes in the direction of following, as following a user does not
require them to follow you. Undirected graphs are also common, an example
of an undirected graph in the same setting is a social media network where the
users can add friends instead of following. This is a case where adding a friend
requires them to add you as well, meaning that each connection is required to
go both ways. This means that each connection is undirected. An example of
an undirected social media graph can be viewed in figure 2.1

In graph theory, a graph is defined as a set of vertices 𝑉 and edges 𝐸 [33].
The vertices represents the objects in a graph, and the edges are the relations

5

6 chapter 2 background theory

between them.
G = (𝑉 , 𝐸)

G is a graph, defined by 𝑉 (a set of vertices) and 𝐸 (a set of edges) [33].
A requirement for a graph is that all vertices has to be connected to some
degree. If a set of vertices are not connected to the remaining vertices, the set
is essentially its own graph.

Figure 2.1: Undirected social media graph. Each vertex (blue circle) denotes an ac-
count and the edges (lines between vertices) denotes that the account are
friends on the social media.

Note that visual representations of graphs are arbitrary. The only important
factor is that the edges between specific vertices are conserved, they are vi-
tal to the graph structure. Graph can be illustrated in any form, including
isomorphisms such as rotations or translations of any vertices.

2.1.1 The Graph Laplacian

To define the graph Laplacian, we first need to define the adjacency and
degree matrix. The adjacency matrix A is a matrix that contains the relational
information in a graph structure. The entries in the matrix are boolean values
that denote which vertices are connected to each other. The adjacency matrix
can also bemodified to contain values between 0 and1 toweigh the connections.
For an undirected graph, all vertices are connected two ways, making the
adjacency matrix symmetric. The degree matrix is diagonal matrix, created
from the adjacency matrix

D𝑖𝑖 =
∑︁
𝑗

A𝑖 𝑗

where each entry denotes the degree of each vertex. The degree of a vertex
denotes the total amount of outgoing connections a vertex has. The graph
Laplacian contains structural properties of a graph, and it is calculated based
on the adjacency and degree matrix.

L = D − A (2.1)

2.2 neural networks 7

In Equation 2.13 is the definition of the graph Laplacian matrix, where A is
the adjacency matrix and D is the degree matrix. The adjacency and degree
matrices are calculated from the edge indices from a specific graph structure.
The graph Laplacian is used for various purposes, amongst them is machine
learning, where it is used to incorporate the data structure in the learning
process. In Graph Neural Networks (GNNs), the graph Laplacian is used to
create the Graph Convolutional Network (GCN) layer, where the GCN layers
performs aggregation based on the graph Laplacian, along with the application
of weights.

2.2 Neural networks

Neural networks is a concept of information processing that is inspired by
the human brain [10] and is a fundamental in the field of deep learning.
Neural networks consists of a network of neurons where each neuron contains
parameters, and is trained to process data to perform some desired task. Neural
networks can be used to perform a huge range of tasks, with many variations
to the network architecture. In a simple fully-connected network, data is
processed through layers that contain a matrix representing the learnable
parameters, referred to as weights. Equation 2.2 represent a layer in a fully-
connected neural network. The learnable parameters are the weight matrices
and the biases. The weight matrices are denoted as W𝑖 , where 𝑖 is a layer
index, and biases b𝑖 . The data is denoted with X where the input data is X0
and the intermediate data (latent data) is X𝑖 when 𝑖 ≠ 0. In a layer of the
network there is an activation function 𝜎 , this function is non-linear. With
a non-linear function, the network is able to learn and model more complex
patterns within the data. Without non-linear activation functions a neural
network would essentially behave like a linear model.

X𝑖 = 𝜎 (W𝑖X𝑖−1 + b𝑖) (2.2)

The neural network models learn by a method called backpropagation [10].
This method is the idea of propagating the changes of parameters backwards
from the last layer to the first. The backpropagation process in initialised based
on a measure of how accurate the network performed. This measure is referred
to as the loss, and is calculated from a loss function. The loss function compares
the predicted values of the network with the true values of the training data.
During the training of a network, it is normal to perform the backpropagation
numerous times. Each training iteration, called epochs, the network predicts
some values and the loss is calculated. Based on the loss, the parameters of the
network are tuned through backpropagation.

There are numerous variations to neural networks that allow us solve a large

8 chapter 2 background theory

range of tasks, some tasks are predictions and classifications of data, image pro-
cessing, language models, generative tasks, transforming of data and lots more.
Some known variations that can perform some of these tasks are recurrent
networks, convolutional networks, transformer networks and graph networks.
This thesis uses graph neural networks (GNNs), which will be further explained
in section 2.2.5.

2.2.1 Loss functions

Loss functions are the functions that calculate the measure that initialises the
backpropagation method of tuning the network parameters. There are various
loss functions with different properties that are used depending on the goal of
the network.

Cross-entropy loss

Cross-entropy loss is a common loss function used within machine learning
for multi-class classification tasks. A loss function is a function that provides
the loss measure for the learning process of the model. This measure is used
to initiate the backpropagation of a model in order to update the weight
parameters. The loss of a model is calculated by evaluating the discrepancy
between the predictions of the model and the actual targets (true labels).

𝐿 = −
𝑀∑︁
𝑐

𝑦𝑐 log(𝑦𝑐) (2.3)

Equation 2.3 is the cross-entropy loss function for a model with 𝑀 classes.
In the equation 𝑦𝑐 represents the target at position 𝑐 in the label vector for
a specific data-point, and 𝑦𝑐 represents the prediction at position 𝑐 in the
prediction vector. This loss function sums the loss at each position in the vector
and provides a total value for the model during training.

Binary cross-entropy loss

Binary cross-entropy loss is a specific case of cross-entropy loss, where there are
only two classes. Due to the fact that there are only two classes, the probability
of a data-point belonging to a class has probability 𝑝, and thus the probability
of belonging to the other class is 1 − 𝑝. Using this fact the loss function for a
specific data-point is defined as

𝐿 = 𝑦 log(𝑦) + (1 − 𝑦) log(1 − 𝑦) (2.4)

2.2 neural networks 9

This is the same function as equation 2.3, when𝑀 = 2, but PyTorch provides a
special function for binary cross-entropy loss.

2.2.2 Activation functions

Activation functions is a critical part of machine learning algorithms as they
add a non-linear capability to the neural networks [10]. There are numerous
activation functions that are actively used within the field, but we will only
present the ones that are used in this thesis project.

𝜎sigmoid(𝑥) =
1

1 + 𝑒−𝑥 (2.5)

Equation 2.5 is the Sigmoid activation function. It is a relatively popular
activation function with a continuous derivative. This activation function scales
all input values in the range (0, 1).

𝜎tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥
𝑒𝑥 + 𝑒−𝑥 (2.6)

Tanh is the hyperbolic tangent activation function (equation 2.6). It is also
relatively popular due to its continuous derivative and the range of output
values. The function scales all input values to an output domain in the range
(−1, 1). This allows the network to use negative values in the processing.

Classification functions

Classification functions are used at the end of a network to classify data-points.
There are numerous classification functions, but we will only present the ones
used in this thesis project.

Sigmoid is an activation function that is also used as a logistic classification
function in a binary class case (equation 2.5). The output of the function can
be viewed as the probability 𝑝 of belonging to a specific class, making the
probability of belonging to the other class 1 − 𝑝.

𝜎softmax(x) =
𝑒𝑥∑𝐾
𝑗 𝑒

𝑥 𝑗
(2.7)

Softmax is similar to Sigmoid, but it is used for multi-class cases (equation 2.7).
The output of a softmax function is a vector, with the size of the amount of
classes𝐾 , where all values sum to 1. This makes the output a probability vector,
where the classifications follow the position of the highest probability.

10 chapter 2 background theory

2.2.3 Optimiser and learning rate scheduler

There are many optimisers and learning rate schedulers used in machine
learning algorithms, but we will only present the ones relevant for this thesis
project.

The ADAM optimiser is an optimisation algorithm that computes individual
adaptive learning rates for different weights, based on estimated of first and
second order moments of the gradients [16]. This optimisation algorithm is
based on two known optimisation algorithms: Adagrad and RMSProp. The
name "ADAM" is an acronym for "adaptive moment estimation" [10].

Linear learning rate scheduler is a simple algorithm for scaling the learning
rate during training. The linear scheduler simply changes a coefficient of the
learning rate linearly throughout the training.

2.2.4 Inductive bias

Inductive bias is a concept that refers to a set of assumptions we make when
constructing model architectures. This is done to generalise the architectures
capabilities within specific settings. Models architectures with specific induc-
tive biases are enabled to better handle certain types of data, resulting in
improved learning and performance. An example of this are convolutional
neural networks (CNNs) where the convolutions are used as an inductive bias.
This inductive bias results in, amongst other things, CNNs being capable of
object detection in images, independent from translation and transformation
of the object or image [6].

Introducing inductive bias requires some prior knowledge of the task at hand.
With this knowledge, model architectures are constructed to address specific
challenges in a more generalised and effective manner.

2.2.5 Graph neural networks

Graph neural networks (GNNs) are a specialised version of neural networks,
made to be able to handle graph-structured data [11, 30]. The graph data
contains a set of nodes with features and a set of edges that describe the
relationship between the nodes. These edges provide a new aspect to the
data, compared to non-graph data. The edges provide relational information
of the data structure, and that needs to be retained throughout processing.
There are various methods that are used in GNNs to utilise the relational
information in a graph. Methods like Graph Attention Networks (GATs) [32],

2.2 neural networks 11

Graph Convolutional Networks (GCNs) [17], Graph Isomorphism Networks
(GINs) [34], and GraphSage (Graph Sample and AggregatE) [13] are amongst
the most popular methods. This thesis will use the GCN method, as it is
based on the graph Laplacian, and we will use this to relate the method to
PDEs. Otherwise, we use this method as it is an effective, widespread and
the aggregation method is easily comprehensible. GCN layers aggregates the
information of a vertex and its neighbours, in addition to applying the weights.
The aggregation is also weighted with regards to the degree of the vertices.
The degree of a vertex is the amount of vertices it is has edges with.

𝑥
(𝑘)
𝑖

=
∑︁

𝑗∈N(𝑖)∪{𝑖 }

1√︁
deg(𝑖) ·

√︁
deg(𝑗)

·
(
W𝑇 · x(𝑘−1)

𝑗

)
+ b (2.8)

Equation 2.8 shows the mathematical expression of a convolutional process for
a specific node 𝑖 and with itself and its neighbours N(𝑖) ∪ {𝑖}. The weights
are represented as W, the bias b and the features x𝑘𝑖 at latent state 𝑘.

X𝑖 = D̃−1/2 Ã D̃−1/2 X𝑖−1 W𝑖 (2.9)

Equation 2.9 is the expression for the entire GCN layer in matrix form [17].
Ã = A + I is the adjacency matrix with added self-connections and D̃ is its
diagonal matrix,meaning the degree matrix of the graph. The matrices D̃ and Ã
is based on the graph Laplacian to perform the aggregation process [17].

Graph neural networks can be used to perform various tasks. These tasks are
node classification, node regression, graph classification and edge prediction.
In this thesis, we only use node classification during our experiments.

The oversmoothing problem

Oversmoothing is a known concept within the applications of graph convolu-
tional networks (GCNs). Oversmoothing is the problemwhere the loss of unique
vertex information and increase of similarity between the vertices. When data
is processed in a GCN layer, the data within a vertex and its neighbouring
vertices are aggregated, in addition to the application of the trained weights
[17]. The aggregation of the vertices and their neighbours are also scaled by the
amount of edges they have, meaning that the vertices somewhat experiences a
weighted averaging, in each GCN layer (equation 2.8).

As described, each vertex is updated through the aggregation with its neigh-
bours and the application of the weights. This results in each vertex containing
information of the local neighbourhood after one layer. This is similar to con-
volutional neural networks (CNNs), where filters are applied on a node and

12 chapter 2 background theory

its neighbours, for a given range, to update the node. A major difference from
CNNs is that the vertices can have from one to an arbitrary amount of neigh-
bours. As described in section 2.1, the edges denotes a relationship between
the vertices, and the application of GCN layers allows us to use this relation
when processing the data.

However, this leads to the oversmoothing issue. For each GCN layer, the infor-
mation within each vertex affects the update of a larger amount of vertices,
which is seemingly is an advantage. The information spreading means that
each vertex is aggregating more information, and due to this, the original
unique information of each vertex is weakened. Additionally, as the informa-
tion spreads further throughout the graph, each vertex collects information
from more vertices in the graph. This results in each vertex collecting informa-
tion from all other vertices at some point. When this occurs, all the information
contained within the vertices become similar. By applying more GCN layers,
the vertices become more similar over time and the "feature vectors on nodes
in a graph go indistinguishable as we increase layers" [22].

The application of multiple GCN layers have two main effects. The first being
that the vertices collect similar information as its neighbours, resulting in an in-
crease of similarity. The second being that by aggregating information multiple
times, the influence of vertex-specific information is lost due to being weakened
repeatedly. This is what we call oversmoothing. It is not a special case or a bug,
but rather the inherent effect of the aggregation in graph networks.

Dirichlet energy

There are various measures on oversmoothing in GNNs, but a renowned mea-
sure is the Dirichlet energy [5, 25–28, 37]. Dirichlet energy is not a perfect
measure for oversmoothing, as it does not confirm whether or not a model will
oversmooth or not. If the Dirichlet energy decreases throughout the network,
the model will oversmooth, but if it is stable, we can not know if it will over-
smooth or not. This means that the measure can be used to filter out models
that will experience oversmoothing.

E(X𝑛) = 1
𝜈

∑︁
𝑖∈V

∑︁
𝑗∈N𝑖

| | X𝑛𝑖 − X𝑛𝑗 | |22 (2.10)

E(X𝑛) = ⟨X𝑛,LX · X𝑛⟩ (2.11)

E(X𝑛) = 1
2

∑︁
𝑒𝑖 𝑗 | |

X𝑛𝑖√
1 + 𝑑𝑖

−
X𝑛𝑗√︁
1 + 𝑑 𝑗

| |22 (2.12)

Equation 2.10, 2.11 and 2.12 all represent a measure of Dirichlet energy for a
graph, where the state of the latent graph data is denoted X𝑛 and a specific

2.3 partial differential equations (pdes) 13

vertex X𝑛𝑖 . Equation 2.10 and 2.12 sums the norm of the difference of vertex 𝑖
and its neighbours 𝑗 ∈ N𝑖 squared for all vertices. Equation 2.10 normalises
with the amount of nodes 𝜈 = |V| [26–28]. Equation 2.12 works similarly to
equation 2.10, but it is also capable of evaluating edge attributes, meaning that
the strength of the connections are taken into account [5, 37]. Additionally,
each node is scaled internally by its degree. Equation 2.11 uses the Laplacian
to calculate the Dirichlet energy [25].

As presented in equations 2.10, 2.11 and 2.12, there are various methods of
calculating the Dirichlet energy measure. In this thesis we will use equation
2.10 during the experiments.

2.3 Partial differential equations (PDEs)

A partial differential equation (PDE) is a multivariate equation that contains
partial derivatives. PDEs are used in multiple different fields like mathematics,
physics, and various engineering fields. A multivariate function takes multiple
different variables as the input. A partial derivative is a multivariate function
derived with respect to one specific variable.

2.3.1 The Laplacian operator in PDEs

While the Laplacian matrix is observed within graph theory, it is also seen in
PDEs. Within the domain of differential equations, the Laplacian operator is
the divergence of the gradient, and serves as the second spatial (X) derivative
of a system (𝑢).

L =

𝑛∑︁
𝑖

𝜕2𝑢

𝜕𝑥2
𝑖

(2.13)

In Equation 2.13 is a definition of the Laplacian operator matrix. The 𝑛-
dimensional space of the system 𝑢 is denoted as 𝑥𝑖 ∈ R𝑛.

2.3.2 Heat equation

The heat equation is a specific partial differential equation that describes the
diffusion of heat in a continuous physical system.

𝜕𝑢

𝜕𝑡
= 𝛼

𝑛∑︁
𝑖

𝜕2𝑢

𝜕𝑥2
𝑖

(2.14)

14 chapter 2 background theory

Equation 2.14 shows the partial differential heat equation where 𝑢 denotes a
system of temperatures, 𝜕

𝜕𝑡
denotes the derivative with respect to time,

∑𝑛
𝑖
𝜕2

𝜕𝑥2
𝑖

denotes the second spacial derivative of n-dimensional space and 𝛼 denoting
the diffusivity of the medium. The equation shows how the temperature
distribution 𝑢 changes over time by the heat diffusion.

Discrete heat equation

By applying the Laplacian as the second spatial derivative and the approxima-
tion of the time derivative, the system can be discretised so that a numerical
calculation of the diffusion process of temperature is possible. By doing this,
we can calculate the discretised process of heat diffusion on a surface 𝑢.

𝜕𝑢

𝜕𝑡
= −𝛼L𝑢 · 𝑢 [𝑡] ≈

𝑢 [𝑡 + 1] − 𝑢 [𝑡]
𝑚

= −𝛼L𝑢 · 𝑢 [𝑡]

=⇒ 𝑢 [𝑡 + 1] = 𝑢 [𝑡] − 𝛾L𝑢 · 𝑢 [𝑡]
(2.15)

where

𝛾 = 𝛼 ·𝑚

In Equation 2.15,𝑚 denotes a chosen time-step for the calculation and 𝛼 is
the diffusion coefficient that determines how fast the diffusion can be per-
formed through the medium. These constants are combined to a coefficient 𝛾 .
The equation shows how the Laplacian operator is used to create a discrete
mathematical representation of the heat diffusion process.

2.3.3 Wave equation

The wave equation is a partial differential equation that describes wave prop-
agation in continuous physical systems. The wave equation describes the
propagation of multiple types of waves such as water waves, sound waves
etc.

𝜕2𝑢

𝜕𝑡2
= 𝑐2

𝑛∑︁
𝑖

𝜕2𝑢

𝜕𝑥2
𝑖

(2.16)

Equation 2.16 shows the wave equation where 𝑢 denotes the amplitude of each
point in the system, 𝜕

𝜕𝑡
denotes the derivative with respect to time and

∑𝑛
𝑖
𝜕2

𝜕𝑥2
𝑖

denotes the second spacial derivative of n-dimensional space. The constant 𝑐
describes the characteristics of the medium as the wave speed, as the wave
speed will vary depending the type of wave and medium.

2.4 the cora citation network 15

Discrete wave equation

By applying the Laplacian to the wave equation, the temporal and spatial
perspectives become discretized. This allows for a numerical calculation of the
states of the propagation in the discrete system. By doing this, the evolution
of a system 𝑢 can be calculated.

𝜕2𝑢

𝜕𝑡2
= −𝑐2L𝑢𝑢 [𝑡] ≈

𝑢 [𝑡 + 1] − 2𝑢 [𝑡] + 𝑢 [𝑡 − 1]
𝑚2 = −𝑐2L𝑢𝑢 [𝑡]

=⇒ 𝑢 [𝑡 + 1] = 2𝑢 [𝑡] − 𝛾L𝑢𝑢 [𝑡] − 𝑢 [𝑡 − 1]
(2.17)

where
𝛾 = 𝑐2 ·𝑚2

In Equation 2.17,𝑚 denotes the chosen time-step for the approximation, and 𝑐
denotes the wave speed of the specific wave type with regards to the medium.
These constant are combined to a coefficient 𝛾 . The equation shows how
the Laplacian operator can be applied to create a discrete form of the wave
equation.

2.4 The Cora citation network

The Cora dataset is graph that represents machine learning papers [36]. Each
vertex represents a specific paper, and it connects to the papers it cites, making
the citations edges. There are 2701 vertices with a total of 10 556 edges. Each
vertex contains boolean dictionary-style features. There are 1433 features that
contains either 0 or 1, depending if a specific word in contained within the
paper. The dataset is used for supervised node classification, where there are 7
classes. Each class represents a category in which the paper is contained.

Label Category
0 Theory
1 Reinforcement Learning
2 Genetric Algorithms
3 Neural Networks
4 Probabilistic Methods
5 Case based
6 Rule Learning

Table 2.1: Classes in the Cora citation graph

Table 2.1 shows the different categories the papers are classified as. All papers

16 chapter 2 background theory

are machine learning related, so all the categories are fields within machine
learning.

Figure 2.2: Cora citation network. Each colour denotes a specific label, the labels
meaning are presented in table 2.1.

Figure 2.2 shows the citation graph from the Cora dataset. Each colour repre-
sents a label, by using table 2.1 we observe the different types of papers and
their relations in the figure. The dataset has been used in different manners,
resulting in PyTorch having different splits for the dataset. The splits denotes
how the data has been distributed into training, test and validation. In this
thesis project, the "public" split as been used. With the "public" split, the training
data is a subset of the total dataset, where all classes have an equal amount of
vertices.

2.5 PyTorch

PyTorch is a machine learning framework that is used in python. It is a practical
tool used for the creation and usage of machine and deep learning algorithms.
It offers methods in which to create networks and practical flexibility with
tensors (multi-dimensional arrays). It is an open-source software released

2.6 declaration of previous work and ai assistance 17

under the modified BSD license [1].

2.5.1 PyTorch geometric

PyTorch geometric is a library built on PyTorch specified for creating neural
networks that are able to handle irregular data-structures, like graph data. It
includes tools for GNNs, including a specific type of GNN known as graph
convolutional networks (GCNs) [2].

2.6 Declaration of previous work and AI
assistance

ChatGPT has been used during the work that the author have performed. It
has not been used for writing this thesis or to generate content in any manner.
It has been used as a code reviewer, information source and for explanations
of unfamiliar technical concepts. No information has been directly collected
from ChatGPT, as it is not a reliable source of information. Any information
collected has been fact-checked and sourced from original papers.

The author has written a project paper for UiT with similar subject matters
[4]. This thesis is written with partial inspiration from the project thesis. The
amount of common content should be little to none, but there is certainly an
unavoidable similarity, as the author has written both within a relatively short
time period.

3
Physics-inspired
architectures

3.1 Motivation

The main motivation of this thesis is to investigate the idea of inheriting
physical properties to solve problems in machine learning. By creating model
architectures based on PDEs representing physical systems, the idea is that the
models will inherit the properties of the system. By doing this we should be
able to introduce inductive bias so that we can construct architectures that are
tailored to handle problems we encounter.

The specific task we will be investigating to test this idea is oversmoothing
in GNNs. Oversmoothing is an inherent effect of the aggregation property in
GNNs. This does not mean that the problem is unsolvable. This thesis will
present a potential solution to reduce the effects of oversmoothing in GNNs,
by creating model architectures with physics as an inspiration. By creating
architectures based on physics PDEs, we hope that the architectures are able
to inherit the properties of the physical system. By inheriting the properties of
the system, we utilise inductive bias by choosing some system that are able to
handle oversmoothing better than the standard GCNs.

19

20 chapter 3 physics- inspired architectures

3.1.1 Diffusion in Graph Convolutional Networks

To establish the idea of physics properties in machine learning, we need to
relate the properties of the networks to physics. In our case, we are using GNNs
and we want to test if we can use this idea to reduce oversmoothing with GCN
models. Partial differential equations can be used to describe the evolution of
physical systems, with this in mind, we want to see if we can use a PDE to
model the processing inside GCNs. Through reasoning of how oversmoothing
occurs, we want to investigate the similarity between oversmoothing in GNNs
and heat diffusion systems. Heat diffusion is a physical phenomenon that
can be described with the use of a partial differential equation. Equation
2.14 shows the general 𝑛-dimensional representation of the PDE that governs
the evolution of heat diffusion in a temperature system. Now, how does this
relate to GNNs? Graphs can be represented through a matrix that describes
the properties of the graph. This matrix is called the adjacency matrix. The
adjacency matrix A describes how the vertices in a graph are connected to each
other. This matrix contains all the information that is useful when handling
graphs. With this matrix, we can calculate a degree matrixD, which tells us how
many connections each vertex has. With these matrices, we can calculate the
Laplacian operator L (equation 2.13). Back to the heat equation, the Laplacian
operator can also be used to represent the second spatial derivative of a system,
this means thatwe can replace the second spatial derivative in the heat equation
to create a discretised version, as shown in section 2.3.2.

Nowwe have the Laplacian operator in the heat equation and in graphs, but this
is not enough. We want to relate the process of the information propagation
in GNNs to the heat equation. By observing equation 2.15, we know that the
heat equation takes a state of the system as an input, and it is used to calculate
the next state of the system. This is similar to a GCN layer, where the current
state of the latent data is the input to a GCN layer, and the next state of the
latent data is computed (equation 2.9). The GCN layer equation uses a altered
version of the Laplacian to aggregate the vertices. To perform our comparison,
we need to manipulate the Laplacian. We do this by changing the Laplacian,
so that is becomes similar as in a GCN layer. An important factor in GCNs, is
that each vertex has a self-connection. This means that the first step is to add
self-connections to the adjacency matrix, and therefore the degree matrix as
well:

Â = A + I

and subsequently, the degree matrix

D̂𝑖𝑖 =
∑︁
𝑗

Â𝑖 𝑗

With the altered adjacency and degree matrices, we calculate the Laplacian

3.1 motivation 21

operator with self-connections:

L̂ = D̂ − Â (3.1)

The GCN layer (equation 2.9) is based on a normalised Laplacian with self-
connections [17],meaning that the next step is to normalise the Laplacian:

L̃ = D̃−1/2D̃D̃−1/2 − D̃−1/2ÃD̃−1/2

= I − D̃−1/2ÃD̃−1/2 (3.2)

The paper "Semi-supervised classification with graph convolutional networks"
by Kipf et al. [17], applies this method along with other tricks to define the
standard GCN layer. However, we want to show the similarity between the
heat equation and the GCN layer, so we will not perform all the methods that
they do. With this definition of the normalised Laplacian with self-connections,
we can apply this to the discretised heat equation. We show the similarity by
replacing the Laplacian in the discretised heat equation with the normalised
Laplacian with self-connections:

𝑢 [𝑡 + 1] = 𝑢 [𝑡] − 𝛾 L̃𝑢 [𝑡]
= 𝑢 [𝑡] − 𝛾

(
I − D̃−1/2ÃD̃−1/2

)
𝑢 [𝑡]

(3.3)

For simplicity, we set 𝛾 = 1, then our expression starts to look familiar

𝑢 [𝑡 + 1] = 𝑢 [𝑡] − 𝑢 [𝑡] + D̃−1/2ÃD̃−1/2
𝑢 [𝑡]

= D̃−1/2ÃD̃−1/2
𝑢 [𝑡]

(3.4)

Now equation 3.4 shows how GCN layers can be compared to the heat equation.
We can now view this equation as the GCN layer function, where 𝑢 [𝑡] is the
latent input data to the layer and 𝑢 [𝑡 + 1] is the output of the GCN layer. If we
replace the heat system 𝑢 [𝑡] with the latent data X𝑖 and apply some weights
W, we get equation 2.9, which mathematically represents a GCN layer.

We can also argue the similarity with reasoning. Lets say we have a case
of a graph representing some data, where all vertices contain the same data,
except for one. When we apply a GCN layer, the unique vertex aggregates
its information with the neighbourhood, resulting in it collecting common
information and losing some of its unique information. The neighbouring
vertices receives some of the unique information during the aggregation. Now
we switch over to a temperature system, where we have a similar case of a
surface,where all point have the same temperature, except for one position with
a different temperature. This position have a noticeable different temperature
than the rest, regardless of higher or lower temperature. In this example we
perform the diffusion in a discretised manner. When one diffusion step occurs,

22 chapter 3 physics- inspired architectures

the unique position loses some of its uniqueness as the temperature spreads
to its neighbours. The neighbouring positions collect some of the unique
temperature. In both cases, we now have a local area that are unique to the
rest of the system.

As the process continues, the uniqueness of the original vertex and position
decrease as they are aggregated with the neighbours. After some amount of
aggregation/diffusion steps, all points in the systems have received the unique
data/temperature. After this point, each aggregation/diffusion step only re-
scales the data/temperatures so that all entries become more similar. This is
the convergence to a state of equilibrium, where all entries eventually become
equal. By viewing the graph as a representation of the temperature surface,
where the vertices are positions that have edges to the neighbouring positions,
we observe that the cases are incredibly similar.

With this comparison we observe that the propagation of information in
GNNs is very similar to diffusion, and with this we observe that the process
of oversmoothing is very similar to the convergence to a state of equilibrium.
This idea is supported by the reasoning of various research papers, where they
state that the node features converge to similar values, or a state where they are
indistinguishable [5, 8, 23, 26, 27], as mentioned in section 2.2.5. An illustration
of the heat diffusion process can be observed in some animations generated
based the discretised heat equation on the authors GitHub page [3].

We have now explained the connection between the physical system of heat
diffusion and the GCN layers in GNNs. This means that process of information
propagation in GNNs, and therefore oversmoothing, can be viewed having the
same properties as heat diffusion. Now we ask the question, if a standard GCN
layer can be viewed as diffusion, can we change how a layer is constructed so
that it can be viewed as an other physical system? This is our motivation for
this thesis.

3.1.2 GNN layers as waves

Now that GCN layers can be viewed as having the properties of a heat diffusion
system, we conclude that the oversmoothing is the property of converging to
some state of equilibrium. With this, we want to change the properties of a
standard GNN to create an architecture that does not have this property, but
rather one that does not induce oversmoothing. Whilst researching we came
up with the idea of using the system of wave propagations. A large difference
in a wave propagation system compared a heat diffusion system is that the
waves does not converge towards an equilibrium, given that the system remains
uninterrupted. The wave will start with a different amplitude than the baseline,

3.1 motivation 23

and the amplitude will decrease as the waves spread over a larger area, but
the propagation will not stop. The waves will always propagate as long as the
system is uninterrupted. This is the reason of our motivation to apply the wave
equation to our problem.

To be able to inherit the properties of a wave propagation system, we need to
perform the same process as with the heat equation. We need the Laplacian
operator to relate the wave propagation equation to graphs. In section 2.3.3
the wave equation is presented and the application of the Laplacian operator is
used to define the discretised version in equation 2.17. A noticeable difference
in between the heat PDE (equation 2.14) and the wave PDE (equation 2.16) is
time. In the wave equation, we are using the second derivative with regards
to time, instead of the first derivative. This results in an additional time-step
being used to calculate the next state of the discretised wave propagation
equation (equation 2.17). However, this can be advantageous for us, let us apply
the normalised graph Laplacian with self-connections to the discretised wave
equation.

𝑢 [𝑡 + 1] = 2𝑢 [𝑡] − 𝛾 L̃𝑢 [𝑡] − 𝑢 [𝑡 − 1]
= 2𝑢 [𝑡] − 𝛾

(
I − D̃−1/2ÃD̃−1/2

)
𝑢 [𝑡] − 𝑢 [𝑡 − 1]

(3.5)

By setting 𝛾 = 1 for simplicity, we receive an equation that can inspire model
layers:

𝑢 [𝑡 + 1] = 2𝑢 [𝑡] − 𝑢 [𝑡] + D̃−1/2ÃD̃−1/2
𝑢 [𝑡] − 𝑢 [𝑡 − 1]

= 𝑢 [𝑡] + D̃−1/2ÃD̃−1/2
𝑢 [𝑡] − 𝑢 [𝑡 − 1]

(3.6)

Now we have equation 3.6 that represents how we can apply GCN layers
in a wave equation inspired model layer. This is our inspiration for two
model architectures that we propose in this thesis. As explained previously,
we want our architecture to have similar dynamical properties that do not
converge to some equilibrium. We want it to keep evolving throughout the
layers. This equation inspires a model layer function that uses the current state
and previous state of the latent data to compute the next. This is known as
a skip-connection, where data is sent into a layer and a copy of the data is
sent to the layers output, to be combined with the data that was processed in
the GCN layer. This is a known method that is employed in numerous deep
learning algorithms. A renowned architecture that uses this, is the ResNet [15],
it is a deep convolutional network, used for computer vision tasks, that employs
residual connections.

We will construct two architectures which will employ skip-connections in
their own unique manner. As skip-connections is a known method, we want
to propose an architecture that has a unique twist to the method. We want
to create architectures that inherit the properties of wave propagation, and

24 chapter 3 physics- inspired architectures

equation 3.6 can be converted to a model layer function for an architecture
that inherits the properties. Based on this, we create a model architecture
named Neural bølge operator. We also want to create a model with a different
architecture, but we still want it to have the properties. By observing equation
3.6, we observe that an aggregated version of the current state, along with the
current state and the previous state, is used to calculate the next. Based on
this, we modify the equation, to create an other model architecture named
Bølgenet.

The two architectures are called Neural bølge operator and Bølgenet. Neural
bølge operator is the architecture created directly from the equation 3.6, and
Bølgenet will be modified to create a unique architecture that has similar
properties, but in a different manner. We have named these models around the
word "bølge", which is the Norwegian word for wave. We wanted to give the
architectures unique names, and to add some Norwegian touch to them.

3.2 Neural bølge operator

The first architecture we propose is the Neural bølge operator, based directly
on equation 3.6. We create the architecture by using this equation as the
architectures model layer function. The hypothesis is that this architecture
will directly inherit the properties of a wave propagation system, and due to
the lack of convergence to a state of equilibrium, it should be able to handle
oversmoothing in an improved manner compared to standard GCN models.
The equation is modified so that it becomes a model layer function:

X𝑡+1 = 𝜎 (X𝑡 + FW𝑡
(X𝑡) − X𝑡−1) (3.7)

Equation 3.7 is Neural bølge operators model layer function. This equation is a
modified version of equation 3.6. It is modified to take in X, which is latent data
within the network. The function FW𝑡 represents a GCN layer as in equation
3.8.

FW𝑡
(X𝑡) = D̂−1/2 Â D̂−1/2 X𝑡 W𝑡 (3.8)

With this, we now have a model architecture based on the wave equation, and
should therefore inherit its properties. For implementation, we have one issue
that comes with the wave equation. As with the wave equation, this model
requires two initial states of the latent data to compute the next states. In the
implementation we are not able to perform the skip-connection to calculate the
latent state after the first GCN layer. To handle this issue, we set the data input
to the first linear layer X0 equal to the output of the linear layer X1. This is
done due the fact that the input and the output of the linear layer has different
embedding sizes. By doing this, we essentially remove the skip-connections as

3.2 neural bølge operator 25

they will negate each other after the first GCN layer, following equation 3.7.
The model architecture is illustrated in figure 3.1 with this in mind, which is
why the skip-connections are not illustrated after the first GCN layer.

Figure 3.1: Our first proposed architecture: Neural bølge operator. This is an illustra-
tion of the the architecture. The different components are labelled within
the figure. The skip-connections following the bølge GCN operator (equa-
tion 3.7) is denoted as

⊕
.

Figure 3.1 is an illustration of the Neural bølge operator architecture. In the
figure, we observe that the initial learnable layer is a linear layer, this is to
reshape the input features to the correct embedding size. With the correct
embedding size the summation is possible between all GCN layers. The last
layer is a linear layer for classification purposes.

Weight matrix Shape
Wlinear,1 Input size × Embedding size
W1 Embedding size × Embedding size
W2 Embedding size × Embedding size
...

...

W𝑁 Embedding size × Embedding size
Wlinear,2 Embedding size × Class amount

Table 3.1: Parameter table for the Neural bølge operator architecture. Due to the
addition and subtraction in the skip-connection, the embedding size have
to remain constant.

Table 3.1 shows the dimensions for the weight matrices throughout the network,
from this we observe that the total amount of parameters 𝑀parameters for this
architecture is

𝑀parameters = 𝑀input ·𝑀embedding + 𝑁 ·𝑀2
embedding +𝑀embedding ·𝑀class amount

26 chapter 3 physics- inspired architectures

3.3 Bølgenet

We have created an architecture based on equation 3.6 that should inherit
the properties of the wave equation, but it is of interest to see if an other
architecture can be created with the equation as inspiration. We propose a
different architecture that uses the similar components as equation 3.6. Instead
of summing or subtracting the data with the skip-connections, as the equation
suggests, this architecture will concatenate the latent data. This results in the
network having direct access to the unmodified previous states of the latent
data. Equation 3.10 shows the model layer function for Bølgenet. To construct
our second architecture, we need to define a variation of the GCN layer function
:

X𝑡 = FW𝑡 (f𝑡−1) = D̂−1/2 Â D̂−1/2 f𝑡−1 W𝑡 (3.9)

Equation 3.9 is a slight variation of a standard GCN layer, but is functionally the
same. The input is denoted as f𝑡−1, the only change is that f is a concatenated
vector, from the latent vectors X𝑡 and X𝑡−1. Its components are the output of
the previous layer and the output of the layer before. With this, we construct
our model layer function:

f𝑡 = 𝜎 (X𝑡−1 | | X𝑡)
X𝑡+1 = FW𝑡 (𝑓𝑡)

(3.10)

The bølgeGCN equation 3.10 is the mathematical representation of the Bølgenet
model layer function. The concatenation of the latent data outputs is denoted
as | |. Observe that the concatenation is only performed on the X vectors, which
are the outputs of the GCN layers. f denotes the activated concatenated vectors
that are the inputs to all the GCN layers, with the exception of the first GCN
layer.

3.3 bølgenet 27

Figure 3.2: Our second proposed architecture: Bølgenet. The different components of
the architectures are labelled within the figure. In the figure, the data is
input to a GCN layer, where the output is concatenated with the output of
the previous layers. The activation function is applied after the concatena-
tion. Note that the skip-connection is performed before the concatenation
and the activation.

The architecture is somewhat complicated, but figure 3.2 visualises the architec-
ture. In the figure, the layers, output data and concatenation data are labelled
for a clearer understanding of the architecture. Visible in the illustration of the
architecture (figure 3.2), the output of each GCN layer is concatenated with
the output of the previous GCN layer, as opposed to the input data. Bølgenet
is constructed in this manner so that all data has to be processed through
GCN layers, resulting in information not being able to skip many layers at a
time. This architecture can be a parameter heavy model, given that the embed-
ding size is rather large and constant. Given a constant embedding size, the
parameters of the architecture can be viewed in table 3.2.

Wight matrix Shape
W1 Input size × Embedding size
W2 (Input size + Embedding size) × Embedding size
W3 2· Embedding size × Embedding size
...

...

W𝑁 2· Embedding size × Embedding size
Wlinear 2· Embedding size × Class amount

Table 3.2: Parameter table for the Bølgenet architecture, given a constant embedding
size. Due to the concatenation, the input to each GCN layers is 2 times the
embedding size, resulting in large weight matrices.

28 chapter 3 physics- inspired architectures

Table 3.2 shows the sizes of the weight matrices within the architecture. Based
on this table, we can calculate the total amount of parameters𝑀parameters:

𝑀parameters =𝑀input ·𝑀embedding + (𝑀input +𝑀embedding) ·𝑀embedding

+ (𝑁 − 1) · 2 ·𝑀2
embedding + 2 ·𝑀embedding ·𝑀class amount

Note that this is significantly larger than the parameters count of Neural bølge
operator, given the amount of GCN layers.

3.4 Hypothesised effect on oversmoothing with
wave equation properties

Our hypothesis is that the proposed architectures are capable of reducing
the effects of oversmoothing, due the inheritance of the wave propagation
properties. It is uncertain if they are able to remove the effects of oversmoothing
completely, or simply reduce the effects. In any case, the architectures will allow
for more GCN layers to be applied in a model, resulting in models being able
to handle more complex tasks. We believe that the wave equation inspired
skip-connections allow the networks to reinforce the unique information of
the vertices, which should result in oversmoothing being less likely. With
the specific information in the vertices being reinforced, this removes that
property of converging to some equilibrium state. In any case, both of these
architectures are expected to handle oversmoothing better than any standard
GCN models.

With thewave equation based architectures,we believe that they should inherit
the wave propagation properties. This provides an expectation of performance,
based on the properties. As described in section 3.1.2, wave propagation does
not converge towards an equilibrium. This leads us to believe that the infor-
mation can be propagated indefinitely, which is advantageous. However, there
are drawbacks, as the waves spread in a wave propagation system, the ampli-
tudes decrease. By relating this to information being propagated in a GNN, the
uniqueness of information will decrease as the information is propagated fur-
ther through the graph. This is the reason for our us not being certain whether
or not the architectures will negate oversmoothing or reduce its effects.

In summary, our hypothesis is that both proposed architectures will, at least,
be able to reduce the effects of oversmoothing. They should be able to retain
their performance with the increase of GCN layers with a noticeable difference
from traditional GCN models. The likelihood of exceptional performance in the
tests seems low, but the goal of this thesis is not to provide some revolutionary

3.4 hypothesised effect on oversmoothing with wave equation
properties 29

architecture. The goal is to explore the concept of relating the mechanisms
of machine learning models to real-world physical systems, and to show that
the idea inheriting properties can be advantageous. We hope that this idea
will inspire researchers, or students, to continue exploring this. We welcome
people to continue exploring this idea, by improving it or applying other
physical systems to problems where the properties would be advantageous. We
will discuss some ideas of further work and improvements of testing regarding
our idea in the further work section (6.5).

4
Method of testing
Now we have described the theoretical background of our idea and proposed
two architectures as an attempt to show its validity. We need to test Neural
bølge operator and Bølgenet. To validate our idea of inheriting properties from
physics, we need to perform some testing to confirm our hypothesis in section
3.4. In this thesis, oversmoothing is the problem the architectures are con-
structed to handle. Based on this, two experiments have been performed to test
the architectures ability to handle oversmoothing. Each experiment tests the
architectures in their own manner, meaning that the results of each experiment
tells us different aspects of the architectures. The first experiment is performed
on noise data, where we have created a graph structure consisting mostly
of noise. This experiment will test the architectures capability in preserving
information with regards to oversmoothing and noise. The second experiment
is performed on the Cora citation network. The citation network consists of
vertices that represents machine learning papers, and the edges are the cita-
tions. This experiment is performed so that we can observe the architectures
capabilities in non-synthetic data and so that they can be benchmarked.

4.1 Noise graphs experiment

The first experiment is performed on a noise dataset, where features in almost
all vertices consists of noise. Figure 4.1 shows a representation of the graph that
is used in this dataset. This dataset will be referred to as the noise dataset. All

31

32 chapter 4 method of testing

vertices in the graph contains 10 features, and all of them contain randomised
values limited by the noise range, with the exception of the red node. The red
node contain either 1 or −1 in all features. The goal is to train a network to
propagate the information from the red node to the purple node, in the graph
illustrated in figure 4.1. The models will be trained to classify the purple node,
where the ground truth is the initial values in the red node. This should show
the models ability to propagate the information through noise. The noise range
refer to the boundaries of a uniform distribution that defines the range of the
noise values. The boundaries are 0,±0.1,±0.2, ...,±1 and the noise range is
denoted by the absolute value of the boundaries.

Figure 4.1: Noise graph: The graph constructed by the author to test the architectures
capabilities in propagating information through noise. The noise nodes
(blue) are vertices containing only noise. The original class node (red) is
the node containing only 1 or −1 is all features, and the node of interest
(purple) is the node we want to propagate the information to.

The goal of this experiment is to investigate the architectures ability to handle
oversmoothing with noise. The information will be smoothed with noise during
the aggregation, so the experiment will test the architectures ability reinforce
the propagated information of interest. For a model to be able to propagate
information from the red node to the purple node in figure 4.1, at least 6 GCN
layers are necessary, simply due to the least amount of edges between them.
Each GCN layer aggregates information of a local area, with the range of one
edge. This experiment will be performed on the proposed architectures, but
also on other models. These models are used to compare and benchmark the
proposed models. ResGraph is a ResNet inspired architecture for GNNs and
basic GCN represent a standard simple GCN model, which has the diffusion
properties as described in section 3.1.1.

4.1 noise graphs experiment 33

Data designation Amount of graphs
Training 2000
Validation 300

Test 500

Table 4.1: Table contains the amount of training, validation and test graphs for the
Noise experiment.

Table 4.1 shows the training, validation and test split of the data. To investigate
the performance of the architecture properly, multiple models are trained for
each noise range. To reduce the effect of the random initialisations of the data
on the performance, 10 models are trained with different initializations for
each noise range. This means that the data for each iteration of each noise
range is randomly generated independently from the other iterations. This
allows us to measure an average accuracy, and a standard deviation for each
noise range.

The parameters need to be determined for all models. In this experiment the
parameters will be equal for all models where possible. They are determined
through some hyperparameter tuning, resulting in somewhat satisfactory re-
sults. The parameters are presented in table 4.2.

Parameter Value
Epochs 250

GCN layers 8
Learning rate 0.001
Start factor 1
End factor 0.001

Embedding size 25
Batch size 15

Table 4.2: Training parameters for the noise experiment. These parameters are used
for all models, where possible.

This is a short explanation of the parameters provided for the Noise experi-
ment in table 4.2. GCN layers refers to the amount of GCN layers used in the
models. Learning rate is the initial learning rate, however the learning rate is
modified by a linear learning rate scheduler, where the start and end factors
are provided in the table. Batch size is the amount of graphs being evaluated
for the loss calculation for each back propagation. Note that it is not viable to
perform actual batching in a graph network where there is only one graph, but
for this experiment we have multiple graphs as the training data. This means
that for this experiment, batch size refers to the amount of graphs that are

34 chapter 4 method of testing

being evaluated at once during the training.

4.2 Cora experiment: The Cora citation network

As described in section 2.4, the Cora citation network consists of 2708 vertices,
where each vertex represent a paper, and the edges are the citations. There
are 7 labels that categorise the papers in fields within machine learning. The
Cora dataset is quite popular within graph neural network related research
papers.

The reason for this experiment is to test our architectures on a renowned
dataset. This experiment allows us to analyse the performance of the proposed
architectures on some real-world data. With this experiment, the architec-
tures can be compared to other models that are attempting to handle the
oversmoothing problem. As this thesis is not attempting to solve the over-
smoothing problem, the comparisons will be a small part of the discussion
(section 6.3).

The setup for the experiment is as follows, the training is done with the
’public’ split of the Cora dataset. This means that the training data has equally
split the 7 classes, while the rest is not balanced. Additionally, the ’public’ split
also reduces the training data, meaning that there is a lot of unused data
during the training. All three models are trained with the same parameters. To
induce oversmoothing, the models are trained in multiple instances with an
increasing amount of layers. The reasoning for this is that by applying multiple
GCN layers we induce oversmoothing, as described in section 2.2.5. The models
are trained with 2, 4, 8, 16, 32, 64 and 128 GCN layers. Note that we are not
counting the linear layers.

The parameters are determined for all models. They are determined through
some hyperparameter tuning, resulting in somewhat satisfactory results. The
explanations of the parameters are the same as the Noise experiment, provided
in section 4.1.

4.3 comparing to other architectures 35

Parameter Value
Epochs 1000

Learning rate 0.001
Start factor 1
End factor 0.001

Embedding size 50
Batch size 35

Table 4.3: Table containing the training parameters for the Cora experiment for all
models.

Dirichlet energy of the models

As described in section 2.2.5, Dirichlet energy is a renowned measure used to
quantify oversmoothing. We will calculate the Dirichlet energy for the last layer
of each model for the Cora experiment. With this we can investigate if the
models follow the same conclusions as other research papers. The experiment
is simply collecting the latent state of the data at the end of each model, before
the classification. The Dirichlet energy will be calculated based the method
in "A survey on oversmoothing in graph neural networks" by Rusch et al. [26]
where we calculate the log of the square root of equation 2.10.

4.3 Comparing to other architectures

As previously mentioned, we will compare our architectures to other models
in both experiments. To properly investigate the performance of the proposed
architectures, it is interest to observe how our architectures performs with
regards to other architectures. This is the reasoning for training other architec-
tures along with our wave equation inspired architectures. These architectures
are a ResNet inspired architecture, referred to as ResGraph, and a standard
GCN. The ResGraph architectures is shown in figure 4.2 and the standard GCN
in figure 4.3.

36 chapter 4 method of testing

Figure 4.2: ResGraph: A ResNet inspired GNN architecture. This architecture contains
blocks, represented by the dotted lines, where each block contains a GCN
layer and a linear layer. The skip-connections are performed over each
block and the latent data is summed at the connection points, denoted
as

⊕
. In each connection point and block, tanh is used as the activation

function. Note that the data sent through skip-connections are before the
activation functions.

The ResGraph architectures starts with a linear layer to transform the data
into the correct embedding size. The other trained architecture is a basic GCN
model. It is simply a straight forward network with no skip-connections. An
illustration can be viewed in figure 4.3.

Figure 4.3: Standard simple GCN architecture. The layers are simply chronological
with no skip connections, each layer consists of a GCN layer and a tanh
activation. The network ends with a linear layer for classification purposes.

ResGraph is the ResNet [15] inspired architecture,and it employs skip-connections
similar to our proposed architectures. The main difference between ResGraph
and Bølgenet is the manner of which the skip-connections are performed. The
skip-connections in Bølgenet is performed by concatenation, while the ones
in ResGraph is performed with addition. The concatenation should allow the
network access to unmodified previous states of the latent vertices, while Res-
Graph transforms the vertices with addition. Neural bølge operator differ from

4.3 comparing to other architectures 37

ResGraph by also subtracting the latent state before, other than this, they are
very similar.

5
Results
This chapter presents the results of the two experiments: The Noise experiment
and the Cora experiment. Both experiments are performed to test whether or
not the proposed model architectures have inherited the properties of wave
propagation. This will be observed through the architectures capabilities in
handling oversmoothing.

5.1 Noise experiment results

As described in section 4.1, this experiment is performed on graphs containing
noise at various ranges. The goal of this experiment is to test the capabilities
of the model architecture and its resilience to noise. To properly test this,
10 models are trained for independently for each noise range. With this we
can investigate the mean accuracies along with the maximum, minimum and
standard deviation. Tables containing detailed results for Neural bølge operator
and Bølgenet is provided in the appendix (section 8.1).

39

40 chapter 5 results

5.1.1 Neural bølge operator model

Neural bølge operator is one of the architectures we have proposed in this
thesis. The architecture is created directly from the wave equation based
model layer function 3.6. The purpose of this architecture is to have inherited
properties from wave propagation, so that it can reduce, or negate, the effects
of oversmoothing in GNNs. The model architecture is presented in section
3.2.

Figure 5.1: Neural bølge operator: Average accuracy per noise range. The dotted
lines above and below the average accuracy line denotes the maximum
and minimum accuracy achieved in the 10 iterations of each noise range,
respectively.

The noise experiment results for the Neural bølge operator model is fascinating,
as the architectures performance in clearly declining with the increase of the
noise range. Figure 5.1 shows the results of the experiment. In the figure, we
notice the swift decline of the average accuracy with regards to the noise range.
Initially, it learns in most cases, as the average accuracy is higher than 85%.
However, the minimum accuracy for the lowest noise ranges is very close to
random guessing, meaning that some iterations were not able to learn. All 10
iterations at noise range 0.2 seems to have learned perfectly, but as the noise
range increases, it quickly loses its performance. We observe that the average
accuracy swiftly decreases after noise range 0.2, but due to the maximum
accuracy, some of the iterations are able to learn up to noise range 0.5. After
noise range 0.5, it seems that none of the iterations are able to learn at all. The
specific metrics for this plot can be viewed in table 8.1.

5.1 noise experiment results 41

5.1.2 Bølgenet model

Bølgenet is the second architecture based on the wave equation. This model is
not directly created from equation 3.6, but rather inspired by it, and constructed
in a manner where it should inherit the wave propagation properties. The
architecture is created for the same purposes as the Neural bølge operator
architecture. The Bølgenet architecture is presented in section 3.3.

Figure 5.2: Bølgenet: Average accuracy per noise range. The dotted lines above and
below the average accuracy line denotes the maximum and minimum
accuracy achieved in the 10 iterations of each noise range, respectively.

Figure 5.2 shows the average accuracy per noise range along with the maximum
and minimum accuracy. Bølgenet seems to be performing well overall, however
it still experiences a decline towards the higher noise ranges. Interestingly,
Bølgenet is having trouble with no noise (noise range 0). Based the maximum
accuracy, somemodels are able to learn, but most are not due to the low average.
The models are able to learn well up to noise range 0.5, where some instability
occurs. By observing the maximum and minimum accuracy of the iterations,
we observe that after noise range 0.5, some models are still able to learn, but
the amount that are not able to learn at all is increasing. Above noise range 0.8,
all models seem to be unable to learn. Specific values that are used to generate
this plot can be viewed in table 8.2.

42 chapter 5 results

5.1.3 ResGraph model

ResGraph is the model architecture inspired by ResNet, as described in section
4.3. We have trained ResGraph so that we can compare the the performance of
the proposed architectures to other known architectures that employ similar
methods. ResNet employs a renowned method of skip-connections [15], and
by converting it to GNNs, we have ResGraph.

Figure 5.3: Resgraph: Average accuracy per noise range. The dotted lines above and
below the average accuracy line denotes the maximum and minimum
accuracy achieved in the 10 iterations of each noise range, respectively.

Figure 5.3 shows the mean accuracy per noise range, along with maximum and
minimum accuracies. ResGraph is able to learn very well for the noise ranges
up to 0.3, where some instability starts occurring. Based on the maximum
accuracies, some of the iterations are able to perfectly learn up to noise range
0.5, but from there, no iterations are able to learn at all. From noise range
0.3 to 0.5, the average accuracy swiftly declines, making this a the limit for
ResGraphs ability to learn on the noise graphs.

5.1 noise experiment results 43

5.1.4 Basic GCN model

The basic GCN model is a traditional simple GCN architecture. The structure of
the architecture is presented in section 4.3. We test this architecture to be able
to compare the performance of our proposed architectures with regards to to
the standard GCN architecture so that we can observe that different properties
of the model architectures. Due to our architectures theoretically having the
properties of wave propagation, and the standard GCN having the properties of
heat diffusion, the standard GCN should be more susceptible to oversmoothing
due to the difference in properties as described in section 3.1.1 and 3.1.2.

Figure 5.4: Basic GCN model: Average accuracy per noise range. The dotted lines
above and below the average accuracy line denotes the maximum and
minimum accuracy achieved in the 10 iterations of each noise range,
respectively.

Based on figure 5.4, we observe that the basic GCN architecture is not able to
learn for almost all noise ranges. The only exception is noise range 0, where the
maximum accuracy tells us that at least one iteration is able to learn perfectly.
But in all other noise ranges, the average, maximum and minimum accuracies
are close enough random guessing that we assume that the deviations are
simply due to random initialisation.

44 chapter 5 results

5.2 Cora experiment results

This section presents the second experiment, performed on the Cora citation
network. The experiment is presented and described in section 4.2. We have
trained 7 models for each architecture, and recorded the performance for each
model. Each model has a different amount of GCN layers, and with the increase
of GCN layers, we induce oversmoothing. Specific accuracy measures can be
found in the appendix, in table 8.3 in section 8.2.

5.2.1 Neural bølge operator

Neural bølge operator is the proposed architecture that is directly created from
equation 3.6. The accuracy for each model is shown in figure 5.5, where the
horizontal axis represents each model with the amount of GCN layers within
the trained model. The vertical axis represents the accuracy on the test data
post training. Based on the results, the Neural bølge operator models with a
low amount of GCN layers are performing adequately, and as the amount of
GCN layers increase the performance declines. However, after 16 GCN layers,
the performance is stabilising. This implies that the architecture is able to
retain the performance to some degree.

Figure 5.5: Neural bølge operator: Accuracy vs amount of GCN layers. Each tick on
the horizontal axis represents a model with the amount of GCN layers
given by the value.

We can observe the loss curves for each of the Neural bølge operator models
in figure 5.6. The horizontal axis represents the epochs and the vertical is the
calculated cross-entropy loss. We observe that all models are able to learn, but

5.2 cora experiment results 45

the models with higher amount of GCN layers generally have higher loss values
than the models with a lower amount of layers. We also observe the instability
of the loss curve for the model with 128 GCN layers, this is likely due to the
more complex loss surface with the increase of parameters.

Figure 5.6: Loss curves for each neural bølge operator model. Each model is denoted
by the amount of GCN layers in the figure.

5.2.2 Bølgenet model

Bølgenet is the second proposed model, inspired by the wave equation. Figure
5.7 shows the accuracy for each model. We observe that the performance is
generally decreasing as the amount of GCN layers increase. The architecture is
still able to retain a relatively high accuracy with the increase of the amount of
GCN layers, meaning that it is able so handle oversmoothing somewhat.

46 chapter 5 results

Figure 5.7: Bølgenet: Accuracy vs amount of GCN layers. Each tick on the horizontal
axis represents a model with the amount of GCN layers given by the value.

Figure 5.8 shows the loss curves for each model with regards to the epochs
during training. We observe similar results to the Neural bølge operator models
from figure 5.6,where the models with a higher amount of GCN layers generally
have higher loss values. We also observe the instability of the same models,
related to the more complex loss surface.

Figure 5.8: Loss curves for each Bølgenet model. Eachmodel is denoted by the amount
of GCN layers in the figure.

5.2 cora experiment results 47

5.2.3 ResGraph and basic GCN model

As previously described, the ResGraph and the basic GCN models are trained
only for the purpose of comparison to the Neural bølge operator and Bølgenet
models. For this experiment, we have also trained a basic GCN model without
a bias term. The reason for this is that some research papers investigate the
effect of the bias term on oversmoothing and the Dirichlet energy [26].

(a) ResGraph: Accuracy vs amount of GCN
layers

(b) Basic GCN: Accuracy vs amount of GCN
layers

(c) Basic GCN with no bias: Accuracy vs amount
of GCN layers

Figure 5.9: Test accuracy for each model for ResGraph (top left), the basic GCN model
(top right) and the basic GCN model without bias (bottom). Each tick on
the horizontal axis represents a model with the amount of GCN layers
given by the value.

Figure 5.9 contains the accuracy for each model for the ResGraph, Basic GCN
and Basic GCN without bias. Sub-figure 5.9a shows the accuracy for the Res-
Graph models. We observe that the models are able to retain their performance

48 chapter 5 results

with the increase of the GCN layers similarly to Neural bølge operator. The
performance decline with the increase of GCN layers, but stabilise somewhat
for the higher amounts. We observe from sub-figure 5.9b and 5.9c that the
performance for both Basic GCN architectures are decreasing as the amount
of GCN layers increase. The performance for the Basic GCN models seems
to decline slowly. The basic GCN with bias seem to be declining slower than
the one without bias, until the model with 64 layers. The decrease of per-
formance between 64 and 128 for the basic GCN model without bias is very
significant.

5.2.4 Dirichlet energy

Dirichlet energy is a common measure used as an attempt to quantify over-
smoothing within GNNs. This has been described in section 2.2.5. Dirichlet
energy is not a perfect measurement for oversmoothing. Based on the paper "A
survey on oversmoothing in graph neural networks" by Rusch et al. [26], the
persistence of Dirichlet energy with the increase of GCN layer is not informative,
but rather an exponential decrease. If the Dirichlet energy were to exponen-
tially decrease with the increase of GCN layers, we can expect oversmoothing,
but without any exponential decrease, oversmoothing is uncertain.

Figure 5.10: Dirichlet energy for the output of the last linear layer of each model.
The horizontal axis denotes the total amount of GCN layers in a model.
It is clear that all of the models are able to retain the Dirichlet energy
measure, but both basic GCN models are decrease for the higher GCN
layer amounts.

5.2 cora experiment results 49

Our results from figure 5.10 is not very informative, as none of the architectures
are decreasing in any significant manner. We note that the Dirichlet energy for
the basic GCN models are decreasing slightly towards the higher amount of
GCN layers. The results are contradicting the results of the basic GCN models
in the research paper by Rusch et al. [26], and we will discuss the difference
of results in section 6.1.1.

6
Discussion
To properly evaluate the validity of our idea of inheriting properties for physics
into model architectures, we need to test the proposed architectures and
investigate whether or not they are working as intended. In these sections we
will discuss and evaluate the capabilities of Neural bølge operator and Bølgenet,
and conclude whether or not our idea of inheriting properties from physics
PDEs is valid.

6.1 The performance of Bølgenet and Neural
bølge operator

Based on the results presented from both experiments (section 5.1 and 5.2), the
Neural bølge operator and Bølgenet architectures are behaving as expected.
They are able to reduce the effects of oversmoothing, but the performance is
not being retained in an optimal fashion. The results currently imply that the
architectures are working to some degree, which supports our hypothesis in
section 3.4. We will discuss the results in the following sections.

51

52 chapter 6 discussion

6.1.1 The experiments

This section contains discussion of the experiments with regards to performance
of the proposed architectures and comparisons to the other architectures. We
will discuss and speculate as to why the proposed architectures are performing
as presented in the results of the experiments. The experiments are performed
as described in section 4.1 and 4.2.

Evaluating the Noise experiment results

The goal of the Noise experiment is to test the architectures capabilities in
handling oversmoothing and noise. With the goal of propagating information
from the red vertex to the purple vertex in the graph structure shown in figure
4.1. In this graph structure, oversmoothing should occur for any traditional
graph neural network.

Figure 6.1: Noise experiment results for all models. Each architectures average ac-
curacy and standard deviation per noise range. Neural bølge operator
(yellow) and Bølgenet (blue) are the models with our proposed architec-
tures, ResGraph (red) is the ResNet inspired architecture and Basic GCN
is the traditional GNN (green). The vertical lines represent the standard
deviation from each average accuracy. Observable, Bølgenet is able to
retain performance longer than all other models. Neural bølge operator
and ResGraph is able to retain performance for lower noise ranges, while
the basic GCN model is not able to learn at all.

Neural bølge operator and Bølgenet is seemingly performing as expected.
Section 3.4 describes our hypothesis that the Neural bølge operator and Bøl-

6.1 the performance of bølgenet and neural bølge operator 53

genet architectures will be able to reduce the effects of oversmoothing, and not
necessarily completely negate the problem. Figure 6.1 seems to support this
hypothesis. In the figure it is clear that Bølgenet is performing better than the
other architectures. Bølgenet and ResGraph is performing similarly for noise
range 0.1 and 0.2, but with the increase of the noise range, the performance of
both models decrease. However, this is more apparent for the ResGraph mod-
els. From noise range 0.2 and further, ResGraph and Neural bølge operator is
performing very similarly. Both lose accuracy very quickly, and converges to
random guessing from noise range 0.5. Neural bølge operator and ResGraph
is losing accuracy much faster than Bølgenet. Bølgenet is able to retain some
performance for higher noise ranges than both of them, which implies better
robustness to oversmoothing and/or noise. Noticeably, all architectures seems
to be unable to learn when the noise ranges are close enough to the class values.
This is likely due to the noise values being able to contain values very close to
−1 and 1, which makes it difficult for the networks to learn which information
to propagate. This makes it very difficult for the models to learn which vertex
they should propagate information from, as the noise is too strong, or similar,
to the values of the initial vertex.

The basic GCN is performing poorly for all noise ranges, the average accuracy
is quite close to random guessing in almost all instances. This is due to the
effect of oversmoothing. With the instances being so close to random guessing,
with only slight deviations, we assume that the deviations occur due to random
initialisation of the weights. With this in mind, we assume that the models have
failed to learn in these instances. When the noise range is zero, the standard
deviation of the accuracy is high. Based on this and the maximum accuracy
from figure 5.4, some models are actually able to learn. We assume that this is
due to the lack of noise to interfere with the propagation of information. If all
blue vertices in figure 4.1 contain zeros, and the red vertex contains something
different from zeros, the purple vertex only needs to receive some information
different than zero. Due to the classes being −1 and 1, the classification might
only depend on the sign of the values received in the purple vertex, making
the classification possible even if the values are small.

A curious occurrence is the difference between the Neural bølge operator, Res-
Graph and Bølgenet at noise range 0. ResGraph is performing perfectly, while
Bølgenet and Neural bølge operator are having trouble with learning. For Bøl-
genet, we assume that this is related to the higher parameter count and how the
skip-connections are performed. Due to the nature of the Bølgenet architecture,
the amount of parameters is rather large compared to the other architectures.
Due to the high parameter count, the loss surface is more complex, resulting
in a more difficult learning process. Because of the more complex loss surface,
Bølgenet is likely able to achieve better performance at noise range 0, given
more training and improved tuning of the training parameters. We believe that

54 chapter 6 discussion

the ResGraph has an easier time learning at this noise range due to the nature
of its residual connections. Due to the fact that the data is summed, rather
than concatenated, the spread of positive or negative values are reinforced for
each skip-connection. Due to the lack of noise, there is nothing impeding the
propagation of information. As mentioned, the Neural bølge operator models
are also having some trouble with learning at noise range 0. This is also likely
due to the nature of the skip-connections. The skip-connections for the Neural
bølge operator architecture follows equation 3.7. In this equation, we observe
the addition of the current latent state, but also the subtraction of the previous
latent state. This is likely causing problems for the models in this experiment,
as the skip-connections contain the addition of the current state and subtrac-
tion of the previous state. When the information initially reaches a vertex, the
skip-connections will have no effect at noise range 0, as the previous state of
the vertex is only zeros. After one more layer, the skip-connections are able to
reinforce the information that has been propagated to it. The problem arrives
when even more layers are performed, as the subtraction of the previous state
will invert the signs of the propagated values. This can have a negative effect
on the propagated information as this is performed multiple times in this ex-
periment. The scale of this problem is uncertain, but it likely has an effect on
the training at noise range 0. This, in addition to the adopted wave equation
property of needing two latent data states to perform the skip-connections,
can impede the models ability to propagate information. This inherited wave
equation property was presented as an issue in section 3.4, and this means that
for the initial layers of the architecture, the models will behave as basic GCN
models. By not being able to reinforce the propagated information early, the
propagation of the information will likely be slowed.

We reason that reinforcement of the vertex of origin has a noticeable impact
when we employ the skip-connections, at least for noise range 0. Due to the fact
thatwe use 8 GCN layers in allmodels, the necessary information is not required
to be sufficient when it is first propagated to the vertex of interest (after 6 GCN
layers). The necessary information can be propagated to the vertex at GCN
layer 7 or 8. This means that being able to reinforce the necessary information
in the vertex of origin results in it being able to propagate the information with
a greater strength. A visualisation of this would be a heat diffusion system,
where a point has a higher temperature, but it does not change. It remains
constant through the process, while the diffusion process is still occurring. It
is important to note that this seems to only be beneficial in a case where there
is no noise. In the other noise ranges, ResGraph is performing approximately
equally to the Neural bølge operator and worse than Bølgenet.

The summary of the Noise experiment is the Bølgenet is able to handle
oversmoothing and noise data equally or better than all the other architec-
tures, for all noise ranges other than 0. This is likely due to the nature of

6.1 the performance of bølgenet and neural bølge operator 55

its skip-connections: concatenation, where the propagated information is not
transformed by skip-connections. Neural bølge operator is performing approx-
imately equally to ResGraph for all noise ranges, with the exception of noise
range 0. Noise range 0 seems to be a special case, where ResGraph is perform-
ing perfectly, while the other models are having trouble. The performance of
this case is not as interesting, as having no noise in data is very unrealistic, but
is still relevant to investigate as we can extract the behaviour of the architec-
ture from analysis. The results of our proposed architectures has generally not
been surprising with regards to our hypothesis, meaning that the results of
this experiment is supporting the idea of that the proposed architectures have
inherited the properties of the wave equation.

Cora experiment results evaluation

The Cora citation network is a commonly used dataset within GNN research
papers, however, it is not a very good dataset to investigate the effects of
oversmoothing. The reason for this is that the GNNs require few GCN layers
to perform reasonably well. A small amount of GCN layers, for example two
or three, is sufficient to achieve satisfactory performance on the Cora dataset.
The reason for testing our architectures on this dataset is that the dataset is
non-synthetic and quite popular. As previously described, we train the model
for multiple amounts of GCN layers, to induce oversmoothing.

56 chapter 6 discussion

Figure 6.2: Total results for the Cora experiment, accuracy per model with the amount
of GCN layer denoted on the horizontal axis. The basic GCN layer (green),
basic GCN without bias (lime), ResGraph (red), Neural bølge operator
(yellow) and Bølgenet (blue) are included in this plot. Basic GCN with,
and without, bias loses performance with in the increase of GCN layers.
ResGraph, Neural bølge operator and Bølgenet is able to retain their
performance, but not without some decrease.

Figure 6.2 shows the the combined results from section 5.2. From the results
we observe how our proposed models are able to preserve their performance
throughout the increase of GCN layers. In the figure it is obvious that the basic
GCN architectures, with (green) and without bias (lime), performance declines
with a higher rate than the other architectures throughout the increase in GCN
layers. This is due to the effect of oversmoothing, this gives us the benchmark
on whether or not our architectures are capable of handling oversmoothing.
Based on the figure, Neural bølge operator and Bølgenet is able to retain a
higher performance than the basic GCN models. This means that the proposed
architectures are working as hoped. Also with regards to random guessing. As
the Cora dataset has 7 classes, random guessing would result in a probability of
guess correctly being 𝑝 (𝑥) 17 ≈ 14.28%, meaning that our architectures being
able to retain around 70% accuracy is very good.

From figure 6.2, we observe that three architectures are able to retain some
performance with the increase of GCN layers. These architectures are our
proposed architectures: Neural bølge operator and Bølgenet, and ResGraph.
We observe that ResGraph is able to retain a higher accuracy than Bølgenet and
Neural bølge operator throughout the increase of layers. All three architectures
loses some performance with the increase of layers, but they are able to retain
performance to a significantly higher degree than the basic GCN models,

6.1 the performance of bølgenet and neural bølge operator 57

meaning that they are able to reduce the effects of oversmoothing.

ResGraph is able to retain a better performance than Neural bølge operator
and Bølgenet in the Cora experiment. We speculate that this is related to
the nature of the skip-connections in all architectures, and the forced GCN
processing in Bølgenet. ResGraph is likely able to retain a better performance
due to it being able to skip information over multiple GCN layers. The model
might be able to "ignore" the induced oversmoothing, by training multiple GCN
layers have little effect on the data. This is resulting in the models being trained
to essentially only use few GCN layers. As previously mentioned, this dataset
requires a low amount of GCN layers to perform adequately.

Neural bølge operator and ResGraph applies skip-connections in a similar
manner, the main difference is the Neural bølge operator uses two skip-
connections for each layer. The current and previous state of the latent data
is combined with the output of the GCN layer, while ResGraph only combines
the current latent state with the output of the block. This might be the main
reason for ResGraphs better performance. The complexity in Neural bølge
operator is higher than in ResGraph, as multiple stages of the latent data are
combined (equation 3.7). This might have the effect that the Neural bølge
operator models require more training and tuning to perform well, however
this does not suggest that it could be better than ResGraph. Adding multiple
previous states will give the model more information and could be able to learn
more complex patterns, but it could also be counter-productive. As the latent
states are transformed, by the addition and subtraction, with the multiple
previous states. If multiple previous states are not necessary, this might hinder
the models ability to learn.

Bølgenet and ResGraph employs skip-connection in different manners. Bøl-
genets drawback is likely the forced processing of the data, although intended.
While ResGraph and Neural bølge operator is able to skip data directly be-
tween all layers, being able transfer vertex specific data with little modification,
Bølgenet is incapable of doing this. Due to the the architecture of Bølgenet,
all latent data will be processed through GCN layers, the latent data can only
skip GCN layers once without being processed. This means that the latent data
will be processed through GCN layers for half the total amount of GCN layers
in a model. This means that Bølgenet can experience oversmoothing to some
degree, however at a much slower rate than any traditional GNN. The forced
processing will induce some sort of smoothing, which is disadvantageous in
this experiment, as the amount of required GCN layers is low for a reasonable
performance. This forced processing can have noticeable effects with a large
amount of layers, meaning that this could be the reason for a decrease in
performance. As this is a drawback in this experiment, it is indented. Bølgenet
is constructed for cases where multiple GCN layers are required to solve some

58 chapter 6 discussion

problem, and as this dataset does not require many layers, the results of the
Cora experiment is not really representative of Bølgenets capabilities.

Dirichlet energy

The Dirichlet energy values in our experiment was unfortunately not very
informative. The results of the Dirichlet energy can be viewed in figure 5.10.
Based on the explanation in section 5.2.4, without an exponential decrease,
oversmoothing is uncertain. We would like to note a difference in results for
the basic GCN models without any bias terms. In general, the results of some
research papers [26, 27] suggests that the Dirichlet energy of a basic GCN
model, with and without bias, should decrease, but in our case the energy is
relatively stable. This is likely due to the difference in the implementations
of the models. In our experiment, the models have been implemented with a
different embedding size and activation function from the the models in the
research papers. This is probably the reason for the difference in outcome of
the experiment.

6.2 Problems with the experiments

The first experiment is able to give us information in the architectures ca-
pabilities in handling oversmoothing and noise. However, there are some
disadvantages with this experiment. The noise experiment is filled with noise.
With only pure noise and no pattern in the data, the models have a difficult
time differentiating the noise for the actual data of interest. Although, the
results indicate that the nature of the skip-connections does give Bølgenet an
advantage in handling pure noise, as it is capable of preserving performance
for higher noise ranges than the other architectures. An improvement to this
experiment, could be to have some actual data with patterns, and then inves-
tigating the models capabilities in propagating information from a vertex of
origin to a vertex of interest, but this is essentially finding a dataset more suited
to the task. If some of the models are weaker to noise, this experiment might
not properly represent the capability of handling oversmoothing, as there are
no patterns for the networks to differentiate.

The second experiment has one main issue, as previous mentioned, the Cora
citation network is not a good dataset to test the capabilities of handling
oversmoothing. This dataset requires a small amount of GCN layers to perform
reasonably well, which is likely why the ResGraph is performing better than
the proposed architectures, following the argument in section 6.1.1. ResGraph
is able to, in some sense, ignore multiple layers and perform the necessary

6.3 other models with similar ideas: pde-gcn 59

computations with few GCN layers to reach satisfactory performance. By this
wemean that ResGraphmight only properly tune the weights in a small amount
of layers to actually perform the prediction. We assume that in a case where
we have a dataset that requires a higher amount of GCN layers to perform well,
ResGraph will likely perform worse than Bølgenet and possibly Neural bølge
operator, however we can not be certain. We believe that Bølgenet might be
able to perform better due to its ability to skip information without modifying
it. Note that this is just speculation, as an experiment like this this has not been
performed. The reason for this remaining untested is the lack of time and the
availability of reasonable datasets.

6.3 Other models with similar ideas: PDE-GCN

There are some other research that have explored similar ideas to ours, amongst
these one research paper proposes the PDE-GCN model. This paper, "PDE-GCN:
Novel Architectures forGraphNeural NetworksMotivated by Partial Differential
Equations" by Eliasof et al., proposes a model architecture that is based by
partial differential equations. This is a similar to our process where we are also
motivated by PDEs. There are however some rather large differences. The PDE-
GCN transforms the vertex features into edge attributes during in the network to
handle the time derivative of the PDEs, in contrast to using the discretised PDEs
like we have. This results in theirmodel learning edge weights instead of feature
weights. The major difference between their proposed architecture and ours
is that theirs it restricted to specific graph structures. A meaningful property
of GNNs is the capability of handling different graph structures, however the
PDE-GCN method removes this attribute. While the experiments in this thesis
has not contained various graph structures, the proposed architectures of our
method still has this attribute. However, based on the results in the research
paper, their architecture achieves better performance than ours on the Cora
dataset.

6.4 The effect on the physics-based models idea

The results of both experiments imply that the proposed model architectures
are able to reduce the effects of oversmoothing. In both cases, they did not
perform in a revolutionary manner, but they clearly performed better than
the standard GCN architecture models. Based on this, we conclude that the
architectures are able to inherit the properties of wave propagation. Some
properties of wave propagation is the lack of convergence to some equilibrium,
but also the decrease in amplitude as the waves spread over a larger area. The

60 chapter 6 discussion

results of both experiments show behaviour similar to these properties. The
lack of convergence is visible by observing how the architectures are able to
retain a higher performance than the standard GCN architecture. This implies
that the models are able to keep the vertices from converging to similar values,
which would have made it difficult, and in some cases impossible, to classify
specific vertices correctly. The second property, the decrease in amplitude, can
be compared to the decline of performance in the Cora experiment. As the
models are able to retain a higher performance than the standard GCN models,
they still decline to some degree. We speculate that this is due to the "strength"
(amplitude) of the information is decreasing as it is propagated through the
graph.

Based on this reasoning, it seems that the architectures are able to inherit
the properties of wave propagation. This supports the idea of creating
architectures that inherit the properties of physics PDEs, giving us the possibility
to employ inductive bias in the choice of architecture stage, in a different
manner to other methods [14].

6.5 Further work

The capabilities of Neural bølge operator and Bølgenet should be explored
further. The parameters for the Cora experiment and for the Noise experiment
can likely be tuned to achieve better performance. Additionally, the models we
trained during the experiments, uses tanh as the activation function throughout
the entire network. Other activation functions have not been explored for these
experiments. The reasoning for tanh in the Noise experiment is the negative
class, so the negative relations should be preserved. For the Cora experiment,
there are no negative values, as all the features are boolean, and thus other
activation functions like ReLU and Sigmoid can be applied, and might result
in improved performance.

Due to time constraints and lack of availability of reasonable datasets, an other
future work idea is more extensive testing of the architectures. As mentioned
in section 6.2, the Cora citation graph dataset is not a good dataset to test
the capability of the architectures. The goal of the architectures is to be able
to propagate information to vertices far away, while being able to reduce the
effects of oversmoothing. Due to the fact that the Cora dataset requires few
GCN layers to perform adequately, the dataset is not really sufficient to test the
capabilities properly. This is why some further work should be finding datasets
that is more fit for the task that the architectures constructed to perform.

We also want to emphasise that there are other PDEs than the ones we have

6.5 further work 61

used. In this thesis, we have used the heat diffusion PDE to describe the process
of oversmoothing, and the wave propagation PDE to inspire the creation of new
architectures to help reduce the effects of this problem. Applying other PDEs
to create architectures with the goal of solving some problem is something
that should be investigated. Whether or not there is an inherent problem
with the network, or solving specific problems with classification, regression
etc., applying PDEs can be a viable method to construct architectures. While
applying differential equations to construct architectures is not a novel idea,
using physics to create models with specific properties is. Another thing that
would be of interest to investigate, is the different components of various PDEs
and how to translate these into architectures. Some PDEs contain components
that are more difficult to implement.

An interesting idea that can be investigated based on our architectures, is the
constant 𝛾 . It appears in the initial inspiration of the model layer equations.
That being the wavemodel layer equation 3.5 and the heatmodel layer equation
3.3. We continued both these equations by setting 𝛾 = 1 for simplicity. What
would happen if 𝛾 ≠ 1? In the heat equation case, the model layer function
would look like this:

𝑢 [𝑡 + 1] = 𝑢 [𝑡] − 𝛾𝑢 [𝑡] + 𝛾D̃−1/2ÃD̃−1/2
𝑢 [𝑡]

= (1 − 𝛾)𝑢 [𝑡] + 𝛾D̃−1/2ÃD̃−1/2
𝑢 [𝑡]

and in the wave equation case:

𝑢 [𝑡 + 1] = 2𝑢 [𝑡] − 𝛾𝑢 [𝑡] + 𝛾D̃−1/2ÃD̃−1/2
𝑢 [𝑡] − 𝑢 [𝑡 − 1]

= (2 − 𝛾)𝑢 [𝑡] + 𝛾D̃−1/2ÃD̃−1/2
𝑢 [𝑡] − 𝑢 [𝑡 − 1]

In both of these cases the current state, and the GCN layer is also scaled with 𝛾
in some manner. This can be something of interest to investigate. How would
this affect the performance of the proposed model architectures? The constant
𝛾 is generated from PDE specific parameters, along with the time-step of the
discretisation of the PDEs. In the heat equation, 𝛾 is a combination of the time-
step and the diffusion constant, and in the wave equation,𝛾 is the combination
of the time-step and the wave-speed constant. With the application of the
PDEs to GNNs, there constants become arbitrary. It would be of interest to
investigate their effects on the architectures. By observing both equations above,
they essentially scale the GCN layer with regards to the skip-connections.

7
Conclusion
The goal of this thesis was to present the idea of using physical systems to
create model architectures tailored to solve some problem. This idea was tested
by creating two model architectures with the goal of negating the effects of
oversmoothing in graph convolutional networks. The results of the experiments
indicate that the model architectures are able to reduce the effects of over-
smoothing, however not negate the effect completely. This implies the that the
idea of using physical systems to inherit properties to model architectures is
promising.

Two experiments were performed to test the capabilities of the architectures,
along with their resilience to oversmoothing. The first experiment was test-
ing the architectures on noise data. The noise data was constructed so that
oversmoothing will occur, meaning that the experiment will indicate the archi-
tectures ability to propagate information through noise. The second experiment
was performed on the Cora citation network. The goal of this experiment was
to test the architectures on non-synthetic data and observe their capabilities
in handling oversmoothing with regards to existing architectures. Both exper-
iments indicate that both architectures are able to handle oversmoothing to
some degree. Based on the comparisons, there are existing models that achieve
better performance, but the proposed architectures can be improved. Mean-
ing that they are likely capable of better performance, given more extensive
testing.

The idea of using physics for oversmoothing is a good idea that should be

63

64 chapter 7 conclusion

explored further. By relating heat diffusion to oversmoothing, and comparing
the process of a GCN layer with the discretised heat equation, we observed a
strong similarity. With this we applied the discretised wave equation to create
a new model layer function that resulted in the architecture Neural bølge
operator. Additionally, we used the model layer function to inspire an other
architecture, Bølgenet. Based on the results and the discussion, we conclude
that this method of introducing an inductive bias to model architectures as
a method of handling oversmoothing is viable. We hope that this conclusion
inspires further investigation of the method.

While this thesis demonstrates the viability of inheriting properties from physics,
further investigations are encouraged to uncover the true potential of this
approach. There are numerous physical systems out there, offering unique
characteristics that could provide unforeseen capabilities for machine learning
models. We hope that this thesis inspires further exploration of this idea and
the potential it holds.

Bibliography
[1] Pytorch: An open source deep learning platform. https://pytorch.org/.

Accessed: 10.12.2023.

[2] Pytorch geometric: Geometric deep learning extension library for pytorch.
https://pytorch-geometric.readthedocs.io/. Accessed: 10.12.2023.

[3] Antonsen, T. (2023a). Project paper illustrations. https://github.com/
axdeux/project-paper-illustrations.

[4] Antonsen, T. S. M. (2023b). Performance of graph neural networks on
simulating heat and wave systems. UiT Capstone Project.

[5] Cai, C. and Wang, Y. (2020). A note on over-smoothing for graph neural
networks. CoRR, abs/2006.13318.

[6] Cao, Y.-H. andWu, J. (2022). A random cnn sees objects: One inductive bias
of cnn and its applications. Proceedings of the AAAI Conference on Artificial
Intelligence, 36(1):194–202.

[7] Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T.,
Aspuru-Guzik, A., and Adams, R. P. (2015). Convolutional networks on
graphs for learning molecular fingerprints. In Cortes, C., Lawrence, N., Lee,
D., Sugiyama, M., and Garnett, R., editors, Advances in Neural Information
Processing Systems, volume 28. Curran Associates, Inc.

[8] Eliasof, M., Haber, E., and Treister, E. (2021). Pde-gcn: Novel architectures
for graph neural networks motivated by partial differential equations. In
Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W.,
editors, Advances in Neural Information Processing Systems, volume 34, pages
3836–3849. Curran Associates, Inc.

[9] Fey, M., Hu, W., Huang, K., Lenssen, J. E., Ranjan, R., Robinson, J., Ying,
R., You, J., and Leskovec, J. (2023). Relational deep learning: Graph repre-
sentation learning on relational databases.

65

https://pytorch.org/
https://pytorch-geometric.readthedocs.io/
https://github.com/axdeux/project-paper-illustrations
https://github.com/axdeux/project-paper-illustrations

66 bibl iography

[10] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT
Press. http://www.deeplearningbook.org.

[11] Gori, M.,Monfardini, G., and Scarselli, F. (2005). A newmodel for learning
in graph domains. In Proceedings. 2005 IEEE International Joint Conference
on Neural Networks, 2005., volume 2, pages 729–734 vol. 2.

[12] Haber, E. and Ruthotto, L. (2017). Stable architectures for deep neural
networks. Inverse Problems, 34(1):014004.

[13] Hamilton, W., Ying, Z., and Leskovec, J. (2017). Inductive representation
learning on large graphs. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach,
H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc.

[14] Han, J., Rong, Y., Xu, T., and Huang, W. (2022). Geometrically equivariant
graph neural networks: A survey.

[15] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for
image recognition. CoRR, abs/1512.03385.

[16] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980.

[17] Kipf, T. N. and Welling, M. (2016). Semi-supervised classification with
graph convolutional networks. CoRR, abs/1609.02907.

[18] Klicpera, J., Becker, F., and Günnemann, S. (2021). Gemnet: Universal di-
rectional graph neural networks for molecules. In Beygelzimer, A., Dauphin,
Y., Liang, P., and Vaughan, J. W., editors, Advances in Neural Information
Processing Systems.

[19] Koishekenov,Y. (2023). Reducing over-smoothing in graph neural networks
using relational embeddings.

[20] Lam, R., Sanchez-Gonzalez, A.,Willson,M.,Wirnsberger, P., Fortunato,M.,
Alet, F., Ravuri, S., Ewalds, T., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S.,
Holland, G., Vinyals, O., Stott, J., Pritzel, A., Mohamed, S., and Battaglia, P.
(2023). Learning skillful medium-range global weather forecasting. Science,
0(0):eadi2336.

[21] Lukovnikov, D. and Fischer, A. (2021). Gated relational graph attention
networks.

http://www.deeplearningbook.org

bibl iography 67

[22] Oono, K. and Suzuki, T. (2019). On asymptotic behaviors of graph cnns
from dynamical systems perspective. CoRR, abs/1905.10947.

[23] Oono, K. and Suzuki, T. (2021). Graph neural networks exponentially lose
expressive power for node classification.

[24] Qiu, J., Tang, J., Ma, H., Dong, Y., Wang, K., and Tang, J. (2018). Deepinf:
Social influence prediction with deep learning. In Proceedings of the 24th
ACMSIGKDD International Conference on Knowledge Discovery &DataMining,
KDD ’18, page 2110–2119, New York, NY, USA. Association for Computing
Machinery.

[25] Ricaud, B., Borgnat, P., Tremblay, N., Gonçalves, P., and Vandergheynst,
P. (2019). Fourier could be a data scientist: From graph fourier transform
to signal processing on graphs. Comptes Rendus Physique, 20(5):474–488.
Fourier and the science of today / Fourier et la science d’aujourd’hui.

[26] Rusch, T. K., Bronstein, M. M., and Mishra, S. (2023a). A survey on
oversmoothing in graph neural networks.

[27] Rusch, T. K., Chamberlain, B. P., Mahoney, M. W., Bronstein, M. M., and
Mishra, S. (2023b). Gradient gating for deep multi-rate learning on graphs.
In The Eleventh International Conference on Learning Representations.

[28] Rusch, T. K., Chamberlain, B. P., Rowbottom, J., Mishra, S., and Bronstein,
M. M. (2022). Graph-coupled oscillator networks. CoRR, abs/2202.02296.

[29] Ruthotto, L. and Haber, E. (2018). Deep neural networks motivated by
partial differential equations. CoRR, abs/1804.04272.

[30] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G.
(2009). The graph neural network model. IEEE Transactions on Neural
Networks, 20(1):61–80.

[31] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L. u., and Polosukhin, I. (2017). Attention is all you need. In Guyon,
I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R., editors, Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.

[32] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio,
Y. (2018). Graph attention networks.

[33] Wilson, R. J. (1996). Introduction to graph theory. Prentice Hall, forth

68 bibl iography

edition.

[34] Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2018). How powerful are
graph neural networks? CoRR, abs/1810.00826.

[35] Xu, K., Zhang, M., Jegelka, S., and Kawaguchi, K. (2021). Optimization
of graph neural networks: Implicit acceleration by skip connections and
more depth. In Meila, M. and Zhang, T., editors, Proceedings of the 38th
International Conference on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pages 11592–11602. PMLR.

[36] Yang, Z., Cohen, W. W., and Salakhutdinov, R. (2016). Revisiting semi-
supervised learning with graph embeddings. CoRR, abs/1603.08861.

[37] Zhou, K., Huang, X., Zha, D., Chen, R., Li, L., Choi, S.-H., and Hu, X. (2021).
Dirichlet energy constrained learning for deep graph neural networks.

8
Appendix
8.1 Table of results for the Noise experiment

This appendix section contain some specific results from the Noise experi-
ment.

8.1.1 Neural wave operator

Noise range Mean Std Max Min Median
0.0 0.897 0.206 1.0 0.478 1.0
0.1 0.954 0.139 1.0 0.538 1.0
0.2 1.0 0.001 1.0 0.998 1.0
0.3 0.749 0.24 1.0 0.474 0.77
0.4 0.565 0.158 0.974 0.462 0.5
0.5 0.537 0.099 0.83 0.47 0.51
0.6 0.491 0.019 0.516 0.458 0.493
0.7 0.504 0.021 0.53 0.474 0.508
0.8 0.515 0.013 0.53 0.496 0.521
0.9 0.5 0.022 0.548 0.474 0.498
1.0 0.503 0.02 0.548 0.47 0.499

Table 8.1: Noise experiment results: accuracy measures for Neural bølge operator.
Table contains that mean accuracy, standard deviation, maximum accuracy
and minimum accuracy. Additional the median accuracy is included.

69

70 chapter 8 appendix

8.1.2 Bølgenet

Noise range Mean Std Max Min Median
0.0 0.652 0.228 1.0 0.456 0.519
0.1 1.0 0.0 1.0 1.0 1.0
0.2 1.0 0.001 1.0 0.998 1.0
0.3 0.998 0.001 1.0 0.996 0.998
0.4 0.981 0.007 0.992 0.968 0.982
0.5 0.936 0.028 0.962 0.862 0.942
0.6 0.822 0.138 0.91 0.51 0.895
0.7 0.724 0.137 0.852 0.484 0.796
0.8 0.542 0.03 0.6 0.508 0.529
0.9 0.514 0.016 0.538 0.49 0.511
1.0 0.514 0.025 0.562 0.482 0.509

Table 8.2: Noise experiment results: accuracy measures for Bølgenet. Table contains
that mean accuracy, standard deviation, maximum accuracy and minimum
accuracy. Additional the median accuracy is included.

8.2 Table results for the Cora experiment

This section contains specific accuracy results for the Cora experiment, per-
formed as explained in section 4.2.

Model 2 4 8 16 32 64 128
Basic GCN no bias 78.2 75.9 69.5 65.6 64.9 63.8 36.6

Basic GCN 78.5 75.9 70.7 64.2 58.6 43.9 34.1
Bølgenet 78.1 77.5 74.7 71.1 67.7 72.4 66.8

Neural bølge operator 77.4 77.0 74.7 66.9 69.2 69.3 68.1
ResGraph 76.6 76.9 76.4 73.2 70.5 73.4 74.2

Table 8.3: Accuracies for the models in the Cora experiment. Left side denotes which
models the row of results are generated from. The top row denotes the
amount of GCN layer contained within the models.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	2 Background theory
	2.1 Graph data
	2.1.1 The Graph Laplacian

	2.2 Neural networks
	2.2.1 Loss functions
	2.2.2 Activation functions
	2.2.3 Optimiser and learning rate scheduler
	2.2.4 Inductive bias
	2.2.5 Graph neural networks

	2.3 Partial differential equations (PDEs)
	2.3.1 The Laplacian operator in PDEs
	2.3.2 Heat equation
	2.3.3 Wave equation

	2.4 The Cora citation network
	2.5 PyTorch
	2.5.1 PyTorch geometric

	2.6 Declaration of previous work and AI assistance

	3 Physics-inspired architectures
	3.1 Motivation
	3.1.1 Diffusion in Graph Convolutional Networks
	3.1.2 GNN layers as waves

	3.2 Neural bølge operator
	3.3 Bølgenet
	3.4 Hypothesised effect on oversmoothing with wave equation properties

	4 Method of testing
	4.1 Noise graphs experiment
	4.2 Cora experiment: The Cora citation network
	4.3 Comparing to other architectures

	5 Results
	5.1 Noise experiment results
	5.1.1 Neural bølge operator model
	5.1.2 Bølgenet model
	5.1.3 ResGraph model
	5.1.4 Basic GCN model

	5.2 Cora experiment results
	5.2.1 Neural bølge operator
	5.2.2 Bølgenet model
	5.2.3 ResGraph and basic GCN model
	5.2.4 Dirichlet energy

	6 Discussion
	6.1 The performance of Bølgenet and Neural bølge operator
	6.1.1 The experiments

	6.2 Problems with the experiments
	6.3 Other models with similar ideas: PDE-GCN
	6.4 The effect on the physics-based models idea
	6.5 Further work

	7 Conclusion
	Bibliography
	8 Appendix
	8.1 Table of results for the Noise experiment
	8.1.1 Neural wave operator
	8.1.2 Bølgenet

	8.2 Table results for the Cora experiment

