- 1 Metaproteomics of Gut Fungi in Gnotobiotic Mice
- 2 Veronika Kuchařová Pettersen^{1,2,3,*}
- ¹Host-Microbe Interaction Research Group, Department of Medical Biology, UiT The Arctic
- 4 University of Norway, Tromsø, Norway
- 5 ²Paediatric Research Group, Department of Clinical Medicine, UiT The Arctic University of
- 6 Norway, Tromsø, Norway
- 7 ³Centre for New Antibacterial Strategies, UiT The Arctic University of Norway, Tromsø, Norway
- 8 *Corresponding author: <u>veronika.k.pettersen@uit.no</u>
- 9 Keywords: Gnotobiotic Mice, Label-free Quantitative Proteomics, Intestinal Fungi, Genome-
- 10 Resolved Metaproteomics, Microbe-Host Interactions, Mammalian Gut Microbiome

11 Abstract 150 words

Intestinal fungi are a fundamental component of the gut microbiome and play important 12 roles in mammalian host biology. At the same time, the contribution of gut fungi to host 13 health and disease remains understudied due to their low abundance. In that respect, 14 gnotobiotic animals with defined microbial populations of reduced complexity represent a 15 well-suited model system that highlights the effects of low abundant gut fungi on host 16 physiology and other members of the microbial community. Here I present a label-free 17 quantitative metaproteomic approach for characterising simplified microbial communities in 18 gnotobiotic mice. The model allows for exploring various research questions on the role of 19 gut fungi in disease pathogenesis, microbial ecosystem maturation, or host-microbiome 20 crosstalk. 21

22 1. Introduction

The gut mycobiome defines the fungal portion of the gut microbiome, which constitutes less 23 than 0.1% of the human gut microbial ecosystem (1, 2). Despite being vastly outnumbered by 24 bacteria, fungal cells can be up to 100 times bigger in volume and contain up to 200 times 25 larger genome than most bacteria (3). The low abundant fungal species, therefore, have a 26 27 sizable impact on gut microbial community and intestinal homoeostasis (4, 5), as documented by their roles in disease pathogenesis, including cancer (6), autoimmune (7), 28 metabolic (8), and neurological disorders (9). Characterisation of the interactions between 29 host, fungal, and other microbial cells in health and disease is thus essential for strategies 30 aiming to manipulate the gut microbiome for disease prevention and treatment. 31

From the different omics approaches, metaproteomics are uniquely positioned to describe
consequences of gut microbiome alterations by detecting host and microbial proteins
simultaneously. Faecal metaproteomes of gnotobiotic mice colonised with defined microbial
consortia exhibit signatures specific to the microbial status (10, 11), and provide information
on various cellular pathways functional in the host gut epithelium and different microbial
cells.

Here I outline methodology for describing the effects of fungal gut colonisation in gnotobiotic 38 mice (Figure 1), including practical aspects of the experimental workflow. The protocol was 39 initially applied for the evaluation of gut colonisation with six fungal strains from taxa that 40 commonly colonise the human gut (12, 13) and that have been previously linked to atopy and 41 asthma risk (11, 14). The protocol can be adapted to answer research questions on the micro-42 ecology of specific gut fungal species or combined with different disease models in mice. In 43 general, an appropriate sample processing protocol needs to be evaluated in the context of 44 45 each study's aims and should consider unbiased methods for microbial protein enrichment 46 and protein extraction efficiency. Also, the availability of the genomes for all microbial strains 47 used is critical for creating matched protein databases and correct assignment of proteins. Finally, the protocol will illustrate that data interpretation can be guided by several general 48 statistical analyses but that it is also, from a large part, a creative process that is unique to the 49 objectives of each specific research work. 50

51	2.	Materials & Equipment
52		2.1 Gnotobiotic Mice
53		The experimental setup requires access to a gnotobiotic mouse facility. For
54		methodological details , see previously published protocol on germ-free mice as a
55		model for studying host-microbe interactions (15).
56		2.2 Microbial Cultivations
57		Strains of selected gut bacterial and fungal species
58		• Selective media, e.g., fastidious anaerobic media for bacteria, yeast-mould broth
59		for fungi
60		Anaerobic chamber
61		• 37 °C incubator
62		Sterile culture tubes, plates and inoculation loops
63		Sterile 1.5 ml collection tubes for faeces
64		2.3 Enrichment of microbial cells
65		Phosphate-Buffered Saline (PBS)
66		• Tubes for gentle homogenisation and corresponding homogeniser (e.g.,
67		GentleMACS C tubes, Miltenyi Biotec)
68		Conical centrifuge tubes of 50 ml
69		Bench centrifuge

71	2.4 Protein extraction
72	• Lysis buffer: 2% sodium dodecyl sulfate, 100 mM Triethylammonium bicarbonate
73	buffer, 10 mM Ethylenediaminetetraacetic acid, and 1X Complete Mini EDTA free
74	protease inhibitors, pH 8.0
75	• Tubes with lysing matrix (e.g., Fastprep lysing matrix type A,MP Biomedicals)
76	• Sample homogeniser (e.g., TissueLyser, Qiagen or Fastprep, Thermo Savant)
77	• Sonicator
78	• Spectrophotometer (for example Direct Detect® Spectrometer from Merck
79	Millipore)
80	2.5 Filter Aided Sample Preparation and C18-based Peptide Clean-Up
81	MS grade water
82	• Microcon device YM-10 filters (e.g., Merck Millipore)
83	• 100 mM ammonium bicarbonate (NH ₄ HCO ₃ - ABC) - 79 mg ABC into 100 ml MS
84	grade water.
85	• 10 mM dithiothreitol (DTT)- 1.54 mg DTT into 1mL 100mM ABC
86	• Urea buffer (8 M urea, 10 mM HEPES, pH 8.0)
87	• 0.05 M iodoacetamide
88	• 40 mM ABC - dilute from 100 mM ABC
89	• Proteomics grade Trypsin in 40 mM ABC buffer
90	• C18 solid-phase extraction cartridges (e.g., SepPak Waters)
91	• Methanol
92	• Acetonitrile (ACN) 2%
93	• Formic acid (FA) 0.1% and 100%

94	• Elution buffer (80% ACN, 0.1% FA)
95	Vacuum concentrator
96	• Eppendorf tubes (0.5, 1 and 2 ml)
97	Low-bind protein tubes
98	• Peptide colorimetric assay (e.g., Pierce™ Quantitative Colorimetric Peptide Assay
99	(Thermo Fisher Scientific, Waltham, Massachusetts, USA
100	2.6 LC-MS/MS and Data Analysis
101	• Example of LC-MS/MS system (Thermo Scientific): EASY nLC 1200 connected to an
102	Orbitrap Fusion Lumos Tribrid mass spectrometer with an EASY-Spray column
103	• MaxQuant software package (16) or other freely available proteomic software
104	• Protein sequence database in FASTA format matching the studied microbial strains
105	(e.g., downloaded from NCBI or UniProtKB).
106	• Spreadsheet editor and freely available Perseus software or various statistical R
107	scripts/ package (17).
108	

109 3. Methods

110 3.1 Gnotobiotic mice

- Germ-free (GF) mice need to be housed at a dedicated gnotobiotic mouse facility, and
 all the animal work must follow animal protocols approved by a corresponding
- 113 institution.
- Selected microbial species are grown under anaerobic conditions in their respective
 selective media until a stationary phase.
- **116** 3. To generate gnotobiotic mice, female adult germ-free mice are orally gavaged twice,
- three days apart, with 100 μl of selected microorganisms (*e.g.*, strains of fungal

species of interest) or microbial consortia (Fig. 1, Note 1).

- 4. After the second gavage, mice are paired with gem-free males for mating in a 2:1
- 120 female:male ratio per cage. Two breeding pairs are used for each experimental group
- 121 (*i.e.*, colonisation condition) producing on average 6 offspring (±3). (Note 2)
- 122 5. To ensure microbial colonisation with the desired consortia in the offspring, the
- 123 corresponding inoculum should be further spread on the dams abdominal and nipple
- regions on days 3 and 5 after birth. Microbial engraftment can be confirmed by Sanger
- sequencing of DNA isolated from faecal samples.
- 126 6. Mice are often kept at a maximum of five animals per cage and housed inside
- 127 gnotobiotic isolators. Standard conditions include a 12-h light/12-h dark cycle, 40%
- relative humidity, 22–25 °C, and *ad libitum* access to sterile food and water.

- 130 Figure 1 A gnotobiotic model for characterisation of fungal gut colonisation by label-free
- 131 quantitative metaproteomics. Abbreviations of potential colonisation conditions indicated in
- 132 circles: B, bacteria only; BF, bacteria-fungi; F, fungi only; GF, germ-free.

	3.2 Optional - Enrichment of microbial cells from faecal samples (Note 3)
1.	Pooled faecal samples of ~ 300 mg are collected from co-housed gnotobiotic mice of
	the same treatment group, at chosen time points and immediately stored at –80°C
	until use.
2.	After thawing at 4°C, samples are subjected to differential centrifugation to enrich for
	microbial cells, according to previously described methodology (18).
3.	Each sample is resuspended in 4 ml of Phosphate-Buffered Saline (PBS), gently
	homogenised, and subjected to low-speed centrifugation at 20 $ imes$ g for 5 min to
	eliminate gross particulate material.
4.	The supernatant is transferred to 50 ml conical centrifuge tube and kept at 4°C,
	whereas the pellet is resuspended in PBS.
5.	The washing step is repeated until the supernatant appears translucent (5-7 times).
6.	The collected supernatant is centrifuged at 3,200 × g for 1 h.
7.	The resulting pellet is subjected to cell lysis and protein digestion described below
	(Note 4).
	3.3 Protein Extraction
1.	Faecal microbiota samples are resuspended in lysis buffer in 1:4 w/v ratio and transfer
	into a 2 ml screw-cap tube containing a garnet matrix and a ceramic sphere.
2.	Cells are mechanically disrupted by bead-beating in a tissue lyser with settings
	relevant for stool or soil samples.
3.	To ensure lysis, the samples can be further incubated at -80°C for 10 min and at 95°C
	 1. 2. 3. 4. 5. 6. 7. 1. 2. 3.

155	4.	To disrupt released cellular DNA that would interfere with downstream protein
156		quantification, the supernatants are sonicated 3 x for 10s with 20s resting intervals on
157		ice.
158	5.	Sonicated samples ae centrifuged at 18,000 x g, 4°C, for 10 min, the supernatants
159		collected, and protein concentration is measured by using a spectrophotometer.
160		3.4 Sample preparation for the proteomic analysis
161	The ce	ell lysates of faecal microbiota-enriched samples are processed according to Filter-
162	Aided	Sample Preparation protocol (18, 19).
163	1.	Cell lysates containing 500 μ g of total protein are incubated with 10 mM DTT in 100
164		mM Ammonium Bicarbonate (ABC) at the solution to total protein ratio (v/w) 1:10 for
165		45 min at 56°C without shaking.
166	2.	YM-30 Microcon filter units are condition by adding 100 μl of urea buffer and
167		centrifuge at 14,000 \times <i>g</i> for 5 min.
168	3.	The denatured protein samples from step 1. are mixed with 200 μl urea buffer in the
169		filter units and centrifuged at 10,000 $ imes$ g for 15 min.
170	4.	After discarding the eluate, the filtration units are washed once with 200 μl urea buffer
171		(10,000 × g, 15 min).
172	5.	The filtrate is discarded and 100 μl of 0.05 M iodoacetamide added to each sample.
173		The samples are then mixed at 600 rpm for 1 min in a thermo-mixer, and incubated
174		without mixing in the dark for 20 min,
175	6.	The filter units are washed with 100 μl urea buffer three time, followed by three
176		washes with 100 μl 50 mM ABC (10,000 × g, 10 min).

- 177 7. Proteins are digested on the filter unit with trypsin in 40 mM ABC (enzyme to protein
 178 ratio (v/w) of 1:100) at 37°C for 18 h.
- 179 8. The released peptides are collected by adding 50 μl of MS grade water followed by
 180 centrifugation at 14,000 x q for 15 min. Repeat this step twice.
- 181 9. The resulting peptide mixtures are cleaned up by using C18 solid-phase extraction182 cartridges.
- 183 10. The collected samples are dried at 30°C in a vacuum concentrator and store at -80°C
 184 until further analyses.
- 185 11. Prior to LC-MS/MS analysis, resuspend the peptide samples by following instructions
- from chosen proteomic facility, for example by adding 1 μl of 100% formic acid and 19
 μl of 2% ACN or only in 1% formic acid.
- 12. An aliquot of the tryptic digests can be used to determine the concentration of thepeptide mixtures by using colorimetric peptide assay kit.

190 3.5 LC-MS/MS

- The MS/MS analysis is typically carried out at a dedicated proteomic facility by personnel
 operating the instruments. An example of a potential LC-MS/MS run setup is on an Orbitrap
 Fusion Lumos Tribrid mass spectrometer operated with Xcalibur software and coupled to
 Easy- nanoflow liquid chromatography 1200 system (Thermo Fisher Scientific). Below is an
 example of an LC-MS/MS analytical run; however, each proteomic facility will have own
 protocols matching their instrumentation and specific quality controls (Note 5).
- Load 2 μg tryptic peptide sample onto a pre-concentration column (for example,
 Acclaim PepMap 100, 2 cm ×75 μm i.d. nanoViper column, packed with 3 μm C18

- beads) at a flow rate of 2 μl/min of solvent A (0.1% formic acid and 3% acetonitrile in
 LC-MS grade water).
- Separate the peptides by a biphasic acetonitrile gradient (flow rate of 300 nl/min) on a
 C18 analytical column (e.g., 75 μm x 50 cm; PepMap RSLC C18). Specifically, apply
- solvent B (0.1% formic acid in 80% LC-MS grade acetonitrile) during a 120 min
- 204 gradient from 5 to 40% (5% to 28% in 105 min followed by an increase to 40% B in 15
- 205 min) at a flow rate of 0.3 μ L/min to elute the peptides.
- 3. The separated peptides are directly electrosprayed using 2.1 kV voltage into the ion
 transfer tube (300°C) of the MS instrument operating in positive mode.
- Operate the mass spectrometer in data-dependent acquisition mode to automatically
 switch between MS and MS/MS acquisition.
- 5. Full scans are acquired at 120,000 Full-Width at Half Max resolution to detect the
- 211 precursor ions having m/z between 375 and 1,575 (Scan Range) and a +2 to +7 charge
- 212 (automatic gain control at 4×10^5 and maximum injection time 50 ms).
- 213 6. Precursor selection: The Orbitrap is operated using the top speed mode with a 3 sec
- 214 cycle time. The most intense precursor ions presenting a peptidic isotopic profile and
- having an intensity threshold of at least 5,000 are isolated using the quadrupole and
- fragmented by higher-energy collisional dissociation (HCD, 30% collision energy) in
- the ion routing multipole.
- **218** 7. The fragment ions (MS2) are then analysed in the ion trap at a rapid scan rate
- 219 (automatic gain control at 1×10^4 and maximum injection time 35 ms).
- 8. Target ions already selected for MS/MS are dynamically excluded for 45s to avoid the
- 221 acquisition of the same precursor ion having a similar m/z (plus or minus 10 ppm).

3.6 Protein identification and quantitation

223	1.	The acquired MS raw data can be processed by using an open-source proteomic
224		software such as MaxQuant (16) with default settings and additional options such as
225		Label-Free Quantification (LFQ) and match between different sample runs. By using
226		the LFQ option, the software will derive normalised spectral protein intensities by the
227		MaxLFQ algorithm that applies protein-specific correction coefficients on the whole
228		dataset (20).
229	2.	Upload into MaxQuant matching protein databases for the used microbial strains:
230		genome-derived proteomes for specific species if these are available, or non-
231		redundant protein databases for bacterial or fungal species from the Universal
232		Protein Knowledgebase.
233	3.	Perform the MS searches by analysing all raw MS data together ; depending on the
234		data size, the search might take from several hours to several days.
235	4.	The MaxQuant output data ('proteingroups.txt') can be analysed with the Perseus
236		module (17), starting with filtering of protein identifications as follows: first are
237		removed proteins marked as "reverse", "only identified by site", and "potential
238		contaminant". Next, only proteins identified in at least two biological replicates
239		should be considered as confident identifications.
240	5.	To identify false-positive identifications of microbial proteins in mice groups not
241		colonised with bacteria and/or fungi, the protein identification type should be
242		checked, and proteins identified by the "match between runs" algorithm and not
243		directly identified by MS, filtered out. Also, proteins identified only by a single peptide
244		and not identified by several unique peptides represent low confidence identification

and should be removed. Any other remaining proteins, whose origins are not

consistent with the type of microbial colonisation of a specific mice group should be

247 checked at the peptide level, to confirm whether these are valid identifications or not.

- 248 6. For protein quantification, only proteins with LFQ intensities in at least two biological
- replicates and identified by a minimum of two unique peptides should be considered.

250 3.7 Data analyses

251 1. Before any analyses, the proteins LFQ intensities should be log2-transformed. To

252 correct for differences in the sample amounts injected into LC-MS/MS, the relative

- protein amounts can be normalised by dividing each protein LFQ intensity by themedian intensity for all proteins in a given replicate (21).
- To assess the biological variability of each experimental group, the Pearson
 correlation coefficients based on the protein intensities of each sample can be
 calculated in Perseus.
- **258** 3. The statistical analyses can be performed on specific groups with defined microbial
- 259 status. Only relevant mice groups have to be used in the statistical analyses of
- 260 bacterial or fungal proteins, *e.g.*, only those mice groups colonised with fungi will be261 used to analyse fungal proteins.

262 4. To identify proteins with levels that differ among the strains, analysis of variance

- 263 (ANOVA) can be used to compare the global mean level of each protein against its
- 264 corresponding amount in each condition. Standard settings for the ANOVA test in
- 265 Perseus include FDR calculations performed by a permutation-based procedure with
- 266 250 randomisations and a cut-off of 5%. To determine the exact pairwise differences

- 267 in protein levels, Tukey's honestly significant difference (THSD) should be performed268 on ANOVA-defined significant hits.
- 269 5. Perseus also allows for additional uni- and multivariate analyses such as principal
 270 component, multivolcano, or hierarchical clustering analyses.
- 6. The functional protein classification is usually be done using The Database for
- 272 Annotation, Visualisation and Integrated Discovery (22) and Gene Ontology

enrichment (23).

- 274 7. To ensure open and fair science, the mass spectrometry proteomics data should be
- 275 deposited to a repository database (*e.g.*, ProteomeXchange).

Notes 277

299

1. A well-described bacterial consortium of mouse-derived strains that are persistent, 278 inheritable and elicit an immune response in mice similar to a complex microbiota is 279 the Oligo-MM12 consortium (24, 25). The method for mice colonisation with Oligo-280 MM12 includes preparation of the gavage inoculum under anaerobic conditions by 281 mixing 100 μ l of 2-day-old microbial cultures of each species. 282

2. For evaluation of physiological changes induced by microbial colonisation, each 283

animal constitutes an individual biological replica in the gnotobiotic experiment. 284

However, for metaproteomics sampling, pooled stool sample collected from animals 285

housed in the same cage, and having the same microbial status, is often necessary 286

due to limited stool material that each animal can produce, and relatively large 287

volume of stool (at minimum 300mg) needed for metaproteomic sample processing. 288

The LC-MS/MS analysis can then be performed on replicates of pooled faecal samples 289

collected from mice that underwent the same microbial colonisation and were 290

housed in the same cage and gnotobiotic isolator. 291

3. Different enrichment methods, such as strategies based on double filtering (26) and 292 293 differential centrifugation (18), have been applied to concentrate microbial cells from stool samples and shown to improve the overall depth of faecal metaproteome 294 measurement. However, the differential centrifugation step was later shown to cause 295 non-specific removal of microbial cells and proteins (27). Stool without a pre-296 treatment thus might provide an unbiased representation of the microbial proteins 297 but lead to a lower number of proteins identified, decreased microbial diversity, and 298 overrepresentation of the nonmicrobial components (host and food). A critical

- evaluation is therefore needed when selecting the appropriate stool sample
 processing protocol in the context of each metaproteomic study, depending on the
 research aim.
- 303 4. A quality control step comprising of microscopic examination of Gram-stained
 304 fractions of the pellet should be included to confirm bacterial and fungal cell
 305 extraction.
- For optimal performance, the LC-MS/MS instrumentation should be calibrated before
 each sample batch, for example, by injecting a commercial protein digest to control
 the performance of the LC and the mass spectrometer before the samples are
 acquired.
- 310 6. The LFQ approach of Maxquant is based on accurate determination of spectrometric
- 311 signal intensities (extracted ion chromatograms XICs) of peptides and relies on
- 312 measurements of the three-dimensional space of peptide ion intensity, m/z, and
- 313 chromatographic elution time. However, for proteins at low abundance, XICs are often
- contaminated by nearby signals, and although a protein can still be identified, it
- 315 might not be quantified because of low-quality data.

316 Acknowledgement

- 317 This work was supported by a grant from Tromsø Research Foundation via the Centre for
- **318** New Antibacterial Strategies, UiT The Arctic University of Norway.

319

320 References

Nash AK, Auchtung TA, Wong MC, Smith DP, Gesell JR, Ross MC, et al. The gut mycobiome of the
 Human Microbiome Project healthy cohort. Microbiome. 2017;5(1):153.

Zhai B, Ola M, Rolling T, Tosini NL, Joshowitz S, Littmann ER, et al. High-resolution mycobiota
 analysis reveals dynamic intestinal translocation preceding invasive candidiasis. Nature Medicine.
 2020;26(1):59-64.

326 3. Mohanta TK, Bae H. The diversity of fungal genome. Biological Procedures Online. 2015;17(1):8.

Gutierrez MW, van Tilburg Bernardes E, Changirwa D, McDonald B, Arrieta M-C. "Molding"
 immunity—modulation of mucosal and systemic immunity by the intestinal mycobiome in health and
 disease. Mucosal Immunology. 2022;15(4):573-83.

Jiev ID, Leonardi I. Fungal dysbiosis: immunity and interactions at mucosal barriers. Nature
 Reviews Immunology. 2017;17(10):635-46.

Aykut B, Pushalkar S, Chen R, Li Q, Abengozar R, Kim JI, et al. The fungal mycobiome promotes
pancreatic oncogenesis via activation of MBL. Nature. 2019;574(7777):264-7.

Nelson A, Stewart CJ, Kennedy NA, Lodge JK, Tremelling M, Probert CS, et al. The Impact of
 NOD2 Genetic Variants on the Gut Mycobiota in Crohn's Disease Patients in Remission and in Individuals
 Without Gastrointestinal Inflammation. J Crohns Colitis. 2021;15(5):800-12.

8. Mar Rodríguez M, Pérez D, Javier Chaves F, Esteve E, Marin-Garcia P, Xifra G, et al. Obesity changes the human gut mycobiome. Sci Rep. 2015;5:14600.

Zou R, Wang Y, Duan M, Guo M, Zhang Q, Zheng H. Dysbiosis of Gut Fungal Microbiota in
 Children with Autism Spectrum Disorders. J Autism Dev Disord. 2021;51(1):267-75.

Lichtman JS, Marcobal A, Sonnenburg JL, Elias JE. Host-centric proteomics of stool: a novel
 strategy focused on intestinal responses to the gut microbiota. Molecular & cellular proteomics : MCP.
 2013;12(11):3310-8.

Pettersen VK, Dufour A, Arrieta M-C. Metaproteomic profiling of fungal gut colonization in
 gnotobiotic mice. Animal Microbiome. 2022;4(1):14.

34612.Li J, Chen D, Yu B, He J, Zheng P, Mao X, et al. Fungi in Gastrointestinal Tracts of Human and347Mice: from Community to Functions. Microb Ecol. 2018;75(4):821-9.

Ward TL, Dominguez-Bello MG, Heisel T, Al-Ghalith G, Knights D, Gale CA. Development of the
Human Mycobiome over the First Month of Life and across Body Sites. mSystems. 2018;3(3).

14. van Tilburg Bernardes E, Pettersen VK, Gutierrez MW, Laforest-Lapointe I, Jendzjowsky NG,

Cavin J-B, et al. Intestinal fungi are causally implicated in microbiome assembly and immune
 development in mice. Nature Communications. 2020;11(1):2577.

Bhattarai Y, Kashyap PC. Germ-Free Mice Model for Studying Host-Microbial Interactions.
Methods Mol Biol. 2016;1438:123-35.

35516.Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range356mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26(12):1367-72.

17. Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al. The Perseus computational

platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13(9):731-40.

Tanca A, Palomba A, Pisanu S, Deligios M, Fraumene C, Manghina V, et al. A straightforward and
 efficient analytical pipeline for metaproteome characterization. Microbiome. 2014;2(1):49.

Wiśniewski JR. Chapter Two - Filter-Aided Sample Preparation: The Versatile and Efficient
Method for Proteomic Analysis. In: Shukla AK, editor. Methods Enzymol. 585: Academic Press; 2017. p.
15-27.

20. Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free

365 quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ.

366 Molecular & cellular proteomics : MCP. 2014;13(9):2513-26.

- Välikangas T, Suomi T, Elo LL. A systematic evaluation of normalization methods in quantitative
 label-free proteomics. Brief Bioinform. 2018;19(1):1-11.
- Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists
 using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44-57.
- 23. Chen C, Hou J, Tanner JJ, Cheng J. Bioinformatics Methods for Mass Spectrometry-Based
 Proteomics Data Analysis. Int J Mol Sci. 2020;21(8):2873.
- 372 Proteomics Data Analysis. Int 9 Mol Sci. 2020,21(0):2075.
 373 24. Brugiroux S, Beutler M, Pfann C, Garzetti D, Ruscheweyh H-J, Ring D, et al. Genome-guided
- design of a Defined Mouse Microbiota that Confers Colonization Resistance Against Salmonella Enterica
- 374 design of a Defined Mouse Microbiola that Confers Colonization Resistance Against Salmonella Enterica
 375 Serovar Typhimurium. Nature Microbiology. 2016;2:16215.
- 376 25. Uchimura Y, Wyss M, Brugiroux S, Limenitakis JP, Stecher B, McCoy KD, et al. Complete Genome
 377 Sequences of 12 Species of Stable Defined Moderately Diverse Mouse Microbiota 2. Genome
 378 announcements. 2016;4(5):e00951-16.
- 26. Xiong W, Giannone RJ, Morowitz MJ, Banfield JF, Hettich RL. Development of an Enhanced
- Metaproteomic Approach for Deepening the Microbiome Characterization of the Human Infant Gut.
 Journal of Proteome Research. 2015;14(1):133-41.
- 382 27. Tanca A, Palomba A, Pisanu S, Addis MF, Uzzau S. Enrichment or depletion? The impact of stool
- 383 pretreatment on metaproteomic characterization of the human gut microbiota. PROTEOMICS.
- 384 2015;15(20):3474-85.