
Faculty of Science and Technology
Department of Physics and Technology

Leveraging Explainability Maps for Group-unsupervised
Robustness to Spurious Correlations

Adrian Henrik de Sena Sletten
FYS-3941 Master’s thesis in applied physics and mathematics 30 SP - August 2023

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2023 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

“Never attribute to high-level abilities that which can be adequately explained
by shortcut learning”
–Geirhos et al. [35]

Abstract
Shortcut learning, the tendency for models to rely on spurious correlations, is a
widespread issue in deep learning. Although being a known issue, uncovering
the shortcuts present in a dataset can be a difficult task. Over the last few
years, explainability methods have been leveraged to find previously unknown
shortcuts within mainstream datasets. However, how to best mitigate a model’s
reliance on shortcuts, is not a matter that is widely agreed on.

Recently, the concept of group robustness has appeared as a potential way for
mitigating shortcuts. In group robustness, the data in each class is divided
into subclasses where some contain the shortcut features while some other
subclass does not. By optimising a model to increase the worst group perfor-
mance, the model learns to perform well across groups, mitigating reliance on
shortcuts.

One notable limitation that exists for current group robustness methods is
their reliance on group labels to guarantee performance improvements. The
issue with this is that acquiring these additional labels is a difficult and time-
consuming task. Therefore we propose, eXplainability-based Feature Reweight-
ing (XFR), a group-unsupervised group robustness method. Our proposed
method leverages the clustering of explainability heatmaps to estimate pseudo-
labels for groups in a dataset and afterwards uses these labels to improve group
robustness.

In our results, we show that XFR clearly improves group robustness compared
to standardly trained models (ERM). We also show that performance is on
par with, and sometimes even surpasses, methods that partially or fully utilise
group labels.

Acknowledgements
First of all, I would like to thank my main supervisor, Michael Kampffmeyer,
and my co-supervisor, Rwiddhi Chakraborty, for their guidance, support and
continuous encouragement throughout the journey of this master’s thesis. Their
expertise and feedback have been instrumental in shaping the direction of this
work. I am especially grateful to my co-supervisor for engaging in thought-
provoking and enriching discussions during our lunch breaks.

I would also like to thank my fellow students whose dedication and work ethic
has inspired me to work harder. You helped make the countless hours we spent
at the office not just bearable, but also fun. Thank you.

Next, I would like to extend my gratitude to my family and friends for their
continuous support and presence throughout my studies.

Lastly, I would like to express my heartfelt thanks to Hana, for her unwavering
belief in me and her endless encouragement. Her continuous support has been
a driving force behind my accomplishments, and I am truly fortunate to have
her as a source of strength.

Adrian Henrik de Sena Sletten,
Tromsø, August 2023.

Contents
Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xv

List of Abbreviations xvii

1 Introduction 1
1.1 Deep Learning Today . 1
1.2 Shortcut learning: An issue 2
1.3 Group Robustness: A possible solution 3

1.3.1 Limitations with current group robustness methods . 4
1.4 Contributions . 4
1.5 Outline of thesis . 5

I Background 7

2 Deep Learning 9
2.1 Overview of deep learning 9

2.1.1 Deep learning approaches 10
2.1.2 Main building blocks 11

2.2 Multilayer Perceptron . 12
2.2.1 Perceptron . 12
2.2.2 From one to many layers 14
2.2.3 Forward pass . 15
2.2.4 Activation functions 16
2.2.5 Loss functions . 19
2.2.6 Backward pass . 20
2.2.7 Gradient descent variants and optimisation algorithms 22
2.2.8 General training procedure 23

vii

viii contents

2.3 Convolutional neural networks 25
2.3.1 Convolution operation 25
2.3.2 The convolutional layer 27
2.3.3 Pooling . 28
2.3.4 Example of simple CNN architecture 29

3 Explainability in Deep Learning 31
3.1 Deep learning models are blackboxes 31
3.2 XAI . 32

3.2.1 Transparent methods 32
3.2.2 Post-hoc methods 33

3.3 Layer-wise Relevance Propagation 33
3.3.1 Propagation mechanisms 34
3.3.2 Different propagation rules 35
3.3.3 Best practice . 35

4 Clustering 37
4.1 Uncovering underlying structures in the data 37
4.2 Clustering algorithms . 38

4.2.1 Hierarchical clustering 39
4.2.2 K-means . 39
4.2.3 Deep clustering . 40
4.2.4 Spectral clustering 40
4.2.5 Deciding the number of clusters 42

5 Shortcuts in deep learning 43
5.1 What are shortcuts? . 43
5.2 A simple example . 44
5.3 Shortcuts are present in all learning systems 45
5.4 The origin of shortcuts . 46

5.4.1 Ambiguity and lack of constraints 46
5.4.2 Biases . 46

5.5 Shortcuts in computer vision tasks 47
5.5.1 Artefacts . 47
5.5.2 Context and background reliance 48
5.5.3 Texture-shape cue conflicts 48

5.6 Mitigation of shortcuts . 48
5.6.1 Group robustness 50

II Method 53

6 Proposed method 55
6.1 Explainability-based feature reweighting (XFR) 55

contents ix

6.1.1 Unsupervised Group Discovery 56
6.1.2 Group Balanced Training 56
6.1.3 Variants . 57

6.2 Building blocks of XFR for experiments 58
6.2.1 Spectral Relevance Analysis 59
6.2.2 Deep feature reweighting 59
6.2.3 XFR setup . 60

III Experiments 61

7 Experimental setup 63
7.1 Group robustness datasets 63

7.1.1 Colored-MNIST . 64
7.1.2 Waterbirds . 66
7.1.3 CelebA . 66

7.2 Metrics . 67
7.3 Models . 67

7.3.1 External Methods 67
7.3.2 Implemented Methods 68

8 Main experiment and analysis 71
8.1 Results . 71

8.1.1 Explainability improvements from XFR 73
8.2 Exploring the group estimation method 74

9 Ablation studies 83
9.1 Changing the downsampling size 83

9.1.1 Effect of eigengap heuristic on L-XFR performance . . 84
9.2 The effect of eigengap on the main results 85
9.3 Using 1 cluster . 86
9.4 Retraining on the training set instead of the validation set . . 87
9.5 Removing minority groups 88
9.6 Merging of clusters . 88

IV Conclusion and future work 91

10 Conclusion 93

11 Future work 95

References 97

List of Figures
1.1 Example from [12] showing how background and context

are used as a shortcut feature to classify the class "cow". (A)
showcases an image of a cow in a normal context, while (B)
and (C) showcase images of cows in unusual contexts. The
top-5 predictions for each image are presented, and only in
(A) is "cow" predicted. 3

2.1 Visualisation of the perceptron. Inputs are multiplied by weights
and added up to create output. 13

2.2 The forward pass. Illustration of the feed-forward process for
layer 𝑟 of an MLP. 15

2.3 The sigmoid function and its derivative. 18
2.4 2D convolution. Can be interpreted as sliding the kernel over

all the possible positions of the image. 26
2.5 2D pooling. Pooling performed with window size 2x2 and

stride 2. 28
2.6 Simple deep CNN example: the standard VGG-16 network ar-

chitecture [108]. 29

3.1 Example of an LRP heatmap from a VGG-16 model showcas-
ing the parts of the input that are relevant for the prediction
"golden retriever". Red and blue represent positive and nega-
tive relevance respectively. Here we have utilised the follow-
ing propagation rules: LRP-𝛼𝛽 with 𝛼 = 2 for the convolu-
tional layers, and LRP-𝜖 for the fully-connected layers. 34

4.1 Overview of clustering methods described. The visualisation
is based on [51]. 38

4.2 Here (a) shows an instance of a Blob dataset with 5 blobs,
and (b) shows the 10 smallest eigenvalues of the Laplacian
matrix. There is a gap in the eigenvalues after the fourth
one, which suggests 4 clusters. However, note that the largest
eigengap is after the fifth eigenvalue. This reflects our prior
knowledge of the data that there are 5 blobs. 42

xi

xii l ist of figures

5.1 Simple shortcut learning example. Classification task of cats
and dogs with the provided training set and labels (black
font). For the test sets blue font indicates the label a hu-
man would give, while red font is the label given by a model
trained on the given training set. The i.i.d test set contains
similar examples to the training set, while the o.o.d test set
contains different examples. Testing on different data shows
that the model uses a different decision rule than expected. . 44

5.2 Shortcut learning example from [65]. Shows that the model
has learned to rely on the presence of a watermark to classify
an image as class ’horse’. 48

5.3 Example of background reliance in caption generation task.
The presence of a green hillside is spuriously correlated with
the class sheep.[104] . 49

5.4 Model predictions for 3 types of images. (a) shows only tex-
ture, (b) shows only the content, and (c) is a combination
of the two images. Note how the model still classifies (c) by
texture.[36] . 49

8.1 The first 12 eigenvalues of the Laplacian matrix when per-
forming the 3 runs of spectral clustering needed to perform
L-XFR (y0 and y1) and G-XFR (all). The eigengap heuristic
uses the biggest gap among the 10 smallest eigenvalues as an
estimate for the best number of clusters to use. 76

8.2 The average relevance for each cluster of 𝑦 = 0. 78
8.3 The average relevance for each cluster of 𝑦 = 1. 78
8.4 The average relevance for each cluster of all observations. . . 78
8.5 Similarities using Pearson’s correlation coefficient (see Equa-

tion 4.1), between the average heatmaps from each cluster
in the 3 clustering runs of CelebA. A reminder that -1 or 1
indicates a complete negative or positive correlation, while
0 indicates no correlation. Values close to 0 thereby indicate
little similarity. 80

8.6 Similarities using Pearson’s correlation coefficient (see Equa-
tion 4.1), between the average heatmaps from each cluster
in the 3 clustering runs of C-MNIST. A reminder that -1 or
1 indicates a complete negative or positive correlation, while
0 indicates no correlation. Values close to 0 thereby indicate
little similarity. 80

8.7 t-SNE plot of CelebA heatmaps in 2D coloured with ground
truth groups. It is impossible to recover the ground truth la-
bels here. 81

l ist of figures xiii

8.8 t-SNE plot of C-MNIST heatmaps projected down to 2D. G-
XFR is able to capture the ground truth minority groups in
both cases - the reason for its good performance inTable 8.1.
Colours are consistent in the columns, meaning that pink
(and also grey) was found as part of the same cluster. 81

List of Tables
7.1 Data splits in the Colored-MNIST dataset. 64
7.2 Data splits in the Waterbirds dataset. 64
7.3 Data splits in the CelebA dataset. 65

8.1 Worst group and mean accuracy on the test sets of the dif-
ferent datasets. The Group Info column showcases for each
method whether group labels are used for that split of the
data (✗= does not use group labels, ✓= uses group labels,
✓✓= validation set group labels is used for training and fine-
tuning, and ✗✗= validation set without group labels is used
for training and finetuning). The results for JTT, LfF, and
Group DRO were gathered from [71], GEORGE results are
from [111], while the ones below the separation line are our
own results. For our results that use last layer retraining we
report mean±std over 5 runs after selecting the hyperparameter. 72

8.2 Examples showcasing the improvements in the explainabili-
ties. Images on the left are the original images, in the mid-
dle are the LRP heatmaps for ERM, and on the right are the
LRP heatmaps for G-XFR. All images showcase "waterbirds on
land background" that were misclassified by ERM, but classi-
fied correctly by G-XFR. 73

8.3 LRP example from the different datasets. The 1st column show-
cases the original image, the 2nd column showcases the ag-
gregated LRP heatmaps, and the remaining 3 columns show-
case each of the RGB components of the heatmap. This ex-
ample clearly illustrates the additional information gained by
utilising the RGB heatmap. 75

8.4 Image and heatmap examples from largest clusters. For these
images, the explanations are focused on the core features
needed to perform the classification task. 79

xv

xvi l ist of tables

8.5 Image and heatmap examples from the smaller clusters. The
explanations for these images all focus on the top-left corner
of the image. The potential shortcut feature that the model is
utilising in the corner could be the presence of a single colour
there (in most cases the colour is black). The single colour
might come from segmentation of the original image, or from
cropping or extending the original image. 79

9.1 Results for G-XFR and L-XFR for different downsizing of the
heatmaps compared to ERM and DFR baselines. Best results
across the resolutions are bolded. 84

9.2 Comparing the performances when using a fixed number of
clusters vs. the eigengap heuristic that gave 2 clusters for
𝑦 = 0, and 9 clusters for 𝑦 = 1. Here we have presented
the weighted (to the group distribution of the training set)
mean instead of the normal mean over the test set. 85

9.3 Eigengap heuristic C-MNIST: (6,2), 8. Eigengap heuristic for
Waterbird: (3,2), 3 . 86

9.4 Here we compare "DFR (class)" that uses the classes directly
as groups, with other methods. 87

9.5 Comparing the difference from using the validation vs the
training set to improve group robustness. 87

9.6 Comparison of main results with majority cluster results. Here
we perform retraining only utilising the largest group for each
class. Bolded values are the overall best results. 88

9.7 Comparison of main results with supercluster results 89

List of Abbreviations
ai artificial intelligence

cnn convolutional neural network

dfr deep feature reweighting

dl deep learning

dnns deep neural networks

erm empirical risk minimisation

g-xfr global-XFR

george

group dro group distributionally robust optimisation

jtt Just Train Twice

l-xfr local-XFR

lff Learn from Failure

lrp layer-wise relevance propagation

ml machine learning

mlp multilayer perceptron

sgd stochastic gradient descent

spray Spectral Relevance Analysis

xvii

xviii l ist of abbreviat ions

t-sne t-Stochastic Neighbourhood Embedding

wga worst group accuracy

xai eXplainable AI

xfr Explainability-based feature reweighting

1
Introduction
1.1 Deep Learning Today

Deep learning (dl) is a subfield of machine learning (ml) and artificial intelli-
gence (ai), that has had a large surge in popularity lately. In dl, models are
designed and trained to tap into the wealth of information present in large
datasets. Through training, these models unveil and learn hidden patterns and
insights that can be leveraged to perform a variety of different tasks in both
ordinary and critical domains. As such, dl has played and will continue to
play, a role in reshaping the landscape of technological possibilities and appli-
cations.

Today, some ordinary everyday applications of dl are image and video filters,
speech recognition [98], automatic caption generation [10], machine transla-
tion [91], personalised advertising [126], music recommendation [126], chat-
bots [89], bots for playing games like chess [107], battery management of
your phone, weather prediction [101], etc. Generative technologies enable the
generation of images[79], sounds, videos [109], and text. These applications
enhance convenience, entertainment, and communication in daily life without
posing significant safety risks or high-stakes consequences.

Presently dl is also used in safety-critical, high-stakes, and socially-impactful
domains such as medical diagnostics [13], autonomous driving [50], energy
management [85], environmental monitoring [124] and conservation, eligibil-
ity for loans [41], fraud detection [75], automatic monitoring and removal of

1

2 chapter 1 introduction

harmful content [26], hiring [23], and much more. These applications of dl
play a crucial role in safeguarding lives, improving public safety, mitigating
global challenges, and addressing critical societal issues, where errors could
lead to substantial consequences on human well-being, the environment, and
the functioning of crucial systems.

As dl is utilised in more and more critical domains, it is imperative that the
models used can be trusted and relied on. Trust and reliability can be increased
by utilising models that perform well, and that are robust to differences from
its testing ground to the real world. A different approach for increasing trust
is to provide explanations for why a dl model made a certain decision. In this
way, wrong decisions may be pinpointed and dealt with. However, although
explanations are useful they are usually not provided since dl models are con-
sidered to be black box models - we have no knowledge of how its decisions are
made [83]. Considerable work [38] has been done over the last years to create
good and interpretable explanation methods for deep learning models.

1.2 Shortcut learning: An issue

A clear issue standing in the way of reliable and trustworthy deep learning
models is the concept of shortcut learning [35]. Shortcut learning describes a
model’s tendency of learning spurious correlations or superficial cues to solve
a problem in an unintended way. While resulting in models with high test
accuracies, these models fail in real-world applications where the shortcut
features may not be present.

In Figure 1.1, we showcase a simple example of shortcut learning, where we
see a classification model utilising the context or background in its decision-
making. The model is given images of cows in different contexts and reports
the top-5 most likely predictions, and we observe that the model only makes
the correct prediction in the normal context. From the dataset the model was
trained on, it learned that the detection of "grass" or "field" is a viable strategy
for achieving high accuracy in predicting the class "cow". Strategies like this
often go unnoticed if models are not extensively tested.

This example highlights the difficulty of dealing with shortcut learning. Super-
vised deep learning methods are trained to learn underlying patterns in the
dataset by simply using the information provided by a class label. The fact that
models are not taught what to focus on when learning from the data opens the
possibility for shortcut learning opportunities, such as the presence of grass for
classifying cows.
But to deal with this issue is not as simple as just improving our datasets. The

1.3 group robustness: a possible solution 3

Figure 1.1: Example from [12] showing how background and context are used as a
shortcut feature to classify the class "cow". (A) showcases an image of a
cow in a normal context, while (B) and (C) showcase images of cows in
unusual contexts. The top-5 predictions for each image are presented, and
only in (A) is "cow" predicted.

grass shortcut, for instance, emerged because probably a majority of training
images for the model featured cows in grassy environments — precisely where
cows are predominantly found. To construct more accurate datasets, we would
need to break free from the reliance on the existing distribution of images and
gather examples that showcase the varieties that exist in the real world. How-
ever despite our efforts, there is no guarantee that in our attempt to improve
datasets we will not inadvertently introduce some other shortcut opportunity
that can be exploited.

Despite its challenges, finding ways of overcoming shortcut learning is an im-
portant step towards robust, trustworthy and reliable dl models, as it directly
impacts their ability to generalize across diverse situations.

1.3 Group Robustness: A possible solution

Group robustness is a recent approach aimed at mitigating shortcut learning,
and it aims to balance a model’s performance across groups in the data to
remove the reliance on the shortcut features. This can e.g. be done by dividing
each class into 2 groups where one group contains the spurious correlations,
while the other does not. In the cow example, we would have a group that
contains cow images featuring grass, and another group with cow images and
no grass. By balancing the performance across the groups, i.e. making the
model do well in both groups, we would ideally guide the model to learn the
core feature and not utilise the spurious attribute.

4 chapter 1 introduction

The key metrics used to quantify group robustness are the mean accuracy over
all observations and the Worst group accuracy (wga). Utilising the wga is
useful as it captures the performance difference that is often present between
groups, while the mean accuracy tells us how effective the model is in general.
For example, traditional models, trained using empirical riskminimization erm
often yield high mean accuracy, but low wga. The goal of group robustness
methods is to close the gap between wga and the mean accuracy while trying
to keep the mean accuracy as close as possible to that of the erm model. In
other words, we wish to improve robustness while giving up as little average
performance as possible.

1.3.1 Limitations with current group robustness methods

Several group robustness methods have been proposed [28], [58], [71], [86],
[87], [92], [99] and all have shown improvements in wga. However, despite
their improvements nearly all methods suffer from a common limitation - the
use of group labels. Some methods utilise group labels for the entire dataset to
both train and tune their hyperparameters [99]. Various other methods try to
reduce the number of required group labels, and e.g. use the group information
from just the validation set to tune their hyperparameters [28], [71], [86], [92],
or utilise the group labelled validation set to train [58] or estimate pseudo-
labels [87]. The only exception we could find that claims it does not utilise
group labels [111], performs quite poorly compared to the previously mentioned
approaches.

The reason why the need for group labels is a huge limitation is because labels
are expensive and time-consuming to get a hold of, and may sometimes even
be infeasible to acquire. Furthermore, the use of group labels also requires a
definition of sensible groups, a task that could be especially difficult to do for
large-scale datasets, as it necessitates underlying knowledge of the shortcut
opportunities in the dataset.

1.4 Contributions

In order to address the limitations above, we propose Explainability-based fea-
ture reweighting (xfr), an approach for improving group robustness without
the use of group labels. Our method builds on the hypothesis that models pro-
cess different groups differently, and that these underlying strategies can be
learned from the explanations of the models.

The core pipeline for our method is as follows: We apply an explainability

1.5 outline of thesis 5

method on a standardly trained model to acquire the heatmaps showcasing the
relevant regions for the model’s decision. By clustering these heatmaps we find
clusters with similar explanations (or decision rules), and we utilize these to
define sensible groups of the data. Once these sensible groups have been found,
we can perform optimisation to balance the performance across them.

We propose two different methods for defining sensible groups from the clus-
tering results, each with its own strengths and weaknesses. And we show that
the optimisation over these groups leads to group robustness improvements
when evaluating using the ground-truth groups.
One approach, named Global-XFR (g-xfr), clusters all explanations to find
global similarities across different classes and once the clusters are found, di-
vides them class-wise to acquire the groups. By leveraging global informa-
tion, this approach can capture shortcut opportunities present across different
classes, with the disadvantage being the need to cluster explanations from all
classes (might be many).
The other approach, named Local-XFR (l-xfr), performs class-wise clustering
of the explanations where the clusters can be directly viewed as the groups.
This approach is more efficient as it only requires clustering of explainabilities
from one class, and might better be able to capture within-class shortcuts than
the global approach. The disadvantage is the lack of global information which
can be useful in finding small groups within a class that have a large presence
globally.

1.5 Outline of thesis

The thesis is structured into parts. First is the background part which contains
chapters about Deep Learning (Chapter 2), Explainability in Deep learning
(Chapter 3), Clustering (Chapter 4), and finally Shortcut Learning in Deep
Learning (Chapter 5). This is followed by the method part where the Proposed
Method (Chapter 6) is presented. Next is the experiment part where first an
overview of the Experimental Setup (Chapter 7) is given, before the Main
Experiment (Chapter 8) and Ablations (Chapter 9) are presented. Lastly, in the
final part the Conclusion (Chapter 10) is given and potential ideas for Future
Work (Chapter 11) are presented.

Part I

Background

7

2
Deep Learning
This part covers fundamentals regarding the field of deep learning that are
relevant to the thesis. The first section gives a brief overview of deep learning,
while the later sections go into detail about fully-connected neural networks
and convolutional neural networks. Parts of this chapter were first presented
in my project thesis [110].

2.1 Overview of deep learning

Deep learning (dl) is a subfield of Machine learning (ml), which again is a
small subset of Artificial intelligence (ai). It is based on artificial neural net-
works, which is a rough model of the structure and function of the human
brain. Deep learning algorithms enable machines to learn from data, automati-
cally improving their performance through experience, without being explicitly
programmed [2].

Deep learning models leverage a hierarchical structure of multiple layers of
neurons to process and learn from the input data. Each layer receives input
from the previous layer, processes it, and passes it on to the next layer until the
final output is produced. The training process most often involves adjusting the
weights of these connections between neurons to minimize the error between
the predicted output and the actual output.

9

10 chapter 2 deep learning

In 2012 in the ILSVRC (ImageNet [24] Large Scale Visual Recognition Chal-
lenge), which is a large-scale image classification task, a deep neural network
[60] won the competition outperforming other handcrafted techniques for this
type of task. Ever since then, the use of dl in the field of computer vision has
exploded. Today dl has achieved state-of-the-art results in a wide range of
applications, not only in computer vision for tasks like classification [17], seg-
mentation [82] and object detection [7], but also in other applications like
speech recognition [98], machine translation [91], art [79], medical imaging
[13], robotics [112], bioinformatics [53], natural language processing [89], cy-
bersecurity [115], and many others [2].

Despite its impressive successes, deep learning still faces many challenges. One
such challenge is to understand and explain why models make certain choices,
and why they fail. Knowledge of this can help us alleviate the models’ shortcom-
ings and help us build better and more trustworthy ones. Another challenge is
to make the models more robust so that they handle the noise and messiness of
real-world data. Overcoming these challenges is increasingly important as dl
is steadily used in more safety-critical, high-stakes, and socially-impactful do-
mains, all meanwhile models become bigger and more complex, making their
decisions harder to comprehend.

2.1.1 Deep learning approaches

Deep learning can be divided into different approaches or learning paradigms.
Some of the relevant approaches to this thesis are described below.

Supervised learning is about learning from labelled data, or more specifically, it
concerns problems where the task is to learn a mapping from input to output
given a set of input-output examples (X, Y), also called labelled data. Most
problems can be said to be either classification or regression problems [3].
Classification is about learning class/group assignments, e.g. telling apart what
is present in an image, what kind of object something is, or even determining
if a person is eligible for a loan based on their personal and financial history
[41]. Regression is about being able to estimate function values. This can be
used to estimate coordinates of bounding boxes in object detection, estimate
lane geometry and drive path for self-driving cars [50], and so on.

In unsupervised learning [3] only unlabeled data is used. No supervisor has
instructed what the desired output should be. Hence, unsupervised learning is
often used to find and learn underlying patterns in the data, as seen in various
clustering and dimensionality reduction methods. These learned patterns can
then be used for new insights, classification, or for data generation [102].

2.1 overview of deep learning 11

Semi-supervised learning is about using both labelled and unlabeled data [40].
Similarly to supervised learning, we may wish to learn a mapping from input
to output using the labelled data, but this mapping can now be guided by the
patterns present in the unlabeled data. This approach is especially useful in
cases where a lot of data is available, but where labels are difficult or expensive
to create [102].

Self-supervised learning (SSL) is a sub-field of unsupervised learning that has
an approach similar to supervised learning [40], [102]. The goal is to find a
mapping between input and output, and hence learn a good representation of
the data, using only unlabeled data. To do this, some simple labels are created
by e.g. exploiting the data structure. This process is often referred to as training
using a pretext task [1]. Examples of SSL are autoencoders where the label is
the input image itself, training of large language models by trying to predict
the next word [121] and several others. In computer vision, there are many
models that have been trained on such SSL pretext tasks where labels are easy
to generate [1]. Examples of such tasks are: rotating an image and predicting
its rotation, mixing an image like a puzzle and predicting its permutation, and
so on. Again to reiterate, the goal is not these tasks directly, but rather for the
models to extract some useful fundamental information from the unlabeled
data when solving them, which may be applicable in other tasks.

2.1.2 Main building blocks

The main building blocks of most dl methods today that are relevant for the
thesis (we will not be using the transformer architecture [117]), are fully con-
nected layers and convolutional layers. These are the main building blocks
that makeup Deep neural networks, which includes mlps [116] and cnns
[39].

The Multilayer perceptron, otherwise known as a feed-forward neural network,
is a deep hierarchical collection of neurons in layers, where the output of one
layer is given as input to the next. Each neuron is (fully) connected to all inputs
to that layer. In the neuron, a linear combination of the inputs is made and
then passed through a non-linear transformation. This very flexible architecture
allows Multilayer perceptron (mlp)s to do very complex tasks, and in fact,
it has been shown that they theoretically can be seen as universal function
approximators [49].

The Convolutional neural network (cnn), is a deep hierarchical collection of
convolution operations, down-sampling operations, and non-linear transforma-
tions. This architecture is specialised for grid-like data such as images and
videos. By exploiting the spatial structure of this type of data, Convolutional

12 chapter 2 deep learning

neural network (cnn)s are able to outperform mlps, being far faster and only
using a fraction of the resources.

2.2 Multilayer Perceptron

This section concerns Multilayer perceptrons (MLPs) [116], also known as feed-
forward neural networks, a building block used in most deep learning models
today. We start off by looking at a single perceptron, the building block of an
MLP, and how these can learn. We then go on to using multiple perceptrons
together and putting them into layers, and introduce activation functions that
make it all possible. We then go briefly through the mathematics involved in
a so-called forward pass, and how the input data flows through the network.
In the following sections common loss functions are introduced along with the
backward pass where gradients are computed. We also give a glimpse of how
optimisation algorithms use the gradients to update the model parameters.
Finally, the last section covers general training procedures.

2.2.1 Perceptron

The perceptron, also known as the McCulloch-Pitts neuron [78][43], is the
main building block in a multilayer perceptron (MLP). It is a simple linear
model that maps an input 𝑥𝑥𝑥 to an output 𝑦,

𝑦 = 𝑓 (𝑥𝑥𝑥) =𝑤𝑤𝑤𝑇𝑥𝑥𝑥 +𝑤0 =

𝑁∑︁
𝑖=1

𝑤𝑖𝑥𝑖 +𝑤0 (2.1)

Geometrically the perceptron can be interpreted as a hyperplane defined by
𝑓 (𝑥𝑥𝑥) = 0, where the value and sign of 𝑦 indicate the distance and side, re-
spectively, that the point 𝑥𝑥𝑥 is in regards to the hyperplane [3]. The hyperplane
divides the input space into two parts, and it is then obvious that a percep-
tron can be used to perform binary classification of two linearly separable
classes.

To perform this classification, one needs a method of fitting the parameters to
the given data belonging to two linearly separable classes, as it is infeasible
to do this for high dimensional input spaces due to the large number of pos-
sible combinations. The pocket algorithm [32] is a well-known way to do this,
where the problem is defined as a loss function that when minimised will give
parameters that completely separate the two classes. The loss function in this
algorithm is minimized iteratively using gradient descent, and (guaranteed) to

2.2 multilayer perceptron 13

Figure 2.1: Visualisation of the perceptron. Inputs are multiplied by weights and
added up to create output.

give a solution given that the classes are linearly separable. Note however that
this method does not guarantee a unique solution, as there may be an infinite
number of hyperplanes that separates the two classes.

Given data and corresponding labels {𝑥𝑥𝑥𝑖, 𝑦𝑖}𝑁𝑖=1 where𝑦𝑖 = ±1, and the model’s
prediction for each datapoint {𝑦𝑖}𝑁𝑖=1, the loss in the perceptron algorithm is
given by:

L =
∑︁

𝑖:𝑦𝑖≠𝑦𝑖

𝑦𝑖 · sign(𝑦𝑖) (2.2)

where the magnitude of each misclassification is added up. By minimising this
loss to 0, all data points are correctly classified. The hope is then that this
learned hyperplane can also be used to say something about other unseen
data.

Gradient descent is a method used to iteratively find a minimum of a function.
Given a starting point on the function, the gradient in regard to the function
parameters is calculated. The function is minimised by stepping in the negative
gradient direction, or in other words, using the negative gradient to update the
function parameters. Below are the update functions for the parameters used
in the perceptron algorithm:

𝑤𝑤𝑤𝑛𝑒𝑤 =𝑤𝑤𝑤𝑜𝑙𝑑 − [∇𝑤𝑤𝑤𝑜𝑙𝑑
L(𝑤𝑤𝑤𝑜𝑙𝑑) =𝑤𝑤𝑤𝑜𝑙𝑑 − [

∑︁
𝑖:𝑦𝑖≠𝑟𝑖

𝑥𝑥𝑥𝑖 · sign(𝑦𝑖) (2.3)

𝑤0,𝑛𝑒𝑤 = 𝑤0,𝑜𝑙𝑑 − [∇𝑤0,𝑜𝑙𝑑L(𝑤0,𝑜𝑙𝑑) = 𝑤0,𝑜𝑙𝑑 − [
∑︁

𝑖:𝑦𝑖≠𝑟𝑖

sign(𝑦𝑖) (2.4)

14 chapter 2 deep learning

By repeatedly alternating between performing prediction of the data points
and applying the update rules (until the loss is 0), a hyperplane that separates
the data is found.

2.2.2 From one to many layers

The perceptron works fine in cases where the data is linearly separable. Unfor-
tunately, this is usually not the case, as illustrated by the famously simple XOR
problem [81]. This problem requires two hyperplanes to correctly separate the
two classes. An intuitive way to deal with this would be to combine the output
of two perceptrons. Note however that directly combining the output of two
perceptrons in a new perceptron does not have the intended behaviour, and
results in only a single hyperplane. That is because a linear combination of
linear combinations is still linear as demonstrated in Equation 2.5.

Assume two perceptrons with outputs 𝑦1 and 𝑦2, that we wish to combine to
create output 𝑦.

𝑦 = 𝑤𝑎𝑦1 +𝑤𝑏𝑦2 +𝑤0 = 𝑤𝑎 (𝑤𝑤𝑤𝑇
1𝑥𝑥𝑥 +𝑤10) +𝑤𝑏 (𝑤𝑤𝑤𝑇

2𝑥𝑥𝑥 +𝑤20) +𝑤0

= (𝑤𝑎𝑤𝑤𝑤1 +𝑤𝑏𝑤𝑤𝑤2)𝑇𝑥𝑥𝑥 + (𝑤0 +𝑤𝑎𝑤10 +𝑤𝑏𝑤20)
=𝑤𝑤𝑤∗𝑇𝑥𝑥𝑥 +𝑤∗0 (2.5)

Note how the output of such an arrangement is also linear.

To solve this problem we introduce what is called an activation function, which
is tasked with bringing in non-linearities to our models. Activation functions
have turned out to be a vital discovery for deep learning enabling deep neural
networks (DNNs), where layers of neurons are connected one after the other
to approximate complex non-linear functions [116]. The most used activation
functions are presented in Subsection 2.2.4.

The layers in an MLP are usually divided into 3 classes. The input layer consists
of the input data to the model, while the output layer consists of the last neuron
layer and its output. Hidden layers is the name given to all layers between these
two. As an example, the perceptron has an input and an output layer, while
the model described in Equation 2.5 additionally has 1 hidden layer. An MLP
is usually considered shallow if it has 1 hidden layer, and deep if it has more
than that [54].

The Universal Approximation Theorem [49], states that a network with one
hidden layer with an infinite number of neurons can approximate any contin-
uous function to an arbitrary precision, as long as an activation function is
used. In reality, this is infeasible, and many problems are in fact not continuous.

2.2 multilayer perceptron 15

Figure 2.2: The forward pass. Illustration of the feed-forward process for layer 𝑟 of an
MLP.

However, it has also been shown that this network property can be attained by
using a finite number of neurons if multiple layers are used [77].

2.2.3 Forward pass

In this section, we cover some notation and use it to describe the forward pass
(forward propagation, feed-forward process) of an MLP. The forward pass is
an expression used to describe the process of the input moving through the
layers (neurons and activations) resulting in the model output. To describe
this process we will use a notation similar to that used in [116].

• We have a dataset containing 𝑁 data points 𝑥𝑥𝑥 (𝑖), where 𝑖 ranges from 1
to 𝑁 . Each data point is of dimensionality 𝑛0.

• The neural network has layers labeled as 𝑟 = 1, 2, . . . , 𝐿. The initial layer,
𝑟 = 0, serves as the input layer.

• For each layer 𝑟 , there are 𝑛𝑟−1 inputs and 𝑛𝑟 outputs. The number of
neurons in a layer is the number of outputs.

• The inputs to the network are defined as 𝑥 𝑗 (𝑖) = 𝑦0
𝑗 (𝑖), where 𝑗 ranges

16 chapter 2 deep learning

from 1 to 𝑛0.

• The 𝑗 outputs from the previous layer 𝑦𝑟−1𝑗 (𝑖), together with a bias term
𝑦𝑟0(𝑖) = 1, serve as inputs for layer 𝑟 .

• We let𝑤𝑟
𝑘 𝑗

describe the weight connecting the input 𝑗 to the neuron 𝑘 in
layer 𝑟 .

• The pre-activation output of neuron 𝑗 in layer 𝑟 is denoted as 𝑧𝑟𝑗 (𝑖), where
𝑗 ranges from 1 to 𝑛𝑟 .

• The post-activation output of neuron 𝑗 in layer 𝑟 is represented as𝑦𝑟𝑗 (𝑖) =
𝑓 (𝑧𝑟𝑗 (𝑖)) for 𝑗 from 1 to 𝑛𝑟 , where 𝑓 is the activation function.

• The network’s final output or prediction is indicated using the notation
𝑦 𝑗 (𝑖) = 𝑦𝐿𝑗 (𝑖), where the output neurons are denoted by 𝑗 ranging from
1 to 𝑛𝐿.

• If available, the actual data labels are represented as 𝑦 𝑗 (𝑖).

Note that these expressions may be converted to vectors and matrices repre-
senting each layer.

𝑧𝑧𝑧𝑟 (𝑖) =

𝑧𝑟1(𝑖)
...

𝑧𝑟𝑛𝑟 (𝑖)

 ,𝑦𝑦𝑦𝑟 (𝑖) =

1
𝑦𝑟1(𝑖)
...

𝑦𝑟𝑛𝑟 (𝑖)

 ,𝑤𝑤𝑤
𝑟
𝑘
=

𝑤𝑟
𝑘0

𝑤𝑟
𝑘1
...

𝑤𝑟
0𝑛𝑟

,𝑊 𝑟 =

(𝑤𝑤𝑤𝑟

1)𝑇
(𝑤𝑤𝑤𝑟

2)𝑇
...

(𝑤𝑤𝑤𝑟
𝑛𝑟
)𝑇

 (2.6)

Using these vectorised representations the forward pass through a hidden layer
can be described in the following way

𝑦𝑦𝑦𝑟 (𝑖) =
[

1
𝑓𝑟 (𝑧𝑧𝑧𝑟 (𝑖))

]
=

[
1

𝑓𝑟
(
𝑊 𝑟𝑦𝑦𝑦𝑟−1(𝑖)

)] (2.7)

where 𝑓𝑟 is the activation function for layer 𝑟 . For the output layer, the 1 is not
needed:

𝑦𝑦𝑦 (𝑖) = 𝑓𝐿

(
𝑧𝑧𝑧𝐿 (𝑖)

)
= 𝑓𝐿

(
𝑊 𝐿𝑦𝑦𝑦𝐿−1(𝑖)

)
(2.8)

2.2.4 Activation functions

The importance of activation functions was discussed in Subsection 2.2.2. Here
we chose to present the most commonly used activations; their qualities, ad-

2.2 multilayer perceptron 17

vantages and disadvantages, along with their derivatives which are used in the
backward pass to update model parameters.

Linear

Linear activation, otherwise known as the identity activation, is the same as not
using an activation. As previously discussed, not having an activation between
layers of the network is counterproductive and equivalent to just using the final
layer. Then, why even address linear activation? Because this type of activation
is useful for the output layer of models used for regression where the output
can take any value.

𝑓 (𝑥) = 𝑥, 𝑓 ′(𝑥) = 1 (2.9)

ReLU

The rectified linear unit (ReLU) [84][52] is the go-to activation function for
hidden layers in most deep learning models. It is a piece-wise function often
denoted by max(0, 𝑥), which is linear for positive values and 0 for negative
values. The ReLU is a simple and resource-efficient function and has been
shown to increase the effectiveness of training deep models.

𝑓 (𝑥) =
{
𝑥, if 𝑥 > 0
0, else , 𝑓 ′(𝑥) =

{
1, if 𝑥 > 0
0, else (2.10)

Note that for negative values the output and gradient are 0. This is a problem for
learning because if a neuron is only capable of outputting negative values it will
never fire and will thereby never be updated. This problem has been dubbed
the dying ReLU problem [73], and caused the emergence of many variations
of the ReLU with non-zero value outputs for negative values (e.g. Leaky ReLU
[76], ELU [19], GeLU [46], Swish [93], ...).

Sigmoid

The sigmoid [20], a type of logistic function, is a continuous monotonically
increasing function with horizontal asymptotes at {0, 1} for inputs 𝑥 → ±∞.
It can be seen as a smooth, and hence differentiable, version of the standard
step function. Hence it maps input onto the range 0 to 1. The Sigmoid is used
as an activation function in hidden layers (if the network has few layers), as
an output layer if a value between 0 and 1 is required, and in recurrent neural
networks (GRU and LSTM).

𝑓 (𝑥) = 1
1 + 𝑒−𝑥 , 𝑓 ′(𝑥) = 𝑓 (𝑥) (1 − 𝑓 (𝑥)) (2.11)

18 chapter 2 deep learning

Figure 2.3: The sigmoid function and its derivative.

Note in Figure 2.3, that the derivative of the sigmoid is positive and has a
maximum value of 0.25. This causes the so-called vanishing gradient problem
[11] when using the sigmoid since DNNs require repeatedmultiplications by the
gradient of the activation function to update model parameters. If the sigmoid
is used as the activation function in a deep model only the last layers will
be updated, as the gradients will be too small in the earlier layers to make
significant updates.

Hyperbolic tangent

The hyperbolic tangent [40], usually just denoted tanh, is a logistic function
similar to the sigmoid function (in fact it can be defined in terms of the sigmoid).
The tanh is similarly s-shaped but has horizontal asymptotes at {-1,1} for inputs
𝑥 → ±∞.

𝑓 (𝑥) = 2 · sigmoid(x) − 1 =
𝑒𝑥 − 𝑒−𝑥
𝑒𝑥 + 𝑒−𝑥 , 𝑓 ′(𝑥) = 1 − 𝑓 (𝑥)2 (2.12)

Note that the derivatives of the tanh are in the range (0, 1), which also causes
vanishing gradients.

Softmax

The softmax activation function [15] is used to normalise the outputs of a
layer so that they are all positive and sum to 1. In this way, the outputs of the
layer may be interpreted as a probability distribution, a useful property for
e.g. the output layer of models used for classification where the outputs can
be interpreted as the confidence of the model.

𝑓 (𝑥𝑥𝑥)𝑘 =
𝑒𝑥𝑘∑
𝑗 𝑒

𝑥 𝑗
,

𝜕𝑓 (𝑥𝑥𝑥𝑘)
𝜕𝑥𝑚

= 𝑓 (𝑥𝑥𝑥𝑘) (1[𝑚 = 𝑘] − 𝑓 (𝑥𝑥𝑥𝑚)) (2.13)

2.2 multilayer perceptron 19

where 1[𝑚 = 𝑘] is 1 if𝑚 = 𝑘 and 0 otherwise. Note that the post-activation
output of a neuron is affected by all neurons in that layer.

2.2.5 Loss functions

A loss function is a function used during the training of DL models to measure
the deviation between the model’s current prediction and an ideal solution
[40]. The goal of training is to minimize this loss (for the model to learn),
and hence make the predictions more like the ideal solutions. Loss functions
are task-specific, and within tasks, there exist many variations [119]. Their
definitions obviously influence what the model learns, but they also influence
how the model learns and may introduce some extra constraints (e.g. small or
sparse parameters).

The basic setup is usually a differentiable function of this form

L =

𝑁∑︁
𝑖=1

Y (𝑖) (2.14)

where each datapoint 𝑖 gives rise to an error term Y, which are then added
together.

Here are listed some of the most basic loss functions used when labels for the
data are available.

The binary cross-entropy loss is used in binary classification, usually when MLP
has one neuron in the last layer. It is derived from the negative log-likelihood
function and has therefore desirable properties [40]. Using labels𝑦1(𝑖) ∈ {0, 1}
the expression for binary cross-entropy loss is given as:

L = −
𝑁∑︁
𝑖=1
((1 − 𝑦1(𝑖)) log(1 − 𝑦1(𝑖)) + 𝑦1(𝑖) log(𝑦1(𝑖))) (2.15)

The cross-entropy loss is a generalisation of the binary cross-entropy to more
classes and is used in classification when an MLP has more than one neuron in
the last layer. Using labels in a one-hot encoding (𝑦𝑦𝑦 (𝑖) has one entry of 1 and
is otherwise 0), the expression for the cross-entropy loss is given by:

L = −
𝑁∑︁
𝑖=1

𝐶∑︁
𝑗=1
[𝑦 𝑗 (𝑖) = 1] log(𝑦 𝑗 (𝑖)) (2.16)

The Mean absolute error loss is often used for regression problems since it
penalises the absolute difference between the predicted values and the true

20 chapter 2 deep learning

values. Its expression is simply given by

L =
1
𝑛

𝑁∑︁
𝑖=1

𝐶∑︁
𝑗=1
|𝑦 𝑗 (𝑖) − 𝑦 𝑗 (𝑖) | (2.17)

The Mean squared error loss is also used for regression problems as it punishes
differences between predicted values and true values. However, in contrast
to mean absolute error, mean squared error penalises large deviations more
than small ones since it uses the squared deviation. The expression for this loss
is:

L =
1
𝑛

𝑁∑︁
𝑖=1

𝐶∑︁
𝑗=1
(𝑦 𝑗 (𝑖) − 𝑦 𝑗 (𝑖))2 (2.18)

These are just a few common loss functions. Many variants exist, reflecting the
desired properties. Some loss functions include regularisation terms to better
control the learning process. An example of such a regularisation method is the
addition of a weight decay term, which encourages the model to learn smaller
weights. This can be achieved by adding an L1 term _

∑
𝑘 |𝑤𝑘 |, or an L2 term

_
2
∑

𝑘 𝑤
2
𝑘
, where the weight decay hyperparameter _ governs the strength of

the regularisation. L2 regularisation is the most commonly used type of weight
decay and has been shown to be effective in many different types of models
[61].

2.2.6 Backward pass

After a forward pass through a network, a prediction is acquired𝑦𝑦𝑦 (𝑖) for each
datapoint 𝑖. Depending on the task, this prediction may be combined with
the data label𝑦𝑦𝑦 (𝑖) to calculate a loss value. Then similar to the case with the
perceptron, gradients with regard to the different network parameters can be
calculated. These can then be used through gradient descent to update the
network weights to decrease the loss, and hence improve the network. This
process of moving backwards from the loss value to calculate gradients and
update parameters is called back-propagation [97], or the backward pass of
the model. Below is the mathematics describing the process of calculating the
gradients.

To calculate the gradient of the loss function with regards to the weights of a
neuron 𝑘 in the last layer 𝐿 we utilise the chain rule:

∇𝑤𝑤𝑤𝐿
𝑘
L =

𝜕L
𝜕𝑤𝑤𝑤𝐿

𝑘

=
∑︁
𝑖

𝜕Y (𝑖)
𝜕𝑤𝑤𝑤𝐿

𝑘

=
∑︁
𝑖

𝜕Y (𝑖)
𝜕𝑦𝑘 (𝑖)

𝜕𝑦𝑘 (𝑖)
𝜕𝑧𝐿

𝑘
(𝑖)

𝜕𝑧𝐿
𝑘
(𝑖)

𝜕𝑤𝑤𝑤𝐿
𝑘

(2.19)

2.2 multilayer perceptron 21

In the final expression, the first term depends on the choice of the loss func-
tion, the second term on the choice of activation function, and the third term
is:

𝜕𝑧𝐿
𝑘
(𝑖)

𝜕𝑤𝑤𝑤𝐿
𝑘

=
𝜕
[
(𝑤𝑤𝑤𝐿

𝑘
)𝑇𝑦𝑦𝑦𝐿−1(𝑖)

]
𝜕𝑤𝑤𝑤𝐿

𝑘

= 𝑦𝑦𝑦𝐿−1(𝑖) (2.20)

By combining Equation 2.19 and Equation 2.20, and introducing 𝛿 to simplify
notation, the gradient is given by:

∇𝑤𝑤𝑤𝐿
𝑘
L =

∑︁
𝑖

𝜕Y (𝑖)
𝜕𝑦𝑘 (𝑖)

𝜕𝑦𝑘 (𝑖)
𝜕𝑧𝐿

𝑘
(𝑖)

𝑦𝑦𝑦𝐿−1(𝑖) =
∑︁
𝑖

𝛿𝐿
𝑘
(𝑖)𝑦𝑦𝑦𝐿−1(𝑖) (2.21)

To be able to calculate the gradient of the loss for earlier layers we need to
utilise the following:

𝜕𝑧𝑟
𝑘
(𝑖)

𝜕𝑦𝑟−1
𝑗
(𝑖)

= 𝑤𝑟
𝑘 𝑗
. (2.22)

Note that the neuron 𝑗 in layer 𝐿 − 1 affects all neurons in the following layers
so when calculating the gradient need to put together the effects of all these
neurons. Following a process similar to Equation 2.19, can show that:

∇𝑤𝑤𝑤𝐿−1
𝑗
L =

∑︁
𝑖

(
𝑛𝐿∑︁
𝑘=1

𝛿𝐿
𝑘
(𝑖)𝑤𝐿

𝑘 𝑗

)
𝜕𝑦𝐿−1𝑗 (𝑖)
𝜕𝑧𝐿−1

𝑗
(𝑖)

𝑦𝑦𝑦𝐿−2(𝑖) (2.23)

=
∑︁
𝑖

𝛿𝐿−1𝑗 (𝑖)𝑦𝑦𝑦𝐿−2(𝑖) (2.24)

This process for finding gradients can be generalised for any layer and is de-
scribed below.

Gradient calculation

The gradients for parameters in any layer can be found with:

∇𝑤𝑤𝑤𝑟
𝑗
L =

𝑁∑︁
𝑖=1

𝛿𝑟𝑗 (𝑖)𝑦𝑦𝑦𝑟−1(𝑖) (2.25)

starting from

𝛿𝐿𝑗 (𝑖) =
𝜕Y (𝑖)
𝜕𝑦 𝑗 (𝑖)

𝜕𝑦 𝑗 (𝑖)
𝜕𝑧𝐿

𝑗
(𝑖)

(2.26)

and then using the following recursive formula:

𝛿𝑟−1𝑗 (𝑖) =
(
𝑛𝑟∑︁
𝑘=1

𝛿𝑟
𝑘
(𝑖)𝑤𝑟

𝑘 𝑗

)
𝜕𝑦𝑟−1𝑗 (𝑖)
𝜕𝑧𝑟−1

𝑗
(𝑖)

, for 𝑟 = 𝐿, 𝐿 − 1, ..., 2 (2.27)

22 chapter 2 deep learning

Once the gradients have been found the model parameters can be updated
through gradient descent:

𝑤𝑤𝑤𝑟
𝑗 (𝑛𝑒𝑤) =𝑤𝑤𝑤𝑟

𝑗 (𝑛𝑒𝑤) + [∇𝑤𝑤𝑤𝑟
𝑗
L (2.28)

2.2.7 Gradient descent variants and optimisation
algorithms

The gradient descent method in Equation 2.28 requires the use of all available
training data, an entire batch. This is known as batch learning [66]. This can
be a problem in cases where there is a lot of data, or where the size of each
data point is large, as there might not be enough memory to process it all. A
natural solution to this problem is to randomly divide the data into chunks, or
mini-batches, and pass these individually through the network and update the
network weights through so-called stochastic learning. This allows the model
to be updated multiple times per complete pass of the training set, known as
epoch, which apart from reducing memory demands also has been linked to
increased performance [66][14].

The technique mentioned above is usually referred to as mini-batch Stochastic
gradient descent (sgd), and is the most widely used gradient descent method,
and is performed by doing Equation 2.28 for each mini-batch. The mini-batch
size governs the trade-off between doing many noisy steps with approxima-
tions of the true gradient and doing fewer larger steps with more accurate
approximations. The exact size of the mini-batches is different for different
applications, and in many cases is often set as high as the memory capacity
allows.

Several ways of optimising sgd to find the local minimum of the loss function
faster and more efficiently have been proposed [95]. Here we present two of
these methods.

SGD with momentum

Gradient descent with momentum was introduced to decrease the number of
oscillations experienced by vanilla sgd. This method accelerates sgd conver-
gence by adding part from the previous gradient to the current update, so as
to keep momentum, or steps moving in the same direction. In this way, pa-
rameters whose gradients point in the same direction receive large updates,
while parameters whose gradient change direction receive smaller updates
[95].

2.2 multilayer perceptron 23

The update function is performed in two steps. First, a momentum term 𝑣 is
updated for each parameter using the current gradients, then this term is used
to update the model parameters.

𝑣𝑡 = 𝛾𝑣𝑡−1 + [∇\L (2.29)
\𝑡 = \𝑡−1 − 𝑣𝑡 (2.30)

The momentum term 𝛾 is usually set to 0.9.

Adam

Adaptive moment estimation [56], or simply Adam, is a method that computes
adaptive learning rates for each parameter. In Adam, the current gradient for
each parameter 𝑔𝑡 is used to calculate exponentially decaying averages, of both
previous gradients𝑚𝑡 and squared previous gradients 𝑣𝑡 . These are estimates
of the first and second moment respectively (hence the name "Adam").

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (2.31)
𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔2𝑡 (2.32)

The authors of [56] argue that since 𝑚𝑡 and 𝑣𝑡 are initialised as vectors of
0s, this causes the moment estimates to be biased, especially during initial
timesteps and when the decay rates are small, meaning the 𝛽-values are close
to 1. Therefore they do a bias correction of the moments.

�̂�𝑡 =
𝑚𝑡

1 − (𝛽1)𝑡
(2.33)

𝑣𝑡 =
𝑣𝑡

1 − (𝛽2)𝑡
(2.34)

Then using these values the update function is given by:

\𝑡+1 = \𝑡 −
[

√
𝑣𝑡 + 𝜖

�̂�𝑡 (2.35)

The authors of [56] propose to use the following hyperparameters: 𝛽1 = 0.9,
𝛽2 = 0.999, 𝜖 = 10−8.

2.2.8 General training procedure

To train a deep learning model, we need data we wish to learn from. For
supervised learning the data ought to be divided into 3 non-overlapping sets:

24 chapter 2 deep learning

training, validation and test set, for example consisting of 75-15-15 percent of
the entire dataset respectively. The training set will be used by the model to
learn. The validation set is used to check the performance of the model during
training and to choose hyperparameters, and can also be used to stop training
when the model’s performance starts decreasing. Meanwhile, the test set is
used only for the final evaluation of the model.

To build a model, we need to specify the task and choose the architecture,
including the number of layers, neurons per layer, and activation functions. We
also need to select the loss function, optimiser, how weights are initiated, in
addition to selecting several hyperparameters like mini-batch size, the number
of epochs, optimisation parameters, loss parameters, and so on. These decisions
are critical to themodel’s performance and should be carefully considered based
on the problem’s complexity and the available data.

Once all the model parameters have been set, training can begin. The train-
ing process involves iterating over the entire training dataset for the specified
number of epochs. During each epoch, the training dataset is split into ran-
dom mini-batches of the chosen size. For each mini-batch, the following steps
are performed: do a forward pass, calculate loss, do a backward pass to find
gradients, and finally update the model weights using the chosen optimisation
method.

Loss on the training set should go down over time. To combat the model over-
fitting or memorising the training set, performance on the validation set should
also be tracked. This can be done at the end of every epoch or every few epochs
by doing a forward pass with the validation set and calculating its loss. The
validation loss indicates what the model is actually learning. Usually during
training themodelweights that achieved the lowest validation loss are stored, so
even if the model trains for too long the best performing version is kept.

Once the model has finished training, the best weights are selected based on
the validation set performance. Note that earlier it was mentioned that the
validation set can be used to select hyperparameters, this is done by repeating
the training procedure for a different selection of hyperparameters and finally
choosing the best model among them with regard to the validation set perfor-
mance. The final model’s performance is then evaluated by doing a forward
pass using the test set. This is the model’s true performance on this task since
both the training and validation sets affected the final model.

2.3 convolutional neural networks 25

2.3 Convolutional neural networks

MLPs are not perfect, one shortcoming is that when inputs are very large they
require many weights (easier to overfit). Examples of such inputs are images.
Images are also grid-like data structures, something that is not exploited by
MLPs, as they will take in all the images as input. Natural to think that pixels
are most related to what is immediately around them compared to all pixels
in the image. The use of convolutional layers connects only close pixels in
regions together, and solves the many weights issue by using weight sharing
between the "neurons". Convolutional neural networks (CNNs) are networks
that use convolutions in at least one of its layers instead of the usual matrix
multiplication [40]. Usually divided into two parts, a feature extractor and a
head. The feature extractor is usually made up of convolutional layers, pool-
ing and activations, while the head can be anything like e.g. a classification
network.

In this section, we will focus on the feature extractor part of CNNs. The first
subsection introduces convolutions, then the next ones look into the main build-
ing blocks of the feature extractors, convolutional layers and pooling layers,
and how forward pass is done for these. Then we present an existing CNN
architecture.

2.3.1 Convolution operation

A convolution is a mathematical function that takes in two functions. The
functions can in principle be discrete or continuous, but will here focus on
discrete signals. The usual setup is a 1D, 2D or 3D discrete signal𝑥𝑥𝑥 and a (small)
filter or kernel signal𝑤𝑤𝑤 . The convolution can be thought of as sliding the filter
across the signal, computing the element-wise multiplication of the elements
and returning a value. Doing this process for all possible positions in the signal
will give the result, a filtered version of the signal (see Figure 2.4).

The 1D discrete convolution can be described as a weighted moving aver-
age,

𝑦𝑦𝑦𝑖 = (𝑤𝑤𝑤 ∗ 𝑥𝑥𝑥)𝑖 =
∑︁
𝑙

𝑤𝑙𝑥𝑖−𝑙 (2.36)

The 2D discrete convolution can be thought of as a sweepingwindow [39],

𝑦𝑦𝑦𝑖, 𝑗 = (𝑤𝑤𝑤 ∗ 𝑥𝑥𝑥)𝑖, 𝑗 =
∑︁
𝑙

∑︁
ℎ

𝑤𝑙,ℎ𝑥𝑖−𝑙, 𝑗−ℎ (2.37)

The 3D convolution can be thought of as a moving cuboid. What is usually used

26 chapter 2 deep learning

Figure 2.4: 2D convolution. Can be interpreted as sliding the kernel over all the pos-
sible positions of the image.

in CNNs are cuboids with a selected height and width and the same depth as
the input. Hence the relevant 3D convolutions are akin to stacking several 2D.
An example of a 3D signal is RGB images which have 3 channels one for each
color (red, green, blue). In this case, the filter is as deep (has as many channels)
as the signal.

𝑦𝑦𝑦𝑖, 𝑗 = (𝑤𝑤𝑤 ∗ 𝑥𝑥𝑥)𝑖, 𝑗 =
∑︁
𝑙

∑︁
ℎ

∑︁
𝑐

𝑤𝑙,ℎ,𝑐𝑥𝑖−𝑙, 𝑗−ℎ,𝑐 (2.38)

Note that the input to the convolution is 3D but that the output is 2D. By
parallelizing the convolutions the output can be made into 3D. For example,
if 𝑘 convolutions are done in parallel, their output can be concatenated so as
to create a multi-channelled output. This concept is key to the convolutional
layers in a CNN.

Note that in Figure 2.4 the filter is never centred over the edge values and that
the output is of a different size than the input. The size difference depends on
the kernel width 𝐹 , and ⌊𝐹/2⌋ of each edge is lost when doing a convolution.
The fact that the output shrinks in size can sometimes be troublesome, espe-
cially when building cnns since we wish to stack many convolutions after one
another.

We introduce padding, adding extra values of width ⌊𝐹/2⌋ around each edge
so that the resulting output is of the same size as the input. Different types of
padding exist varying in what values are used for the extensions. Zero-padding
is quite common, or padding by some other constant values, duplication of
edges, and wrapping of edges (pad with a copy of the opposite edge).

2.3 convolutional neural networks 27

2.3.2 The convolutional layer

A convolutional layer receives input𝑥𝑥𝑥 , e.g. a RGB image, consisting of elements
𝑥𝑖, 𝑗,𝑘 . The layer has weights𝑊 , in the shape of a cuboid. The cuboid is often
called a kernel, and has usually equal and odd-sized sides for the two first
dimensions, while the depth is the same as that of the input. The forward pass
in a convolutional layer, where 𝑥𝑥𝑥∗ denotes the padded version of the input, is
given by:

𝑧𝑖, 𝑗 =
∑︁
𝑙

∑︁
ℎ

∑︁
𝑐

𝑤𝑙,ℎ,𝑐𝑥
∗
𝑖−𝑙, 𝑗−ℎ,𝑐 + 𝑏 (2.39)

Note that in the first part, we are doing element wise-multiplication between
the kernel and a part of the input (a cuboid of the same size as the kernel) and
that these are then added together with a bias. Notice that if the cuboids in the
first part are flattened out, this expression can be expressed as an inner product.
With a little more work this calculation can look just like Equation 2.7.

If the 0-th element is the bias and 𝐹 = 𝐿𝑥𝐻𝑥𝐶 is the number of elements in
the kernel, then a flattened kernel can be expressed as such

𝑤𝑤𝑤1 = [𝑤10,𝑤11, ...,𝑤1𝐹]𝑇 (2.40)

We can also flatten out each cuboid for each input 𝑛. The cuboids, those that
will be multiplied with the sliding window, can be given index 𝑟 = 1, 2, ..., 𝑖 · 𝑗 .
A flattened cuboid with index 𝑟 belonging to input 𝑛 can be flattened out as
such:

𝑥𝑥𝑥𝑟 (𝑛) = [1, 𝑥𝑟1(𝑛), 𝑥𝑟2(𝑛), ..., 𝑥𝑟𝐹 (𝑛)]𝑇 (2.41)

Observe then that the convolution from Equation 2.38 can be expressed as:

𝑦1𝑟 (𝑛) =𝑤𝑤𝑤𝑇
1𝑥𝑥𝑥𝑟 (𝑛) (2.42)

And that the convolution of the whole input 𝑛 can be written as:

𝑦𝑦𝑦1(𝑛)𝑇 =𝑤𝑤𝑤𝑇
1𝑋 =𝑤𝑤𝑤𝑇

1 [𝑥𝑥𝑥1(𝑛),𝑥𝑥𝑥2(𝑛), ...,𝑥𝑥𝑥𝑖 · 𝑗 (𝑛)] (2.43)

Bear in mind that the output vector must be reshaped back into the appropriate
shape (we must undo the reshaping made to the input) once the calculation is
completed. Note that we can easily generalise from this example to see how
multiple kernels can be added. If a matrix𝑊 is created with each kernel as a
column, then the final expression for a forward pass in a convolutional layer
may be written as:

𝐼 (𝑛) = reshape(𝑌 (𝑛)) = reshape(𝑊𝑇𝑋 (𝑛)) (2.44)

Here the output 𝐼 (𝑛), if padded appropriately, has the same height and width as
the input, and a number of channels equal to the number of kernels used.

28 chapter 2 deep learning

Figure 2.5: 2D pooling. Pooling performed with window size 2x2 and stride 2.

With this new expression, we can see that the backward pass for convolutional
layers can be found in a similar way as those for the fully connected layers, just
requiring some reshaping before and after each layer. The first reshape is to
undo the last forward pass reshape, and hence create the matrices𝑊 , 𝑋 and
Δ (the equivalent of 𝛿). The second reshape is to get these matrices into the
correct shape. The𝑊 matrix can simply be reshaped to match the dimension
of the kernel, while the gradients that will be passed to earlier layers will need
to be uncubed (undo sliding window cubification) and reshaped to the size
of the input to this layer. Note that the cuboids from the forward pass were
overlapping, so the gradient cuboids now also will be. This is dealt with by
adding together their contributions.

2.3.3 Pooling

Pooling is a downsampling operation used in cnns performed as a sliding
window for each channel. The most used pooling setup halves the input’s width
and height by utilising a window of size 2x2 and a stride of 2, which essentially
divides the image into non-overlapping 2x2 windows (see Figure 2.5). Stride
defines the amount the sliding windows move, for example in Figure 2.4 the
stride was 1, since the windows slides 1 unit at the time.

There are different types of pooling, differentiated by what mathematical op-
eration they implement. The two most common types are max-pooling, which
returns the maximum value in the window, and average-pooling, which returns
the average of the window.

Pooling is usually applied after one convolutional layer or a block of convolution
layers. An activation function, such as the ReLU, is usually also applied after
the pooling layer.

Pooling has become common to use as the last operation when going from
convolution layers to fully connected ones. Known as global average pooling,

2.3 convolutional neural networks 29

the kernel size is set to be the input size, so that each channel gets averaged
down to a single number. What we are left with is a vector that can be given as
input to amlp. The advantage of using global average pooling is that the input
to the cnn does not need to be of a fixed size, just above a certain minimum
size.

2.3.4 Example of simple CNN architecture

In Figure 2.6 is shown an example of a simple cnn architecture, the VGG-16
network [108]. The figure illustrates how CNNs are usually structured and how
the data is transformed throughout the network. The network is divided into a
feature extractor part (blue and red) and a classification head (green). In the
feature extractor, there are several convolution layers with ReLU activation, that
are sometimes followed by pooling layers to reduce the spatial resolution. Note
that 64 parallel convolutions are performed in each of the first two layers and
that the number of convolutions increases as the spatial resolution decreases.
In the classification head, the output of the feature extractor is flattened and
passed through several fully connected layers to ultimately result in the model
output, a vector of size 1000. Each of the values in this output represents a class
of the dataset the model is trained on (in this case the 1000 classes of ImageNet
[24]), and the index of the largest value represents the model prediction.

To summarize, Figure 2.6 illustrates the process of how an RGB image of size
224x224 can be made into a prediction by a CNN. Obviously, for this to perform
well the many weights of the network (approx. 138 million of them) must first
be adjusted through training.

Figure 2.6: Simple deep CNN example: the standard VGG-16 network architecture
[108].

3
Explainability in Deep
Learning

In this chapter, we will present the concept of explainability within deep learn-
ing. We first lay some groundwork for why we need explainability, and why it
is important. We then give some overview of different types of explainability
methods before closely explaining Layer-wise relevance propagation (lrp) [8],
which we will use later in our proposed method.

3.1 Deep learning models are blackboxes

Imagine you are using the CNN presented in the previous chapter (Figure 2.6)
to classify images of cats and dogs. After the model has made its prediction,
consider the challenge of explaining why the model arrived at this particular
decision. This task is not trivial, as it was a collection ofmathematical operations
that were performed in series that lead to the prediction. This is a problem that
affects not only our simple example but most deep learning applications. For
this reason, deep learning models are often referred to as "black box" models,
as we have no insight into what is happening within them [38].

Not understanding or being able to explain why a decision was made can be an
issue in certain fields [4], [55]. Imagine for a second that the task is no longer

31

32 chapter 3 explainabil ity in deep learning

"tell apart cats from dogs", but instead by looking at some medical imaging
to determine if a person suffers from some deadly disease. It is obvious that
before assigning the patient to some treatment, the doctor would want to be
sure that what the model is saying is true. Deep learning by itself lacks this form
of explainability and traceability, which makes it hard to rely on and trust [123].
This lack of grounding for decisions has led to slower adoption of deep learning
algorithms in safety-critical, high-stakes, and socially-impactful domains [37],
[45], [106]. It is also noteworthy to mention, that some governments have put
in place regulations to limit the scope of AI and require some explainability
when it is used for decision-making (see e.g. GDPR [30] Art. 22, Art. 15 (1) h.,
and art.13 (2) f.).

3.2 XAI

To address the shortcomings related to "black box" models, the concept of
EXplainable AI (xai) has emerged. xai aims to make decisions made by ml
anddl algorithms transparent, interpretable and comprehensible,with the goal
of elevating a user’s trust, confidence and understanding when interacting with
ai models [38].

Explainability can be divided into two categories: local and global. Local ex-
plainability [70] entails explaining individual decisions, providing insight into
the reasoning behind a prediction or action. Meanwhile, global explainability
[100] considers the overall behaviour of the models and how it behaves across
all instances. Both of these categories are important and have given rise to
several methods [48].

Usually, a different categorisation of explainabilitymethods is used. Rather than
categorising based on the scope of the explanations, we instead categorise by
how the explanations are created. In the following subsections we will describe
these: transparent and post-hoc methods.

3.2.1 Transparent methods

Transparent methods refer to the use of ML methods that are straightforward,
simple, and easily interpretable. These methods, such as logistic regression,
decision trees, and k-nearest neighbours, are explainable due to their simple
nature [3]. While they might not match the performance of complex deep
learningmodels, they provide insights into their decision-making. In some cases
where explainability is a priority, transparent methods are used despite having
worse accuracy than deep learning models in the same task [96]. Because of

3.3 layer-wise relevance propagation 33

this trade-off, some recent effort has been put into the creation of transparent
deep learning models. Some examples of such models are ProtoPNet [18] and
ProtoVAE [33].

3.2.2 Post-hoc methods

Post-hoc methods are used with black box models to explain the complex re-
lationship between features that have been learned. These methods start off
with a trained model and create explanations for it. Such methods are usually
divided into model-agnostic and model-specific methods.

Model-agnostic methods provide explanations that are not tied to a specific
model type. These methods usually rely purely on input-output pairs to create
explanations, meaning they assume the model to be a black box - allowing
them to be used with any model. Some well-known methods that fall within
this category are Local Interpretable Model-Agnostic Explanations (LIME) [94],
and SHapley Additive exPlanations (SHAP) [74].

In contrast,model-specific methods are designed to explain the decisions of a
specificmodel architecture. These methods utilise the specific internal structure
and architecture of the model to generate explanations. Intuitively, by utilising
the internal information of the models it should be easier to create explanations.
The drawback of such methods is their reduced flexibility as they must be
created for specific models. An example of such a method is lrp [8], which
we will cover in the following section.

3.3 Layer-wise Relevance Propagation

Layer-wise relevance propagation (lrp) [8] is a technique aimed at explaining
the importance of each input to the final output 𝑓 (𝑥). The method begins from
the output layer assigning relevance to the part of the output we wish to explain,
e.g. the model’s prediction. This relevance is then backpropagated using some
special propagation rules until the input is reached. The result from this is a
heatmap that showcases the importance of each input value to the result in
the last layer. This heatmap, therefore, serves as an explanation of the model’s
decision, a local explanation (see example in Figure 3.1).

In the next subsection, we present the core principle in lrp and the relation-
ships between the relevances of different layers. In the following subsection,
we showcase a selection of popular propagation rules that we will utilise later
in the thesis. Finally, we comment on how these rules are being used in prac-

34 chapter 3 explainabil ity in deep learning

tice.

Figure 3.1: Example of an LRP heatmap from a VGG-16 model showcasing the parts
of the input that are relevant for the prediction "golden retriever". Red
and blue represent positive and negative relevance respectively. Here we
have utilised the following propagation rules: LRP-𝛼𝛽 with 𝛼 = 2 for the
convolutional layers, and LRP-𝜖 for the fully-connected layers.

3.3.1 Propagation mechanisms

The core principle of lrp is the layer-wise conservation rule which states that
the total relevance throughout each layer remains constant:

𝑓 (𝑥) = . . . =
∑︁
𝑖∈𝑙+1

𝑅
(𝑙+1)
𝑖

=
∑︁
𝑖∈𝑙

𝑅
(𝑙)
𝑖

= . . . =
∑︁
𝑖

𝑅
(1)
𝑖

(3.1)

where we use the notation 𝑅
(𝑙)
𝑖

to denote the relevance of neuron 𝑖 in layer 𝑙 .
This rule ensures that the resulting heatmap is consistent with regard to the
output we are trying to explain.

Following from the conservation rule, and the fact that lrp is performed layer-
wise, the relevance 𝑅 (𝑙)

𝑖
must be describable by the relevances in the subsequent

layer 𝑅 (𝑙+1)
𝑗

. This relationship, which is integral for backpropagation, can be
expressed as

𝑅
(𝑙)
𝑖

=
∑︁
𝑗

𝑅
(𝑙,𝑙+1)
𝑖←𝑗

, (3.2)

where the notation 𝑅
(𝑙,𝑙+1)
𝑖←𝑗

denotes the relevance messages sent from neuron
𝑗 in layer 𝑙 + 1 to neuron 𝑖 in layer 𝑙 . Naturally, a corresponding relationship
exists in the reverse direction:

𝑅
(𝑙+1)
𝑗

=
∑︁
𝑖

𝑅
(𝑙,𝑙+1)
𝑖←𝑗

. (3.3)

3.3 layer-wise relevance propagation 35

3.3.2 Different propagation rules

A variety of lrp propagation rules exists [83], and we will here present some
of the most popular ones. These rules essentially govern how the relevance
messages 𝑅 (𝑙,𝑙+1)

𝑖←𝑗
in Equation 3.2 are calculated.

The simplest of the propagation rules referred to as LRP-0, is defined as the
ratio between local and global pre-activations:

𝑅
(𝑙,𝑙+1)
𝑖←𝑗

=
𝑧𝑖 𝑗

𝑧 𝑗
· 𝑅 (𝑙+1)

𝑗
(3.4)

where 𝑧𝑖 𝑗 is the contribution from neuron 𝑖 to the activation of neuron 𝑗 (for
a linear layer this would e.g. be 𝑧𝑖 𝑗 = 𝑤𝑖 𝑗𝑥𝑖), and 𝑧 𝑗 =

∑
𝑖 𝑧𝑖 𝑗 represents the

pre-activation value of neuron 𝑗 .

A problem exists with Equation 3.4: If 𝑧 𝑗 is small, then 𝑅
(𝑙,𝑙+1)
𝑖←𝑗

will be numeri-
cally unstable. Tomitigate this issue, a small and positive stabilizer is introduced
with a value close to 0:

𝑅
(𝑙,𝑙+1)
𝑖←𝑗

=

{
𝑧𝑖 𝑗

𝑧 𝑗+Y · 𝑅
(𝑙+1)
𝑗

𝑧 𝑗 ≥ 0
𝑧𝑖 𝑗

𝑧 𝑗−Y · 𝑅
(𝑙+1)
𝑗

𝑧 𝑗 < 0
(3.5)

This propagation rule is referred to as LRP-𝜖. Note that utilising this rule for
stabilization leads to the breaking of the conservation rule since some of the
relevance will be absorbed by 𝜖.

An alternative stabilization approach is the LRP-𝛼𝛽 rule. This approach man-
ages positive (controlled by 𝛼) and negative (controlled by 𝛽) pre-activations
separately. Using the constraint 𝛼 +𝛽 = 1 to satisfy the conservation rule (since
𝑧 𝑗 = 𝑧−𝑗 + 𝑧+𝑗), the propagation rule is given as follows:

𝑅
(𝑙,𝑙+1)
𝑖←𝑗

= 𝑅
(𝑙+1)
𝑗
·
(
𝛼 ·

𝑧+𝑖 𝑗
𝑧+
𝑗

+ 𝛽 ·
𝑧−𝑖 𝑗
𝑧−
𝑗

)
(3.6)

where

𝑧+𝑖 𝑗 =

{
𝑧𝑖 𝑗 , 𝑧𝑖 𝑗 ≥ 0
0, else

, 𝑧−𝑖 𝑗 =

{
0, else
𝑧𝑖 𝑗 , 𝑧𝑖 𝑗 < 0

, 𝑧±𝑗 =
∑︁
𝑖

𝑧±𝑖 𝑗 .

Often a small stabiliser is also introduced for this rule.

3.3.3 Best practice

It has been observed that applying a single rule for all layers in a model often
yields suboptimal explanations of model behaviour [83]. It has been observed

36 chapter 3 explainabil ity in deep learning

that LRP-0 and LRP-𝜖 work well on shallow networks [63], [114], but struggle
on deeper ones [5]. LRP-𝛼𝛽 on the other hand, appears to do well but yields
similar explanations independent of class [42], [83].

Recent implementations have therefore switched over to using a composite of
the rules [64], [65], [83], resulting in closer to optimal explanations. Common
guidelines ([59], [83]) recommend the use of LRP-𝜖 for the dense layers near
the output of models with small epsilon (𝜖 ≪ 1), followed by LRP-𝛼𝛽 with
𝛼 ∈ {1, 2} for the convolutional layers. Some implementations also use a
different rule for the first layer only [9], [65], usually referred to as LRP-flat
(LRP-0 with 𝑧𝑖 𝑗 = 1), that results in more granular heatmaps as the relevance
is distributed equally to the input.

4
Clustering
In this chapter, we present clustering and provide a high-level overview of
several popular directions within clustering, both classic and deep ones. Finally,
we present spectral clustering, the clustering algorithm which is considered in
Chapter 6.

4.1 Uncovering underlying structures in the data

Clustering is a fundamental technique in unsupervised machine learning that
is utilised to uncover underlying patterns and structures within data [3]. The
main goal of clustering is to divide the available data points into different
clusters (groups). Unlike supervised learning, where labels are used, clustering
operates without labels relying purely on the structure of the dataset. There are
various definitions of clustering that exist, however, the core concept is usually
the same: Data points in the same cluster should have high similarity and be
dissimilar to data points in other clusters [122].

The foundation of clustering heavily relies on the idea of distance (dissimilarity)
and similarity measures. These measures quantify the relationships between
data points, forming the basis for grouping them into meaningful clusters. An

37

38 chapter 4 clustering

Figure 4.1: Overview of clustering methods described. The visualisation is based on
[51].

example of a distance metric is the Minkowski distance

𝑑𝑝 (𝒙,𝒚) =
(

𝑙∑︁
𝑖=1
|𝑥𝑖 − 𝑦𝑖 |𝑝

)1/𝑝
(4.1)

where for 𝑝 = 1 we get the Manhattan distance, and for 𝑝 = 2 we get the
Euclidean distance. An example of a similaritymetric is the Pearson’s correlation
coefficient [57]

𝑟𝑃𝑒𝑎𝑟𝑠𝑜𝑛 (𝒙,𝒚) =
𝒙𝑇
𝑑
𝒚𝑑

| |𝒙𝑑 | | | |𝒚𝑑 | |
(4.2)

where 𝒙𝑑 = [𝑥1 − 𝑥, ..., 𝑥𝑙 − 𝑥]𝑇 and 𝑥 = 1
𝑙

∑𝑙
𝑖=1 𝑥𝑖 . Note that this metric

takes the value −1 and 1 when the vectors are perfectly negatively and posi-
tively correlated respectively, and values close to zero when the vectors are not
correlated.

4.2 Clustering algorithms

Throughout the years a large variety of clustering algorithms have been pro-
posed, each with its strengths and weaknesses depending on the data and the
desired use case. Our purpose is not to give a thorough survey of these, but
rather to look at some core and classic algorithms (shown in Figure 4.1). For a
more complete survey of clustering approaches the interested reader is referred
to [51], [122], [128].

4.2 clustering algorithms 39

4.2.1 Hierarchical clustering

Hierarchical clustering [116] is a valuable technique as it both clusters and
organises the data in an intuitive and hierarchical manner. It is usually divided
into two different approaches: agglomerative (bottom-up) and divisive (top-
down). In agglomerative, each data point starts as an individual cluster. As
we move up the hierarchy we merge the closest clusters into a new cluster - a
process that is repeated iteratively until a single cluster remains. On the other
hand, divisive clustering begins with all data points in one cluster, which is
then successionally divided into subclusters as we move down the hierarchy.
The result of hierarchical clustering is a tree-like structure, a dendrogram, that
visualises the complex relationships between all the data points. Note that this
structure allows us to easily change the number of desired clusters, without
needing to recompute the clustering.

The choices that are most influential for the structure of the dendrogram are
the choice of distance metric between two data points, and the strategy for
comparing two clusters that consist of several data points. There are several
strategies, usually referred to as linkage methods, for comparing 2 clusters.
Some of these are:

• Single-link: The smallest distance between clusters. Finds the closest
pair of points (one from each cluster), and uses the distance between
them as the distance measure between the clusters. This link type often
results in elongated clusters.

• Average-link: The average distance between clusters. Find the pairwise
distance between all points (one from each cluster), and use the average
of this as the distance between the clusters. This link type often leads to
compact and evenly distributed clusters.

• Complete-link: The largest distance between clusters. Similar to single-
link but use the pair of points (one from each cluster) that are farthest
apart as the cluster distance. This link-type results in spherical clusters.

4.2.2 K-means

K-means is one of the most popular clustering methods, as it is simple, fast,
efficient and easily interpretable [43]. In K-means, each cluster is characterised
by its centre (the centroid), and data points are assigned to the cluster whose
centroid is closest. Because of this definition, which is essentially to minimise
the within-cluster distance (or the squared-error in regards to the centroids),
the clusters found by K-means are spherical in nature.

40 chapter 4 clustering

The standard algorithm is quite simple: given a number of clusters𝑁 , first make
some initial guess for the cluster centroids, this could e.g. be𝑁 randomly chosen
data points from the dataset [31]. Step 1) is to assign data points to the centroid
they are closest to in Euclidean distance, and Step 2) is to recalculate the cluster
centroid based on the currently estimated cluster arrangement. These two
steps are repeated until some criteria are met, e.g. convergence or a maximum
number of repeats has been done.

4.2.3 Deep clustering

Deep clustering involves the application of deep learning techniques to learn
and identify meaningful clusters in the data [21]. While some approaches com-
bine classical clustering methods with deep learning, others utilise solely deep
learning techniques to both learn representation and cluster [128]. Utilising
deep learning allows us to discover more complex patterns and to better ex-
plore high-dimensional data, compared to classical clustering methods [113].
If applied correctly, deep clustering can help boost and improve performance
compared to classical methods.

As it is outside the scope of the thesis we will not focus on various deep cluster-
ing methods, but rather just acknowledge their existence and potential useful-
ness. We leave the exploration of whether these methods can be utilised with
the work presented in this thesis as future work.

4.2.4 Spectral clustering

Spectral clustering is a graph-based technique that significantly stands out
from methods such as K-means where the clusters are usually forced to have a
certain shape. Clusters found by spectral clustering can have any shape, as the
main goal of the method is to conserve the local structures (often denoted as
neighbourhoods) present in the data.

Core procedure

There exists a variety of ways of doing spectral clustering. Below we present
the common procedure used by many of these methods:

1. Create a symmetric similarity matrix: 𝑆 = {𝑠𝑖 𝑗 } where 𝑠𝑖 𝑗 denotes the
similarity between data points 𝒙𝑖 and 𝒙 𝑗 .

2. Construct the Laplacian matrix: 𝐿 = 𝐷−𝑆 where𝐷 is the diagonal degree

4.2 clustering algorithms 41

matrix with elements 𝑑𝑖𝑖 =
∑

𝑗 𝑠𝑖 𝑗 .

3. create the normalized graph Laplacian matrix 𝐿∗ = 𝐷−1/2𝐿𝐷−1/2, which
is symmetric and semi-definite. This is a useful transformation as this
matrix has nonnegative eigenvalues and orthogonal eigenvectors.

4. Perform eigenvalue decomposition: 𝐿∗𝒗 = _𝒗, to acquire the pairs
{(_1, 𝒗1), (_2, 𝒗2), . . . } where _1 ≤ _2 ≤ Not all pairs need to be
found just the 𝑘 ones with the smallest eigenvalues. This is for when we
cluster into 𝑘 clusters.

Different implementations use different similarity measures. A commonly used
approach is the Gaussian kernelwith Euclidean distance,𝑠𝑖 𝑗 = exp (−||𝒙𝑖 − 𝒙 𝑗 | |2/2𝜎2)
for 𝑖 ≠ 𝑗 and otherwise 0. A different approach that may lead to a sparser simi-
larity matrix is to utilise the graph of the k-nearest neighbours𝑊 with elements
𝑤𝑖 𝑗 = 1 if 𝒙𝒋 is one of the k-nearest neighbours of 𝒙𝑖 . This matrix can then be
made into the symmetric similarity matrix like so: 𝑆 = 1

2 (𝑊 +𝑊
𝑇).

Assigning cluster labels

In one common formulation of spectral clustering (SM [105], or discretization
method), we can imagine clustering being done by finding a way of cutting the
graph in 2 in such a way that the sum of the edges that need to be removed is
the minimum. This (semi-)optimal cut is performed as such: let each element of
the next smallest eigenvector represent a data point, use thresholding on these
values, and assign elements larger than the threshold to one cluster and the rest
to the other. This method can be applied recursively using larger eigenvectors,
to find the 𝑘 clusters we are after.

In a different formulation (NJW [88]), we utilise the core procedure to acquire
some of the smallest eigenvectors that we then use to project the data down into
a lower dimensional space. This transformation preserves local neighbourhoods
allowing traditional clustering algorithms such as K-means to perform quite
well. The clusters found by K-means in the lower dimensional space are utilised
as the spectral clustering results in the original space.

A recent alternative to the mentioned approaches, known as cluster-QR [22], is
to extract the cluster assignments from the eigenvectors using column-pivoted
QR-factorization [29]. This method has no tuning parameters and runs no iter-
ations, yet may outperform both the K-means and the discretization approach
in terms of both quality and speed.

42 chapter 4 clustering

(a) (b)

Figure 4.2: Here (a) shows an instance of a Blob dataset with 5 blobs, and (b) shows
the 10 smallest eigenvalues of the Laplacian matrix. There is a gap in the
eigenvalues after the fourth one, which suggests 4 clusters. However, note
that the largest eigengap is after the fifth eigenvalue. This reflects our
prior knowledge of the data that there are 5 blobs.

4.2.5 Deciding the number of clusters

Choosing the number of clusters 𝑘 for spectral clustering is not a trivial task,
similar to other clustering methods. Various approaches have been proposed,
but perhaps the most popular is the eigengap heuristic [118]. This heuristic
looks for the largest gap between the consecutive smallest eigenvalues, using
the number of eigenvalues before the gap as the estimate for the number of
clusters 𝑘. An intuition behind this heuristic in the graph-cutting mindset is that
the eigenvalues represent the amount of connectivity lost in the graph by cutting
it. Hence a significant drop in connectivity is a good place to stop partitioning
the data. See Figure 4.2 for an example of this heuristic in action.

5
Shortcuts in deep learning
Here, we present an introduction to shortcut learning, and its effect on the field.
We will look at what shortcuts are through a simple example, see that shortcut
learning seems to be a common feature present in all learning systems, and
then try to understand where they come from. Next, we will give some more
examples of shortcut learning in computer vision tasks, before finally going
into group robustness, an approach to mitigate shortcuts. Note that large parts
of this chapter were first presented in my project thesis [110].

5.1 What are shortcuts?

Shortcuts, sometimes also referred to as spurious correlations or superficial
cues, are often seen as unintended ways of solving a task that makes the model
perform well on specific tests but not general ones. Some feature in the data
is spuriously correlated to the concept we are actually trying to learn, and
the model learns to take advantage of this correlation, perhaps because it is
easier (a shortcut) than to learn the core feature we intend the model to find
[35].

Shortcut learning thereby usually materialises in the form of the model learning
the wrong decision rule. This concept may be referred to as generalisation
failure which does not mean failure to generalise, but instead generalisation
in an unintended direction [35].

43

44 chapter 5 shortcuts in deep learning

Figure 5.1: Simple shortcut learning example. Classification task of cats and dogs with
the provided training set and labels (black font). For the test sets blue font
indicates the label a human would give, while red font is the label given by
a model trained on the given training set. The i.i.d test set contains similar
examples to the training set, while the o.o.d test set contains different
examples. Testing on different data shows that the model uses a different
decision rule than expected.

5.2 A simple example

Perhaps it’s easy to understand this process through a simple example. In
Figure 5.1 weprovidea simpleexample of shortcut learning for a deep neural
network. The task concerns classifying images of cats and dogs given a limited
training set. When humans and the model classify images from a test set that
has similar images to the training set (i.i.d.), they behave the same. However
when the test data is different from the training set (o.o.d.), the human and
model behaviour is different. Had we only used the i.i.d. test it would have
seemed like the model learned the intended strategy, classifying cats and dogs,
however by also testing on o.o.d. data we reveal that the model learned a far
easier strategy, to classify based on colour.

In this simple example, it is straightforward to notice what the shortcut feature
is, but this is not usually the case. The shortcut features tend to be much more
deceptive, and the dataset and problem are much larger and more complex,
leading to the shortcuts going unnoticed.

5.3 shortcuts are present in all learning systems 45

5.3 Shortcuts are present in all learning systems

In the previous section, it seems perhaps obvious to us what the model should
have done, and what the "intended" solution should be. The model however,
knows nothing about what the intended solution should be, it lacks the human
bias we have. Having said that, it is not just artificial learning systems that
make use of shortcuts, as there are countless examples of even humans making
use of shortcuts. Think of how many students use memorisation to pass tests,
instead of taking time to actually learn and understand the subject. The goal of
the tests is to get a measure of how much the students understand the subject,
but memorisation has proven to be an effective shortcut strategy to do well on
the tests but has fewer benefits for the students in the long run.

A well-known example of shortcut learning in the animal world is the Clever
Hans example [47]. Hans was a horse from the early 1900s who was famous
for his intellectual abilities and was able to do things like simple arithmetic, tell
the time, and remember peoples’ names. The usual process would be that Hans’
handler would ask him a question, which Hans would answer by tapping his
hooves a certain number of times or in a certain way (the handler had taught
him a simple hoof language to communicate). It turned out however, that Hans
was not as intelligent as it seemed, or perhaps it is better to say, that he was
not intelligent in the way people thought he was intelligent. Through various
experiments, it was shown that while answering questions Hans’ handler, or
others around him, were giving him cues as to what they wanted him to answer.
For example, if asked to add numbers Hans would continue to tap his hoof until
he noticed subtle visual cues in his handler’s body language or face, which
indicated that it was time to stop tapping his hoof. Hans was not able to answer
correctly to questions if the people asking were hidden away, or if they did not
know the correct answer [90].

These are just a few examples showing that biological learning systems also
utilise shortcuts during learning. The examples shown so far indicate that
shortcuts seem to be prevalent in both biological and modern deep learning
systems and that it is something we must be aware of during the learning
processes. The last example also demonstrates that shortcuts are not always
necessarily bad. Hans was not displaying the abilities he was thought to have,
but his actual ability of noticing near imperceptible, and often involuntary,
changes in people is quite an impressive ability.

46 chapter 5 shortcuts in deep learning

5.4 The origin of shortcuts

Some ([35]) argue that learning systems follow the so-called "principle of least
effort", where they learn what is easiest to achieve their goal. The problem
is that there are often easier ways available apart from the intended way to
achieve the goal. Learning systems making use of these easier unintended ways
is what we characterise as shortcut learning. But what exactly makes one way
easier than another? What creates these easier ways? We will refer to these
easier ways as shortcut opportunities from here on out.

5.4.1 Ambiguity and lack of constraints

One reason why shortcut opportunities might be created is due to our inability
to accurately enough formulate and constrain the problem we wish to solve. An
example of this is shown in Figure 5.1 where the task is not accurately enough
formulated, and the solution found by the model could objectively be seen as
a valid solution.

Across deep learning, problems are formulated as the minimisation of loss func-
tions. This is an ambiguous way of framing a problem allowing for possible
shortcut opportunities because there is no guarantee that the model will ac-
tually learn what we intend it to learn. However, we are required to continue
to use loss functions since we are unable to formulate the highly complex
problems we wish to solve in a more precise manner. We might be able to intro-
duce changes to the currently used loss functions to improve their behaviour.
However, it seems unlikely that we will be able to completely get rid of the
ambiguities. Therefore it might be that there is no absolute solution to shortcut
learning.

5.4.2 Biases

Different types of biases may create shortcut opportunities when solving a
problem. There may be some dataset bias, some correlations or imbalance
present in the data that is taken advantage of. The act of simply scaling up
the dataset might not be sufficient to get rid of the shortcut opportunities.
Shortcut opportunities may be created by some sort of systematic bias/error
from data collection or data annotation. Lastly, we mention inductive bias,
which is the collection of all the assumptions incorporated by a model such as
architecture, training data, loss function and optimisation (see many examples
of such assumptions in Chapter 2). It is clear that the selection of these, and
the assumptions made in their selection will have a great effect on the types of
shortcut opportunities available for models to find and rely on. Great work has

5.5 shortcuts in computer vis ion tasks 47

been done in regards to try and minimise the shortcut opportunities created
by these biases (see Section 5.6).

5.5 Shortcuts in computer vision tasks

There are many examples of shortcut learning all across deep learning [16],
[23], [68]. However, we will here focus on computer vision-related examples
since these are the most relevant for this thesis. In the following subsections,
we present some examples of shortcut learning where the solution found by
the models deviated from the expectations.

5.5.1 Artefacts

Sometimes models learn to take advantage of other features or objects than
what we want them to find. This is often what is thought of as shortcuts, and
the field of explainable AI has been able to uncover several such shortcuts as
we will see below.

In the paper "Unmasking Clever Hans predictors and assessing what machines
really learn" [65] by Lapuschkin et. al, the authors show an example of an image
classification task where a majority of the images belonging to the class ’horse’
contained a watermark in the bottom left corner. Through their investigation
(see Figure 5.2) they showed that the model learned this spurious correlation
and that if the watermark was inserted on a different image, the model would
still classify it as ’horse’. The same paper also discovered that even a synthetic
artefact like padding, which is used all across computer vision tasks, can be
used by a model as a shortcut feature.

Another example is the classification of pneumonia, where the dataset contains
x-rays of healthy and sick patients’ chests. Some models learn to differentiate
between images from different hospitals, by looking for identification tags, or by
telling how different hospitals process their images, and use that information for
classification [125]. Some hospitals may have contributed with many positive,
or negative cases, so simply classifying based on the hospital is a viable and
easier method to perform well on tests. This is obviously not what we wish the
model to learn.

48 chapter 5 shortcuts in deep learning

Figure 5.2: Shortcut learning example from [65]. Shows that the model has learned
to rely on the presence of a watermark to classify an image as class ’horse’.

5.5.2 Context and background reliance

There are many examples where models have been shown to rely on the back-
ground or context of images to make predictions. This may lead to strange
results, like the one shown in Figure 5.3, where a model is asked to create
a caption for the image. The model has picked up a spurious correlation be-
tween ’greenhill’ and ’sheep’, and imagines the presence of sheep in the im-
age.[104]

5.5.3 Texture-shape cue conflicts

In the paper [36] a dataset (GST) is introduced which contains texture-shape
cue conflict, meaning that the shape and texture of the images come from
different classes of objects (see figure Figure 5.4). The point of this dataset was
to study if humans and ImageNet-trained CNN models are shape or texture
biased by allowing them to classify these images. If the shape is more often
predicted correctly, one is called shape-biased, while if the texture is more
correctly classified one is called texture-biased. Using this dataset it was shown
that humans are shape-biased, while CNNs are texture biased, which went
against previous assumptions that CNNs worked similarly to the human visual
system. Thereby this can be seen as a shortcut.

5.6 Mitigation of shortcuts

Numerous works ([34]–[36], [67], [80],...) have been put forward to try to
mitigate the various shortcuts presented in Section 5.5. One such work is the
promising new approach of group robustness [99].

5.6 mit igation of shortcuts 49

Figure 5.3: Example of background reliance in caption generation task. The presence
of a green hillside is spuriously correlated with the class sheep.[104]

Figure 5.4: Model predictions for 3 types of images. (a) shows only texture, (b) shows
only the content, and (c) is a combination of the two images. Note how
the model still classifies (c) by texture.[36]

50 chapter 5 shortcuts in deep learning

5.6.1 Group robustness

Models that rely on learned shortcuts often underperform when those shortcuts
are not present [35]. To address this issue, the concept of group robustness has
emerged. Group robustness [99] refers to a model’s ability to generalise and
maintain consistently high performance across different groups of data points
[27].

The fundamental principle behind group robustness is simple. First, the dataset
is categorized into groups that either include or exclude the shortcut features.
Then, using the group information the model is trained to perform well across
the groups. By performing the optimization in this way, the model is steered
towards learning the core features present across the groups, instead of relying
purely on the shortcut features [99].

Group definition

The group robustness setting [99] assumes that the data distribution consists
of several groups 𝑔 ∈ G which form a disjoint set. Typically, these groups are
defined as a collection of the class label 𝑦 ∈ Y and some spurious attribute
label 𝑠 ∈ S - that is 𝑔 = (𝑦, 𝑠). The spurious attribute label operates simi-
larly to the class label, indicating the presence of some feature that may be
learned as a shortcut. Examples of such features could be: the presence of some
artefact, the background type, gender, or the colour used (see Section 7.1 for
examples).

Optimising using groups

Once the groups have been defined and acquired for the different observations
𝑥 ∈ X, we need to utilise them to increase group robustness. Here we will
present what is done by group DRO [99], the method that kick-started the
pursuit of group robustness.

We start off by recapping the standard training (erm) loss,

L𝐸𝑅𝑀 (\) = 1
𝑁

𝑁∑︁
𝑖=1

𝑙 (𝑥𝑖, 𝑦𝑖 ;\) (5.1)

which simply averages the loss from each observation. By minimising this loss
we ensure that the average accuracy of the model increases. Note that there
is no guarantee that the models trained with this loss will perform similarly
across different groupings of this data.

5.6 mit igation of shortcuts 51

GroupDRO [99] is pitched as amethod formaking performance across different
groupings of the data more similar. Its loss function is defined as such,

L𝐺𝐷𝑅𝑂 (\) = max
𝑔∈G

1
𝑁𝑔

∑︁
𝑖:𝑔𝑖=𝑔

𝑙 (𝑥𝑖, 𝑦𝑖 ;\) (5.2)

where 𝑁𝑔 is the number of observations with group 𝑔𝑖 = 𝑔. By continuously op-
timising with regard to the worst group we ensure that the loss or performance
across the groups becomes uniform.

Issues

The main issues for group robustness are 1) defining sensible groups and 2)
acquiring group annotations for real-world datasets.

The first issue revolves around defining meaningful groups. To deal with this
issue we need to answer several questions, one of them being: "What exactly is
the model learning as a shortcut?", something we have seen in earlier sections
is not a question we can provide a simple answer to. Another question is "How
should we deal with cases where multiple shortcut features exist in a dataset?",
as nearly all of the research on group robustness has concentrated on situations
featuring a sole shortcut feature. The only exception to this is [69], where it
was shown that current group robustness methods do not do well in cases
where there are multiple shortcuts, and in fact, a dynamic akin to a whac-a-
mole game was observed, where decreased reliance on one shortcut feature
amplified the reliance on a different shortcut feature.

The second issue, assuming some sensible group definition was found, is the
non-trivial task of creating the group labels for the dataset which is required
by nearly all currently proposed group robustness methods. This is a task that
costs both time and money, and that may require special knowledge or the
use of a specialist. Labelling large datasets is already a momentous task, and
now needing to label other features as well may prove difficult or even impos-
sible.

Although group DRO requires that the entire dataset is group labelled, several
recent works have proposed methods that require orders of magnitude less
group labels [58], [71], [86], [87]. One proposed method [111] also improves
on group robustness without needing group labels, although its performance
is lacking compared to other methods.
There is therefore a need for a group robustnessmethod that is group-unsupervised
and that performs comparably to methods that utilise group labels.

Part II

Method

53

6
Proposed method
The goal of this chapter is to present, Explainability-based feature reweighting
(xfr), our proposed group-unsupervised method for improving group robust-
ness. We start off by introducing the core ideas of our proposed method, before
diving into its two main components: unsupervised group discovery and group
balanced training. We then present two variations of Explainability-based fea-
ture reweighting (xfr) differentiated by how the unsupervised group discov-
ery is performed. Lastly, we put forward an instance of our approach that uses
spray [65] and dfr [58] as its components.

6.1 Explainability-based feature reweighting
(XFR)

In Subsection 5.6.1 we brought to light several issues that currently plague
group robustness methods, these issues mainly being the definition of mean-
ingful groups and the acquisition of group labels using these definitions.
As a possible solution to these issues, we hypothesise that explainabilities can
help uncover a model’s underlying strategies for processing different groups.
More specifically, that groupings of similar explanations may serve as prox-
ies to the group labels, and that these may then be utilised to improve group
robustness without the use of group labels.

55

56 chapter 6 proposed method

Building upon these ideas we propose our approach, Explainability-based
feature reweighting (xfr), which leverages explainabilities to improve group
robustness without the use of group labels.

Similar to existing group robustness methods [71], [86], [87], [111], our ap-
proach leverages a two-step approach: 1) unsupervised group discovery, where
we estimate pseudo-labels for the groups, and 2) group balanced training, where
we optimise for group robustness using the acquired pseudo-labels.

In the following subsections, we give an overview of the two main components
of XFR, before presenting the two variants, local-XFR and global-XFR, that do
the group discovery in slightly different manners.

6.1.1 Unsupervised Group Discovery

Unsupervised group discovery is the first component of XFR and is performed
over two steps. Given a traditionally trained model (ERM) we first find the
heatmap explanations for the data. Next,we perform clustering of the heatmaps
in a particular way (see Subsection 6.1.3) to find the groupings in the data
which represent the underlying strategies.

A large number of possible configurations exist for this component of XFR
due to its general nature. One could in principle use any explanation method
that yields a heatmap with it, and also any type of clustering algorithm. This
generality makes this component of xfr quite flexible.

6.1.2 Group Balanced Training

The second component of XFR is to utilise the group labels found by the first
component to train a group robust model. In principle, any existing group
robustness method that uses group labels can be used for this component.

The choice of the method used here will determine what data we need to
estimate group labels for. As an example, group DRO [99], a well-known group
robustness method, requires group labels for both the training and validation
set. Meanwhile, a method like JTT [71], requires only group labels for the
validation set.

6.1 explainabil ity-based feature reweighting (xfr) 57

6.1.3 Variants

An important question we must answer is: "How should the clustering results
be used to create pseudo-labels for groups?". Here we propose two variations
of xfr that are differentiated by how this question is answered. These methods
are in part based on the definition of groups from Subsection 5.6.1, and attempt
to solve the core issue of defining sensible groups.

Some important differences that xfr introduces compared to existing methods
that ought to be mentioned, is the allowance of an arbitrary number of groups,
and that different classes are not required to have the same number of groups.
These properties are easy to introduce by utilising clustering and should ideally
allow for more flexibility in capturing multiple shortcuts - a possible limitation
holding back existing methods that utilise these assumptions (e.g. methods
that use the labels or assume a certain number of groups).

Global-XFR: Clusters as pseudo-labels for the spurious attributes

This first variant of XFR follows the typical group definition, where a group
is characterised by the class label and spurious attribute label, 𝑔 = (𝑦, 𝑠). In
this definition, all combinations of 𝑦 ∈ Y and 𝑠 ∈ S are possible defining the
space G = Y ×S. In other words, this means that the same spurious attribute
might be present across all classes in the dataset. As we assume access to the
class labels, we require a way of estimating the spurious attributes so that these
properties are maintained.

A possible way of finding similar attributes across different classes is to per-
form the clustering of explanations in a global sense, that is, to cluster all
explanations of the dataset. The resulting clusters from this process will have
the properties we are looking for, and we therefore, assume that they can serve
as pseudo-labels for the spurious attributes present in the data.

Ideally using this approach, if a model is using e.g. some artefacts as a shortcut
to perform classification, then this artefact ought to be present in the expla-
nation. By performing the clustering as described above, we should find all
explanations in the dataset that utilise the artefact. Following this, by creat-
ing the groups using the class labels and the clustering labels, we should end
up with groups for each class that do and do not contain the artefact. Train-
ing a model using these groups should hence, following the reasoning behind
group robustness, guide the model to learn the core features present across the
groups.

The advantage of this variant of xfr is that it should perform well in cases

58 chapter 6 proposed method

where different classes utilise the same spurious attribute, since the global
information about this attribute can be used to find and locate observations
that have similar explanations. The drawback is the potential difficulty of clus-
tering observations from all classes, especially when the number of classes is
large.

Local-XFR: Class-wise clusters as pseudo-labels for groups

The second variant of XFR deviates from the assumption G = Y × S - that
the same spurious attribute exists across classes. For this approach, clustering
is performed independently for each class (locally), and the clusters found
are used as pseudo-labels for the groups directly. Performing clustering class-
wise has the benefit of decreasing the complexities related to clustering all
explanations at once.

The reasoning behind l-xfr is the following observation: a model that has
learned to utilise shortcut features will perform differently across different
groupings within a class; performance on a group containing the shortcut
feature will be high, and on the rest, it will be low. Additionally, one ought to
expect there to be different explanations for observations that use shortcuts
and observations that do not. By optimising over these different groupings, we
again should expect the model to learn the core features present across the
groups, instead of relying on the shortcut features.

Naturally, the pseudo-groupings derived using this approach are not guaranteed
to be similar across classes (unlike in G-XFR), although it is possible. Performing
the pseudo-labelling in this manner should be more efficient, and flexible to
variations between explanations in a class. In a sense, it can be said that this
approach helps with class-specific shortcuts. However, it might struggle in cases
where the same spurious attribute is utilised across classes and the global
information is helpful for e.g. finding groups with a small number of samples
(as we will later see in Figure 8.8).

6.2 Building blocks of XFR for experiments

In the previous section, the conceptual groundwork was laid for XFR. In this
section, we will describe conceptually the XFR setup used for our experiments,
and in particular, the methods chosen as the building blocks of XFR.

To do the unsupervised group discovery we leverage the methodology proposed
by Spectral Relevance Analysis (spray) [65] where spectral clustering is used

6.2 building blocks of xfr for experiments 59

to cluster LRP heatmaps. This method is chosen because it has already proven
its capability to find clusters that contain different strategies (also shortcut
strategies). Thus we do not need (for now) to explore different combinations
of explainability methods and clustering methods.
To do the group balanced training we will utilise Deep feature reweighting
(dfr) [58], which performs retraining of the last layer using the validation set.
We choose this method because it requires only pseudo-labels for the validation
set, and it is fast and efficient while still performing well. We note that in
principle, any group robustness method can be used.

6.2.1 Spectral Relevance Analysis

Spectral Relevance Analysis (spray) [65] is an explanation technique that al-
lows for efficient investigation of classifier behaviour on large datasets. spray
applies spectral clustering on a dataset of lrp explanations to identify the de-
cision rules of a model and presents these results in a concise and interpretable
manner. The results can then be inspected to uncover shortcuts present in the
dataset that the model has learned to utilise.

To perform spray we require a dataset, a model trained on this dataset, and
some data wewish to analyse (can also be the dataset or some subset of it). Once
these are acquired,spray is performed through these 5 steps, where the fifth
is an optional step. Step 1 consists of acquiring the relevance maps for the data
we wish to analyse. The relevance maps are lrp heatmaps that show which
part of the data the model sees as important for its decision. Step 2 consists of
downsizing the heatmaps and making them uniform in shape and size to speed
up the following steps. Step 3 is to do spectral clustering of the heatmaps, which
uses structures in the heatmaps to find clusters. Step 4 is to identify interesting
clusters by using the eigengap heuristic. This allows us to select the best number
of clusters so that we are left with the most separable ones. Thus ideally if done
correctly, each cluster should contain a single decision rule that should be
distinguishable from that present in other clusters. Step 5, which is optional,
is to visualise the clustering using t-Stochastic Neighbourhood Embedding (t-
sne) to show how spray is working.

6.2.2 Deep feature reweighting

Deep feature reweighting (dfr) [58], is a group robustness method that re-
volves around retraining the last layer of a network using a group-balanced
set (often the validation set). The authors of the paper that proposed dfr,
Kirichenko et al., argue that the feature extractor trained with erm learns both
core and shortcut features but that the shortcut features are overly weighted

60 chapter 6 proposed method

in the last layer. By doing last layer retraining on a balanced set they show that
the model can learn to use the core features, resulting in improved worst group
accuracy sometimes rivalling oracle methods such as group DRO [99].

Assume we have a dataset D = {𝑥𝑖, 𝑦𝑖}, and another (usually smaller) dataset
D̂ where the groups are balanced. We will refer to D as the training dataset
and D̂ as the reweighting dataset. Note here that the reweighting dataset can
be a subset of the training dataset or some different dataset. Bear in mind, that
when we say that retraining is done on e.g. the validation set, we do not mean
that the whole set is used, but rather that a group-balanced version of it is. The
group balancing is performed by subsampling all groups to be the size of the
smallest group.

To do dfr we first need a base model. If we do not already have a model,
we train one in the usual way (erm) using the training dataset. Assuming
our model is made up of a feature extractor and a final classification layer, we
proceed by keeping the feature extractor and training a new classification layer
using the reweighting dataset. Finally, we use this new model to classify the
test data.

6.2.3 XFR setup

Since DFR is used, we will need pseudo-group labels for the validation set. We
start off with a model we want to improve, which could be a model that was
trained with standard Empirical risk minimisation (erm) on the training set.
Images are then made to the same size. Next, we acquire the LRP heatmaps
for all the validation set images. Then, we perform local and global clustering
using spectral clustering. Here we leverage the eigengap heuristic to determine
the number of clusters. After this step, the pseudo-labels for the groups are
acquired and DFR can be run.

Note that we partly do not utilise "step 2" in spray, since allowing downsiz-
ing introduces a parameter, which might need to be optimized. We have not
mentioned "step 5" here, but it will be used later to analyse the clusters.

Part III

Experiments

61

7
Experimental setup
In this chapter, we present the overall experimental setup used. First, the
group robustness datasets are presented, followed by the metrics we will use
in the experiments. Next, the models used, and their implementation is pre-
sented.

7.1 Group robustness datasets

There are 3 datasets used in this thesis. The first is a synthetic dataset based
on the MNIST dataset [25]. The second and third are natural image-based
datasets that are commonly used within group robustness. Each dataset has
three splits for training, validation and testing. The amount of images for each
split, along with example images, is given in Table 7.1, Table 7.2 and Table 7.3
for each dataset.

The general setup for the datasets used in this thesis is that each of the datasets
has 2 classes given by 𝑦 = {0, 1} and 2 spurious attributes 𝑠 = {0, 1}. Com-
bining the classes and the spurious attributes we end up with 4 groups 𝑔 =

{0, 1, 2, 3}. In each dataset the frequency of each group is different, but in all
cases, at least one of the groups can be considered a minority group, as they
only make up a small fraction of the total. We will henceforth denote the fre-
quency of groups as the group distribution of the data. Note that the group
distribution may vary across the dataset splits (see Table 7.2).

63

64 chapter 7 experimental setup

Note that the only difference between 𝑔0 = (𝑦 = 0, 𝑠 = 0) and 𝑔1 = (𝑦 =

0, 𝑠 = 1) is the spurious attribute. Our goal is for our models to not be reliant
on spurious attributes, hence our goal is for the model to perform equally well
across the groups.

Split Total Data (y=0, s=0)
Group 0

(y=0, s=1)
Group 1

(y=1, s=0)
Group 2

(y=1, s=1)
Group 3

Train 50,000 254 25,284 24,231 231
Val 10,000 45 5,013 4,893 49
Test 10,000 48 5,091 4,815 46

Examples:

Table 7.1: Data splits in the Colored-MNIST dataset.

Split Total Data (y=0, s=0)
Group 0

(y=0, s=1)
Group 1

(y=1, s=0)
Group 2

(y=1, s=1)
Group 3

Train 4,795 3,498 184 56 1,057
Val 1,199 467 466 133 133
Test 5,794 2,255 2,255 642 642

Examples:

Table 7.2: Data splits in the Waterbirds dataset.

7.1.1 Colored-MNIST

We create a dataset where we have control of the number of elements in each
group and what the spurious attribute is.

The Colored-MNIST dataset is a synthetic dataset based on the well-known
MNIST [25] dataset. The MNIST dataset is a collection of several thousands of
examples of handwritten digits (0-9). The images are single-channelled (black
and white) and have a size of 28x28 pixels, and are accompanied by a label
giving the ground truth.

7.1 group robustness datasets 65

Split Total Data (y=0, s=0)
Group 0

(y=0, s=1)
Group 1

(y=1, s=0)
Group 2

(y=1, s=1)
Group 3

Train 162,770 71,629 66,874 22,880 1,387
Val 19,867 8,535 8,276 2,874 182
Test 19,962 9,767 7,535 2,480 180

Examples:

Table 7.3: Data splits in the CelebA dataset.

We use the original data split, 60000 train and 10000 test. Since the original
dataset does not have a validation set, we use the last 10000 images of the
training set as the validation set.

We convert the dataset into a 2 class problem by modifying the task. This is
done by simply going over to classify the numbers as smaller or equal to 4
(𝑦 = 0 : value <= 4), and larger than 4 (𝑦 = 1 : value > 4). To create
the spurious attributes we make use of colors. Red is used as the first spurious
attribute (𝑠 = 0 : RGB = (255, 0, 0)), and green is used as the second spurious
attribute (𝑠 = 1 : RGB = (0, 255, 0)). Naturally, the images will need to be
made 3-channeled to account for this change.

As we are interested in combating spurious correlations we create the dataset
in a way such that there are correlations between the classes and spurious
attributes. We use 99% correlation. That means that 99% of images from one
class will have the same colour, while the remaining 1% will have the other
colour. The amount of correlation was deliberately chosen so that erm worst
group accuracy is low. Table 7.1 shows the number of images in each group for
each split, as well as example images from each of the 4 groups.

The goal of creating this dataset was to have control of the number of images
in each group, and to be able to set the spurious attributes ourselves. As an
unexpected consequence, C-MNIST highlights the strength of G-XFR and its
clustering of all data points since the spurious attribute are more easily found
by it.

66 chapter 7 experimental setup

7.1.2 Waterbirds

Waterbirds [99] is a synthetic dataset created with the purpose of testing a
model’s reliance on background. The dataset consists of RGB images depicting
different types of birds on different types of backgrounds. The different types
of birds are divided into 2 classes, landbirds (𝑦 = 0) and waterbirds (𝑦 = 1).
The different backgrounds are also divided into 2 and represent the spurious
attributes of this dataset: land background (𝑠 = 0) and water background
(𝑠 = 1). The group distributions across the different splits are presented in
Table 7.2.

The Waterbirds dataset is created by using 2 other datasets, the Caltech-UCSD
Birds-200-2011 (CUB) dataset [120] and the Places dataset [127]. The CUB
dataset contains images of birds labelled by species and their segmentation
masks. To construct the Waterbirds dataset the labels in the CUB dataset are
split into 2 groups, where waterbirds are made up of seabirds (albatross, auklet,
cormorant, frigatebird, fulmar, gull, jaeger, kittiwake, pelican, puffin, or tern)
and waterfowls (gadwall, grebe, mallard, merganser, guillemot, or Pacific loon),
while the remaining classes are labelled as landbirds. The birds are cropped
using the pixel-level segmentation masks and pasted onto a water background
(categories: ocean or natural lake) or land background (categories: bamboo
forest or broadleaf forest) from the Places dataset.

The official train-test split of the CUB dataset is used, and 20% of the training
set is used to create the validation set. The group distribution for the train-
ing set is such that most images (95%) depict bird types with corresponding
backgrounds, to represent a distribution that may arise from real-world data.
This distribution turns the background into a spurious feature. Take note that
there is a distribution shift from the training split to the validation and test
splits which are both more balanced, and include many more elements for the
minority group. The creators of the dataset argue that they do this to more ac-
curately gauge the performance of the minority groups, something that might
be difficult if there are too few examples. They also do this to allow for easier
hyperparameter tuning.

7.1.3 CelebA

CelebA here is a reference to a part of the CelebA celebrity face dataset [72]
that was introduced by [99] as a group robustness dataset. From the original
dataset, the feature Blond_Hair is used as the class,meaning that the images are
divided into people who are not blonde (𝑦 = 0) and blonde (𝑦 = 1). Meanwhile,
as a spurious attribute, we use the featureMale from the original dataset, which
divides into female (𝑠 = 0) and male (𝑠 = 1). The official train-val-test split of

7.2 metrics 67

the CelebA dataset is used. Note in Table 7.3, that the splits are likely randomly
created, which results in equally group-distributed splits. Across all splits the
group (blonde, male) is the smallest.

This dataset tests for model reliance on strongly correlated features in a real-
world dataset. Observe in Table 7.3 that 𝑔3 = (𝑦 = 1, 𝑠 = 1) which repre-
sents blonde males is severely underrepresented compared to the other groups,
hence we expect the model to learn gender as a spurious feature for the class
blonde.

7.2 Metrics

As in previous group robustness work ([58], [71], [99]), we will utilise the
metrics, worst group accuracy (wga) and mean accuracy, to evaluate group
robustness.

The wga is given by

WGA = min
𝑔

1
𝑁𝑔

∑︁
𝑖:𝑔=𝑔𝑖

(𝑓 (𝑥𝑖) = 𝑦𝑖) (7.1)

the smallest of the group accuracies.

Like previous work [99], we report mean accuracy by weighting the group
accuracies according to their prevalence in the training data. This ensures that
the mean accuracies are correct in regard to the training distribution, and is
therefore not affected by the distribution shift that might be present in the test
set (see Table 7.2).

7.3 Models

In this section, we present all models used in the experiment section. We give
an overview of what each model does and how they utilise group labels. For
the models we run ourselves, we additionally provide some implementation
details.

7.3.1 External Methods

These are the group robustness methods whose results were gathered from
their respective papers.

68 chapter 7 experimental setup

Oracle

Group distributionally robust optimisation (group dro) [99] is regarded as an
oracle method since it utilises group labels for both the training and validation
set. This method uses the training group labels to minimise the worst group loss
during training, and tunes its hyperparameters using the validation set group
labels. Theoretically, this method should perform best among all methods since
it fully exploits the group labels.

Group labels for finetuning

Just Train Twice (jtt) [71] is a 2-stage method. In the first stage, a traditional
model is trained for a few epochs on the training set, and then it is evaluated
on the training set. In the second stage the misclassifications from the first
stage are upsampled, and a new model is trained using the original data and
the upsampled data points. Group labels from the validation set are used to
tune how early to stop the training of the first model, and to determine how
much upsampling to do. The intuition behind Just Train Twice (jtt) is that
models that are trained for a short period will learn the easy cases first, and
struggle with the hard ones (the minority groups).

Learn from Failure (lff) [86] is also a 2-stage method. In the first stage, a
model is trained using a special loss that intentionally biases it to do well on
the easy cases. In the second stage, the performance from both the first and
the second stage models are used to automatically upweight difficult examples.
Also here the group labels of the validation set are used to tune hyperparame-
ters.

No group labels

george [111], is an unsupervisedmethod that clusters the output of the feature
extractor to estimate pseudo-labels for groups, and then uses group dro on
these.

7.3.2 Implemented Methods

Here we present the methods that were implemented by us. The base erm
model is utilised for both dfr and xfr.

7.3 models 69

No group labels: base model

Empirical risk minimisation (erm) is conventional training without group in-
formation. In our experiments we have finetuned ResNet-50 [44] models pre-
trained on ImageNet-1k [24] on theWaterbirds and CelebA dataset, and trained
a ResNet-18 [44] on the C-MNIST dataset.

For ERM training/finetuning, we use default hyperparameters from dfr im-
plementation: learning rate 10−3, weight decay 10−4, and use of augmentation
(horizontal flip, and random crop). The only change was the batch size used,
which was set to as large a value as possible.

The models are trained for 100 epochs, and the checkpoint that yielded the
best mean accuracy is used throughout.

Group labels on validation set

Deep feature reweighting (dfr), retrains the last layer using a group-balanced
validation set. The group-balanced validation set is obtained by subsampling
the groups to be the same size as the smallest group.

dfr is performed as follows: From a base model, the outputs of the feature
extractor (the penultimate layer) are acquired for the entire validation set,
and normalised. Retraining is then performed using logistic regression with L1-
regularization. The strength of the regularization is chosen among the values
𝐶 ∈ {1, 0.7, 0.3, 0.1, 0.07, 0.03, 0.01}.

For the retraining step, we need to fit some hyperparameters. Therefore we
split the retraining step into a finetuning step and an evaluation step.
During the finetuning step, we randomly split the reweighting set in half, and
perform a sweep of the hyperparameters while training on the first half and
evaluating on the second half. The hyperparameter that yields the bestwga is
chosen.
For the evaluation step, the whole reweighting set is used along with the se-
lected hyperparameter to retrain for a final time. This final retrained layer is
then evaluated using the test set.

Note that due to the subsampling to create a group-balanced reweighting set,
the performance values for dfr may vary a lot. Therefore in the experiments,
we rerun the finetuning step 5 times, choosing the overall best hyperparameter
across these runs. In the evaluation step we also repeat the subsampling, this
time 20 times. The weights for the logistic regression are aggregated over these
20 runs just like in [58], before the model is finally evaluated on the test set.

70 chapter 7 experimental setup

For our results that utilise last layer retraining we report mean±std of 5 runs
of the evaluations step (that is, using the same hyperparameter we do the 20
runs 5 times).

Unsupervised group discovery

Here we report the steps taken to perform the first part of xfr, as steps for the
second part were given above.

We utilise a composite of LRP rules to get the explainability heatmaps as recom-
mended by [59], [83]. Following their recommendations we use LRP-𝜖 for the
dense layers near the output of the model with small epsilon (𝜖 ≪ 1), followed
by LRP-𝛼𝛽 with 𝛼 = 2 for the convolutional layers.

For the spectral clustering, we use the affinity matrix created from the k-nearest
neighbours with the estimate of 𝑘 = ⌊log(𝑁)⌋ [118] where N is the number of
points being clustered. As it was explained in Chapter 4 we utilise cluster-QR
[22] to perform the clustering.

The eigengap heuristic is applied to the 10 smallest eigenvalues of the Laplacian
matrix to select the number of significant clusters to use.

8
Main experiment and
analysis

In this chapter, we present the main results of this thesis and analyse the results
from our proposed method. Using the datasets in Section 7.1, we present the
metrics from Section 7.2, for the models in Section 7.3. These results are com-
pared and discussed. Next, we analyse the behaviour of Explainability-based
feature reweighting (xfr) to better understand what it is doing.

8.1 Results

In Table 8.1 our main results are given. Note that for the reported xfr results
we use full-sized heatmaps (28x28) for C-MIST, while Waterbirds and CelebA
use half-sized heatmaps (112x112) due to memory limitations.

From the main results, we make the following observations:

• ERM has the largest mean accuracy across the board. This is a common
phenomenon reported in many places [58], [99], etc.: Some average
accuracy must be traded to improve robust accuracy. This is why our
main enfaces will be on the wga.

71

72 chapter 8 main experiment and analysis

Methods Group Info C-MNIST Waterbirds CelebA

Train/Val WGA(%) mean(%) WGA(%) mean(%) WGA(%) mean(%)

Group DRO ✓/✓ - - 91.4 93.5 88.9 92.9
JTT ✗/✓ - - 86.7 93.3 81.1 88.0
LfF ✗/✓ - - 78.0 91.2 77.2 85.1
GEORGE ✗/✗ - - 76.2±2.0 95.7±0.6 53.7±1.3 94.6±0.2
Base (ERM) ✗/✗ 39.6 99.3 76.8 98.1 41.1 95.9
DFR ✗/✓✓ 74.2±2.1 93.7±0.2 92.1±0.2 94.6±0.1 86.9±0.4 91.1±0.1
L-XFR (ours) ✗/✗✗ 24.8±1.2 99.2±0.0 92.6±0.3 94.3±0.3 83.1±0.2 89.6±0.4
G-XFR (ours) ✗/✗✗ 63.3±1.0 96.8±0.2 84.7±1.0 88.5±1.3 77.8±0.9 92.8±0.0

Table 8.1: Worst group and mean accuracy on the test sets of the different datasets.
The Group Info column showcases for each method whether group labels
are used for that split of the data (✗= does not use group labels, ✓= uses
group labels, ✓✓= validation set group labels is used for training and fine-
tuning, and ✗✗= validation set without group labels is used for training and
finetuning). The results for JTT, LfF, and Group DRO were gathered from
[71], GEORGE results are from [111], while the ones below the separation
line are our own results. For our results that use last layer retraining we
report mean±std over 5 runs after selecting the hyperparameter.

• XFR improves wga compared to erm by a large amount (the exception
case will be discussed later). On C-MNIST we see awga improvement of
approx. 23%, on Waterbirds we see an improvement of 8% or more, and
in CelebA we see an improvement of 36% or more. These results show
XFR’s viability as a method for improving group robustness.

• XFR vastly outperforms GEORGE [111], the other group-unsupervised
method, by improvingwga by 8% or more in the Waterbirds dataset and
24% or more on the CelebA dataset.

• XFR’s performance is comparable with existing methods that use group
labels, and in one place even performs better than group dro.

• XFR has performance similar to or worse than dfr. In cases where XFR
is worse, it is still significantly closing the gap between erm and dfr.
This behaviour makes sense since dfr is essentially an oracle version of
XFR since it utilises the group labels.

L-XFR performance on C-MNIST highlights a failure case for this variation
of the proposed method, as it performs even worse than ERM. We will look
more closely at this later, but for now, we can explain this performance from
the dataset distribution: the classes have a very high (99%) correlation with
the spurious attributes, so clustering purely by class makes it very difficult to
capture the minority groups. On the other hand, G-XFR performs quite well as

8.1 results 73

it can leverage the global information to capture the global spurious attributes
(see Figure 8.8).

8.1.1 Explainability improvements from XFR

In Table 8.2, we compare the LRP heatmaps from ERM and G-XFR. As can be
seen from the heatmap examples, G-XFR has made the model focus on the core
features of the images.

Table 8.2: Examples showcasing the improvements in the explainabilities. Images
on the left are the original images, in the middle are the LRP heatmaps
for ERM, and on the right are the LRP heatmaps for G-XFR. All images
showcase "waterbirds on land background" that were misclassified by ERM,
but classified correctly by G-XFR.

74 chapter 8 main experiment and analysis

8.2 Exploring the group estimation method

In this section, we take a closer look at the group estimation part of XFR. 1 We
provide examples of LRP heatmaps and showcase the eigenvalues onto which
we apply the eigengap heuristic to estimate the number of clusters. Next, we
look at the clusters for CelebA in particular, to figure out what kind of explana-
tions the clusters are capturing. We will find that the clusters can be divided
into clusters that focus on the core features and clusters that capture shortcut
strategies. We then showcase examples from these two types of clusters and
try to give an explanation of what the shortcut features leveraged are.

LRP heatmaps

We utilise the LRP heatmaps with 3 channels, one for each channel in the
original image, because it led to better performance during testing than using
the aggregated relevance of each pixel. Doing this provides heatmaps that not
only show the important regions (positions) for the explanation but also the
important colours. In Table 8.3, we show some heatmap examples and the
additional information present in the RGB channels.

Eigenvalues and the eigengap heuristic

In Figure 8.1 we present the smallest eigenvalues of the Laplacian matrices
in the spectral clustering runs. The eigengap heuristic is applied to these to
determine the ideal number of clusters in each setting. For CelebA, 2 clusters
are chosen for the clustering of images with class 𝑦 = 0, 9 clusters are chosen
for clustering class 𝑦 = 1, and 3 clusters are chosen to cluster all data points.
For C-MNIST the numbers selected are 6 for class 𝑦 = 0, 2 for class 𝑦 = 1, and
8 for clustering all points.

What are the clusters capturing?

In Figure 8.2, Figure 8.3 and Figure 8.4 are showcased the average relevances
for each of the clusters for CelebA, and the number of data points in each cluster.
In all the 3 cases, there is one cluster which contains a majority of the data
points and whose relevance appears to focus on various facial features like the
eyes and hair region. These clusters seem to be capturing the core features we

1. we will not look too deeply into Waterbirds in this section due to some technical difficulties
in acquiring its results. Also because of the difficulty, we will be presenting a different run
of CelebA than that showcased in Table 8.1 with slightly degraded performance.

8.2 exploring the group estimation method 75

Table 8.3: LRP example from the different datasets. The 1st column showcases the
original image, the 2nd column showcases the aggregated LRP heatmaps,
and the remaining 3 columns showcase each of the RGB components of
the heatmap. This example clearly illustrates the additional information
gained by utilising the RGB heatmap.

are after. Meanwhile, the remaining clusters all focus on the top-left corner of
the images, most likely a shortcut feature.

To support or claim about the clusters we provide some examples from each
of the types. In Table 8.4 are examples of image-and-explanation pairs picked
from the largest clusters. As can be clearly seen from these examples, the expla-
nations are pointing at the expected locations in the image, since the relevances
are on the hair or face.
Meanwhile, in Table 8.5 we see several image-and-explanation pairs picked
from the smaller clusters whose heatmaps light up in the top-left corner only.
From the provided examples and our own examination, it seems like the ex-
planations are focused on this corner only in cases where it is a single colour -
usually black, and in a few cases white or grey. In most of the examined cases,
the single colour seems to be caused by either cropping or extension of the
image, or from cutting out the background and replacing it with black (like in
the bottom-left example in Table 8.5).
Although we can use the clusters to find the shortcuts utilised, we cannot think
of a reasonable explanation as to how using this shortcut can be useful for

76 chapter 8 main experiment and analysis

(a) CelebA (b) C-MNIST

Figure 8.1: The first 12 eigenvalues of the Laplacian matrix when performing the 3
runs of spectral clustering needed to perform L-XFR (y0 and y1) and G-XFR
(all). The eigengap heuristic uses the biggest gap among the 10 smallest
eigenvalues as an estimate for the best number of clusters to use.

doing classification. Perhaps a deeper exploration of the dataset is required for
further understanding.

Cluster similarity

We look into if the different types of clusters, clusters that contain core fea-
tures and clusters that contain shortcut features, can be found using a similarity
metric. We utilise Pearson’s correlation coefficient (see Equation 4.1) to deter-
mine the similarity between the averages of each cluster - an estimate of the
actual similarity between the clusters. We present the similarities of CelebA
in Figure 8.5, and the similarities of C-MNIST in Figure 8.6. For CelebA we
do in fact observe that the last cluster is the least similar to the other clusters,
which supports our division of different types of clusters. For C-MNIST we see
an equivalent separation only for the global clustering (clusters 5 and 7 are
different from the rest). The fact that the similarities of the clusters found by
local clustering in C-MNIST are not separable into two types is yet another
hint for why L-XFR performs badly in Table 8.1.

Are the clusters capturing the original groups?

To explore if the clusters are capturing the original groups we leverage t-SNE
visualisations. As t-SNE and spectral clustering leverage similar concepts, the
clusters found by spectral clustering should be reasonably separable in the t-
SNE plot. Hence, since it is impossible to cluster the t-SNE projections of the
CelebA heatmaps in Figure 8.7 in a way that captures the original group labels,

8.2 exploring the group estimation method 77

it means that our group estimation method is not necessarily retrieving the
original group labels. An explanation for why our group estimation helps im-
prove group robustness can perhaps be explained by the fact that the clusters
we find can be divided into ones that use shortcut and core features.
In the simple case of the C-MNIST dataset, we see that the original groups are
separable in the t-SNE projections, which makes it possible for our group esti-
mation method to retrieve the original groups. This is precisely what happens
for G-XFR and explains its good performance in Table 8.1.

Exploration summary

In this section, we have seen that when our group estimation method leads
to improvements in group robustness it is because either the original minority
groups have been retrieved, or because the estimated groups are separable into
two types, one type that utilises core features and another that utilises some
shortcut feature. We have shown that the existence of the different types of clus-
ters can be found by human inspection, and that it can also be estimated from
a similarity measure between the clusters. By leveraging the original labels,
we have utilised t-SNE plots to analyse what our proposed group estimation
method is doing compared to the ground truth. This has granted us insights
regarding the inner workings of our proposed method, and some of its failure
modes.

78 chapter 8 main experiment and analysis

Figure 8.2: The average relevance for each cluster of 𝑦 = 0.

Figure 8.3: The average relevance for each cluster of 𝑦 = 1.

Figure 8.4: The average relevance for each cluster of all observations.

8.2 exploring the group estimation method 79

Table 8.4: Image and heatmap examples from largest clusters. For these images, the
explanations are focused on the core features needed to perform the clas-
sification task.

Table 8.5: Image and heatmap examples from the smaller clusters. The explanations
for these images all focus on the top-left corner of the image. The poten-
tial shortcut feature that the model is utilising in the corner could be the
presence of a single colour there (in most cases the colour is black). The
single colour might come from segmentation of the original image, or from
cropping or extending the original image.

80 chapter 8 main experiment and analysis

Figure 8.5: Similarities using Pearson’s correlation coefficient (see Equation 4.1), be-
tween the average heatmaps from each cluster in the 3 clustering runs of
CelebA. A reminder that -1 or 1 indicates a complete negative or positive
correlation, while 0 indicates no correlation. Values close to 0 thereby
indicate little similarity.

Figure 8.6: Similarities using Pearson’s correlation coefficient (see Equation 4.1), be-
tween the average heatmaps from each cluster in the 3 clustering runs of
C-MNIST. A reminder that -1 or 1 indicates a complete negative or positive
correlation, while 0 indicates no correlation. Values close to 0 thereby
indicate little similarity.

8.2 exploring the group estimation method 81

(a) class 𝑦 = 0 (b) class 𝑦 = 1

Figure 8.7: t-SNE plot of CelebA heatmaps in 2D coloured with ground truth groups.
It is impossible to recover the ground truth labels here.

(a) For class 𝑦 = 0 in C-MNIST: Ground truth, L-XFR, and G-XFR groups.

(b) For class 𝑦 = 0 in C-MNIST: Ground truth, L-XFR, and G-XFR groups.

Figure 8.8: t-SNE plot of C-MNIST heatmaps projected down to 2D. G-XFR is able to
capture the ground truth minority groups in both cases - the reason for
its good performance inTable 8.1. Colours are consistent in the columns,
meaning that pink (and also grey) was found as part of the same cluster.

9
Ablation studies
In this chapter we present a variety of different ablation studies. This is to
explore several different ideas. These are sometimes only performed on some
of the datasets.

9.1 Changing the downsampling size

In our method, we have utilised the heatmaps with as close to the initial res-
olution as we could (sometimes needed to use half-size for memory reasons).
Here we will explore varying the resolution of the heatmaps to see their ef-
fect on xfr. The results for fractions of the initial resolution are presented in
Table 9.1.

Performance swings a lot depending on the resolution, need a way of finding a
good resolution to use. Ideally would want a smaller size to speed up clustering.
G-XFR already performs well for smaller resolutions. The problem is L-XFR,
whose performance on Waterbirds decreases a lot, even going lower than wga
of erm, when smaller heatmaps are utilised.

83

84 chapter 9 ablation studies

G-XFR Waterbirds CelebA

Resolutions WGA(%) mean(%) WGA(%) mean(%)

112x112 84.7±1.0 88.5±1.3 77.8±0.9 92.8±0.0
56x56 86.4±1.1 90.9±0.8 73.3±2.6 83.0±1.6
28x28 88.2±0.6 91.7±0.5 77.0±1.0 83.6±0.7
14x14 86.3±0.5 91.6±0.3 81.1±1.0 91.7±0.2
7x7 90.6±0.3 93.8±0.2 75.4±0.4 93.4±0.0
ERM 76.8 98.1 41.1 95.9
DFR 92.1±0.2 94.6±0.1 86.9±0.4 91.1±0.1

L-XFR Waterbirds CelebA

Resolutions WGA(%) mean(%) WGA(%) mean(%)

112x112 92.6±0.3 94.3±0.4 83.1±0.2 89.6±0.4
56x56 90.8±0.3 94.0±0.2 72.4±1.9 83.4±1.1
28x28 91.1±0.6 93.9±0.3 81.4±0.4 87.6±0.3
14x14 76.9±0.5 84.4±0.3 82.5±0.3 88.6±0.2
7x7 73.4±0.5 80.0±0.6 76.8±0.4 93.3±0.0
ERM 76.8 98.1 41.1 95.9
DFR 92.1±0.2 94.6±0.1 86.9±0.4 91.1±0.1

Table 9.1: Results for G-XFR and L-XFR for different downsizing of the heatmaps com-
pared to ERM and DFR baselines. Best results across the resolutions are
bolded.

9.1.1 Effect of eigengap heuristic on L-XFR performance

It’s possible that it is not the downsampling size by itself that causes the large
dip for L-XFR, but instead the eigengap heuristic. Therefore we look at the
performance of L-XFR for the waterbirds dataset for the resolution 7x7 (where
the wga was worse than erm) without using the eigengap heuristic. Instead,
we sweep over different numbers of clusters. For simplicity, we utilise the same
number of clusters for both classes.

We observe that the eigengap which ended up choosing 2 clusters for class 0,
and 9 clusters for class 1, underperforms compared to any fixed size. This might
indicate that eigengap might not be the best measure to be used, at least not
for downsized waterbirds explanations.

9.2 the effect of eigengap on the main results 85

L-XFR Waterbirds (7x7)

nr. clusters WGA(%) w. mean(%)

2 86.3±0.8 94.5±0.6
3 88.0±1.3 95.0±1.0
4 85.5±1.2 93.7±1.2
5 87.1±0.3 95.1±0.2
6 86.5±0.5 95.2±0.3
7 87.3±1.0 95.0±0.8
8 90.4±0.6 95.6±0.3
9 91.1±0.2 96.2±0.2
10 91.0±0.5 96.6±0.2
(2,9) eigengap 73.4±0.5 80.0±0.6

Table 9.2: Comparing the performances when using a fixed number of clusters vs.
the eigengap heuristic that gave 2 clusters for 𝑦 = 0, and 9 clusters for
𝑦 = 1. Here we have presented the weighted (to the group distribution of
the training set) mean instead of the normal mean over the test set.

9.2 The effect of eigengap on the main results

Following the results in Table 9.2 where the eigengap heuristic underperforms
for a certain resolution of heatmaps, we now explore how the main results are
affected by it. Similarly to before, we sweep over different numbers of clusters
and compare these results with the ones utilising the eigengap. Our results are
presented in Table 9.3.

Eigengap seems to be a nice guess for the best number of clusters (Waterbirds
L-XFR and C-MNIST G-XFR), but does not always perform the best (C-MNIST
L-XFR and Waterbirds G-XFR). Exploring other methods for choosing the best
number of clusters without utilising group labels should definitely be done in
follow-up work.

Before moving on, we would like to comment on the jump in wga seen for
L-XFR on C-MNIST. As discussed earlier, we hypothesise that the class-wise
clustering has difficulty finding the differently coloured examples in C-MNIST
since there are few examples of the minority groups present. We speculate
that the performance improvement for L-XFR when using many clusters finally
enables these observations to be in their own cluster.

86 chapter 9 ablation studies

L-XFR Waterbirds (112x112) C-MNIST (28x28)

nr. clusters WGA(%) mean(%) WGA(%) mean(%)

2 86.6±1.1 91.7±0.8 - -
3 89.4±0.6 92.8±0.7 20.0±1.0 99.3±0.0
4 90.8±0.5 94.8±0.4 18.3±0.8 99.3±0.0
5 86.4±1.3 88.6±1.0 19.6±1.0 99.2±0.0
6 86.5±1.5 89.1±1.6 17.5±1.7 98.8±0.0
7 88.9±0.3 91.2±0.5 16.7±0.0 98.9±0.0
8 85.5±0.5 90.9±0.6 15.8±1.7 98.9±0.0
9 87.1±0.6 92.0±0.9 50.4±1.6 98.3±0.0
10 88.1±0.6 94.0±0.8 49.2±1.7 98.8±0.0
eigengap 92.6±0.3 94.3±0.3 24.8±1.2 99.2±0.0
G-XFR Waterbirds (112x112) C-MNIST (28x28)

nr. clusters WGA(%) mean(%) WGA(%) mean(%)

2 77.2±1.2 83.5±1.7 - -
3 84.7±1.0 88.5±1.3 65.0±2.4 95.7±0.5
4 87.4±0.9 91.1±1.5 55.4±2.8 97.4±0.2
5 89.1±0.9 91.2±1.0 60.4±1.9 96.4±0.1
6 89.5±0.4 91.5±0.7 63.3±1.7 97.3±0.2
7 87.9±2.2 90.2±1.9 63.3±1.0 96.8±0.1
8 88.6±1.5 90.8±1.5 63.3±1.0 96.8±0.2
9 90.3±0.4 93.4±0.5 62.5±2.3 95.9±0.2
10 89.5±0.6 91.8±1.1 57.9±2.4 96.2±0.2
eigengap 84.7±1.0 88.5±1.3 63.3±1.0 96.8±0.2

Table 9.3: Eigengap heuristic C-MNIST: (6,2), 8. Eigengap heuristic for Waterbird:
(3,2), 3

9.3 Using 1 cluster

Following the work on the effect of the eigengap, we thought of exploring what
happens when only one cluster is used, i.e. clustering is not performed and
we use the classes directly as labels. We denote this method as "DFR (class)".
The result is presented in Table 9.4, and it shows that retraining using classes
as groups improves group robustness. This is an interesting behaviour that
has also been pointed out in a concurrent work [62]. The improvement of
wga seen for the Waterbirds dataset is thought to be attributed to the class
imbalance. Note that some of the improvements by XFR can probably partially
be explained by "DFR (class)".

9.4 retraining on the training set instead of the validation set 87

Methods C-MNIST Waterbirds CelebA

WGA(%) w. mean(%) WGA(%) w. mean(%) WGA(%) w. mean(%)

ERM 39.6 99.3 76.8 98.1 41.1 95.9

L-XFR 24.8±1.2 99.2±0.0 92.6±0.3 94.3±0.3 83.1±0.2 89.6±0.4
G-XFR 63.3±1.0 96.8±0.2 84.7±1.0 88.5±1.3 77.8±0.9 92.8±0.0
DFR 74.2±2.1 93.7±0.2 92.1±0.2 94.6±0.1 86.9±0.4 91.1±0.1
DFR (class) 31.2±0.0 99.3±0.0 91.8±0.1 94.5±0.1 70.9±0.3 93.9±0.0

Table 9.4: Here we compare "DFR (class)" that uses the classes directly as groups, with
other methods.

9.4 Retraining on the training set instead of the
validation set

In our approach, we followed the process done by dfr [58], where retraining
is done on the validation set. Here we will explore what happens if retraining
is performed on utilising the training set. Due to the large size of the training
set for CelebA, we will utilise a subsample of it (10 000 images, approx. 6% of
the training set).

Methods C-MNIST Waterbirds CelebA

WGA(%) w. mean(%) WGA(%) w. mean(%) WGA(%) w. mean(%)

ERM 39.6 99.3 76.8 98.1 41.1 95.9

DFR (val) 74.2±2.1 93.7±0.2 92.1±0.2 94.6±0.1 86.9±0.4 91.1±0.1
L-XFR (val) 24.8±1.2 99.2±0.0 92.6±0.3 94.3±0.3 83.1±0.2 89.6±0.4
G-XFR (val) 63.3±1.0 96.8±0.2 84.7±1.0 88.5±1.3 77.8±0.9 92.8±0.0
DFR (train) 54.2±1.3 99.0±0.0 89.2±0.3 97.6±0.0 88.3±0.3 90.7±0.2
L-XFR (train) 45.8±1.3 99.3±0.0 85.3±0.3 93.5±0.0 74.1±0.8 92.0±0.2
G-XFR (train) 56.7±3.1 98.8±0.0 85.8±0.4 93.2±0.1 74.0±2.4 91.8±0.2

Table 9.5: Comparing the difference from using the validation vs the training set to
improve group robustness.

In general, we observe a decrease inwgawhen utilising the training set. There-
fore we would recommend XFR to be applied on the validation set. It is possible
that the reduced performance is caused by the fact that the data used for re-
training was already used to train the base model. Some possible future work
could be to explore splitting the training set (similar to what is done in [92])
to use one part for training the base model and the other part to perform
retraining.

88 chapter 9 ablation studies

9.5 Removing minority groups

In our exploration of the clusters found, we observed that some were quite
small. In fact, often there was one large cluster containing most instances and
several smaller clusters containing only a few instances. It is possible that these
small clusters are outliers and are affecting the performance in a negative way,
so we explore what happens when they are removed. To get the results in
Table 9.6 we do the standard XFR procedure, but do retraining of the last layer
only on the largest group for each class, ignoring the minority groups.

In general, we see that removing the minority groups worsens the perfor-
mance, indicating that they are more than outliers and hold important infor-
mation.

Methods Waterbirds CelebA

WGA(%) mean(%) WGA(%) mean(%)

L-XFR 92.6±0.3 94.3±0.3 83.1±0.2 89.6±0.4
L-XFR (major) 91.8±0.2 94.1±0.1 76.9±0.9 93.4±0.0
G-XFR 84.7±1.0 88.5±1.3 77.8±0.9 92.8±0.0
G-XFR (major) 92.5±0.1 94.8±0.1 71.2±0.2 93.9±0.0

Table 9.6: Comparison of main results with majority cluster results. Here we perform
retraining only utilising the largest group for each class. Bolded values are
the overall best results.

9.6 Merging of clusters

Motivated by the high similarity between some of the clusters in Figure 8.5 and
Figure 8.6,we will try to combine the most similar clusters so that there are only
2 clusters for each class. We denote these as the "superclusters". We explore
this to try to conform to the knowledge that there are 2 groups per class. The
intuition is that similar clusters might have similar shortcuts, and the merging
into superclusters might create a group with shortcuts and a group without.
In Table 9.7 we observe only marginal changes when using superclusters, and
sometimes big drops in wga.

The merging of clusters was performed by using agglomerative clustering with
average-link on the absolute value of the correlation between cluster centres
(Figure 8.5 and Figure 8.6). By using the absolute value we merge clusters that
are highly positive or negatively correlated. It is possible that a better merging
algorithm can be used that yields better results, but we will leave it as potential

9.6 merging of clusters 89

future work.

Methods C-MNIST Waterbirds CelebA

WGA(%) mean(%) WGA(%) mean(%) WGA(%) mean(%)

L-XFR 24.8±1.2 99.2±0.0 92.6±0.3 94.3±0.3 83.1±0.2 89.6±0.4
L-XFR (super) 31.2±0.0 99.3±0.0 92.6±0.3 94.3±0.4 72.2±0.4 93.7±0.0
G-XFR 63.3±1.0 96.8±0.2 84.7±1.0 88.5±1.3 77.8±0.9 92.8±0.0
G-XFR (super) 21.7±2.8 99.3±0.0 86.6±0.4 91.6±0.3 78.6±0.9 92.6±0.2

Table 9.7: Comparison of main results with supercluster results

Part IV

Conclusion and future work

91

10
Conclusion
Shortcut learning, the tendency for models to rely on spurious correlations, is
a major issue standing in the way of reliable and trustworthy Deep Learning
models. This is because they utilise the principle of least effort, and focus on
features that are not relevant to the learning task.
Group robustness has emerged as one of the recent proposed approaches to mit-
igating shortcut learning and have proven to be useful. However, they require
group labels to have good performance. Unfortunately, the acquisition of group
labels is a daunting task, requiring time, money, and a deep understanding of
the underlying features of the dataset we are interested in.
To solve this issue we proposed a new group-unsupervised group robustness
method, Explainability-based feature reweighting (xfr), which consists of two
steps: "unsupervised group discovery" and "group balanced training". In the
first step, the method finds underlying strategies used by a trained model (by
finding groups of its explainability heatmaps), and uses these strategies as
pseudo-labels for groups which can be used in the second step to increase
group robustness.

The main results show that group robustness was increased by xfr compared
to the base model (erm), and that the proposed method performs better than
certain baselines that utilize group labels. Performance sometimes even ap-
proaches that of a method using the full group labels. We highlight that despite
xfr outperforming other methods it is still outperformed by standard dfr,
which may be regarded as an oracle version of our method. This is an expected
result, as we are not using any group labels.

93

94 chapter 10 conclusion

In the analysis section, we look into the pseudo-groups found by the unsuper-
vised group estimation. We show that our improved group robustness results
are not necessarily caused by capturing the underlying (labelled) group struc-
ture. We find that the presence of dissimilar pseudo-groups seems to indicate
improvements in group robustness performance, although this would need to
be explored further.

11
Future work
In this thesis, we have presented the first steps towards an unsupervised group
robustness method that performs comparably to existing methods that use
group labels. The proposed framework due to its general nature, opens up
several future directions which can be explored. Below are some possible future
directions divided into three groups.

Exploring the unsupervised group discovery component

• Assess the performance of different clustering algorithms, such as k-means
and deep clustering methods.

• Explore the use of a different method for producing heatmaps, such as
Grad-CAM [103].

• Explore the use of different measures to determine the number of clusters,
e.g. like in [6] that use the Fisher Discriminant Analysis (FDA), or like
in [111] where the Silhouette (SIL) criterion is used.

• Explore if clusters need to be able to be divided into dissimilar groups
for there to be robustness improvements.

95

96 chapter 11 future work

Exploring the group balanced training

• Explore the effectiveness of the pseudo-labels for other group robustness
methods.

Expanding assessment

• Test performance in the presence of multiple shortcuts. Assess if the
proposed method suffers from the whac-a-mole dynamic [69].

• In this thesis we focused on image data, however, group robustness is
also usually evaluated on text datasets. Explainability heatmaps can also
be acquired for text data, where performance can also be assessed.

• Explore the observation efficiency - How many observations are needed
to run the process? The ablation where training is done on a portion of
the training set showed good performance using 5% of the training set.
What proportions are helpful?

• Develop a way to optimally tune parameters, e.g. number of clusters and
resolution of heatmaps, to gain further improvement.

• Find limitations of the framework. One possible limitation is in regard
to the positions of features in images. Conceptually, it seems like XFR
should cluster similar observations based on the spacial position of the
shortcut. This could be better studied with e.g. a synthetic dataset where
a shortcut artefact is placed in different positions of the image.

References
[1] S. Albelwi, “Survey on self-supervised learning: Auxiliary pretext tasks

and contrastive learning methods in imaging,” Entropy, vol. 24, no. 4,
p. 551, 2022.

[2] M. Z. Alom, T. M. Taha, C. Yakopcic, et al., “A state-of-the-art survey on
deep learning theory and architectures,” Electronics, vol. 8, no. 3, p. 292,
Mar. 2019, issn: 2079-9292. doi: 10.3390/electronics8030292. [On-
line]. Available: http://dx.doi.org/10.3390/electronics8030292.

[3] E. Alpaydin, Introduction to Machine Learning, third edition (Adaptive
Computation and Machine Learning series). MIT Press, 2014, isbn:
978-0-262-02818-9.

[4] J. Amann, A. Blasimme, E. Vayena, D. Frey, V. I. Madai, and t. P. con-
sortium the, “Explainability for artificial intelligence in healthcare: A
multidisciplinary perspective,” BMC Medical Informatics and Decision
Making, vol. 20, no. 1, p. 310, Nov. 2020, issn: 1472-6947. doi: 10.
1186/s12911-020-01332-6. [Online]. Available: https://doi.org/10.
1186/s12911-020-01332-6.

[5] M. Ancona, E. Ceolini, C. Öztireli, and M. Gross, “Gradient-based attri-
bution methods,” Explainable AI: Interpreting, explaining and visualizing
deep learning, pp. 169–191, 2019.

[6] C. J. Anders, L. Weber, D. Neumann, W. Samek, K.-R. Müller, and S. La-
puschkin, “Finding and removing clever hans: Using explanation meth-
ods to debug and improve deep models,” Information Fusion, vol. 77,
pp. 261–295, 2022.

[7] P. Azevedo, Object detection state of the art 2022, Jun. 2022. [Online].
Available: https://medium.com/@pedroazevedo6/object-detection-
state-of-the-art-2022-ad750e0f6003.

[8] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W.
Samek, “On pixel-wise explanations for non-linear classifier decisions
by layer-wise relevance propagation,” PloS one, vol. 10, no. 7, e0130140,
2015.

[9] S. Bach, A. Binder, K.-R. Müller, and W. Samek, “Controlling explana-
tory heatmap resolution and semantics via decomposition depth,” in
2016 IEEE International Conference on Image Processing (ICIP), IEEE,
2016, pp. 2271–2275.

97

https://doi.org/10.3390/electronics8030292
http://dx.doi.org/10.3390/electronics8030292
https://doi.org/10.1186/s12911-020-01332-6
https://doi.org/10.1186/s12911-020-01332-6
https://doi.org/10.1186/s12911-020-01332-6
https://doi.org/10.1186/s12911-020-01332-6
https://medium.com/@pedroazevedo6/object-detection-state-of-the-art-2022-ad750e0f6003
https://medium.com/@pedroazevedo6/object-detection-state-of-the-art-2022-ad750e0f6003

98 REFERENCES

[10] S. Bai and S. An, “A survey on automatic image caption generation,”
Neurocomputing, vol. 311, pp. 291–304, 2018.

[11] S. Basodi, C. Ji, H. Zhang, and Y. Pan, “Gradient amplification: An effi-
cient way to train deep neural networks,” Big Data Mining and Analytics,
vol. 3, no. 3, pp. 196–207, 2020. doi: 10.26599/BDMA.2020.9020004.

[12] S. Beery, G. Van Horn, and P. Perona, “Recognition in terra incognita,”
in Proceedings of the European conference on computer vision (ECCV),
2018, pp. 456–473.

[13] M. Biswas, V. Kuppili, L. Saba, et al., “State-of-the-art review on deep
learning in medical imaging,” Frontiers in Bioscience-Landmark, vol. 24,
no. 3, pp. 380–406, 2019.

[14] L. Bottou, “Stochastic gradient descent tricks,” in Neural Networks:
Tricks of the Trade: Second Edition, G. Montavon, G. B. Orr, and K.-R.
Müller, Eds. Berlin,Heidelberg: Springer Berlin Heidelberg, 2012, pp. 421–
436, isbn: 978-3-642-35289-8. doi: 10.1007/978-3-642-35289-8_25.
[Online]. Available: https://doi.org/10.1007/978- 3- 642- 35289-
8_25.

[15] J. Bridle, “Training stochastic model recognition algorithms as networks
can lead to maximum mutual information estimation of parameters,”
in Advances in Neural Information Processing Systems, D. Touretzky,
Ed., vol. 2, Morgan-Kaufmann, 1989. [Online]. Available: https : / /
proceedings.neurips.cc/paper/1989/file/0336dcbab05b9d5ad24f4333c7658a0e-
Paper.pdf.

[16] J. Buolamwini and T. Gebru, “Gender shades: Intersectional accuracy
disparities in commercial gender classification,” in Conference on fair-
ness, accountability and transparency, PMLR, 2018, pp. 77–91.

[17] A. Byerly, T. Kalganova, and R. Ott, “The current state of the art in deep
learning for image classification: A review,” in Science and Information
Conference, Springer, 2022, pp. 88–105.

[18] C. Chen, O. Li, D. Tao, A. Barnett, C. Rudin, and J. K. Su, “This looks
like that: Deep learning for interpretable image recognition,” Advances
in neural information processing systems, vol. 32, 2019.

[19] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, Fast and accurate deep
network learning by exponential linear units (elus), 2015. doi: 10.48550/
ARXIV.1511.07289. [Online]. Available: https://arxiv.org/abs/1511.
07289 (visited on 02/02/2023).

[20] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Mathematics of control, signals and systems, vol. 2, no. 4, pp. 303–314,
1989.

[21] P. Dahal, “Deep clustering: Using deep neural networks for clustering,”
parasdahal.com, Apr. 2019. [Online]. Available: https://parasdahal.
com/deep-clustering.

[22] A. Damle, V. Minden, and L. Ying, “Simple, direct and efficient multi-
way spectral clustering,” Information and Inference: A Journal of the

https://doi.org/10.26599/BDMA.2020.9020004
https://doi.org/10.1007/978-3-642-35289-8_25
https://doi.org/10.1007/978-3-642-35289-8_25
https://doi.org/10.1007/978-3-642-35289-8_25
https://proceedings.neurips.cc/paper/1989/file/0336dcbab05b9d5ad24f4333c7658a0e-Paper.pdf
https://proceedings.neurips.cc/paper/1989/file/0336dcbab05b9d5ad24f4333c7658a0e-Paper.pdf
https://proceedings.neurips.cc/paper/1989/file/0336dcbab05b9d5ad24f4333c7658a0e-Paper.pdf
https://doi.org/10.48550/ARXIV.1511.07289
https://doi.org/10.48550/ARXIV.1511.07289
https://arxiv.org/abs/1511.07289
https://arxiv.org/abs/1511.07289
https://parasdahal.com/deep-clustering
https://parasdahal.com/deep-clustering

REFERENCES 99

IMA, vol. 8, no. 1, pp. 181–203, Mar. 2019, issn: 2049-8772. doi: 10.
1093/imaiai/iay008. [Online]. Available: https://doi.org/10.1093/
imaiai/iay008.

[23] J. Dastin, Amazon scraps secret ai recruiting tool that showed bias against
women, Oct. 2018. [Online]. Available: https://www.reuters.com/
article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G.

[24] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition, Ieee, 2009, pp. 248–255.

[25] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 141–142, 2012.

[26] A. Dhoka, S. Pachauri, C. Nigam, and S. Chouhan, “Machine learning
and speech analysis framework for protecting children against harmful
online content,” in 2023 Second International Conference on Electronics
and Renewable Systems (ICEARS), IEEE, 2023, pp. 1420–1424.

[27] N. Drenkow, N. Sani, I. Shpitser, and M. Unberath, A systematic review
of robustness in deep learning for computer vision: Mind the gap? 2021.
doi: 10.48550/ARXIV.2112.00639. [Online]. Available: https://arxiv.
org/abs/2112.00639 (visited on 03/12/2023).

[28] J. Duchi, T. Hashimoto, and H. Namkoong, Distributionally robust losses
for latent covariate mixtures, 2020. doi: 10.48550/ARXIV.2007.13982.
[Online]. Available: https://arxiv.org/abs/2007.13982 (visited on
03/01/2023).

[29] H. Engler, “The behavior of the qr-factorization algorithm with column
pivoting,” Applied Mathematics Letters, vol. 10, no. 6, pp. 7–11, 1997.

[30] European Parliament and Council of the European Union. “Regulation
(EU) 2016/679 of the European Parliament and of the Council,” of
27 April 2016 on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data, and
repealing Directive 95/46/EC (General Data Protection Regulation).
(May 4, 2016), [Online]. Available: https://data.europa.eu/eli/reg/
2016/679/oj.

[31] E. Forgy, “Cluster analysis of multivariate data: Efficiency versus in-
terpretability of classification,” Biometrics, vol. 21, no. 3, pp. 768–769,
1965.

[32] S. Gallant, “Perceptron-based learning algorithms,” IEEE Transactions
on Neural Networks, vol. 1, no. 2, pp. 179–191, 1990. doi: 10.1109/72.
80230.

[33] S. Gautam, A. Boubekki, S. Hansen, et al., “Protovae: A trustworthy
self-explainable prototypical variational model,” Advances in Neural
Information Processing Systems, vol. 35, pp. 17 940–17 952, 2022.

[34] Y. Ge, Y. Xiao, Z. Xu, X. Wang, and L. Itti, Contributions of shape, texture,
and color in visual recognition, 2022. doi: 10.48550/ARXIV.2207.09510.

https://doi.org/10.1093/imaiai/iay008
https://doi.org/10.1093/imaiai/iay008
https://doi.org/10.1093/imaiai/iay008
https://doi.org/10.1093/imaiai/iay008
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G
https://doi.org/10.48550/ARXIV.2112.00639
https://arxiv.org/abs/2112.00639
https://arxiv.org/abs/2112.00639
https://doi.org/10.48550/ARXIV.2007.13982
https://arxiv.org/abs/2007.13982
https://data.europa.eu/eli/reg/2016/679/oj
https://data.europa.eu/eli/reg/2016/679/oj
https://doi.org/10.1109/72.80230
https://doi.org/10.1109/72.80230
https://doi.org/10.48550/ARXIV.2207.09510

100 REFERENCES

[Online]. Available: https://arxiv.org/abs/2207.09510 (visited on
02/05/2023).

[35] R. Geirhos, J. Jacobsen, C. Michaelis, et al., “Shortcut learning in deep
neural networks,” CoRR, vol. abs/2004.07780, 2020. arXiv: 2004.07780.
[Online]. Available: https://arxiv.org/abs/2004.07780 (visited on
12/19/2022).

[36] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, andW.
Brendel, “Imagenet-trained cnns are biased towards texture; increasing
shape bias improves accuracy and robustness,” CoRR, vol. abs/1811.12231,
2018. arXiv: 1811.12231. [Online]. Available: http://arxiv.org/abs/
1811.12231 (visited on 12/19/2022).

[37] F. Giuste, W. Shi, Y. Zhu, et al., “Explainable artificial intelligence meth-
ods in combating pandemics: A systematic review,” IEEE Reviews in
Biomedical Engineering, 2022.

[38] P. Gohel, P. Singh, and M. Mohanty, “Explainable ai: Current status
and future directions,” arXiv preprint arXiv:2107.07045, 2021.

[39] R. Gonzalez and R. Woods, Digital Image Processing, Global Edition.
Pearson Education, 2018, isbn: 9781292223070.

[40] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[41] B. O. GREECE,A robust machine learning approach for credit risk analysis
of large loan level datasets using deep learning and extreme gradient
boosting. [Online]. Available: https://www.bis.org/ifc/events/ifc_
9thconf/Petropoulos.pdf.

[42] J. Gu, Y. Yang, and V. Tresp, “Understanding individual decisions of
cnns via contrastive backpropagation,” in Computer Vision–ACCV 2018:
14th Asian Conference on Computer Vision, Perth, Australia, December
2–6, 2018, Revised Selected Papers, Part III 14, Springer, 2019, pp. 119–
134.

[43] A. Håkansson and R. L. Hartung, Artificial Intelligence: Concepts, areas,
techniques and applications. Lund: Studentlitteratur AB, 2020, isbn:
978-91-44-12599-2.

[44] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[45] W. D. Heaven, Hundreds of ai tools have been built to catch covid. none of
them helped.Aug. 2022. [Online]. Available: https://www.technologyreview.
com / 2021 / 07 / 30 / 1030329 / machine - learning - ai - failed - covid -
hospital-diagnosis-pandemic/.

[46] D. Hendrycks and K. Gimpel, Gaussian error linear units (gelus), 2016.
doi: 10.48550/ARXIV.1606.08415. [Online]. Available: https://arxiv.
org/abs/1606.08415 (visited on 02/02/2023).

[47] E. T. Heyn, “Berlin’s wonderful horse; he can do almost everything but
talk – how he was taught",” Sep. 4, 1904. [Online]. Available: https:

https://arxiv.org/abs/2207.09510
https://arxiv.org/abs/2004.07780
https://arxiv.org/abs/2004.07780
https://arxiv.org/abs/1811.12231
http://arxiv.org/abs/1811.12231
http://arxiv.org/abs/1811.12231
http://www.deeplearningbook.org
https://www.bis.org/ifc/events/ifc_9thconf/Petropoulos.pdf
https://www.bis.org/ifc/events/ifc_9thconf/Petropoulos.pdf
https://www.technologyreview.com/2021/07/30/1030329/machine-learning-ai-failed-covid-hospital-diagnosis-pandemic/
https://www.technologyreview.com/2021/07/30/1030329/machine-learning-ai-failed-covid-hospital-diagnosis-pandemic/
https://www.technologyreview.com/2021/07/30/1030329/machine-learning-ai-failed-covid-hospital-diagnosis-pandemic/
https://doi.org/10.48550/ARXIV.1606.08415
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://timesmachine.nytimes.com/timesmachine/1904/09/04/101396572.pdf
https://timesmachine.nytimes.com/timesmachine/1904/09/04/101396572.pdf
https://timesmachine.nytimes.com/timesmachine/1904/09/04/101396572.pdf

REFERENCES 101

//timesmachine.nytimes.com/timesmachine/1904/09/04/101396572.
pdf (visited on 02/26/2023).

[48] A. Holzinger, A. Saranti, C. Molnar, P. Biecek, and W. Samek, “Explain-
able ai methods-a brief overview,” in International Workshop on Extend-
ing Explainable AI Beyond Deep Models and Classifiers, Springer, 2020,
pp. 13–38.

[49] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Networks, vol. 2, no. 5,
pp. 359–366, 1989, issn: 0893-6080. doi: https : / / doi . org / 10 .
1016 / 0893 - 6080(89) 90020 - 8. [Online]. Available: https : / / www .
sciencedirect.com/science/article/pii/0893608089900208.

[50] Y. Huang and Y. Chen, “Autonomous driving with deep learning: A
survey of state-of-art technologies,” arXiv preprint arXiv:2006.06091,
2020.

[51] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,”
ACM Comput. Surv., vol. 31, no. 3, pp. 264–323, Sep. 1999, issn: 0360-
0300. doi: 10.1145/331499.331504. [Online]. Available: https://doi.
org/10.1145/331499.331504.

[52] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the
best multi-stage architecture for object recognition?” In 2009 IEEE 12th
International Conference on Computer Vision, Sep. 2009, pp. 2146–2153.
doi: 10.1109/ICCV.2009.5459469.

[53] J. Jumper, R. Evans, A. Pritzel, et al., “Highly accurate protein structure
prediction with alphafold,” Nature, vol. 596, no. 7873, pp. 583–589,
2021.

[54] D. E. Kim and M. Gofman, “Comparison of shallow and deep neural
networks for network intrusion detection,” in 2018 IEEE 8th Annual
Computing and Communication Workshop and Conference (CCWC), 2018,
pp. 204–208. doi: 10.1109/CCWC.2018.8301755.

[55] T. W. Kim and B. R. Routledge, “Why a right to an explanation of algo-
rithmic decision-making should exist: A trust-based approach,” Business
Ethics Quarterly, vol. 32, no. 1, pp. 75–102, 2022. doi: 10.1017/beq.
2021.3.

[56] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization,
2014. doi: 10.48550/ARXIV.1412.6980. [Online]. Available: https:
//arxiv.org/abs/1412.6980 (visited on 02/01/2023).

[57] “Pearson’s correlation coefficient,” in Encyclopedia of Public Health, W.
Kirch, Ed. Dordrecht: SpringerNetherlands, 2008, pp. 1090–1091, isbn:
978-1-4020-5614-7. doi: 10.1007/978-1-4020-5614-7_2569. [Online].
Available: https://doi.org/10.1007/978-1-4020-5614-7_2569.

[58] P. Kirichenko, P. Izmailov, and A. G. Wilson, Last layer re-training is
sufficient for robustness to spurious correlations, 2022. doi: 10.48550/
ARXIV.2204.02937. [Online]. Available: https://arxiv.org/abs/2204.
02937 (visited on 02/07/2023).

https://timesmachine.nytimes.com/timesmachine/1904/09/04/101396572.pdf
https://timesmachine.nytimes.com/timesmachine/1904/09/04/101396572.pdf
https://timesmachine.nytimes.com/timesmachine/1904/09/04/101396572.pdf
https://timesmachine.nytimes.com/timesmachine/1904/09/04/101396572.pdf
https://timesmachine.nytimes.com/timesmachine/1904/09/04/101396572.pdf
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://doi.org/10.1145/331499.331504
https://doi.org/10.1145/331499.331504
https://doi.org/10.1145/331499.331504
https://doi.org/10.1109/ICCV.2009.5459469
https://doi.org/10.1109/CCWC.2018.8301755
https://doi.org/10.1017/beq.2021.3
https://doi.org/10.1017/beq.2021.3
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-1-4020-5614-7_2569
https://doi.org/10.1007/978-1-4020-5614-7_2569
https://doi.org/10.48550/ARXIV.2204.02937
https://doi.org/10.48550/ARXIV.2204.02937
https://arxiv.org/abs/2204.02937
https://arxiv.org/abs/2204.02937

102 REFERENCES

[59] M. Kohlbrenner, A. Bauer, S. Nakajima, A. Binder, W. Samek, and S.
Lapuschkin, “Towards best practice in explaining neural network de-
cisions with lrp,” in 2020 International Joint Conference on Neural Net-
works (IJCNN), IEEE, 2020, pp. 1–7.

[60] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84–90, May 2017, issn: 0001-0782. doi: 10.1145/3065386. [On-
line]. Available: https://doi.org/10.1145/3065386.

[61] A. Krogh and J. Hertz, “A simple weight decay can improve generaliza-
tion,” in Advances in Neural Information Processing Systems, J. Moody, S.
Hanson, and R. Lippmann, Eds., vol. 4, Morgan-Kaufmann, 1991. [On-
line]. Available: https://proceedings.neurips.cc/paper/1991/file/
8eefcfdf5990e441f0fb6f3fad709e21-Paper.pdf.

[62] T. LaBonte, V. Muthukumar, and A. Kumar, Saving a split for last-layer
retraining can improve group robustness without group annotations, Jul.
2023. [Online]. Available: https://openreview.net/forum?id=IGPde2wLse.

[63] S. Lapuschkin, A. Binder, G. Montavon, K.-R. Müller, and W. Samek,
“The lrp toolbox for artificial neural networks,” Journal of Machine
Learning Research, vol. 17, no. 114, pp. 1–5, 2016. [Online]. Available:
http://jmlr.org/papers/v17/15-618.html.

[64] S. Lapuschkin, A. Binder, K.-R. Muller, and W. Samek, “Understanding
and comparing deep neural networks for age and gender classification,”
in Proceedings of the IEEE international conference on computer vision
workshops, 2017, pp. 1629–1638.

[65] S. Lapuschkin, S. Wäldchen, A. Binder, G. Montavon, W. Samek, and
K.-R. Müller, “Unmasking clever hans predictors and assessing what
machines really learn,” Nature Communications, vol. 10, no. 1, Mar. 2019.
doi: 10.1038/s41467-019-08987-4. [Online]. Available: https://doi.
org/10.1038%5C%2Fs41467-019-08987-4.

[66] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient backprop,”
in Neural Networks: Tricks of the Trade: Second Edition, G. Montavon,
G. B. Orr, and K.-R. Müller, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 9–48, isbn: 978-3-642-35289-8. doi: 10.1007/
978-3-642-35289-8_3. [Online]. Available: https://doi.org/10.1007/
978-3-642-35289-8_3.

[67] S. Lee, I. Hwang, G.-C. Kang, and B.-T. Zhang, “Improving robustness to
texture bias via shape-focused augmentation,” in 2022 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Workshops (CVPRW),
2022, pp. 4322–4330. doi: 10.1109/CVPRW56347.2022.00478. [Online].
Available: https : / / openaccess . thecvf . com / content / CVPR2022W /
HCIS / papers / Lee _ Improving _ Robustness _ to _ Texture _ Bias _ via _
Shape - Focused _ Augmentation _ CVPRW _ 2022 _ paper . pdf (visited on
02/20/2023).

https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://proceedings.neurips.cc/paper/1991/file/8eefcfdf5990e441f0fb6f3fad709e21-Paper.pdf
https://proceedings.neurips.cc/paper/1991/file/8eefcfdf5990e441f0fb6f3fad709e21-Paper.pdf
https://openreview.net/forum?id=IGPde2wLse
http://jmlr.org/papers/v17/15-618.html
https://doi.org/10.1038/s41467-019-08987-4
https://doi.org/10.1038%5C%2Fs41467-019-08987-4
https://doi.org/10.1038%5C%2Fs41467-019-08987-4
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1109/CVPRW56347.2022.00478
https://openaccess.thecvf.com/content/CVPR2022W/HCIS/papers/Lee_Improving_Robustness_to_Texture_Bias_via_Shape-Focused_Augmentation_CVPRW_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022W/HCIS/papers/Lee_Improving_Robustness_to_Texture_Bias_via_Shape-Focused_Augmentation_CVPRW_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022W/HCIS/papers/Lee_Improving_Robustness_to_Texture_Bias_via_Shape-Focused_Augmentation_CVPRW_2022_paper.pdf

REFERENCES 103

[68] J. Lehman, J. Clune, D. Misevic, et al., “The surprising creativity of
digital evolution: A collection of anecdotes from the evolutionary com-
putation and artificial life research communities,” Artificial life, vol. 26,
no. 2, pp. 274–306, 2020.

[69] Z. Li, I. Evtimov, A. Gordo, et al., A whac-a-mole dilemma: Shortcuts
come in multiples where mitigating one amplifies others, 2022. doi:
10.48550/ARXIV.2212.04825. [Online]. Available: https://arxiv.org/
abs/2212.04825.

[70] Y. Liang, S. Li, C. Yan, M. Li, and C. Jiang, “Explaining the black-box
model: A survey of local interpretation methods for deep neural net-
works,” Neurocomputing, vol. 419, pp. 168–182, 2021.

[71] E. Z. Liu, B. Haghgoo, A. S. Chen, et al., Just train twice: Improving group
robustness without training group information, 2021. doi: 10.48550/
ARXIV.2107.09044. [Online]. Available: https://arxiv.org/abs/2107.
09044 (visited on 02/21/2023).

[72] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in
the wild,” in Proceedings of International Conference on Computer Vision
(ICCV), Dec. 2015.

[73] L. Lu, “Dying ReLU and initialization: Theory and numerical examples,”
Communications in Computational Physics, vol. 28, no. 5, pp. 1671–1706,
Jun. 2020. doi: 10.4208/cicp.oa- 2020- 0165. [Online]. Available:
https://doi.org/10.4208%5C%2Fcicp.oa- 2020- 0165 (visited on
02/02/2023).

[74] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” Advances in neural information processing systems, vol. 30,
2017.

[75] X. Ma, J. Wu, S. Xue, et al., “A comprehensive survey on graph anomaly
detection with deep learning,” IEEE Transactions on Knowledge and
Data Engineering, 2021.

[76] A. L. Maas, A. Y. Hannun, A. Y. Ng, et al., “Rectifier nonlinearities im-
prove neural network acoustic models,” in Proc. icml, Atlanta, Georgia,
USA, vol. 30, 2013, p. 3. [Online]. Available: https://ai.stanford.
edu/~amaas/papers/relu_hybrid_icml2013_final.pdf (visited on
02/02/2023).

[77] V. Maiorov and A. Pinkus, “Lower bounds for approximation by mlp
neural networks,” Neurocomputing, vol. 25, no. 1, pp. 81–91, 1999, issn:
0925-2312. doi: https://doi.org/10.1016/S0925-2312(98)00111-
8. [Online]. Available: https:/ /www.sciencedirect. com/science/
article/pii/S0925231298001118.

[78] W. Mcculloch and W. Pitts, “A logical calculus of ideas immanent in
nervous activity,” Bulletin of Mathematical Biophysics, vol. 5, pp. 127–
147, 1943.

[79] Midjourney,Midjourney. [Online]. Available: https://www.midjourney.
com/home/?callbackUrl=%2Fapp%2F.

https://doi.org/10.48550/ARXIV.2212.04825
https://arxiv.org/abs/2212.04825
https://arxiv.org/abs/2212.04825
https://doi.org/10.48550/ARXIV.2107.09044
https://doi.org/10.48550/ARXIV.2107.09044
https://arxiv.org/abs/2107.09044
https://arxiv.org/abs/2107.09044
https://doi.org/10.4208/cicp.oa-2020-0165
https://doi.org/10.4208%5C%2Fcicp.oa-2020-0165
https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
https://doi.org/https://doi.org/10.1016/S0925-2312(98)00111-8
https://doi.org/https://doi.org/10.1016/S0925-2312(98)00111-8
https://www.sciencedirect.com/science/article/pii/S0925231298001118
https://www.sciencedirect.com/science/article/pii/S0925231298001118
https://www.midjourney.com/home/?callbackUrl=%2Fapp%2F
https://www.midjourney.com/home/?callbackUrl=%2Fapp%2F

104 REFERENCES

[80] M. Minderer, O. Bachem, N. Houlsby, and M. Tschannen, “Automatic
shortcut removal for self-supervised representation learning,” CoRR,
vol. abs/2002.08822, 2020. arXiv: 2002 . 08822. [Online]. Available:
https://arxiv.org/abs/2002.08822 (visited on 12/19/2022).

[81] M. Minsky and S. Papert, Perceptrons: An Introduction to Computational
Geometry. MIT Press, 1969.

[82] Y. Mo, Y. Wu, X. Yang, F. Liu, and Y. Liao, “Review the state-of-the-
art technologies of semantic segmentation based on deep learning,”
Neurocomputing, vol. 493, pp. 626–646, 2022.

[83] G. Montavon, A. Binder, S. Lapuschkin, W. Samek, and K.-R. Müller,
“Layer-wise relevance propagation: An overview,” Explainable AI: inter-
preting, explaining and visualizing deep learning, pp. 193–209, 2019.

[84] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-
mann machines,” in Proceedings of the 27th international conference on
machine learning (ICML-10), 2010, pp. 807–814.

[85] T. A. Nakabi and P. Toivanen, “Deep reinforcement learning for energy
management in a microgrid with flexible demand,” Sustainable Energy,
Grids and Networks, vol. 25, p. 100 413, 2021.

[86] J. Nam, H. Cha, S. Ahn, J. Lee, and J. Shin, Learning from failure: Train-
ing debiased classifier from biased classifier, 2020. doi: 10.48550/ARXIV.
2007.02561. [Online]. Available: https://arxiv.org/abs/2007.02561.

[87] J. Nam, J. Kim, J. Lee, and J. Shin, Spread spurious attribute: Improving
worst-group accuracy with spurious attribute estimation, 2022. doi: 10.
48550/ARXIV.2204.02070. [Online]. Available: https://arxiv.org/
abs/2204.02070 (visited on 02/21/2023).

[88] A. Y. Ng, M. Jordan, Y. Weiss, et al., “On spectral clustering: Analysis
and an al-gorithm,” Proceedings of IEEE Neural Information Processing
Systems (NIPS), 2002.

[89] OpenAI, Chatgpt. [Online]. Available: https : / / openai . com / blog /
chatgpt.

[90] O. Pfungst, Clever Hans (The Horse of Mr. Von Osten) A contribution to
experimental animal and human psychology, trans. by C. L. Rahn. 1911.
[Online]. Available: https://www.gutenberg.org/files/33936/33936-
h/33936-h.htm (visited on 02/26/2023).

[91] M. Popel, M. Tomkova, J. Tomek, et al., “Transforming machine trans-
lation: A deep learning system reaches news translation quality com-
parable to human professionals,” Nature communications, vol. 11, no. 1,
p. 4381, 2020.

[92] S. Qiu, A. Potapczynski, P. Izmailov, and A. G. Wilson, “Simple and
fast group robustness by automatic feature reweighting,” arXiv preprint
arXiv:2306.11074, 2023.

[93] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation
functions,” CoRR, vol. abs/1710.05941, 2017. arXiv: 1710.05941. [On-

https://arxiv.org/abs/2002.08822
https://arxiv.org/abs/2002.08822
https://doi.org/10.48550/ARXIV.2007.02561
https://doi.org/10.48550/ARXIV.2007.02561
https://arxiv.org/abs/2007.02561
https://doi.org/10.48550/ARXIV.2204.02070
https://doi.org/10.48550/ARXIV.2204.02070
https://arxiv.org/abs/2204.02070
https://arxiv.org/abs/2204.02070
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://www.gutenberg.org/files/33936/33936-h/33936-h.htm
https://www.gutenberg.org/files/33936/33936-h/33936-h.htm
https://arxiv.org/abs/1710.05941

REFERENCES 105

line]. Available: http : / / arxiv . org / abs / 1710 . 05941 (visited on
02/02/2023).

[94] M. T. Ribeiro, S. Singh, and C. Guestrin, “" why should i trust you?"
explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data
mining, 2016, pp. 1135–1144.

[95] S. Ruder, “An overview of gradient descent optimization algorithms,”
CoRR, vol. abs/1609.04747, 2016. arXiv: 1609.04747. [Online]. Avail-
able: http://arxiv.org/abs/1609.04747 (visited on 04/02/2023).

[96] C. Rudin, “Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead,” Nature Machine
Intelligence, vol. 1, no. 5, pp. 206–215,May 2019, issn: 2522-5839. doi:
10.1038/s42256-019-0048-x. [Online]. Available: https://doi.org/
10.1038/s42256-019-0048-x.

[97] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, pp. 533–536,
1986.

[98] A. Sable, End to end automatic speech recognition: State of the art, Sep.
2022. [Online]. Available: https://blog.paperspace.com/end-to-end-
automatic-speech-recognition-state-of-the-art/.

[99] S. Sagawa, P. W. Koh, T. B. Hashimoto, and P. Liang, Distributionally ro-
bust neural networks for group shifts: On the importance of regularization
for worst-case generalization, 2019. doi: 10.48550/ARXIV.1911.08731.
[Online]. Available: https://arxiv.org/abs/1911.08731 (visited on
03/01/2023).

[100] R. Saleem, B. Yuan, F. Kurugollu, A. Anjum, and L. Liu, “Explaining
deep neural networks: A survey on the global interpretation methods,”
Neurocomputing, 2022.

[101] A. G. Salman, B. Kanigoro, and Y. Heryadi, “Weather forecasting using
deep learning techniques,” in 2015 international conference on advanced
computer science and information systems (ICACSIS), Ieee, 2015, pp. 281–
285.

[102] L. Schmarje, M. Santarossa, S.-M. Schröder, and R. Koch, “A survey
on semi-, self-and unsupervised learning for image classification,” IEEE
Access, vol. 9, pp. 82 146–82 168, 2021.

[103] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D.
Batra, “Grad-cam: Visual explanations from deep networks via gradient-
based localization,” in Proceedings of the IEEE international conference
on computer vision, 2017, pp. 618–626.

[104] J. C. Shane, Do neural nets dream of electric sheep? Mar. 2018. [Online].
Available: https://www.aiweirdness.com/do-neural-nets-dream-of-
electric-18-03-02/.

http://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://blog.paperspace.com/end-to-end-automatic-speech-recognition-state-of-the-art/
https://blog.paperspace.com/end-to-end-automatic-speech-recognition-state-of-the-art/
https://doi.org/10.48550/ARXIV.1911.08731
https://arxiv.org/abs/1911.08731
https://www.aiweirdness.com/do-neural-nets-dream-of-electric-18-03-02/
https://www.aiweirdness.com/do-neural-nets-dream-of-electric-18-03-02/

106 REFERENCES

[105] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Transactions on pattern analysis and machine intelligence, vol. 22, no. 8,
pp. 888–905, 2000.

[106] E. H. Shortliffe and M. J. Sepúlveda, “Clinical Decision Support in the
Era of Artificial Intelligence,” JAMA, vol. 320, no. 21, pp. 2199–2200,
Dec. 2018, issn: 0098-7484. doi: 10.1001/jama.2018.17163. eprint:
https : / / jamanetwork . com / journals / jama / articlepdf / 2713901 /
jama_shortliffe_2018_vp_180139.pdf. [Online]. Available: https:
//doi.org/10.1001/jama.2018.17163.

[107] D. Silver, T. Hubert, J. Schrittwieser, et al., “Mastering chess and shogi
by self-play with a general reinforcement learning algorithm,” arXiv
preprint arXiv:1712.01815, 2017.

[108] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[109] U. Singer, A. Polyak, T. Hayes, et al., “Make-a-video: Text-to-video gen-
eration without text-video data,” arXiv preprint arXiv:2209.14792, 2022.

[110] A. Sletten, “An overview of shortcut learning in deep learning,” UiT
project thesis, 2023.

[111] N. Sohoni, J. Dunnmon, G. Angus, A. Gu, and C. Ré, “No subclass
left behind: Fine-grained robustness in coarse-grained classification
problems,” Advances in Neural Information Processing Systems, vol. 33,
pp. 19 339–19 352, 2020.

[112] M. Soori, B. Arezoo, and R. Dastres, “Artificial intelligence, machine
learning and deep learning in advanced robotics, a review,” Cognitive
Robotics, 2023.

[113] M. Steinbach, L. Ertöz, and V. Kumar, “The challenges of clustering high
dimensional data,” in New Directions in Statistical Physics: Econophysics,
Bioinformatics, and Pattern Recognition, L. T. Wille, Ed. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2004, pp. 273–309, isbn: 978-3-662-
08968-2. doi: 10.1007/978-3-662-08968-2_16. [Online]. Available:
https://doi.org/10.1007/978-3-662-08968-2_16.

[114] I. Sturm, S. Lapuschkin, W. Samek, and K.-R. Müller, “Interpretable
deep neural networks for single-trial eeg classification,” Journal of neu-
roscience methods, vol. 274, pp. 141–145, 2016.

[115] H. Team, State-of-the-art ai approaches to cybersecurity, Jul. 2022. [On-
line]. Available: https://medium.com/hackless/state-of-the-art-
ai-approaches-to-cybersecurity-17cb17ae9373.

[116] S. Theodoridis and K. Koutroumbas, Pattern Recognition, Fourth Edition.
Academic Press, 2009, isbn: 9781597492720.

[117] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[118] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and com-
puting, vol. 17, pp. 395–416, 2007.

https://doi.org/10.1001/jama.2018.17163
https://jamanetwork.com/journals/jama/articlepdf/2713901/jama_shortliffe_2018_vp_180139.pdf
https://jamanetwork.com/journals/jama/articlepdf/2713901/jama_shortliffe_2018_vp_180139.pdf
https://doi.org/10.1001/jama.2018.17163
https://doi.org/10.1001/jama.2018.17163
https://doi.org/10.1007/978-3-662-08968-2_16
https://doi.org/10.1007/978-3-662-08968-2_16
https://medium.com/hackless/state-of-the-art-ai-approaches-to-cybersecurity-17cb17ae9373
https://medium.com/hackless/state-of-the-art-ai-approaches-to-cybersecurity-17cb17ae9373

REFERENCES 107

[119] Q. Wang, Y. Ma, K. Zhao, and Y. Tian, “A comprehensive survey of loss
functions in machine learning,” Annals of Data Science, pp. 1–26, 2020.

[120] P. Welinder, S. Branson, T. Mita, et al., “Caltech-ucsd birds 200,” 2010.
[Online]. Available: https://api.semanticscholar.org/CorpusID:
7138640.

[121] “What’s the next word in large language models?” Nature Machine
Intelligence, vol. 5, no. 4, pp. 331–332, Apr. 2023, issn: 2522-5839.
doi: 10.1038/s42256-023-00655-z. [Online]. Available: https://doi.
org/10.1038/s42256-023-00655-z.

[122] D. Xu and Y. Tian, “A comprehensive survey of clustering algorithms,”
Annals of Data Science, vol. 2, no. 2, pp. 165–193, Jun. 2015, issn:
2198-5812. doi: 10.1007/s40745- 015- 0040- 1. [Online]. Available:
https://doi.org/10.1007/s40745-015-0040-1.

[123] T. Xu, Ai makes decisions we don’t understand. that’s a problem. Jul. 2021.
[Online]. Available: https://builtin.com/artificial-intelligence/
ai-right-explanation.

[124] Q. Yuan, H. Shen, T. Li, et al., “Deep learning in environmental remote
sensing: Achievements and challenges,” Remote Sensing of Environment,
vol. 241, p. 111 716, 2020.

[125] J. R. Zech, M. A. Badgeley, M. Liu, A. B. Costa, J. J. Titano, and E. K. Oer-
mann, “Variable generalization performance of a deep learning model
to detect pneumonia in chest radiographs: A cross-sectional study,”
PLOS Medicine, vol. 15, no. 11, pp. 1–17, Nov. 2018. doi: 10 . 1371 /
journal . pmed. 1002683. [Online]. Available: https :/ / doi .org / 10 .
1371/journal.pmed.1002683.

[126] S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning based recommender
system: A survey and new perspectives,” ACM computing surveys (CSUR),
vol. 52, no. 1, pp. 1–38, 2019.

[127] B. Zhou, À. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, “Learning deep
features for scene recognition using places database,” in NIPS, 2014.
[Online]. Available: https://api.semanticscholar.org/CorpusID:
1849990.

[128] S. Zhou, H. Xu, Z. Zheng, et al., “A comprehensive survey on deep
clustering: Taxonomy, challenges, and future directions,” arXiv preprint
arXiv:2206.07579, 2022.

https://api.semanticscholar.org/CorpusID:7138640
https://api.semanticscholar.org/CorpusID:7138640
https://doi.org/10.1038/s42256-023-00655-z
https://doi.org/10.1038/s42256-023-00655-z
https://doi.org/10.1038/s42256-023-00655-z
https://doi.org/10.1007/s40745-015-0040-1
https://doi.org/10.1007/s40745-015-0040-1
https://builtin.com/artificial-intelligence/ai-right-explanation
https://builtin.com/artificial-intelligence/ai-right-explanation
https://doi.org/10.1371/journal.pmed.1002683
https://doi.org/10.1371/journal.pmed.1002683
https://doi.org/10.1371/journal.pmed.1002683
https://doi.org/10.1371/journal.pmed.1002683
https://api.semanticscholar.org/CorpusID:1849990
https://api.semanticscholar.org/CorpusID:1849990

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Deep Learning Today
	1.2 Shortcut learning: An issue
	1.3 Group Robustness: A possible solution
	1.3.1 Limitations with current group robustness methods

	1.4 Contributions
	1.5 Outline of thesis

	I Background
	2 Deep Learning
	2.1 Overview of deep learning
	2.1.1 Deep learning approaches
	2.1.2 Main building blocks

	2.2 Multilayer Perceptron
	2.2.1 Perceptron
	2.2.2 From one to many layers
	2.2.3 Forward pass
	2.2.4 Activation functions
	2.2.5 Loss functions
	2.2.6 Backward pass
	2.2.7 Gradient descent variants and optimisation algorithms
	2.2.8 General training procedure

	2.3 Convolutional neural networks
	2.3.1 Convolution operation
	2.3.2 The convolutional layer
	2.3.3 Pooling
	2.3.4 Example of simple CNN architecture

	3 Explainability in Deep Learning
	3.1 Deep learning models are blackboxes
	3.2 XAI
	3.2.1 Transparent methods
	3.2.2 Post-hoc methods

	3.3 Layer-wise Relevance Propagation
	3.3.1 Propagation mechanisms
	3.3.2 Different propagation rules
	3.3.3 Best practice

	4 Clustering
	4.1 Uncovering underlying structures in the data
	4.2 Clustering algorithms
	4.2.1 Hierarchical clustering
	4.2.2 K-means
	4.2.3 Deep clustering
	4.2.4 Spectral clustering
	4.2.5 Deciding the number of clusters

	5 Shortcuts in deep learning
	5.1 What are shortcuts?
	5.2 A simple example
	5.3 Shortcuts are present in all learning systems
	5.4 The origin of shortcuts
	5.4.1 Ambiguity and lack of constraints
	5.4.2 Biases

	5.5 Shortcuts in computer vision tasks
	5.5.1 Artefacts
	5.5.2 Context and background reliance
	5.5.3 Texture-shape cue conflicts

	5.6 Mitigation of shortcuts
	5.6.1 Group robustness

	II Method
	6 Proposed method
	6.1 Explainability-based feature reweighting (XFR)
	6.1.1 Unsupervised Group Discovery
	6.1.2 Group Balanced Training
	6.1.3 Variants

	6.2 Building blocks of XFR for experiments
	6.2.1 Spectral Relevance Analysis
	6.2.2 Deep feature reweighting
	6.2.3 XFR setup

	III Experiments
	7 Experimental setup
	7.1 Group robustness datasets
	7.1.1 Colored-MNIST
	7.1.2 Waterbirds
	7.1.3 CelebA

	7.2 Metrics
	7.3 Models
	7.3.1 External Methods
	7.3.2 Implemented Methods

	8 Main experiment and analysis
	8.1 Results
	8.1.1 Explainability improvements from XFR

	8.2 Exploring the group estimation method

	9 Ablation studies
	9.1 Changing the downsampling size
	9.1.1 Effect of eigengap heuristic on L-XFR performance

	9.2 The effect of eigengap on the main results
	9.3 Using 1 cluster
	9.4 Retraining on the training set instead of the validation set
	9.5 Removing minority groups
	9.6 Merging of clusters

	IV Conclusion and future work
	10 Conclusion
	11 Future work
	References

