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A B S T R A C T   

Icebergs in the Arctic can pose a threat to maritime traffic and offshore installations and influence the properties 
of the upper ocean layer. While icebergs in open water are regularly monitored using C-band SAR satellites, less 
attention has been paid to icebergs in regions with a high areal fraction of sea ice, where detection using 
traditional methods is more difficult. In this study, we compare the capability of C- and L-band SAR to detect 
icebergs in level and deformed fast sea ice across various seasons. To this end we use a timeseries of SAR images 
acquired at HH- and HV-polarization in 2019 and 2020, covering respectively 301 and 356 icebergs. As reference 
data for validation, we used iceberg polygons derived from Sentinel-2 images. Our results reveal that compared 
to C-band, L-band SAR is significantly better at separating the backscatter of icebergs and sea ice and thus is 
preferable for detecting icebergs in ocean regions with a high sea ice concentration. It is further shown that L- 
band SAR is less affected by melting conditions, suggesting that it can be used for iceberg detections in both 
summer and winter.   

1. Introduction 

The calving of icebergs is one of the main sources of mass loss from 
ice sheets and glaciers. For the Greenland ice sheet, it is estimated that 
the annual solid ice discharge is on the order of 500 Gt/year (Mankoff 
et al., 2020). A large fraction of this discharge takes the form of medium 
and large icebergs (60–220 m in length), that float out into the ocean. 

Icebergs act as large freshwater reservoirs to the ocean, and melting 
icebergs are therefore a direct source of freshwater to the ocean, leading 
to a reduction of salinity and cooling of the local water column, which 
affects ocean circulation and facilitates the formation of sea ice 
(Bügelmayer et al., 2015; Marson et al., 2021). This is especially sig-
nificant in areas with a high iceberg density (Bigg, 2015, Ch. 4). Icebergs 
also pose a major threat to maritime traffic and offshore installations in 
the Arctic. Detecting and mapping the location of icebergs are therefore 
important both for ocean models and for maritime safety. 

Typically, icebergs in open water can be detected using Synthetic 
Aperture Radar (SAR) satellites, and this is regularly done with C-band 
satellites such as Sentinel-1 or RADARSAT (Gill, 2001; Power et al., 
2001; Sandven et al., 2007). Normally, iceberg detection algorithms are 

based on the observation that icebergs exhibit higher backscatter than 
the surrounding open water (Willis et al., 1996), and thus appear as 
bright spots against the darker ocean in SAR images. This can be utilized 
to find clusters of pixels with a high contrast relative to the local back-
ground, e.g., using a statistical approach such as the Constant False 
Alarm Rate (CFAR) detector (Oliver and Quegan, 2004). CFAR detectors 
have been used to map regional distributions of icebergs in open water 
in the Arctic, e.g., in Buus-Hinkler et al. (2014), and are currently being 
used to create operational iceberg density products by the Copernicus 
Marine Service for the waters around Greenland, Labrador and 
Newfoundland (Copernicus Marine Service, 2023). 

However, mapping icebergs in regions with sea ice is more difficult 
using these techniques. This is mainly because sea ice exhibits highly 
variable backscatter, making it more difficult to detect outliers of 
backscattered intensity which can be related to icebergs (Dierking, 
2020). This is especially difficult for rough or deformed sea ice, which is 
well known to have a higher and more variable backscatter response 
than level ice, thus lowering the contrast between icebergs and their 
background (Wesche and Dierking, 2012). Further, the backscatter 
response of sea ice shows seasonal variations (Haas, 2001), due to the 
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related temperature changes (Casey et al., 2016; Yackel et al., 2007), 
that must be considered in algorithms for detecting icebergs in sea ice. In 
particular, melting is known to have a large impact on iceberg back-
scatter (Willis et al., 1996; Ferdous et al., 2019). Thus, icebergs in sea ice 
and close to the ice margin are currently not included in operational 
monitoring products, and a recent survey by the International Ice 
Charting Working Group (IICWG) noted that icebergs in sea ice should 
be considered in future operational ice charting products (IICWG, 2019). 

The radar response of icebergs and sea ice arises primarily from a 
combination of surface and volume scattering (Willis et al., 1996; Haas, 
2001; Power et al., 2001; Wesche and Dierking, 2012), where the exact 
contribution of each component is heavily influenced by the presence of 
water or wet snow on the surface and the salinity of the ice. Under 
freezing (dry) conditions and at low salinity, radar signals typically 
penetrate deeper into snow and ice than under thawing (wet) conditions 
and high salinity. Thus, the ability to distinguish between icebergs and 
sea ice in SAR images depends on both meteorological conditions and on 
the type of the surrounding sea ice (Mazur et al., 2017). 

Even though some studies have suggested methods to detect icebergs 
in sea ice using C-band SAR, e.g., in Marino et al. (2016) and Zakharov 
et al. (2017), these studies did not consider the seasonal aspects or the 
influence of different types of sea ice. Other studies focusing on the 
Antarctic, typically employ object- or segmentation-based methods (Kim 
et al., 2011; Mazur et al., 2017; Barbat et al., 2019; Koo et al., 2023; 
Evans et al., 2023; Braakmann-Folgmann et al., 2023), which are not 
suitable for the Arctic where the smaller icebergs often only cover a few 
pixels in the SAR image. For the Arctic, studies covering larger regions 
with different ice types, e.g., by Dierking and Wesche (2014), and Soldal 
et al. (2019) reported difficulties to reliably detecting icebergs because 
of a large overlap in the backscatter characteristics of icebergs and sea 
ice. 

It is expected that L-band SAR might improve iceberg detection in sea 
ice considering the longer wavelength and hence larger penetration 
depth into wet snow and ice and lower sensitivity to small-scale surface 
roughness (Casey et al., 2016; Rignot et al., 2014; Dierking and David-
son, 2020). This is quite interesting considering that several recent and 
planned launches of L-band SAR satellites, such as SAOCOM (Giraldez, 
2004), NISAR (Das et al., 2021), and ROSE-L (Davidson et al., 2021), 
will increase the amount of available L-band data for the Arctic in the 
future. 

However, only a few studies of iceberg detection using L-band SAR 
images have been carried out to date, e.g., by Marino (2018) and Bailey 
et al. (2021). And direct comparisons of C- and L-band SAR data for 
detecting icebergs in sea ice have not been attempted before. Given how 
radar signatures are affected by different meteorological and sea ice 
conditions, studies considering different sea ice types and covering 
different seasons are of high interest. Further, since small variations in 
iceberg geometry and orientation can affect backscatter responses 
significantly (Ferdous et al., 2018), studies must preferably be carried 
out using large datasets to avoid skewing the results. The validation of 
detection algorithms using a large independently obtained dataset 
covering different ice types and seasons has to our knowledge never 
been attempted due to the difficulties in obtaining the necessary data. 

This study compares the backscatter contrast between icebergs and 
sea ice in C- and L-band SAR images, under different seasonal condi-
tions. The contrast is used as an indicator for detectability, with high 
backscatter contrast between iceberg and sea ice indicating high 
detectability. The study is carried out using a large number of icebergs 
that are embedded in land-fast ice and a time series of SAR images 
covering several months, from freezing temperatures in the spring to the 
melting season later in the summer. Data from two separate years (2019 
and 2020) were used in the study. The land-fast ice is segmented into 
regions of ice classified as either level or deformed to consider conditions 
in two main classes of sea ice. Although our results are technically 
restricted to icebergs in land-fast ice, we expect that our conclusions can 
be extended to icebergs in high-concentration drift ice of similar sea ice 

types. Additionally, large areas of the Arctic are covered in seasonal or 
permanent fast ice (Mahoney, 2018), and many of these areas are near 
ice-calving glaciers and ice caps (Wolken et al., 2020). 

In summary our study helps to determine the limitations and ad-
vantages of using C- and L-band SAR, respectively, for mapping icebergs 
in areas with a high concentration of sea ice, especially considering 
different sea ice, and seasonal conditions. 

2. Study area and data 

2.1. Study area 

The study was carried out over an area of interest (AOI) covering a 
section of Belgica Bank in north-eastern Greenland located between 78 
and 80◦N and 12–16◦W. Our AOI covers approximately 23.000 km2 in 
total. West of the AOI, two large ocean-terminating glaciers are located, 
the Nioghalvfjerdsbræ, and the Zachariae Isstrøm, each calving several 
gigatons of solid ice each year (Mankoff, 2020). East of the AOI, the East 
Greenland Current (EGC) transports large amounts of sea ice from the 
Arctic into the North Atlantic (Hughes et al., 2011). 

A large area of Belgica Bank is shallow with depths <100 m, while it 
is surrounded by deep troughs of 300–400 m depth (Arndt, 2015). Many 
of the icebergs that calved from the glaciers ground on the shallow bank. 
Here, they are surrounded by sea ice transported down from the Arctic 
Ocean with the EGC. The icebergs block and catch some of the sea ice 
floes, and when the fast ice starts forming from the coast to the bank, the 
sea ice floes are embedded within the fast ice (Hughes 2011). This means 
that our AOI covers a large number of icebergs of varying sizes between 
30 to 40 m and larger than a kilometer, and many different types of sea 
ice. Towards the open water on the eastern side of the bank, the land fast 
ice tends to be rough or deformed, consisting of the older floes from the 
north, while on the western side, the sea ice is typically newly formed 
and less deformed (level sea ice). Since both the sea ice and icebergs 
remain stationary for a long period, from winter freeze to summer melt, 
this is one of the best places in the Arctic to investigate how the back-
scatter response from icebergs and sea ice develops over different 
seasons. 

2.2. Remote sensing data 

L-band SAR images are from the ALOS-2 satellite, and C-band images 
from Sentinel-1. A time series of ALOS-2/PALSAR-2 images was pro-
vided by JAXA. It was acquired in ScanSAR Nominal, right-looking 
mode on a descending orbit (Fig. 1) and was delivered in a georefer-
enced Level 1.5 GeoTIFF format, however without incidence angle 
information. 

Sentinel-1 images are available from the Copernicus program 
through an open data policy, and therefore it is possible to get almost 
daily coverage for our AOI with Sentinel-1. However, since our main 
interest is a comparison between C- and L-band, we opted to only 
download Sentinel-1 images from days when an ALOS-2 image was 
acquired. For a few of the ALOS-2 images, no image was available from 
Sentinel-1 from the same day. In these cases, the image nearest in time 
was used instead, which was typically an acquisition from the following 
or previous day. However, for most of the ALOS-2 images, a Sentinel-1 
acquisition could be found within a time difference of 6 h. 

The Sentinel-1 images were acquired in Extra Wide-Swath (EW) 
mode and were retrieved from the CREOtech Data and Information 
Access Service (CREODIAS) and processed using the Sentinel Applica-
tions Platforms (SNAP), including thermal noise removal, calibration, 
and ellipsoid correction. All Sentinel-1 acquisitions were acquired in a 
right-looking geometry and from descending orbits. 

Referring to Fig. 1, since all images from both Sentinel-1 and ALOS-2 
were acquired in right-looking geometries and from descending orbits, 
the near-range is on the right side of the images, and the far range on the 
left side. Both the C- and L-band images are acquired in dual- 
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polarization (HH, HV) mode, which is commonly used for sea ice 
mapping in the Arctic (Dierking, 2020) and hence widely available for 
iceberg detection in the Arctic as well. 

A total of 22 ALOS-2 images were used from 2019 and 19 images 
from 2020, complemented by 14 Sentinel-1 images for 2019, and 17 
images for 2020. All images were acquired in the period between April 
1st and August 1st, covering the freezing season in the spring until the 

fast ice break up during summer. An overview of the image character-
istics can be found in Table 1. 

To complement the SAR data and for generating a validation data set, 
optical images from the European Sentinel-2 satellites were downloaded 
from CREODIAS. Here we used the RGB bands (B4, B3, and B2) at 10-m 
resolution. 

Fig. 1. Overview of the study area showing the AOI and the orbits from Sentinel-1 (orange) and ALOS-2 (red). The black dots mark the weather stations at Henrik 
Krøyer Holme (HKH), and Danmarkshavn (DH) respectively. On the right, the icebergs from 2019 and 2020 are shown, together with the fast-ice edge in mid-July, 
and the − 100-m isobath from IBCAO V4.1 (Jakobsson et al., 2020). (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 

Table 1 
Overview of the SAR data used in the study. The Noise Equivalent Sigma Zero (NESZ)of Sentinel-1 varies with the incidence angle. *For ALOS-2, the NESZ is given in 
the mission requirements, but the actual value may be lower.   

Mode NESZ* Pixel Spacing Looks (range, azimuth) Polarization Swath Width Incidence Angle 

Sentinel-1a Extra Wide Swath (EW) − 24: − 34 db 40 m 6 × 2 HH, HV 410 km 18.9–40.0 
ALOS-2b,c ScanSAR mode (WBD) − 26 db 25 m 2 × 3 HH, HV 360 km 22.7–45.9  

a Bourbigot et al. (2016). 
b JAXA (2012). 
c Kankaku et al. (2013). 
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2.3. Validation data 

Iceberg polygons served as validation data for the study. The poly-
gons were drawn manually using optical Sentinel-2 images by experts 
from the Norwegian Meteorological Institute (MET Norway) (Amdal and 
Hughes, 2022). The icebergs are easily distinguishable in the optical 
images acquired in the spring when the sun is illuminating the icebergs 
from a very small grazing angle, thus generating distinct shadows. 

To account for small errors in the geocoding, Sentinel-2 iceberg 
polygons shorter than 100 m in length were not considered in the 
analysis of the SAR images. Here, the length is calculated as the major 
axis of the minimum bounding rectangle of the iceberg polygon. 
Furthermore, icebergs that were within 400 m of a neighboring iceberg 

were also removed from the dataset to avoid mixing signals from several 
icebergs forming a cluster (see Section 3.3). Icebergs outside the AOI and 
the fast-ice edge were not considered in our analysis. Since the fast ice 
edge is slowly changing during the season, we used the fast ice edge from 
mid-July (see Fig. 1). That way, we ensure that all icebergs used for 
validation remain stationary for the entire study period. In total, 301 
icebergs for 2019 and 356 icebergs for 2020 were used in the study. 
Examples of the different types of data used in the study are shown in 
Fig. 2. 

2.4. Meteorological data 

Temperature data from two weather stations close to the AOI were 

Fig. 2. Examples of the data used for the study. All images are covering the same subset of the AOI. The SAR images are colored as red: HV, green: HH, blue: HH. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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downloaded from the Danish Meteorological Institute (Danish Meteo-
rological Institute, 2023). The positions of the two stations are marked in 
Fig. 1. The southern part of the AOI has a higher iceberg density, which 
compensates for the larger distance of the southern weather station. 
Therefore, the overall temperature profile for our AOI was calculated as 
a daily average between the data from the two stations. 

3. Methods 

3.1. Method outline 

As mentioned in Section 1, the main goal of this study is to compare 
the capability of C- and L-band SAR for detecting icebergs in level and 
rough sea ice under different seasonal conditions. To achieve this goal, 
we used the backscatter contrasts at HH- and HV-polarization between 
icebergs and the surrounding sea ice as a proxy for detectability. 
Therefore, we extracted the backscatter values for icebergs and sea ice 
and calculated the contrast for the entire timeseries (Sect. 3.3). Since we 
have to distinguish between level and deformed sea ice, a segmentation 
of the two types within our AOI was performed first (Sect. 3.2). A pe-
culiarity of the radar response at L-band is the occurrence of time- 
delayed reflections which we discuss in Sect. 3.4. 

In subsequent analyses presented in section 4 we explored whether 
the seasonal pattern of the backscattering contrast between icebergs and 
sea ice reveals any distinct seasonal patterns due to temperature varia-
tions, which is the case for sea ice backscatter (Haas, 2001; Casey et al., 
2016; Yackel et al., 2007). Based on this analysis, the data were sepa-
rated into freezing and melting periods. For each period, we investigated 
the variations of the backscattering coefficients from icebergs and sea 
ice for both C- and L-band to determine overlaps between the classes. 
This part of the study will also help to define boundaries in the back-
scatter at HH- and HV-polarization that might be useful for separating 
iceberg and sea ice signatures and improve existing detection 
algorithms. 

3.2. Segmentation of level and deformed sea ice 

A semi-automatic method was used to segment the fast ice into re-
gions containing predominantly level and deformed sea ice. The seg-
mentation was based on the observation that deformed ice generally 
exhibits higher backscatter values than level ice at both C- and L-band 
during winter (Dierking, 2010; Guo et al., 2022). Because we focus on 
fast ice, high backscattering, e.g., from pancake or brash ice or from 
frost-flower covered young ice in refreezing leads, can be excluded. 
Since the distribution of deformed and level ice does not change within 
the fast ice in the AOI, segmentation could be performed on images 
acquired before melt. For both 2019 and 2020, a single Sentinel-1 and a 
single ALOS-2 image were chosen for the segmentation. The images 
were manually selected based on appearance, showing strong visual 
distinction between level and deformed sea ice. The Sentinel-1 images 
were acquired on 2019-04-27 and 2020-04-09, and the ALOS-2 images 
on 2019-05-12 and 2020-04-26. 

For each of the years, the two images were then stacked into a single 
image containing four bands (HH- and HV-polarization for both C- and 
L-band) and then processed by applying a Simple Linear Iterative 
Clustering (SLIC) segmentation algorithm (Achanta et al., 2012) using 
the scikit-image library (van der Walt et al., 2014) in Python. The SLIC 
algorithm uses a K-means approach to generate super-pixels, i.e., regions 
with high statistical similarity of the backscatter in the image. The SLIC 
algorithm used here was initialized with 1000 segments and a pre- 
processing Gaussian kernel of width 4 to reduce the speckle noise. 
Before applying the SLIC algorithm, each band of the image was trun-
cated to the 5 and 95 quantiles decibel values, and then scaled to values 
between 0 and 1. 

The resulting super-pixel polygons from the segmentation algorithm 
were then manually classified as either level or deformed sea ice. This 

was done by looking at the average backscatter levels within each 
segment and marking low-backscatter segments as level and high- 
backscatter segments as deformed. This manual classification was 
aided by optical Sentinel-2 images where in doubt. The area outside the 
mid-July fast-ice edge was marked as drift ice and thus not used in the 
study. This approach greatly eased the process of classification 
compared to drawing all the polygons by hand. 

The resulting classified images are shown in Fig. 3. For 2019, 124 
icebergs were located in level ice and 177 in deformed ice. For 2020, 
only 43 icebergs were found in level ice (because of a lower areal frac-
tion of this ice type), and 313 in deformed ice. 

3.3. Time-delayed reflections 

A peculiarity that was observed in the ALOS-2 images was that the 
main backscatter return of the icebergs did not appear at the exact 
location of the iceberg polygons derived from the Sentinel-2 images. 
Rather the main reflection from the icebergs typically appeared some 
hundreds of meters down-range from the polygons. This shift is not 
caused by bad geolocation of the ALOS-2 images since the land and sea- 
ice boundaries are placed at the correct location, as seen in the optical 
images. The phenomenon was also observed in high-resolution ALOS-2 
Stripmap images of the AOI (Fig. 4, top right) and have previously been 
observed for icebergs in open water as well (Færch et al., 2023). 

Gray and Arsenault (1991) reported that icebergs could cause time- 
delayed reflections when imaged with L-band SAR. This was caused by 
the lower attenuation loss of the L-band signal in ice compared to the C- 
band signal, which means that radar signals penetrate the iceberg 
completely and are reflected from the bottom and the side walls. This 
means that from an L-band SAR perspective, the main and strongest 
reflection does not appear at the true location of the iceberg but rather a 
few hundred meters down range, due to the longer traveling path of the 
radar signal through the iceberg. Therefore, we extracted the back-
scatter values from the main reflection down-range which requires to 
consider the time delay of the signal, i.e., the spatial shift between the 
true location of an iceberg (from the Sentinel-2 imagery) and the 
backscatter maximum in the ALOS-2 image. 

An exact calculation of the time delay of a single iceberg as a function 
of radar incidence angle is not possible, since it depends in addition on 
the sometimes very complex iceberg geometry (shape, height, length, 
width), the effective dielectric constant, the properties of potentially 
present snow and firn layers on the iceberg surface and any saline ice 
layers frozen to the iceberg. 

The height of the icebergs could be inferred from the bathymetry 
assuming that they are all grounded. However, this assumption might 
not always hold for small icebergs that have broken off from larger bergs 
just before the consolidation of the land-fast ice. Additionally, the ba-
thymetry data for the area also have uncertainties due to the sparse 
sampling in this region (Arndt et al., 2015), which necessarily adds 
uncertainty to the dataset. 

In addition, the radar signal path in the iceberg may be variable as 
discussed in Gray and Arsenault (1991) and in Dierking and Wesche 
(2014). As multiple reflections within the iceberg (e.g., between bottom, 
side walls, and surface) may increase the time-delay and cause a more 
complex backscattering response of the iceberg, which again depends on 
the internal geometry of the icebergs. 

Therefore, we developed a simple automatic matching method to 
identify the main backscatter reflection from each iceberg based on the 
observed backscatter intensities. This was done by iteratively shifting 
the iceberg polygons down-range in steps of 25 m, starting from 0 m and 
with a maximum distance of 350 m. Since a majority of the measured 
time delays were in the order of 50–200 m, a maximum distance of 350 
m was chosen as an appropriate upper boundary. For each step, the 
average HV backscatter was calculated, and the original polygon was 
moved to a new location corresponding with the maximum backscatter 
within the (see Fig. 4). The HV backscatter was used here since it was 
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observed that the contrast between icebergs and sea ice is significantly 
higher in the HV band compared to the HH band, this is e.g., seen in 
Figs. 2 and 4 where the icebergs in L-band is clearly distinguishable by 
their red colour. This may be explained by a recent study which reports 
that cold icebergs at L-band show a predominance of volume scattering 
(Bailey and Marino, 2020). 

All time delays determined as described above were in the range 
between 0 and 300 m. In order to avoid mixing signals of neighboring 
icebergs, all icebergs with neighbors closer than 400 m were discarded 
from the analysis as described in Section 2.3. The process was repeated 
for all icebergs in all ALOS-2 images, as different orbits and meteoro-
logical conditions are also expected to affect the penetration and thus 
time delay. 

3.4. Extraction of backscatter and contrast values 

All icebergs in the dataset were classified according to the predom-
inant sea ice type in which they were embedded (level or deformed), 

using the results from the segmentation in Section 3.2. Then, for each 
iceberg, a single backscatter value was extracted using the iceberg 
polygon. This was done by calculating the average backscatter (in linear 
intensity) of all the pixels that were touched by the polygon. The number 
of pixels used for calculating this average backscatter thus varies ac-
cording to the size of the iceberg. 

The backscatter of the surrounding sea ice (background) was also 
extracted for each iceberg. This was done using a window of 1600 ×
1600 meters centered around the iceberg. Here, the iceberg polygons 
were used to mask out icebergs from the background to avoid contam-
inating the background backscatter with iceberg samples. In addition, if 
the icebergs were located close to an edge between different sea ice 
classes, the smallest class was also masked to avoid contamination. As 
such, the number of pixels used to estimate the background backscatter 
levels also varies depending on iceberg size, location of nearby icebergs, 
and variations of sea ice deformation. But generally, the average back-
ground backscatter is estimated using a larger number of pixels than the 
iceberg backscatter. As above, the calculation of the average sea ice 

Fig. 3. Sea ice segmentation for 2019 (top) and 2020 (bottom) using the Sentinel-1 (left) and ALOS-2 images (center). The segmentation results (right) show level sea 
ice (green), deformed sea ice (purple), and drift ice (transparent gray). The AOI is marked with a blue polygon. The SAR images are colored as red: HV, green: HH, 
blue: HH. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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backscatter was also performed in the linear intensity domain. 
The extraction of the average intensities was done for each iceberg in 

each scene. For the ALOS-2 images, the iceberg polygons were corrected 
as described in Section 3.3. Then, the contrast was calculated for each 
iceberg as the ratio between the means of iceberg and sea ice back-
scatter. The results were then grouped according to several parameters 
such as sensor, acquisition date, satellite orbit, polarization, and sea ice 
type. The calculations were done using Python 3.10, with the Numpy 
(Harris et al., 2020), GeoPandas (Jordahl, 2014), and Rasterio (Gillies 
et al., 2013) libraries. 

3.5. Automatic iceberg detection 

In addition to an analysis of the backscatter, an automatic iceberg 
detection algorithm was tested on selected images to compare the 
detection rate for icebergs in level and deformed sea ice using C- and L- 
band images, respectively. For this purpose, a commonly used iceberg 
detection algorithm of CFAR type was applied to two Sentinel-1 and two 
ALOS-2 images respectively. For both sensors, we chose one image from 
2019 and one image from 2020. The first Sentinel-1 and ALOS-2 images 
were acquired on April 27th, 2019, with the ALOS-2 image from orbit D 
and the Sentinel-1 image from orbit 126 (see Fig. 1). Also in 2020, both 
images were acquired on April 27th, from orbit B (ALOS-2), and orbit 
126 (Sentinel-1). Hence, the algorithm could be tested on images 
covering two distinct ice conditions. Since the ALOS-2 and Sentinel-1 
images are in different native resolution, the ALOS-2 images were 
resampled to the same pixel spacing as the Sentinel-1 images using 
nearest neighbor interpolation. 

A Normalized Intensity Sum (NIS) detector was chosen to find out-
liers (Liu, 2015). When applied to dual-pol data, the NIS detector works 

by calculating a new channel as the sum of normalized intensities of the 
HH and HV channels. If we assume that the individual HH and HV 
channels follow a gamma distribution, then the NIS channel also follows 
a gamma distribution. As such, a gamma based CFAR detector can then 
be applied to the NIS channel to delineate outliers (Færch et al., 2023). 

For the CFAR detector we used a probability of false alarm rate of 1e- 
14. Clutter estimation was carried out in a circular window with a 
diameter of 17 pixels, corresponding to 680 m at 40-m pixel spacing, and 
with a circular guard region with a diameter of 10 pixels, corresponding 
to 400 m. This means that the detector is optimized for icebergs smaller 
than 200 m in length, while it should also be able to detect slightly larger 
icebergs. The detection algorithm uses a fixed clutter region, i.e., it does 
not adapt to icebergs within the clutter estimation window, which 
means that the method is not optimal in areas with a high iceberg 
density due to the risk of iceberg pixels being included in the clutter 
estimation window. 

Since the algorithm marks pixel outliers, groups of connected pixels 
were merged into polygons for further analysis. Here, polygons of a size 
of 3 pixels or smaller were discarded to avoid too many false positives 
caused by speckle. The computed polygons were then compared with 
the Sentinel-2 iceberg polygons. As mentioned earlier, icebergs smaller 
than 100 m in length were ignored, and icebergs outside the fast-ice 
edge were also removed from the analysis. To account for the time- 
delayed reflections at L-band, all detections from ALOS-2 were moved 
up-range by a fixed distance corresponding to the average time-delay for 
all the analysed icebergs. The distances were 100 m for the image ac-
quired on 2019-04-27, and 160 m for the image from 2020 to 04-27. 
Icebergs in distances ≤400 m from other icebergs (i.e., icebergs in 
clusters) that were previously removed were kept in the validation data 
for this test. This procedure resulted in a total of 879 icebergs for 2019 

Fig. 4. Time-delayed reflection in L-band SAR images. The main reflection in the SAR image does not correspond with the location of the iceberg polygons from 
Sentinel-2 (blue outline). The edge between level and deformed sea ice in the SAR image, however, matches the boundary from the optical image (red dotted line). An 
automatic matching algorithm finds the main reflection down-range (cyan outline), by shifting the polygons downrange (yellow arrow). The SAR images are colored 
as red: HV, green: HH, blue: HH. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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(with 587 icebergs embedded in deformed sea ice, and 292 in level sea 
ice) and 909 icebergs for 2020 (767 in deformed sea ice and 142 in level 
sea ice). 

The results were then divided into three categories. 1) If an iceberg 
identified in the Sentinel-2 reference data was overlapped by a polygon 
detected by the CFAR algorithm, the iceberg was marked as a true 
positive (TP). 2) If a Sentinel-2 iceberg polygon was not overlapped by a 
CFAR polygon, then the iceberg was marked as a false negative (FN). 3) 
CFAR polygons that did not overlap with a Sentinel-2 polygon were 
marked as false positives (FP). To further evaluate the performance, we 
also calculated the precision and recall, 

Recall =
TP

TP + FN  

Precision =
TP

TP + FP 

As such, a low recall indicates a high number of false negatives 
compared to the number of true positives, while a low precision in-
dicates a high number of false positives compared to the number of true 
positives. 

Finally, the results were separated between level and deformed ice 
according to the outcome of the sea ice segmentation (Section 3.2), to 

distinguish the performance for icebergs in level and deformed sea ice. 

4. Results 

4.1. Backscatter contrast timeseries 

In Figs. 5 and 6, the average backscatter contrasts between icebergs 
and their background are plotted for Sentinel-1 and ALOS-2 for each of 
the image acquisition dates. In the figures, we have also plotted the 
average daily temperature for the region. In addition, the different orbits 
used for each image have been marked to consider the influence of 
different incidence angles on the contrast. The backscatter contrast time 
series for Sentinel-1 are plotted in Figs. 5 for 2019 and 2020, respec-
tively, while Fig. 6 show the ALOS-2 backscatter contrast time series for 
the two years, respectively. 

The figures show that both Sentinel-1 and ALOS-2 offer a high 
contrast between icebergs and level sea ice during the beginning of each 
time series when temperatures are well below zero degrees Celsius, and 
that this contrast is higher for the HV polarization than for HH polari-
zation. Additionally, we observe a decrease in the contrast when tem-
peratures are close to or exceed 0 ◦C. For Sentinel-1, this decrease is 
clearly visible for level sea ice, while for ALOS-2, the decrease is visible 
for both sea ice types. 

Fig. 5. Backscatter contrast for Sentinel-1 in 2019 (top) and 2020 (bottom). The contrast between level sea ice and icebergs (green) and deformed sea ice and 
icebergs (purple) are plotted for HV (full line) and HH (dashed line). The markers indicate the orbit numbers from Fig. 1. The daily temperature is plotted in the 
background (red), with shading indicating the fluctuations between daily minimum and maximum temperature. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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Figure 5 reveals a high contrast for level sea ice throughout spring 
(8–12 dB for HV and 4–5 dB for HH). Around the onset of melt, the 
contrast is sharply decreasing down to 0 ±2 dB for both HV and HH. For 
deformed ice, the contrast is significantly lower during the spring, with 
values around 2–4 dB for HV and around 0–2 dB for HH. At the onset of 
melt, the contrast for deformed ice decreases slightly down to around 
0–2 dB. There are large similarities between 2019 and 2020, although 
2019 exhibits slightly higher contrast during the spring than 2020. 

Comparing ALOS-2 (Fig. 5) to Sentinel-1 (Fig. 6), an overall higher 
contrast is recognized during spring for both level and deformed ice at 
both HH- and HV-polarization. For level ice, the contrast varies between 
10 and 14 dB for HV, and 6–8 dB for HH, while for deformed sea ice it 
varies around 8–10 dB for HV and remains stable around 4 dB for HH. 
Like the contrast for Sentinel-1, the contrast for ALOS-2 also shows a 
sharp decrease after the onset of summer melt. However, where the 
contrast for Sentinel-1 during the thawing season decreases to around 0 
±2 dB, the ALOS-2 contrast remains higher, with magnitudes around 6 
dB for level sea ice and 4–5 dB for deformed sea ice. 

The ALOS-2 contrast plot shows a large variation during the spring, 
especially for level sea ice which varies around 11–16 dB for 2019, and 
10–14 dB in 2020 for the HV polarization. This variation correlates with 
the orbit numbers, with orbit D showing the lowest contrast and orbit A 
showing the highest. Referring to the overview plot in Fig. 1, we note 

that orbit A corresponds to near-range in the image (low incidence an-
gles), and D to far-range (high incidence angles). This suggests that the 
contrast for ALOS-2 is highly sensitive to the incidence angle, with low 
incidence angles offering better detectability of icebergs. 

Based on the contrast plots, our dataset can be divided into two main 
categories as a function of the air temperature. We denote these con-
ditions freezing and thawing, where thawing has been defined as starting 
at the first day on the year when the average temperature for the past 
five days exceeds 0◦, which was on June 4th, 2019, and May 28th, 2020. 

4.2. Seasonal scatterplots 

To investigate the relationship between backscattered intensity from 
icebergs and the two main sea ice types more in detail, we have plotted 
the intensities for Sentinel-1 and ALOS-2 in Figs. 7 and 8, respectively. 
The plots highlight the distributions of the backscatter and the corre-
lation between polarizations for the three classes. This is helpful for 
separating the various classes and selecting the optimum detectors for 
finding icebergs in areas with a high sea ice concentration. The results 
were separated into freezing and thawing seasons depending on the 
average temperature as described in Section 4.1. Fig. 7 shows the results 
for Sentinel-1 (C-band), with the top row containing data from 2019 and 
the bottom row for 2020. The left column shows the data under freezing 

Fig. 6. Backscatter contrast for ALOS-2 in 2019 (top) and 2020 (bottom). The contrast between level sea ice and icebergs (green) and deformed sea ice and icebergs 
(purple) are plotted for HV (full line) and HH (dashed line). The markers indicate the orbit numbers from Fig. 1. The daily temperature is plotted in the background 
(red), with shading indicating the fluctuations between daily minimum and maximum temperature. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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conditions, while the right column shows the data under thawing con-
ditions. Fig. 8 is organized similarly for ALOS-2 (L-band). 

It should be mentioned that since we merge data from different orbits 
without applying any form of incidence angle correction, we expect the 
scatter plots to exhibit a higher overall variance than if the data points 
were corrected to a common incidence angle. This is especially true for 
ALOS-2, which, as shown above, appears more sensitive to the incidence 
angle than C-band. To account for this, we have added orbit markers to 
the observations to make the interpretation easier. 

In addition to the figures, we have also summarized the results for 
Sentinel-1 in Table 2 and for ALOS-2 in Table 3. Here, we show the slope 
(m) and Pearson correlation coefficient (ρ) of fitting a linear model to 
the data points, and additionally the mean (μ) and standard deviation 
(σ) are shown for HH and HV polarization respectively. The data have 
been separated into freezing and thawing seasons similarly to the figures 
and show the results for each of the three classes separately, i.e., icebergs 
(IB), level sea ice (LSI), and deformed sea ice (DSI). 

Inspection of both the figures and the tables reveals that there is a 

Fig. 7. Sentinel-1 backscattering intensities for all icebergs and their background of deformed or level ice for 2019 (top row), and 2020 (bottom row), and for both 
freezing (left) and thawing (right) conditions. 
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high similarity between the data collected from 2019 and 2020. This is 
seen for both Sentinel-1 and ALOS-2, and for both freezing and thawing 
conditions. It is most evident for the mean backscatter (μ) and standard 
deviation (σ) in Tables 2 and 3. The mean backscatter typically varies 
around 1–2 dB for both C- and L-band, for both years, and seasons, and 
for all three classes. This is within a single standard deviation which is 
between 1 and 4 dB. These large similarities between the two years 
suggests that the results are of general validity in the AOI also for other 
years. However, inspection of the figures does reveal some minor in-
consistencies. For Sentinel-1, we see a large subclass from orbit 97 in 
2020 under freezing conditions, with lower HV and higher HH intensity 
than the average. Similarly, a subclass of higher HH scattering is seen for 
ALOS-2, freezing conditions for 2020, acquired from orbit B. These two 

cases are likely caused by precipitation, which is further detailed in 
Section 5.3 Other minor difference between the years can likely be 
attributed to the fact that the images used in the study cover slightly 
different periods, with different temporal gaps in the timeseries as seen 
in Figs. 5 and 6. In addition, it is expected that local ice conditions may 
vary slightly between the years, which could explain some of the dif-
ferences between the years. 

Both sea ice classes generally exhibit a strong correlation between 
HH and HV polarization. This is visible both in Figs. 7 and 8 and in 
Tables 2 and 3, with a correlation coefficient above 0.7 for both sea ice 
types and seasons for Sentinel-1, and above 0.6 for ALOS-2. The high 
correlation between HH and HV bands for level and deformed sea ice is 
consistent with results reported in the literature (Dierking, 2010; 

Fig. 8. ALOS-2 backscattering intensities for all icebergs and their background of deformed or level ice for 2019 (top row), and 2020 (bottom row), and for both 
freezing (left) and thawing (right) conditions. 
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Dierking and Wesche, 2014). The correlation for the iceberg class is 
much lower, with a correlation coefficient for Sentinel-1 between 0.58 
and 0.66 for freezing conditions, and between 0.38 and 0.46 for thawing 
conditions. For ALOS-2, the correlation for the iceberg class is slightly 
higher, with values between 0.65 and 0.70 for both seasons. The lower 
correlation for icebergs may be explained by complex scattering mech-
anisms caused by the highly variable geometry at different spatial scales, 
which is typical for many icebergs. In our investigation, we did not 
separate icebergs according to their sizes and types (the latter cannot be 
characterized from satellite images). One has also to consider that the 
iceberg polygons obtained from Sentinel-2 images might not completely 
align with the positions of the SAR backscatter returns, causing addi-
tional variations in the results of the backscatter intensity. Another 
factor to consider is the varying window size used to estimate the 
average backscatter values. The iceberg backscatter is generally esti-
mated in smaller windows than the sea ice backscatter as mentioned 
earlier, which will lead to a higher variance. 

Under freezing conditions, we obtain a much higher correlation co-
efficient for deformed sea ice than for level sea ice. This is both evident 
in Figs. 7 and 8, and in Tables 2 and 3. For ALOS-2, the correlation 
coefficient is 0.63 for level sea ice and 0.92 for deformed sea ice for 
2019, and 0.86 and 0.93 for 2020, while for Sentinel-1 the correlation 
coefficient is 0.73 for level sea ice and 0.97 for deformed sea ice for 
2019. For 2020, the trend of higher correlation for deformed sea ice is 
not equally visible for Sentinel-1, with correlation coefficients of 0.88 
and 0.85 for level and deformed sea ice respectively. This lower corre-
lation for deformed sea ice in 2020 might be due to the influence of 
precipitation during acquisitions on orbit 97 mentioned earlier. In 
general, the lower correlation coefficient for level sea ice during freezing 
conditions might be caused by the overall lower backscatter intensity of 
this ice type, which is around -33 dB for both ALOS-2 and Sentinel-1 in 
the HV band. These low backscatter intensities are at the noise level (and 
below the nominal average NESZ for ALOS-2 as seen in Table 1), which 
decreases the linear correlation coefficient. For ALOS-2, the 

measurements also appear to show a cut-off of HV values around -35 dB 
as seen in the left row of Fig. 8 We do not know the exact reason, but the 
most presumable cause is that it is related to the noise level. 

Regarding the influence of melt onset on the backscatter of the sea 
ice classes, the greatest impact for Sentinel-1 appears to be the increase 
in backscatter for level sea ice, with an increase of around 2 dB for the 
HH band and 5 dB for the HV band, and the decrease of backscatter from 
deformed sea ice, of around 3 dB for HH and 5 dB for HV. This means 
that the two sea ice classes converge towards the same average back-
scatter under thawing conditions, at around -16 dB for the HH band and 
-28 dB for the HV band, and with similar slopes and correlation coeffi-
cient as well. For Sentinel-1, the melt onset also gives rise to a lower 
variance of the sea ice classes. This can be attributed to an increase of 
scattering from larger brine-wetted snow grains on level ice and a slight 
decrease in backscatter from deformed (older) ice because of reduced 
penetration into the ice volume, all in all leading to similar backscatter 
from both level and deformed sea ice (Casey et al., 2016). As the stage of 
the melt advances later in the season, we expect that the wet ice surface 
gives rise to a dominance of surface scattering. The similarity of back-
scattering between the sea ice classes can also be seen in Fig. 2, where 
the two sea ice classes become indistinguishable in the two images ac-
quired later in the season compared to the image acquired early in the 
season. A similar observation was reported by Yackel et al. (2007), 
where for melt onset, the backscatter for first-year ice (FYI) was reported 
as being higher than for multi-year ice (MYI) for C-band SAR. For ALOS- 
2, the level sea ice class shows an increase in backscatter after melt onset 
of around 5 dB for both HH and HV. The corresponding numbers for 
deformed sea ice are 1-2 dB for HH and 2-3 dB for HV. Hence the two sea 
ice classes become less separable also at L-band after melt onset, with 
similar mean backscatter, variance, and slope under melting conditions 
for the two sea ice types. 

Looking at the iceberg class, there appears to be a smaller influence 
of thawing conditions on ALOS-2 imagery compared to Sentinel-1. For 
Sentinel-1, the mean backscatter for icebergs decreases by around 2 dB 

Table 2 
Main parameters characterizing the backscatter intensity for Sentinel-1. The slope (m), Pearson correlation coefficient (ρ), mean (μ) and standard deviation (σ) are 
calculated for each of the three classes icebergs (IB), level sea ice (LSI), and deformed sea ice (DSI), for 2019 and 2020. The results are separated according to freezing 
and thawing conditions.  

Sentinel-1  

2019 2020  

Freezing Thawing Freezing Thawing  

IB LSI DSI IB LSI DSI IB LSI DSI IB LSI DSI 

m 0.46 0.49 0.65 0.38 0.58 0.68 0.36 0.52 0.47 0.36 0.89 0.84 
ρ 0.66 0.73 0.97 0.38 0.89 0.70 0.58 0.88 0.85 0.46 0.92 0.86 
μhh − 13.22 − 18.65 − 13.23 − 15.57 − 16.17 − 16.79 − 12.87 − 17.70 − 13.00 − 15.06 − 15.79 − 16.52 
μhv − 23.04 − 33.25 − 23.86 − 27.49 − 28.16 − 29.21 − 23.22 − 32.01 − 24.29 − 27.46 − 27.80 − 29.06 
σhh 1.99 1.59 2.49 1.81 1.06 1.18 1.83 1.85 1.84 1.77 2.00 1.54 
σhv 2.85 2.37 3.72 1.82 1.64 1.21 2.98 3.10 3.34 2.27 2.07 1.58  

Table 3 
Main parameters characterizing the backscatter intensity for ALOS-2. The slope (m), Pearson correlation coefficient (ρ), mean (μ) and standard deviation (σ) are 
calculated for each of the three classes icebergs (IB), level sea ice (LSI), and deformed sea ice (DSI), for 2019 and 2020. The results are separated according to freezing 
and thawing conditions.  

ALOS-2  

2019 2020  

Freezing Thawing Freezing Thawing  

IB LSI DSI IB LSI DSI IB LSI DSI IB LSI DSI 

m 0.45 0.63 0.81 0.53 1.05 0.94 0.46 1.23 1.02 0.51 0.94 0.95 
ρ 0.65 0.63 0.92 0.68 0.94 0.95 0.65 0.86 0.93 0.70 0.79 0.84 
μhh − 14.61 − 21.58 − 17.35 − 14.16 − 16.20 − 15.10 − 13.45 − 20.43 − 16.14 − 13.81 − 16.48 − 15.16 
μhv − 21.46 − 33.29 − 28.82 − 22.82 − 27.75 − 25.97 − 20.85 − 32.01 − 28.00 − 22.40 − 27.93 − 26.52 
σhh 2.99 1.97 2.11 2.24 2.26 1.90 3.02 3.37 2.74 2.50 2.30 2.26 
σhv 4.38 1.97 2.42 2.91 2.03 1.93 4.25 2.36 2.50 3.47 1.94 2.00  
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for the HH band and 4 dB for the HV band at the onset of melting 
conditions, while for ALOS-2 the HH band is unaltered by the melt onset 
while the HV band shows a decrease around 1 dB after melt onset. The 
slope and correlation coefficient for ALOS-2 is also more stable for the 
iceberg class after the melt onset compared to Sentinel-1. This could be 
caused by the higher penetration depth of L-band, making ALOS-2 less 
influenced by wet snow or water on the iceberg's surfaces compared to 
C-band. For both Sentinel-1 and ALOS-2, there is a slight decrease in 
standard deviation after the onset of melt, which is most significant for 
ALOS-2. 

Sentinel-1 shows a consistent large overlap between the iceberg and 
sea ice backscattered intensities (Fig. 7). For freezing conditions, the 
overlap is especially large between the iceberg and deformed sea ice 
class, while there is still good separation between the iceberg and level 
sea ice class. For thawing conditions, there is a large overlap between 
the iceberg class and both sea ice classes. These observations compare 
well with the observations from Section 4.1 and demonstrates that it is 
very difficult to determine intensity thresholds for separating sea ice and 
iceberg radar responses using C-band SAR. For ALOS-2, the intensities of 
the iceberg class are consistently shifted towards higher HV backscatter 
compared to both sea ice classes for both freezing and thawing condi-
tions. This can also be seen in Fig. 2, where the iceberg in the subset is 
consistently visible as red (HV) blobs. 

This enables us to separate icebergs and sea ice more easily using L- 
band than at C-band, suggesting that L-band is better suited for detecting 
icebergs in sea ice. Preferably the separation should be done using a 
combination of HH- and HV-polarizations. And separation is easier 
under freezing conditions. 

4.3. CFAR results 

The results of the CFAR detector outlined in Section 3.5 is shown in 
Tables 4 and 5 for Sentinel-1 and ALOS-2 respectively. In addition, a 
small subset of the results is shown in Fig. 9, giving an impression of the 
quality of automatic iceberg detection by separating the true positives 
(green), false detections (red), and missed detections (yellow). 

We found that for 2019, Sentinel-1 has a decent precision (0.67) and 
recall (0.57) for icebergs in level sea ice, and a poor precision (0.21) and 
recall (0.07) for icebergs in deformed sea ice (Table 4). For 2020, the 
results are even worse with a precision and recall for level sea ice at 0.23 
and 0.42 respectively, and 0.06 and 0.06 respectively for deformed sea 
ice. This is also reflected in the number of false positives and false 
negatives, with a very high number of false negatives in deformed sea ice 
for 2019, and a high number of both false positives and negatives for 
deformed sea ice in 2020. The results show that Sentinel-1 under some 
conditions performs well in detecting icebergs in level sea ice, although 
with a high number of false negatives in 2019 and a high number of false 
positives in 2020. For deformed sea ice, Sentinel-1 generally performs 
very poor, with a very low number of true positives compared to the 
number of false positives and negatives. This is also obvious from Fig. 9, 
where Sentinel-1 has not been able to detect any of the icebergs in 
deformed sea ice. 

The results for ALOS-2 in Table 5 shows better results across all 

scores, with a precision above 0.9 for both sea ice types in 2019, and a 
decent recall as well. For 2020, the results are slightly worse, but still 
better than for Sentinel-1, with a precision above 0.75 and recall at 0.65 
and 0.49 for level and deformed sea ice respectively. ALOS-2 thus shows 
much better performance for detecting icebergs in both level and 
deformed sea ice, with a much higher number of true positives, and 
lower number of false positives and negatives. 

Although ALOS-2 shows significantly better results than Sentinel-1, a 
considerable number of icebergs were not detected, with the total 
number of false negatives being comparable with the number of true 
positives. Further investigation revealed that the detection accuracy 
increased with increasing iceberg size, and visual inspection of the re-
sults revealed that many of the missed detections were found in places 
where icebergs were located in clusters, as e.g., seen in the top right and 
right side of Fig. 9. This suggests that some of the false negatives could 
be due to the CFAR detector falsely interpreting spots of high areal 
iceberg densities as background clutter, thus lowering the probability of 
detection in these areas. These types of errors could be avoided in the 
future by truncating high intensity pixels (Tao et al., 2016). The clusters 
of icebergs often originate from a break-up of a single larger iceberg, 
where the broken pieces remain closely together because of the sur-
rounding fast ice or because they are grounded. This will less likely 
occur for icebergs moving in drifting sea ice. Inspection of Fig. 9 also 
reveals that many of the missed detections are icebergs of medium size 
which means that perhaps the performance could be further increased 
by tuning the probability of false alarm rate or the window size of the 
CFAR detector. We expect that better performance can be achieved by 
applying the detector to the data in the original pixel spacing (25 m), 
instead of the down-sampled data (40 m), which we use here to match 
the Sentinel-1 resolution. Seen from the perspective of operational 
iceberg monitoring, the large number of missed detections gives cause 
for concern and needs to be investigated in more detail. This, however, 
was beyond the scope of this study. 

5. Summary 

Comparison of both the timeseries contrast plots (Figs. 5 and 6), and 
the scatterplots (Figs. 7 and 8), shows a large similarity between the data 
gathered from 2019 and 2020. This suggests that the results are of 
general validity for the investigated area, with some small in-
consistencies which we attribute to the different meteorological condi-
tions and temporal gaps in our timeseries. 

Figures 5 to 8 and Tables 2 and 3 all suggest that Sentinel-1 (C-band) 
only offers a satisfactory separability between level sea ice and icebergs 
under freezing conditions and not under thawing conditions. Addition-
ally, Sentinel-1 is not able to distinguish between icebergs and deformed 
sea ice at all, which also suggests that small floes of deformed sea ice 
embedded in level sea ice could be misinterpreted as icebergs when 
using C-band for iceberg detection. 

ALOS-2 on the other hand, can distinguish between icebergs in both 
level and deformed sea ice, and although the performance is much 
higher under freezing conditions, the classes can still be separated under 
thawing conditions as well. 

Table 4 
Results of applying the CFAR algorithm to two Sentinel-1 (C-band) images from 
the spring of 2019 and 2020 respectively.   

Sentinel-1  

2019-04-27 2020-04-27  

Level SI Deformed SI Total Level SI Deformed SI Total 

FP 82 162 244 198 670 868 
FN 126 543 669 83 721 804 
TP 166 44 210 59 46 105 
Precision 0.67 0.21 0.46 0.23 0.06 0.11 
recall 0.57 0.07 0.24 0.42 0.06 0.12  

Table 5 
Results of applying the CFAR algorithm to two ALOS-2 (L-band) images from the 
spring of 2019 and 2020 respectively.   

ALOS-2  

2019-04-27 2020-04-27  

Level SI Deformed SI Total Level SI Deformed SI Total 

FP 13 26 39 20 127 147 
FN 95 347 442 50 394 444 
TP 196 241 437 92 373 465 
Precision 0.94 0.90 0.92 0.82 0.75 0.76 
recall 0.67 0.41 0.50 0.65 0.49 0.51  
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The results are further supported by comparing the performance of a 
CFAR detection algorithm run on two C-band and two L-band images all 
acquired during the spring. Here, we also saw that L-band offered a 
much better performance than C-band for detecting icebergs in sea ice. 
All in all, the results suggest that L-band SAR is superior for detecting 
icebergs in areas with sea ice if compared to C-band. Furthermore, to 
minimize misclassifications, a detector designed for finding icebergs in 
L-band SAR images should be based on a combination of HH- and HV- 
polarization rather than applying separate thresholds to the two 
polarizations. 

6. Discussion 

6.1. Automatic matching of the L-band time delay 

Validating backscatter values from icebergs at L-band was only 
possible by considering time-delayed reflections. As noted in Section 
3.3, the time delay depends on, e.g., geometry, dielectric properties, and 
internal structure of an iceberg, and the presence of water or wet snow 
on the surface. To account for the time delay when collecting validation 
data, we opted for a pragmatic approach by shifting the iceberg polygon 
down-range to a location that maximizes the HV backscatter return. An 
issue with this approach is that if iceberg radar returns are too weak to 
be distinguishable from the surrounding sea ice, we risk finding and 
including local maxima caused by sea ice scattering, and thus artificially 
increasing the average contrast, especially during the thawing season, 
when the sea ice backscatter for level sea ice is increased. This will give 
rise to a bias of the HV backscatter for icebergs – moving some of the 
ALOS-2 iceberg samples towards the right in Fig. 8, which will influence 
the overall contrast. To account for this, we performed a visual inspec-
tion of the SAR images with the focus on the time-delayed polygons of 
icebergs that were determined from the Sentinel-2 image. This inspec-
tion revealed that a majority of the corrected polygons overlapped with 
distinct backscatter maxima that could be distinguished from the sur-
rounding sea ice backscatter, and therefore was interpreted as coming 
from the icebergs. Based on the visual inspection, we have confidence 
that this bias does not change the overall conclusion of the results; 

namely that L-band is preferable to C-band. 

6.2. Variation of contrast as a function of incidence angle for L-band 

From Fig. 6 it is evident that the backscatter contrast and the orbit of 
ALOS-2 are related, since orbits A and B exhibit a generally higher 
contrast than orbits C and D. This is most likely caused by the differences 
in incidence angles covering the AOI between the orbits (see Fig. 1) and 
different sensitivities (slopes) of the sea ice and the iceberg backscatter 
to changes in incidence angle. The fact that we do not see a similar 
response at C-band may indicate that the sensitivities of the back-
scattered intensities from sea ice and icebergs are similar, causing less 
variation in the contrast for varying incidence angles. As mentioned in 
Section 2.2, the ALOS-2 data were delivered without incidence angle 
information. Therefore, a thorough investigation of the influence of 
incidence angle on the contrast at L-band cannot be performed at this 
stage. 

6.3. Influence of precipitation 

In Fig. 7, for Sentinel-1 during freezing conditions in 2020, a cluster 
of deformed sea ice data from orbit 97 is recognized that reveals an 
increase in HH and a decrease in HV compared to the other observations. 
A detailed investigation showed that these outliers come from an image 
that was acquired on May 25th, 2020, which coincides with a precipi-
tation event observed at the Danmarkshavn weather station (Fig. 1) on 
May 24th, when 24 mm of precipitation was recorded. This appears to 
have influenced the ALOS-2 observations as well, with an increase in 
both HH and HV. This can be recognized in Fig. 8 for orbit B. The cor-
responding image was acquired on May 25th. Based on the temperature 
on May 24th, 2020, the precipitation was likely in the form of rain or 
possibly wet snow. 

The rest of the period (April–July) for both 2019 and 2020 saw very 
little precipitation. The monthly average for April–July 2019 was below 
10 mm, and for 2020 both April and June were below 10 mm, whereas in 
May and July the monthly precipitation was 32 and 21 mm, 
respectively. 

Fig. 9. Results of running the iceberg detection algorithms on the ALOS-2 L-band images (left), and the Sentinel-1C-band image (right) overlaid on a Sentinel-2 
image. Detected icebergs are marked with green, false detections with red, and missed detections with yellow. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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6.4. Influence of acquisition times 

The Sentinel-1 overpasses covering our AOI took place in the 
morning (08:00–08:30 UTC) and the ALOS-2 overpasses in the early 
afternoon (13:45–14:30 UTC), i.e., with a 6-h time difference. The 
temperature variation in the area (shown as the shaded red area in 
Figs. 5 and 6) is at around 6oC for a 24-h period. With this relatively 
large temperature difference, Sentinel-1 images were most probably 
acquired under conditions where it is several degrees colder than during 
ALOS-2 data takes. In the transition period between freezing and 
thawing conditions, C-band images may have been acquired during 
freezing, and L-band during thawing conditions. However, since quick 
temperature changes will mainly influence the surface layer of the snow, 
and since L-band is less sensitive to the surface layer, we expect that this 
temperature difference will not significantly affect our results. 

6.5. Advanced melt 

There are some minor indications that the contrast for C-band in-
creases during advanced stages of melt. This can be observed in Fig. 5, 
where the contrast towards the end of the time series is around 2 dB for 
both polarizations and for both level and deformed ice. This can also be 
observed in Fig. 2 (for the 2019-07-08 acquisition), where the icebergs 
at C-band appear to have a slightly higher backscatter level than the sea 
ice, although still exhibiting a lower contrast than at L-band. However, 
due to the break-up of the fast ice at the end of July for both 2019 and 
2020, we could not investigate the development of contrast further into 
the more advanced stages of the melt. 

6.6. Operational iceberg detection 

As we saw in Section 4.1, some orbits appeared to give a higher 
contrast between the icebergs and sea ice classes compared to other 
orbits, especially for ALOS-2 (L-band). Therefore, we expect that the 
orbit selection influences the performance of the CFAR detector. Due to 
the lack of incidence angle data for the ALOS-2 images we could not 
investigate this effect in depth. For our CFAR detection results, the first 
ALOS-2 image was acquired from orbit D, and the second from orbit B. 
Here, orbit D results in a relatively low contrast between icebergs and 
sea ice, while B gives a high contrast. For comparison, both Sentinel-1 
images were acquired from orbit 126, which were shown to give a 
relatively high contrast, although the influence of the acquisition orbit is 
not so pronounced at C-band compared to L-band. Since the perfor-
mance of L-band was much higher than C-band for both orbits, we do not 
expect that the conclusions change significant for acquisitions from 
different orbits. 

It should, however, be mentioned that the equivalent number of 
looks (ENL) is different for the two sensors, which might affect the re-
sults. The ENL of Sentinel-1 in EW mode is around 10.7 (Bourbigot et al., 
2016), whereas the ENL for ALOS-2 is not provided but probably smaller 
than the multi-look value of 6 (Table 1). This will likely affect the results 
as the ALOS-2 images are expected to have a slightly higher level of 
speckle noise. Nevertheless, the L-band image is proving to be clearly 
superior to C-band, so we do not expect that an ENL similar for both 
sensors change the results significantly. 

6.7. Extending the results for detecting icebergs in drift ice 

To accurately validate our results and consider temporal variations 
of radar backscattering, we were restricted to using a dataset consisting 
of stationary icebergs in land-fast sea ice because optical and radar 
images over a given area were only available with considerable time 
gaps. Nevertheless, we expect that our conclusions are also valid for 
detecting icebergs in drifting sea ice – at least for the sea ice types that 
we have focused on in this study. However, special cases may require 
additional analyses, such as icebergs embedded in brash ice, pancake 

ice, or in ice covered with frost flowers. 

7. Conclusion 

In this study, we have compared a time series of dual-pol L- and C- 
band SAR images acquired over the fast-ice at Belgica Bank, North- 
Eastern Greenland, during 2019 and 2020 with the objective to assess 
the detectability of medium and large icebergs under different seasonal 
conditions. Using Sentinel-2 as an independent reference, backscattering 
intensities from several hundred stationary icebergs, as well as from the 
sea ice surrounding them, were extracted, and the intensity contrast 
between level and deformed sea ice, on one hand, and icebergs, on the 
other hand, was calculated for the freezing and thawing seasons. 

The results showed that at both freezing and thawing conditions, C- 
band cannot differentiate between deformed sea ice and icebergs. Ice-
bergs in level ice can mostly be detected in C-band images acquired 
under freezing conditions; however, small, deformed floes in level sea 
ice might be misinterpreted as icebergs. The usefulness of Sentinel-1 for 
mapping icebergs in icy waters is therefore limited, and we expect 
similar results for other C-band satellites such as RADARSAT. 

L-band, on the other hand, reveals a considerable better separation of 
icebergs in both deformed and level sea ice under freezing conditions. 
Under thawing conditions, the L-band contrast generally decreases, but 
a high number of icebergs still exhibit a sufficiently high contrast for a 
successful detection. Furthermore, we observed a significant incidence 
angle dependency of the iceberg and sea ice contrast at L-band which 
suggests that icebergs should be mapped at low incidence angles. 
Overall, L-band SAR offers a large advantage over C-band for mapping 
medium and large icebergs in sea ice. 

Our findings were verified by applying a simple CFAR detection al-
gorithm to two pairs of C- and L-band images for which 879 and 909 
icebergs for the first and second pair, respectively, were identified in a 
corresponding Sentinel-2 image for validation. Using C-band, we found 
that around 24% of the icebergs were accurately detected, against 50% 
detected icebergs using L-band for the first image pair, while the second 
image pair showed only 11% detected icebergs for C-band and 51% for 
L-band. Additionally, C-band showed around six times as many false 
detections compared to L-band. However, we also noted a large number 
of missed icebergs at both frequencies, especially at locations of iceberg 
clusters This, however, may be largely attributed to the simplicity of the 
test, with a fixed clutter geometry. We expect that more advanced 
methods may solve this problem. 

By using a large number of icebergs as validation data, and a time 
series of images covering the freezing/thawing seasons for two separate 
years, we expect that the results can be generalized for most Arctic 
conditions. The results shown here demonstrate that icebergs in regions 
with sea ice should be preferably detected using L-band SAR at low 
incidence angles. Further, an iceberg detector should be designed to use 
both HH and HV polarization for achieving best results. Our findings will 
help advancing the monitoring of icebergs in sea ice using SAR, which is 
beneficial to both maritime safety and for evaluating the impact of ice 
discharge on the oceans. 
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