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Abstract in English 

Worldwide, the incidence of neonatal sepsis is estimated at around 3000 cases per 100,000 live births, 

accompanied by a mortality rate of 17.6%. Group B streptococcus (GBS) is globally the leading cause 

of newborn infections. The global burden of neonatal sepsis and invasive GBS disease is skewed 

towards the low-income countries, but the outcome of invasive GBS disease with massive 

inflammation can be devastating whether born in high- or low-income countries. In this thesis I have 

performed three studies in relation to neonatal sepsis, in collaboration with local, national and 

international researchers. In Paper I we investigated the potential use of immune inhibitors in a 

neonatal inflammation blood model. We found promising results with immune-modulating treatment, 

reducing harmful immune components resembling the massive inflammation that can be seen in 

neonatal sepsis. In Paper II we presented insights into the immunogenicity and safety of GBS 

vaccines across diverse populations. Our systematic review supported the potential for a GBS vaccine 

to reduce the burden of GBS-related diseases, but also emphasized the need for larger studies on the 

effect of GBS vaccines. In Paper III we performed a case-control study to investigate potential 

protective GBS antibody levels in maternal and cord plasma from participants in The Norwegian 

Mother, Father and Child cohort (MoBa) study. We found that cases with invasive late-onset GBS 

disease had lower antibody levels, and that the placental transfer ratio also was lower in cases with 

GBS serotype III disease suggesting increased vulnerability when antibody levels were low. However, 

sample size limitations and higher antibody levels in cases than expected made interpretation of the 

results from this study challenging. 

Overall this thesis contributes with new information on potential future adjunctive therapy for neonatal 

sepsis and it supports further studies on GBS vaccines to alleviate the global burden of invasive GBS 

disease.  

 

  



 

 

Abstract in Norwegian  

Globalt er forekomsten av nyfødtsepsis estimert til rundt 3000 tilfeller per 100 000 levendefødte, med 

en dødelighetsrate på 17.6%. Gruppe B streptokokker (GBS) er globalt den ledende årsaken til 

infeksjoner hos nyfødte. Den globale byrden av neonatal sepsis og invasiv GBS-sykdom er 

skjevfordelt mot lavinntektsland, men følgeskadene av invasiv GBS-sykdom med massiv 

inflammasjon er betydelig, uavhengig om det er i høyt- eller lavinntektsland. I denne avhandlingen har 

jeg gjennomført tre studier relatert til nyfødtsepsis, i tett samarbeid med lokale, nasjonale og 

internasjonale forskere. I Paper I undersøkte vi bruk av immunhemmere i en inflammasjonsmodel 

ved hjelp av navelsnorblod. Vi fant lovende resultater når det gjelder behandling som modulerer 

immunforsvaret, i form av en reduksjon i skadelige immunkomponenter som man ser ved den massive 

inflammasjonen i nyfødtsepsis. I Paper II undersøkte vi systematisk immunrespons av GBS-vaksiner 

(immunogenisitet) i kliniske studier og sikkerhet av GBS-vaksiner på tvers av ulike populasjoner. Vår 

systematiske oversiktsartikkel støtter potensialet for en GBS-vaksine til å redusere byrden av GBS-

relaterte sykdommer, men understreker også behovet for større studier på effekten av GBS-vaksiner. I 

Paper III gjennomførte vi en kauskontrollstudie for å undersøke beskyttende nivåer av GBS-

antistoffer i blodet (plasma) fra mødre og fra navlesnoren til deltakere i Den norske mor, far og barn-

undersøkelsen (MoBa). Vi fant at kasus med sen GBS-serotype III-sykdom hadde lavere nivåer av 

antistoffer, og at overføringsforholdet gjennom morkaken også var lavere hos kasus med sen GBS-

serotype III-sykdom. Dette kan passe med økt sårbarhet for GS infeksjon når antistoffnivåene er lave. 

Tolkningen av resultatene fra denne studien var utfordrende, på grunn av begrensninger i 

prøvestørrelse og generelt høyere antistoffnivåer hos GBS kasus enn forventet. Totalt sett bidrar denne 

avhandlingen med ny informasjon om mulig fremtidig tilleggsbehandling for nyfødtsepsis, og den 

støtter videre studier av GBS-vaksiner for å redusere den globale byrden av invasiv GBS-sykdom. 

  



 

 

Preface      

Neonatal sepsis is a medical condition that causes great concern, due to the severity of the condition, 

diagnostic complexity, and imperfect targeted therapy. Group B streptococci (GBS) is a significant 

causative pathogen in neonatal sepsis. The introduction of either a risk factor-based or GBS screening-

based approach to identify “at risk infants” and administration of intrapartum antibiotic prophylaxis 

(IAP) has reduced the incidence of GBS early-onset disease (EOD), but it has also widely increased 

the use of antibiotic administration to women during delivery [1, 2]. The increased antibiotic 

consumption is associated with adverse effects on the gut microbiota of both the mother and the child, 

and may lead to an increase in antimicrobial resistance [1, 2]. In addition, there are currently no 

established strategies to prevent GBS late-onset disease (LOD), reduce rates of preterm deliveries, 

stillbirths, and maternal bacteremia [3-5].       

The overall theme of this thesis is to explore potential strategies concerning the treatment and the 

prevention of early-onset neonatal sepsis, with a particular focus on prevention of GBS-EOD and 

GBS-LOD. Paper I focus on targeting the inflammatory response in neonatal sepsis caused by E. coli 

or GBS in an ex vivo whole blood laboratory model. In Paper II, we systematically evaluated the 

immunogenicity and adverse events among participant in GBS vaccine trials. In Paper III, we explored 

the natural immunity against different GBS strains in a Norwegian Cohort of children with invasive 

GBS disease versus controls. In the following introduction, I will present the hurdles in diagnosing 

and treating neonatal sepsis and underscore the need to pursue novel treatment options and 

preventative measures in the quest to reduce the mortality and morbidity associated with this 

condition, with a particular focus on invasive GBS disease.   
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1 Introduction 

1.1 Neonatal Immune Defense  

The immature immune system of neonates, and particularly in those born preterm, makes them 

vulnerable to invasive infections [6, 7]. The development of the immune system begins in early 

embryonic stages, yet at birth, it still shows signs of the semi-allogeneic sterile environment where it 

matures [8, 9]. The environment inside the womb stands in contrast to the diverse microbial 

environment the newborn is exposed to upon delivery [9]. This microbial colonization commences 

following a typical vaginal birth, originating from the maternal vaginal and gastrointestinal tracts, as 

well as exposure to microorganisms from the environment, skin contact and breast milk [10]. This 

colonization gradually evolves into a diverse and stable microbiota that largely coexists harmoniously 

with the host. However, certain bacteria, once they breach the neonates’ protective barriers, can incite 

disease within the bloodstream, respiratory system, central nervous system, urinary tract, or other 

sterile body regions. There are also specific strains of bacteria that have been implicated in loss of 

feto-maternal tolerance, causing the initiation of preterm labor [11] through activation of fetal immune 

cells [12]. The immune system plays a pivotal role in regulating these microorganism-host interactions 

and sustaining a state of peaceful coexistence [13]. Neonates are equipped with passive protection 

against many of the microorganism they are exposed to after birth, by transfer of maternal antibodies. 

This protection has an estimated duration of 3 - 4 months for common infectious agents that can infect 

newborns [14]. However, the persistence of maternal antibodies in newborns ultimately depends on 

various factors, including the half-life of IgG antibodies, placental transfer ratio, IgG subclasses and 

vaccination status [15]. Aside from passive protection, neonates experience rapid maturation of their 

immune system within the first three months of life. While this protects most newborns from 

infections, their vulnerability to infections is significantly shaped by various genetic and 

environmental factors [8, 9, 14]. Preterm infants’ infection susceptibility is higher due to the limited 

transfer of maternal antibodies, which primarily occurs in the third trimester [16]. Furthermore, they 

lack vernix caseosa, an antimicrobial barrier produced by fetal sebaceous glands in utero, which 

protects for full-term newborns in the early days of life [17]. 

1.1.1 The innate and adaptive immune system  

The human immune system can be categorized into two major components: the innate and adaptive 

immune systems. The innate immune system acts as the initial, non-specific line of defense, providing 

immediate responses against a range of microbial pathogens, including viruses, bacteria, and fungi. In 

contrast, the adaptive immune system, while taking more time to activate, delivers highly specific and 

potent responses, conferring immunity against re-infection with rapid responsiveness. It is essential to 

recognize that these two immune components are intricately interconnected and mutually dependent 

for their effective responses [18, 19]. 
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Figure 1. Illustration of the neonatal immune system and its components. Created in BioRender. 

The innate immune system consists of i) surface barriers, primarily composed of epithelial cells that 

line the skin and mucosal surfaces, and ii) various cells (e.g. granulocytes, monocytes, macrophages, 

natural killer cells) and the complement system [18, 20], as illustrated in Figure 1. The epithelial cells, 

linked by tight junctions, and the stratum corneum layer, which is relatively thin in preterm infants, 

provide a protective shield against invading microbes. The epidermis contributes to immunological 

functions such as the recognition of microbes through pattern-recognizing receptors (PRR) and the 

elimination of bacteria via antimicrobial peptides (AMPs) [21]. Mucosal surfaces are also protected by 

epithelial cells connected with tight junctions, but have a mucus layer secreted by epithelial cells. This 

mucus forms a relatively impermeable gel while containing bactericidal AMPs. The granulocytes and 

macrophages, as phagocytes, engulf and eliminate microorganisms. Macrophages and dendritic cells, 

which differentiate from monocytes, serve as essential antigen-presenting cells (APCs), a crucial step 

in the activation of adaptive immune responses. The neonatal microbiota regulates host-microbe 

homeostasis and enhances resistance to sepsis. Mononuclear cells have the potential to respond 

robustly to commensal bacteria, producing cytokines similar to adult cells. The commensal microbiota 

contributes to the development of secondary lymphoid structures and helps maintain immune balance 

and appropriate cytokine production. Imbalances in this relationship can lead to serious long-term 

inflammatory and immune disorders [6, 20]. The interaction between the immune system and the 

microbiota plays a pivotal role in neonatal immune development [20].  
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The adaptive immune response is divided into two classes of lymphocytes: B cells and T cells. Plasma 

B cells secrete specific antibodies, immunoglobulins (Ig), which neutralize pathogens, support 

phagocytosis, and activate the complement system. T cells, including cytotoxic T cells (CD8+ T cells) 

and T helper cells (CD4+ T cells), play crucial roles. Cytotoxic T cells eliminate virus-infected and 

tumor cells, while T helper cells assist cytotoxic T cells, B cells, and macrophages [18, 22]. Certain B 

and T cells differentiate into memory cells, enabling rapid responses upon reinfection by previously 

encountered pathogens. Additionally, certain T cells fulfill regulatory functions (Tregs) that sustain 

immunological tolerance [18, 22]. 

PPRs, such as Toll-like receptors (TLRs), are important for both innate and adaptive immune systems 

to identify pathogens and differentiate them from host cells. These receptors, expressed on leukocyte 

membranes, particularly dendritic cells, and macrophages, recognize microbial molecules so called 

pathogen-associated molecular patterns (PAMPs) broadly distinct from host molecules  [23]. For 

instance, TLR2 detects lipoteichoic acid (LTA) from Gram-positive bacteria, and TLR4 recognizes 

lipopolysaccharides (LPS) in the outer membranes of Gram-negative bacteria [23]. Other examples are 

TLR3, TLR7/8, and TLR9 that can identify double-stranded (ds) RNA, single-stranded RNA, and 

CpG-rich DNA, respectively, thereby aiding in the detection of viruses [24]. Upon binding to PAMPs, 

TLRs activate adapter proteins, ultimately regulating gene expression responsible for coordinating 

inflammatory responses [23, 24]. Despite infants having an equivalent number of TLRs compared to 

adults, they exhibit significantly different functional responses to TLR stimulation. Neonatal and cord 

blood mononuclear cells have reportedly reduced production of IL-1α, IL-1β, TNF (formerly known 

as tumor necrosis factor alpha or TNF-α), IL-18, and IL-12p70 in response to the TLR4 ligand LPS, as 

well as certain other TLR ligands, when compared to adult cells. However, these neonatal cells have 

demonstrated similar or even higher levels of IL-6 and IL-10 production in the same context [25-28]. 

Nonetheless, there have been varied and sometimes conflicting findings. For instance, neonatal cells 

have been reported to generate significantly less, comparable amounts, or even greater levels of TNF 

compared to adults [29-32]. Neonates also manifest reduced macrophage activation, diminished CD8+ 

T cells activity, and lower complement protein levels than adults [20]. These functional disparities are 

inversely correlated with gestational age (GA), rendering preterm infants more susceptible to 

infections. Furthermore, preterm infants exhibit reduced chemotaxis, impairing the recruitment of 

immune cells, and reduced bactericidal efficacy in neutrophil granulocytes [33]. This gap in immune 

profiles between preterm and term infants can persists up to three months after birth [34], indicating 

the importance of factors beyond maturity, like the adaptive responses to postnatal environments [35]. 

Despite these differences, both groups share a stereotypic trajectory post-birth, with converging 

immune systems at around 3 months [34]. However, we lack more studies exploring the postnatal 

immune system, as previous cord blood studies are somewhat unreliable due to tissue differences and 

ongoing changes after birth, already within the first week of life [34, 35]. 
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Some cells and proteins act as connectors between the innate and adaptive immune system. These 

include γδ T cells, natural killer T (NKT) cells, antibodies, and inflammatory proteins such as 

cytokines [35]. In neonates, γδ T cells emerge as the initial subset within the T cell population. 

Diverging from their mature αβ T-cell counterparts, neonatal γδ T cells exhibit distinct functional 

attributes, like not having impaired IFN-γ production in neonatal αβ T cells [36]. The functional 

capabilities of neonatal γδ cells appear substantially influenced by prenatal conditioning, potentially 

linked to factors such as intra-uterine infections or distinct pathways in fetal cellular differentiation 

[37, 38]. Furthermore, neonatal γδ T cells display heightened functional proficiency across diverse 

cytokines, implying their pivotal role in early-life immune responses, particularly in the absence of 

fully matured αβ T-cell immunity. Notably, premature infants exhibit a lag in the expression of 

specific TLRs in their γδ cells, potentially impacting their responsiveness to viral nucleic acids and 

susceptibility to infections [37]. NKT cells express both T-cell receptors (TCRs), typical of adaptive 

immunity, and surface receptors found in NKT cells, which are innate immune components [39]. NKT 

cells play an important role in various immune responses, and one subset within NKT, known as 

invariant natural killer T (iNKT) cells, have demonstrated protective roles in defending the host 

against various microbial pathogens like bacteria, fungi, parasites, and viruses. However, in certain 

instances, these cells can be harmful to the host. Activation of iNKT cells can occur even without 

microbial antigens through multiple pathways [40]. Firstly, TCR stimulation can be facilitated by 

endogenous ligands presented by CD1d. Secondly, inflammatory cytokines like interleukin (IL)-12 

and IL-18, generated by APCs and stimulated by TLR-agonists, are capable of triggering iNKT cell 

activation. Lastly, endogenous ligands have the potential to interact with inflammatory cytokines, 

leading to iNKT cell activation [41]. In studies using animal models of neonatal bacterial infection, 

there is evidence suggesting the potentially important involvement of iNKT cells in the neonatal 

immune response [40]. Natural IgG provides innate immune defense in cooperation with lectins. 

Investigating the role of natural IgG during infections, particularly through its interaction with lectins, 

has also revealed its ability to enhance pathogen clearance. This collaboration challenges the 

traditional division between innate and adaptive immunity, raising fundamental questions about their 

intersection and the ensuing immune pathways [42]. 

1.1.2 The complement system  

The complement system is part of the innate system and consists of over 50 proteins, and it can be 

amplified through three activation pathways: the classical, lectin, or alternative pathway. Activation of 

C3 can lead to the covalent binding of the C3b fragment to foreign particles or self-tissue, resulting in 

C3 deposition [43]. Additionally, the activation products C3a and C5a trigger inflammation and 

immune cell activation by interacting with G protein-coupled receptors on various cell types. The 

formation of C5b-9 (membrane attack complex-MAC) creates pores in cell membrane, leading to cell 

lysis. Sublethal concentrations of C5b-9 can stimulate cells and enhance the expression of adhesion 
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molecules. Furthermore, a soluble, cytolytically inactive form of C5b-9 (sC5b-9) can initiate cytokine 

synthesis and vascular leakage in endothelial cells when present in plasma or serum. This soluble form 

can also be measured in blood and is also coined as the terminal complement complex-TCC [43].  

The fetus and placenta express paternal antigens, appearing foreign to the maternal immune system, 

necessitating protection mechanisms. The syncytiotrophoblast, formed by the fusion of villous 

cytotrophoblasts, acts as a barrier between maternal blood and the fetus. It controls the complement 

system by keeping a low steady state level of activation to prevent harm to the fetus. Complement 

activation at the syncytiotrophoblast must be regulated carefully to maintain fetal and maternal health. 

Complement activation is crucial for normal pregnancy, aiding placental development and fetal 

growth. C1q, produced locally, plays a vital role in trophoblast invasion and spiral artery remodeling 

[44, 45]. Deficiencies in complement components, like C1q, can lead to pregnancy complications, 

emphasizing the importance of a functional complement system for a healthy pregnancy [46]. 

1.1.3 Transfer of antibodies across placenta and by breastfeeding  

The placenta acts as the vital link between mother and fetus during pregnancy. Through thin cell 

layers, it facilitates the transfer of numerous substances from mother to fetus, including nutrients, 

oxygen, hormones, and immune mediators like cells, cytokines, and antibodies [47, 48]. Maternal 

antibodies transfer to the fetus occurs as maternal IgG binds with neonatal Fc receptors (FcRn) in 

placental syncytiotrophoblast endosomes. Using the pH difference between the endosome and fetal 

blood, maternal IgG is transported into the fetal circulation [48, 49]. Maternal IgG is transferred to the 

fetus transplacentally from the first trimester of pregnancy, although minimal amounts are transferred 

during this early phase (Figure 2) [16]. Approximately 10% of maternal IgG concentrations are 

estimated to be transferred by weeks 17-22 of gestation. By the 30th week of gestation, infant cord 

blood contains around 50% of maternal IgG levels, and in full-term, healthy pregnancies (37-40 

weeks), cord blood concentrations of maternal IgG often surpass those in maternal serum at the time 

of delivery [16]. This suggests that the most substantial IgG transfer occurs in the final trimester, 

potentially due to an increase in the surface area for IgG uptake from maternal blood as gestational age 

advances [16].  
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Figure 2. Illustration of the placental transfer of IgGs during pregnancy (A) and the IgAs in human breastmilk (B). Created 

with BioRender. 

Birth and breastfeeding play a crucial role in shaping the infant's microbiome and overall health. At 

birth, the baby is exposed to various microbes, primarily from the mother, with breastfeeding 

contributing to the development of the gastrointestinal tract [50]. Breast milk contains essential 

bioactive components, including secretory IgA (sIgA), lactoferrin, lysozyme, human milk 

oligosaccharides (HMOs), growth factors, stem cells and cytokines, which impact immune function 

and gut health [51]. sIgA helps bind pathogens in the gut, while lactoferrin has antimicrobial 

properties and promotes the growth of beneficial bacteria [52]. HMOs serve as nutrients for beneficial 

bacteria, decoy receptors to prevent pathogen attachment, and promote regulatory T-cell growth [53, 

54]. In very preterm infants, who lack transplacental IgG delivery, maternal milk serves as their main 

source of immunoglobulins [55]. The breastfed term infant’s microbiome is distinct, primarily 

consisting of Bifidobacterium and Lactobacillus, which are beneficial for gut health. It is a dynamic 

relationship with breastfeeding influencing the infant's microbiome and vice versa [55]. HMOs, 

complex sugars unique to breast milk, promote the growth of beneficial bacteria, such as 

Bifidobacteria, and help prevent pathogen attachment, reducing the risk of neonatal late-onset sepsis 

(LOS). Although supplemental bovine lactoferrin has shown some benefits in reducing LOS in 

preterm infants, larger studies did not replicate these results [56]. Preterm infants face higher risks of 

infection and therefore also benefit even more from breast milk which is tailored to their needs and 

contains higher levels of bioactive components. Preterm milk is richer in protein, fat, amino acids, 

sodium, and bioactive molecules, offering protection against complications such as necrotizing 

enterocolitis (NEC) and retinopathy of prematurity (ROP) [57]. Another component of breast milk is 

the presence of stem cells, identified initially through the surface marker Nestin [58]. These stem cells 

resemble embryonic and mesenchymal stem cells and show potential for differentiation into neural 
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cell lineage. These stem cells decline in count over time but hold promise for therapeutic applications, 

particularly in infant regeneration and repair [59].  

 

1.2 Neonatal sepsis   

Neonatal sepsis is characterized by hemodynamic alterations and various clinical manifestations in the 

first 28 days of life, or up to 44 weeks postmenstrual age in babies born preterm. Sepsis is caused by 

bacterial, viral, or fungal (yeast) sources [60], though a universally acknowledged definition for 

neonatal sepsis is still lacking [61]. Traditionally, neonatal sepsis was diagnosed by detecting a 

pathogen in usually sterile body fluids like blood or cerebrospinal fluid (CSF). However, sepsis in 

older children and adults is now defined as life-threatening organ dysfunction caused by a 

dysregulated host response to infection [62, 63]. In recent years, efforts have been made towards 

establishing a neonatal SOFA (nSOFA) to help identify organ dysfunction in, particularly, preterm 

infants with infections [64].  

Opposing the conventional belief of sepsis progressing from an initial hyper-inflammatory stage to 

hypo-inflammatory reactions, recent research in adults indicates that sepsis triggers both hyper- and 

hypo-inflammatory responses concurrently. Moreover, these studies establish a connection between 

early fatalities and a sudden hyper-inflammatory phase, while delayed deaths are linked to prolonged 

immune suppression and recurrent infections [65, 66]. However, regarding neonatal sepsis, the 

specific mechanisms associated with the morbidity and mortality to either hyper-inflammation, hypo-

inflammation, or a combination of both remains largely unknown [67].  

Neonatal sepsis is typically divided into two categories based on the timing of symptom onset: early-

onset sepsis (EOS) and late-onset sepsis (LOS). These distinctions involve differences in transmission 

methods, causative pathogens, as well as the guidelines and treatments recommended for each [68, 

69]. Most of the neonatal literature refers to culture-proven (blood culture positive) EOS or LOS. 

However, a major challenge in neonatal care is the high antibiotic consumption due to so-called 

“culture negative sepsis”, a poorly defined and probably overused entity [70, 71].     

The global incidence of neonatal sepsis is estimated at around 3000 cases per 100,000 live births, 

accompanied by a mortality rate of 17.6%. However, these estimates are uncertain due to insufficient 

data coverage across all WHO regions, often relying on information from selected countries [72]. 

1.2.1 Neonatal early-onset sepsis (EOS) 

A widely accepted definition for EOS is the occurrence of bloodstream infections within the initial 72 

hours after birth [73-75]. Still, according to the American Academy of Pediatrics (AAP), certain 

experts define EOS as the manifestation of symptoms within the initial 7 days after birth [76]. 
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The main cause of EOS is vertically transmission of pathogens from the mother to the neonate during 

delivery. Neonates can be colonized by maternal bacteria in the birth canal or through aspiration of 

infected amniotic fluid [77]. In low‐ and middle‐income countries, Klebsiella species is found in 

around 60% of positive blood cultures in term neonates with EOS [78], while in high-income 

countries,  E. coli is the most common identified pathogen in preterm newborns with EOS and the 

second most common in term newborns [79]. GBS is the most common pathogen of EOS in term 

infants and the second most common in preterm newborns [79]. 

Less common bacterial pathogens associated with EOS [80] are Enterobacter spp., Listeria 

monocytogenes, enteric Gram-negatives, non-enteric Gram-negatives (e.g. Hemophilus influenzae and 

Neisseria meningitidis), Viridans group streptococci (VGS), Staphylococcus aureus and coagulase-

negative staphylococci (CoNS) [81]. Non-bacterial agents that can be associated with EOS are Herpes 

simplex virus [82], enterovirus and parechovirus [83] and Candida [84]. 

The most recent global estimated incidence rates for EOS are approximately 3600 cases per 100,000 

live births in the African region, 2000 cases per 100,000 live births in the South-East Asia Region, and 

3000 cases per 100,000 live births in the Western Pacific Region [72]. In Europe, North America, and 

Australia it is 490 EOS-cases per 100,000 live births [85]. Premature and extremely low birthweight 

(ELBW) infants are notably at higher risk for EOS, with significant regional variations [72]. 

1.2.2 Neonatal late-onset sepsis (LOS) 

The most common definition of LOS is a bloodstream infection occurring after the first 72 hours of 

life [80, 86, 87]. However, in the literature there are also experts that define LOS as the onset of 

symptoms occurring ≥ 7 days of life [76, 80]. LOS is associated with horizontal transmission of 

pathogens through the postnatal nosocomial or community environment [80, 88]. Advances in 

neonatology have increased survival of small premature infants, but the increased survival rate causes 

challenges seen as an increased incidence of LOS [88-90]. A strong focus in recent years has been on 

the preventative measures to reduce the burden of LOS [91, 92]. The global estimates on incidence of 

LOS are more uncertain [72], with one estimation indicating that LOS affects between 20% to 38% of 

all preterm infants within the initial 120 days of life [93]. In Norway, the blood-culture proven LOS 

incidence is from 9.3% to 21.6% in all preterm infants born prior to 32 or 28 weeks of gestation, 

respectively [94].  

In high-income countries’ NICU, coagulase-negative staphylococci (CoNS) and Staphylococcus 

aureus are common causes of LOS in preterm infants, in those with vascular catheters [94, 95]. Other 

pathogens associated with LOS [80] are E. coli, GBS, Enterobacter spp., Pseudomonas spp., 

Acinetobacter spp. and Candida spp. The distribution of these infectious agents varies depending on 

demographic characteristics of the patients, colonization of the nosocomial environment and the 
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antibiotic usage policy at the hospital [96]. In low‐ and middle‐income countries, Gram-negative 

bacteria e.g. Klebsiella species are among the most common pathogens for LOS in preterm babies 

[72].  

 

1.3 Group B streptococci  

Rebecca Lancefield distinguished Streptococcus agalactiae, 

commonly known as group B Streptococcus (GBS) (Figure 3), 

from other streptococci in the 1930s after isolating it from milk 

and cows affected by bovine mastitis [97]. Until the 1960s, cases 

of invasive GBS disease in humans were uncommon, but there 

was a rise in reported instances of adult and neonatal invasive 

infections during that time [98-101]. Historically, Streptococcus 

agalactiae was categorized into nine serotypes (Ia, Ib, II, III, IV, 

V, VI, VII, VIII) based on capsular polysaccharides (CPS) [102], 

with a later addition of a tenth serotype (IX) in 2007 [103]. The 

CPSs of GBS act as virulence factors, aiding the bacterium in 

evading phagocytosis while triggering a serotype-specific immune response, leading to the production 

of protective antibodies. Although all 10 serotypes can cause disease [102], their prevalence differs 

globally [4, 104]. Surface proteins like Alp family proteins, serine-rich repeat proteins, C5a peptidase, 

and pilus islands can also contribute to classifying diverse GBS strains [105]. Moreover, certain 

proteins such as Rib, hvgA, and pilus island proteins have been associated with the invasiveness of 

GBS strains in various studies [106-109]. Whole genome sequencing has, in recent years, emerged as 

a reliable tool for CPS typing and antimicrobial resistance prediction [110].  

1.3.1 The epidemiology of invasive GBS disease  

GBS stands as the primary cause of sepsis and meningitis in neonates and young infants across most 

countries globally [111]. Invasive GBS disease can be further categorized as early-onset disease 

(EOD), happening within the first 7 days of life, and late-onset disease (LOD), occurring between day 

7 and day 89. Almost all cases (97%) of invasive neonatal GBS disease are caused by serotypes I to V 

[3, 5, 112]. Among these, serotype III is responsible for almost half (43%) of EOD cases and a 

significant majority (73%) of LOD cases [5, 113]. 

In 2015, an estimated minimum of 300,000 infants under 90 days old worldwide experienced invasive 

GBS disease. Among them, around 200,000 infants had GBS-EOD, while approximately 100,000 had 

GBS-LOD [111]. 

Figure 3. Group B Streptococci on 
Blood Agar Plate. 
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In high-income countries the estimated incidence of GBS-EOD has declined from 0.7 cases per 1,000 

live births in 1997 to a range of 0.21-0.25 cases per 1,000 live births in 2014 and 2015 [114, 115]. 

However, these figures vary considerably across countries. For example, incidence numbers (per 1000 

live births) stand at 0.09 in Japan, 0.58 in Panama, 0.76 in Hong Kong, up to 1.5 in South Africa, and 

reaching 2.35 in the Dominican Republic. When combined, these estimates suggest an average global 

incidence of GBS-EOD at around 0.5 cases per 1,000 live births [5, 116-119]. Globally, the average 

incidence of GBS-LOD stands at 0.26 cases per 1,000 live births [5]. In the United States, the 

estimated incidence of GBS-LOD is slightly higher, at 0.32 cases per 1,000 live births [120]. 

In the Nordic countries, the estimated incidence of GBS-EOD cases per 1000 live births in 2019 was 

as follows: 0.28 in Denmark, 0.10 in Finland, 0.22 in Iceland, 0.25 in Sweden, and 0.22 in Norway. 

[121]. Figure 4 and 5 show the total incidence of GBS-EOD and GBS-LOD in Norway between 1999 

and 2022 [122]. From the first epoch (1999-2009) and to the second epoch (2010-2022) the average 

incidence of GBS-EOD declined from 0.47 to 0.33/1000 live births whereas the incidence of GBS-

LOS remained essentially unchanged at around 0.25/1000 live births between 1999 and 2022. 

 

 

Figure 4. The incidence of invasive GBS infections per 1000 live births between 1999 – 2009 in Norway. National 
data from the Norwegian Surveillance System for Communicable Diseases (MSIS). 
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Figure 5. The incidence of invasive GBS infections per 1000 live births between 2010 – 2022 in Norway. National 
data from the Norwegian Surveillance System for Communicable Diseases (MSIS). 

 

 

1.4 Mortality and morbidity of neonatal sepsis 

Worldwide, it is estimated approximately 200,000 neonatal deaths are attributed to sepsis, with a 

recent study estimating a mortality of 17.6% (95% CI 10.3% to 28.6%) [72]. In Europe, North 

America, and Australia there is reported a mortality rate of EOS among late preterm and term neonates 

at 3.2% [85], and in a recent study from Sweden examining the same population it was even lower at 

1.4% [123].  

In very preterm infants, EOS is associated with a higher mortality and with markedly increased risk of 

complications such as ROP, intraventricular hemorrhage, bronchopulmonary dysplasia (BPD) and 

periventricular leukomalacia (PVL) [124, 125]. Studies indicate a higher mortality rate associated with 

Gram-negative EOS, however GA seems to be a confounding factor in these studies [1, 74].  

LOS is a significant cause of mortality in preterm neonates, and treatment of sepsis is not always 

successful in protecting the infants from the long-term neurodevelopmental impairments [126, 127]. In 

a recent population-based study on LOS in very preterm infants from Norway, the overall LOS-

attributable mortality was 6.3%, but markedly higher in Gram-negative (15.8%) compared with Gram-

positive (4.1%) LOS-cases [94]. LOS was also associated with increased odds of development of 

severe BPD, PVL and ROP [94]. 

 

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

0-6 days 7-89 days



 

12 

1.4.1 Mortality and morbidity of GBS disease   

Invasive GBS disease leads to fatality rates, ranging from 1-8% in full-term infants and from 5-20% in 

preterm infants [5]. In GBS-EOD, mortality rates varies globally; high income countries estimate a 5% 

case fatality risk, while in African countries the case fatality can reach up to 27% [5]. On a global 

scale, GBS-LOD is estimated to carry a 7% case fatality rate [5]. In utero GBS disease contributes to 

approximately 1% of stillbirths worldwide, while this rate is estimated up to 4% in the WHO African 

region [111]. 

There is also an increased risk of neurodevelopmental impairments following invasive GBS disease in 

infancy. GBS meningitis is associated with markedly higher risks of attention-deficit/hyperactivity 

disorder, cerebral palsy, epilepsy, hearing impairment, and various developmental disorders [128, 

129]. 

 

1.5 Diagnostics tools in suspected neonatal sepsis  

1.5.1 Symptoms and pathogen identification  

Neonates with sepsis commonly display subtle and nonspecific clinical signs, including respiratory 

distress, extended capillary refill time (> 2 seconds), pallor, feeding intolerance and lethargy [130, 

131]. Identifying a pathogen in a blood and/or cerebrospinal fluid (CSF) culture is still considered the 

"gold standard” for diagnosing neonatal sepsis. Additional tests involve C-reactive protein (CRP), 

procalcitonin (PCT), and a complete blood count. Delayed treatment escalates mortality rates in sepsis 

cases, so as a precaution, empirical antibiotic treatment is typically initiated without confirmed 

microbiological evidence of sepsis [132-135].  

Microbiological blood cultures face several challenges as the “gold standard” for sepsis diagnostics. 

One limitation is the susceptibility to skin microbiota contaminating the blood culture [88, 135]. In 

preterm infants’ small blood volumes and low bacterial colony counts may lead to false negative 

cultures. Previous studies have reported an average blood volume for blood cultures at around 0.5 mL 

[136]. This may be an inadequate volume in sepsis with low colony counts, posing a risk of false 

negative results. While 0.5 mL might suffice in detecting bacteria during moderate to high-grade 

bacteremia, it's advisable to aim for a minimum of 1 mL of blood collection [132, 137, 138]. Time to 

growth of bacteria in a neonatal blood culture is usually within 24 hours [139, 140], and this 

knowledge means that if clinical and biomarkers signs of sepsis are not very strong it is both safe and 

recommended to stop antibiotic treatment after 24-36 hours if the blood culture still has not shown any 

growth [141, 142]. Despite these notable limitations in diagnosing neonatal sepsis, blood cultures 

remain essential for isolating bacteria for antibiotic susceptibility testing. Unlike microbiological 
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independent techniques like PCR, blood cultures have the advantage of demonstrating a growth of  

live bacteria [143]. Several molecular nonculture techniques are also in development, but none of 

them have replaced the blood culture [144]. However, molecular nonculture techniques may have a 

specific role in attempting to identify the causative pathogen in patients that have started antibiotic 

treatment prior to obtaining a blood or CSF culture [145]. 

Early symptoms of meningitis can be subtle, often overlapping with sepsis, making lumbar puncture 

the primary diagnostic tool. [146, 147]. While challenging to diagnose meningitis solely through a 

lumbar puncture, it stands as a crucial differential diagnosis in neonatal sepsis due to its impact on 

antibiotic treatment, determining the type, dosage, and duration of therapy. It is reported that around 

15% of neonates with meningitis may exhibit negative blood cultures, prompting discussions on 

whether lumbar puncture should be included as a routine investigation for neonatal sepsis [148]. In 

patients who have started antibiotic therapy before lumbar puncture is performed, it is still possible to 

identify causative pathogen by nucleic acid based PCR techniques [145].  

1.5.2 Traditional biomarkers used in neonatal sepsis  

The liver generates acute phase reactants that triggering the complement system, improve 

phagocytosis, regulate pro-inflammatory cytokines, and minimize tissue damage. Extensive research 

has been focused on sepsis biomarkers like CRP and PCT, largely because their assays are cost-

effective, and the analyses are straightforward. However, CRP and PCT, being nonspecific acute 

phase proteins, are impacted by liver maturity and the development of organ dysfunction linked to 

sepsis [149, 150]. CRP serves as the frequently employed additional marker for sepsis, rising in 

response to IL-6 and other pro-inflammatory cytokines around 4 to 12 hours following the onset of 

infection or inflammation. Despite extensive examination concerning neonatal sepsis, outcomes 

diverge due to differing definitions of sepsis (EOS or LOS), sampling timings, study populations, 

sample sizes, and threshold values [150-152]. In most studies, the reported sensitivity of CRP for 

neonatal sepsis ranges from 50% to 77%, with specificity between 78% and 100%. CRP 

measurements within the initial 24 to 72 hours of suspected neonatal sepsis cases often exhibit 

heightened sensitivity. However, non-infectious factors such as fetal distress and maternal fever can 

elevate CRP levels, thereby reducing sensitivity [152, 153]. The most important benefit of CRP is 

probably the high negative predictive values which means that if CRP is still low 24 hours after onset 

of suspected symptoms and start of therapy, the likelihood of an infection is very low and this 

information can be used to support early discontinuation of antibiotics [152, 153]. 

Another commonly employed marker for neonatal sepsis is procalcitonin (PCT), the precursor of 

calcitonin. This protein is predominantly generated by peripheral mononuclear cells and typically rises 

around 2 to 6 hours following infection or inflammation. Its faster elevation compared to CRP renders 

PCT a potentially more efficient biomarker for the early detection of neonatal sepsis [151, 154]. The 
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reported sensitivity and specificity of PCT are comparable to CRP, ranging from 67% to 98% for 

sensitivity and from 67% to 100% for specificity [155, 156]. The inclusion of both CRP and PCT as 

additional tests appears to enhance sensitivity. Still, the 2018 meta-analysis conducted by Ruan et al. 

faced limitations stemming from varying definitions of sepsis and the use of different detection 

techniques across the studies included in the analysis [156].  

Additional supplementary tests commonly used in diagnosing neonatal sepsis include the complete 

blood count (CBC), encompassing assessments such as white blood count (WBC), absolute neutrophil 

count (ANC), and the immature-to-total neutrophil ratio [157, 158]. The hematological profile 

indicating a rise in immature neutrophils compared to mature ones, often termed the immature-to-total 

(IT) neutrophil ratio, can serve as an indicator in neonatal sepsis diagnosis. Additionally, an abnormal 

WBC (in particular very low) or an observable left shift in the ANC, where there is an increase in 

immature or band neutrophils in comparison to mature ones, are noteworthy factors to consider when 

assessing for neonatal sepsis. These hematological alterations can signal an ongoing inflammatory 

response or a possible infection, contributing valuable insights to the diagnostic process [132, 159, 

160]. CBC tests exhibit a broad spectrum of sensitivity, ranging from 17% to 90%, and specificity 

varying from 31% to 100%. These variations can be attributed to the expansive abnormal ranges 

within the CBC parameters, the relatively slow time required for obtaining a positive result, 

limitations in sampling times, and the impact of non-specific factors. The diverse ranges in these 

values emphasize the complexity involved in interpreting CBC results for neonatal sepsis, considering 

the multitude of factors that can influence these measurements, thereby affecting their accuracy in 

diagnosis [132, 157, 161-163].  

1.5.3 Potential new diagnostic tools   

1.5.3.1 Other biomarkers  

There has been substantial research on additional biomarkers (like acute phase proteins and cytokines) 

beyond CRP and PCT. However, meta-analyses examining cytokines such as TNF, IL-8, and IL-6 

cannot conclude on benefit from using these markers, primarily because of the heterogeneity among 

the studies included [164-166]. IL-6 is routinely used as an early diagnostic marker for neonatal sepsis 

in some countries and NICUs [167, 168]. However, despite considerable research efforts, there is not 

yet a single test, biological marker, or a combination of markers identified as superior for diagnosing 

neonatal sepsis [88, 159, 169]. 

One new biomarker worth to mention is presepsin. Presepsin (or sCD14) is a free fragment of the 

membrane glycoprotein CD14 in monocytes and macrophages. After contact with infectious agents, 

CD14 activates an intracellular signaling pathway mediated by Toll-like receptor 4 (TLR4), initiating 

the inflammatory response against the microorganism [170]. A recent systematic review and meta-

analysis suggests that presepsin is promising new biomarker for EOS [171]. 
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1.5.3.2 Immunometabolism and the omics 

"Immunometabolism" represents an evolving area of study that acknowledges the intricate interplay 

between metabolism and the immune system. Within this field, various metabolic pathways—such as 

amino acid metabolism, fatty acid synthesis, fatty acid oxidation, glycolysis, and the tricarboxylic acid 

(TCA) cycle (also recognized as the Krebs Cycle)—play pivotal roles in fostering the survival, 

growth, functionality, and activation of innate immune cells [172, 173]. Elevated ATP levels have 

been associated with the potential to excessively prolong the immune response during sepsis [174]. 

However, the breakdown of ATP into adenosine diphosphate (ADP) and adenosine monophosphate 

(AMP) leads to heightened adenosine levels. Unlike ATP, adenosine serves to diminish pro-

inflammatory and Th1-polarizing immune responses [172, 175]. Neonatal blood demonstrates 

heightened adenosine levels compared to adults, suggesting a potential for targeted manipulation of 

metabolizing enzymes as potential future treatment options [176, 177].    

Omics technologies offer insights into genome-wide gene expression, protein translation, and 

metabolite production, showcasing distinct regulations seen in neonatal sepsis [178, 179]. In recent 

years, substantial research has emerged in genomics [180], transcriptomics [181, 182], proteomics 

[183], and metabolomics [184]. These methods in medicine offer distinct information. Genomics 

enlightens us about neonatal predispositions to sepsis [180], while transcriptomics reveals details 

about transcriptional changes occurring during sepsis [181, 182]. Proteomics showcases alterations in 

protein expression due to sepsis [183], and metabolomics elucidates the metabolites produced as a 

result of sepsis [184, 185].  

 

1.6 Treatment of neonatal sepsis 

1.6.1 Antibiotic treatment for EOS 

Severe infections stand as one of the primary reasons for morbidity and mortality among neonates 

globally. However, the clinical indications/diagnostic criteria of sepsis often lack specificity, 

prompting the widespread empirical administration of antibiotics due to concerns regarding potentially 

serious outcomes, even in uninfected infants [60, 186]. In the NICU, antibiotics stand as the most 

prevalent medications prescribed, with a beta-lactam (benzylpenicillin or ampicillin) and gentamicin 

being administered more common than other common medications [142, 187, 188]. Other 

aminoglycosides (e.g. tobramycin, amikacin and in the future maybe plazomicin) are sometimes used 

due to increased levels of gentamicin-resistance among Gram-negative isolates [189, 190].  

The National Institute for Health and Clinical Excellence (NICE) guidelines advocate for 

benzylpenicillin and gentamicin [142], whereas the AAP recommends ampicillin over benzylpenicillin 

as the primary treatment for EOS based on the perception that ampicillin may be more effective than 
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benzylpenicillin against the rare infections with Listeria monocytogenes [191]. Additionally, the UK 

NICE guidelines outline a standard antibiotic treatment duration of 7 days for infants with either a 

positive blood culture or those suspected of sepsis despite a negative blood culture [142]. 

In a cross-sectional study encompassing countries across Europe, North America, and Australia, it was 

reported that 2.86% (range across networks, 1.2-12.5%) of late-preterm and full-term newborns were 

administered antibiotics during the initial postnatal week. The study revealed a high rate of early 

postnatal antibiotic administration compared to the incidence of EOS [85]. The median (interquartile 

range) duration of treatment was 9 (7-14) days for neonates diagnosed with EOS and 4 (3-6) days for 

those without EOS [85]. A recent population-based study from Sweden reported that less than 2% of 

all late-preterm and full-term newborns were administered antibiotics during the first week of life 

[123]. The highest antibiotic consumption in NICUs stems from i) courses aimed at ruling out sepsis 

and ii) so-called culture-negative sepsis. In the SCOUT study [192], investigators evaluated antibiotic 

utilization among 2,500 term and preterm infants for various conditions. Only 6.9% of antibiotic usage 

was attributed to culture-proven infection and NEC. Conversely, prolonged antibiotic therapy (≥ 5 

days) for pneumonia or culture-negative sepsis constituted 26% of the total antibiotic consumption. 

The median (range) duration of therapy for these conditions was 7 (5–14) days. In the SCOUT study, 

the highest antibiotic consumption in NICUs was from courses aimed at ruling out sepsis [192]. 

Increasing evidence suggests that extended antibiotic therapy in preterm infants lacking confirmed 

infection elevates the risk of mortality, BPD, NEC, ROP, and PVL [193-195]. A recent US-study 

concluded that in high-risk newborns with suspected EOS, empiric antibiotics can be safely ceased 

after 24 hours if the infection is not confirmed [141]. Recent literature discussing outcomes from 

antimicrobial stewardship initiatives in NICUs underscores the potential for enhancing antibiotic 

prescription protocols [196]. However, it also underscores the challenges encountered in limiting the 

utilization of potent antibiotics among highly vulnerable extremely premature infants [197, 198]. 

1.6.2 Antibiotic treatment for LOS 

The empirical antibiotic treatment for LOS is based on factors such as exposures (including 

community or hospitalization status at LOS onset), local bacterial prevalence, and antimicrobial 

resistance (AMR) patterns [94, 199-201]. The duration, dosage, and timing of the antibiotic treatment 

can also variate based on factors such as GA, weight, microorganism identified, site of infection, and 

the antibiotic's potential to penetrate the infection site (especially in cases involving central nervous 

system, osteomyelitis, or endocarditis) [202].   

In high-income countries, the most common cause of nosocomial LOS are Gram-positive bacteria, in 

particular CoNS. A beta-lactamase stable penicillin, cefazolin, or vancomycin, combined with an 

aminoglycoside, are the alternatives used in Norway [195, 203]. However, if there is a strong clinical 

suspicion of Gram-negative sepsis and/or meningitis, a third-generation cephalosporin, like 
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cefotaxime, can be added to the empiric regimen [199]. The routine use of broad-spectrum antibiotics 

like third generation cephalosporins for Gram-negative coverage is not recommended due to the 

higher likelihood of multi-drug resistant (MDR) bacteria developing compared to a regimen including 

an aminoglycoside. Furthermore, virulent late-onset pathogens such as non-E. coli, 

Enterobacteriaceae and Pseudomonas commonly exhibit resistance to third-generation cephalosporins 

[204]. Fungal LOS, especially in premature neonates, as well as viral infections such as herpes 

simplex, should also be considered [202]. 

In complicated hospital acquired LOS, like infections caused by ESBL and AmpC chromosomal beta-

lactamase-producing Gram-negative bacteria, such as Klebsiella spp. and E. coli, necessitate treatment 

with carbapenems like meropenem due to their high resistance to commonly used antibiotics [205]. 

Meropenem offers broader antibacterial coverage, and it allows for monotherapy instead of 

combination therapy [206]. However, there are growing concerns regarding the emergence of 

carbapenem-resistant Gram-negative organisms (CROs) [202].  

In Norway, penicillin remains effective against all GBS strains, while most Staphylococcus aureus 

isolates demonstrate susceptibility to oxacillin, and approximately 95% of E. coli strains are 

susceptible to gentamicin [207]. Still, there are large regional variations in consumption of 

vancomycin, broad-spectrum β-lactams and first-generation cephalosporins [94].   

1.6.3 Adjunctive therapies for neonatal sepsis 

Various adjunctive immunotherapeutic interventions have been examined alongside antibiotics for 

neonatal sepsis, but they have not conclusively improved outcomes. 

Intravenous immune globulin (IVIG) is not recommended for treating neonatal sepsis based on current 

evidence [208]. Despite suggestions of potential benefit in preterm infants under 32 weeks' gestation 

with serious bacterial infection, trials have not shown clear advantages of IVIG administration in 

suspected or confirmed sepsis cases [208, 209]. 

Granulocyte transfusions or stimulating factors like granulocyte colony-stimulating factor (G-CSF) 

and granulocyte-macrophage colony-stimulating factor (GM-CSF) have not demonstrated reduced 

mortality or morbidity in neonatal sepsis [210] or improved neurodevelopmental outcomes, general 

health, and educational outcomes in a five-year follow-up study [211]. They are therefore not 

recommended.  

Lactoferrin is an important glycoprotein in human milk, that plays an important component in the 

innate immune defense against infections. Clinical trials on the use of lactoferrin in preterm infants 

were promising [126, 212, 213]. However, a Cochrane systematic review including twelve 

randomized controlled studies found low evidence that lactoferrin supplementation decreases the 
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incidence of LOS [56]. Moreover, the largest trial to date - the Enteral Lactoferrin in Neonates 

(ELFIN) trial - recruited 2,203 infants and failed to show any significant reduction in LOS [214].  

Limited data suggests pentoxifylline, inhibiting TNF release associated with Gram-negative infection, 

might decrease mortality in neonatal sepsis when added to antibiotic therapy. However, small trials 

with methodological limitations necessitate further large-scale, unbiased studies to confirm these 

findings before recommending pentoxifylline routinely in neonatal sepsis treatment [215]. Currently, a 

large ongoing clinical trial is investigating whether pentoxifylline can improve long-term outcomes in 

preterm infants with LOS or NEC [216]. 

 

1.7 Preventive strategies for EOS and LOS   

1.7.1 Risk factors for neonatal sepsis and initiatives to reduce infections 

Maternal GBS colonization during the ongoing pregnancy, GBS bacteriuria, a history of previous 

infant with invasive GBS disease, prolonged rupture of membranes (PROM; lasting ≥18 hours), and 

maternal fever (temperature ≥38°C, that may indicate chorioamnionitis) are the most frequently linked 

risk factors for neonatal EOS. These factors work cumulatively, with the presence of multiple factors 

heightening the likelihood of developing EOS [217, 218]. 

A decreasing GA/BW is strongly associated with increased risk of LOS [94]. Another important risk 

factor is the use of central venous lines and umbilical catheters, which are frequently used in this 

population of small infants. These indwelling catheters provide a passageway for nosocomial bacteria, 

such as CoNS, and provide a surface for the development of biofilms. The longer the duration of the 

catheter use, the higher is the risk of a central line-associated bloodstream infection (CLABSI)  [80, 219, 

220]. Other risk factors are long-term use of mechanical ventilation and parenteral nutrition, 

hospitalization, surgery, underlying respiratory and cardiovascular diseases and late introduction of 

enteral feeding with breast milk [88, 96].  

The understanding of risk factors for GBS-LOD is not as comprehensive as for GBS-EOD. Premature 

and low birth weight (LBW) infants are more vulnerable to infections due to their immature immune 

systems, limited placental antibody transfer, heightened gut permeability, and increased risk of 

hospital-acquired infections during their extended hospital stays. Additionally, prematurity disrupts 

the development of the microbiome, often linked to frequent antibiotic use, formula feeding, and 

reduced exposure to the maternal microbiome. This disruption might affect the adaptation of GBS to 

the neonatal environment in these infants. Recent research highlights prematurity or low birth weight 

and maternal rectovaginal colonization with GBS as significant risk factors for GBS-LOD [221].  
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Preventing LOS is the preferable strategy, rather than solely focusing on novel treatment options 

[126], by implementing evidence based practice like human milk feedings, proper hand hygiene and 

utilization of "bundle checklists" [222, 223]. In recent years there have been studies on the potential 

benefits of prophylactic probiotics, but the results have been inconsistent regarding nosocomial sepsis. 

Metanalyses have shown no significant reduction in the incidence of sepsis with the use of probiotics, 

though heterogeneity among trials might significantly influence the results [224, 225].  

1.7.2 Intrapartum antibiotic prophylaxis 

The introduction of intrapartum antibiotic prophylaxis (IAP) and maternal screening for vaginal 

carriage of GBS has reduced the GBS-EOD in the USA and many other countries [1, 121, 226]. The 

American Centers for Disease Control and Prevention (CDC) has been responsible for the American 

guidelines for prevention of neonatal GBS disease up to 2019 [227, 228]. In 2019 the American 

College of Obstetricians and Gynecologists (ACOG) took over the role of updating the guidelines. The 

guidelines from ACOG continued the focus on IAP administration in women with a positive rectal-

vaginal GBS culture (culture-based approach) rather than on predefined maternal characteristics 

associated with GBS-EOD (risk factor-based approach). They implemented in the guidelines that all 

pregnant women at 36+0 to 37+6 weeks of GA should be offered a GBS rectovaginal screening 

culture, except pregnant women with GBS bacteriuria during the current pregnancy and women who 

previously gave birth to an infant with invasive GBS disease [229]. The traditional risk factor-based 

approach includes evaluating risk factors such as intrapartum fever ≥ 38C, delivery before 37+0 

weeks of GA, rupture of membranes ≥18 hours, previous delivery of an infant affected by GBS 

disease and GBS bacteriuria in the current pregnancy [229, 230].  

In the Nordic countries, national guidelines for risk-based IAP were implemented at different times: in 

Denmark in 1997, Finland in 1998, Iceland in 1995, and Norway in 1998 [121]. Sweden lacked 

national guidelines for preventing GBS-EOD before 2008, although some delivery units were already 

utilizing risk-based IAP [121, 231]. 

Implementing maternal screening for rectovaginal GBS carriage and IAP has decreased the occurrence 

of GBS-EOD. However, it has also notably expanded the practice of administering antibiotics to 

women during childbirth [1, 226]. The effectiveness of IAP is constrained to GBS-EOD, and in certain 

countries, despite its utilization, the incidence has plateaued [1, 232]. In certain regions, a risk factor-

based approach is employed rather than universal screening to identify women for IAP. While this 

approach aims to reduce antibiotic overuse, it potentially increases the chances of missed opportunities 

to identify cases for IAP, compared to a universal screening strategy. Consequently, while the risk- 

factor based approach may mitigate unnecessary antibiotic administration, it could result in a higher 

likelihood of not being able to prevent GBS-EODs [233]. Furthermore, the majority of low- and 

middle-income countries lack the resources needed to establish nationwide programs aimed at 
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identifying women for IAP to prevent GBS-EOD. Presently, there are no established strategies in 

place to prevent GBS-LOD or to decrease the occurrences of preterm deliveries, stillbirths, and 

maternal bacteremia linked to perinatal GBS infections. 

1.7.3 Maternal immunization  

Few vaccines are suitable to administer at birth or in the neonatal period [234]; mainly BCG to prevent 

childhood tuberculous meningitis and miliary disease [235] and a vaccine against hepatitis B [236]. 

However, vaccination as disease protection during early life is crucial for public health, but vaccines 

in the neonatal period presents significant challenges. First, the neonatal immune system, primarily 

Th2-skewed to prevent maternal immune system recognition of the fetus as an allograft, creates a 

hurdle for neonatal vaccination [237]. Second, the immaturity of neonatal leukocytes and the 

inhibitory effect of maternal antibodies further complicate the development of effective neonatal 

vaccines [237]. Finally, neonates exhibit diminished responses to T-independent polysaccharide 

antigens, and their antibody responses to T-dependent protein antigens are transient [238]. Therefore, 

strong efforts are made towards development of vaccines that can be administered during pregnancy to 

provide the newborn infant with protection (passive immunization) for the first months after birth 

[239-242].  

The transmission effectiveness of maternal IgG across placenta varies notably depending on the 

specific antigen. Understanding these mechanisms is essential for developing effective maternal 

immunization strategies to enhance infant protection against neonatal pathogens during the first year 

of life [243]. In a regular pregnancy, IgG transfer against pertussis demonstrates remarkable 

efficiency, surpassing 200%. However, when it comes to IgG against GBS, the transfer efficiency is 

often reported at around 70%. This difference highlights the various factors that might affect how 

maternal IgGs are passed across during pregnancy [244, 245]. 

Various attributes of antigen-specific antibodies might elucidate these variations. Multiple studies 

have highlighted that the IgG subclass (Figure 6) plays a crucial role in determining the efficiency of 

transplacental transfer. Among these subclasses, IgG1 demonstrates the most effective transfer, 

whereas IgG2 exhibits the least efficiency in transfer [246, 247]. Notably, IgG subclass reactions vary 

distinctly across different antigens [248]. For instance, the immune response to polysaccharide 

antigens like the bacterial capsule of GBS or Haemophilus influenzae type B largely comprises the 

IgG2 subclass. Conversely, the response to tetanus toxoid is predominantly composed of the IgG1 

subclass [248, 249]. 
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Figure 6. IgG structure and subclasses. Created with BioRender. 

The interaction between IgG and the typical FcRn receptor might play a role in adjusting the 

efficiency of placental transfer of antibodies. For instance, the extensively transferred IgG1 and IgG4 

subclasses exhibit notably high affinities for FcRn, while both IgG2 and IgG3 demonstrate lower 

affinities towards this receptor [250]. 

While placental IgG transfer is usually efficient in healthy pregnancies, several factors can impair it. 

These factors include maternal infections during pregnancy, such as human immunodeficiency virus 

(HIV) infection and malaria, placental pathologies, and maternal hypergammaglobulinemia [16]. 

Maternal HIV infection has been linked to reduced placental transfer of antibodies against certain 

pathogens such as Streptococcus pneumoniae, H. influenzae, GBS, pertussis, poliomyelitis, and 

measles [251]. Conversely, studies investigating the influence of maternal HIV on the transfer of other 

antibody specificities, like anti-tetanus toxoid antibodies, have yielded inconsistent findings across 

various studies and populations. Recent findings indicate that women undergoing prolonged 

antiretroviral therapy demonstrate enhanced placental transfer of IgG compared to those receiving 

short-term therapy [252]. Notably, some research suggests that maternal HIV might also affect the 

characteristics of transferred antibodies [253]. However, confirming this observation warrants 

extensive studies involving large cohorts of HIV-infected mothers and HIV-exposed uninfected 

infants [253]. 
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2 Aims for the thesis  

The aim of this thesis was to explore novel treatment strategies for neonatal sepsis in Paper I and to 

obtain new knowledge that could contribute to the development of a maternal GBS vaccine in Paper 

II-III. Overall, the focus was centered on pregnant women and neonates, with the overarching aim of 

advancing our understanding regarding strategies directed towards the prevention of neonatal sepsis 

and the mitigation of the devastating consequences associated with this condition.  

 

The specific objectives were:  

 

Paper I: Dual inhibition of complement C5 and CD14 attenuates inflammation in a cord blood 

model 

The main objective of this experimental study was to compare E. coli- and GBS-induced inflammation 

and to evaluate the effects of dual C5-CD14 inhibition in an ex vivo human umbilical cord blood 

model. 

 

Paper II: The immunogenicity and safety of Group B Streptococcal maternal vaccines: A 

systematic review 

The main objective of this review was to systematically review and evaluate the immunogenicity and 

safety data of maternal GBS vaccines in published clinical trials until July 2023. 

 

Paper III: Association between anticapsular antibodies and protection against group B 

streptococcus in Norwegian infants 

The main objective of this case-control study was to evaluate anti-CPS antibody levels in cord blood 

from infants with invasive GBS disease and compare them with healthy infant controls in a 1:4 ratio, 

to establish IgG thresholds linked to a lower risk of invasive GBS disease. A secondary objective was 

to calculate the placental IgG transfer ratio in both cases and controls. 
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3 Materials and methods 

This section of the thesis draws upon methods from Paper I-III. Consequently, some overlaps with the 

content of these articles are anticipated. 

 

3.1 Study design and populations 

3.1.1 Paper I 

Paper I is an experimental study. We used an ex vivo whole blood inflammation model created to 

compare E. coli- and GBS-induced inflammation and to evaluate the effects of dual C5 and CD14 

inhibition. Healthy mothers scheduled for an elective caesarean section at the University Hospital of 

North Norway in the period of October 2019 and September 2021 were invited to participate during 

one of their regular hospital appointments. The study was conducted in two parts: (1) we collected 

cord blood samples (n=16) and incubated blood with bacteria for 120 min before analyses, and (2) we 

collected cord blood samples (n=14) and incubated blood with bacteria for 240 min before analyses.   

3.1.2 Paper II 

Paper II is a systematic review of all clinical trials reporting data on the immunogenicity and adverse 

events following administration of a GBS vaccine in healthy pregnant and non-pregnant women, and 

in women with HIV. The review is reported according to the updated Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (24) and the study protocol was prospectively registered 

(PROSPERO ID: CRD42020185213). Two reviewers (Aline Uhirwa Bjerkhaug and Shouwmika 

Ramalingham) screened titles and abstracts independently according to predetermined inclusion and 

exclusion criteria, with disagreements between the reviewers being resolved through consensus with 

the third author (Claus Klingenberg). We extracted the following variables: paper identification (title, 

first author, publication year), study design, inclusion and exclusion criteria, characteristics of the 

population (pregnant or non-pregnant adult, adult or infant, average age/gestation week/day after 

delivery), study site for clinical trials, characteristics of vaccine, characteristics of analytical assays, 

antibody response after vaccination, placental transfer ratio of GBS antibodies and adverse effects of 

the vaccines. The main outcome assessed was immunogenicity defined as vaccine-elicited geometric 

mean antibody concentration (GMC), and secondary outcome was vaccine efficacy (if possible) and 

other immunological responses (e.g. opsonophagocytosis, geometric mean fold rise (GMR) of GBS 

antibodies), placental transfer ratio and adverse events (AEs). When appropriate, meta-analysis was 

conducted using the online platform recommended for Cochrane intervention reviews (RevMan Web) 

and we presented the effect-estimates by using the random-effect model. 



 

24 

We evaluated the reported AEs in all studies comparing participants that received a conjugated CPS 

vaccine or surface subunit protein-based vaccine versus those who received placebo. If studies 

reported data on AEs separately for adjuvanted or non-adjuvanted vaccines, we selected the data on 

AEs from adjuvanted vaccines while these commonly are more reactogenic. Many studies reported on 

AEs at different vaccine doses, but we collated these together when analyzing the number of AEs in 

the vaccine group. AEs were reported differently in studies performed more than 15-20 years ago 

compared to more contemporary studies, but some of the more recent trials [254-262] used the 

extensive MedDRA system to present AE data [263]. Three authors (Aline Uhirwa Bjerkhaug, Claus 

Klingenberg and Robert Mboizi) assessed AEs independently and compared the findings. To obtain 

similar and comparable AE data across both older and more recent vaccine trials we report rates of the 

following AEs; serious AEs, AEs leading to withdrawal from the vaccine study, fever/systemic illness 

in relation to vaccine administration and vaccine-related death. Disagreements were discussed and 

resolved by consensus. 

3.1.3 Paper III 

Paper III is an observational case-control study including mother-infant pairs identified retrospectively 

in the period 1999-2009 to investigate the GBS antibody levels in cases with invasive GBS disease (up 

to 89 days of age) and to compare with healthy control infants. We employed four databases: the 

Norwegian Mother, Father and Child cohort-study (MoBa), the Norwegian Surveillance System for 

Communicable Diseases (MSIS), the Norwegian reference laboratory for GBS (NRL-GBS), and the 

Medical Birth Registry of Norway (MBRN). Plasma from mother and baby collected in MoBa, in both 

cases and controls, was assessed for CPS IgG to investigate serological protective antibody levels 

against GBS disease. We integrated data from MoBa with information from MSIS and NRL-GBS. 

Clinical data from mothers of cases and controls were obtained from the MBRN and included age, 

smoking history, previous abortions, mode of delivery and rupture of membranes. Infant 

characteristics include sex, gestational age, birth weight, Apgar score, respiratory support, and 

mortality. Clinical data on infant cases obtained from MSIS and NRL-GBS include day of life when 

infection was diagnosed, source of infection and survival. The data regarding the GBS isolate serotype 

was collected from NRL-GBS. Four mother-child controls, where the child did not require admission 

to a neonatal unit in the first week of life, were selected for each case.   

 

3.2 Laboratory methods 

3.2.1 Paper I 

In Paper I [264], all cord blood was drawn into endotoxin-free 4.5 mL NUNC tubes (Thermo Fischer 

Scientific, Roskilde, Denmark) and lepirudin (Refludan®, Pharmion, Windsor, UK) was added to a 
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concentration of 50 g/mL blood. Several pilot experiments were performed before the main study to 

assess the effect of single versus dual inhibition and to compare bacterial challenge with 107 GBS 

bacteria/mL versus 108 bacteria/mL. In sub-study 1, the baseline sample (T0) was processed less than 

20 min after the blood was drawn. Combined inhibitors eculizumab (final concentration 100 g/mL 

blood) and anti-CD14 (final concentration 15 g/mL blood) or isotype-matched control IgG2/4 (final 

concentration 15 g/mL blood), were added to separate tubes at each of the following time points: 8 

min prior to, and 15 and 30 min after adding E. coli strain LE392 (ATCC 33572; Manassas, VA) or a 

clinical GBS strain, serotype III (SO-SAG18-1, kindly provided by the Norwegian GBS reference 

laboratory, Trondheim, Norway) to a final concentration of 107 bacteria/mL whole blood. Two 

positive controls were incubated with either E. coli or GBS. The negative control was incubated with 

PBS only. All samples were incubated in a Rotamix Intelli-Mixer (Norengros, Oslo, Norway) with 

rotation of blood at 37°C for 120 min after adding bacteria or PBS. Complement activation was 

stopped by placing the samples on ice and adding EDTA (Sigma-Aldrich, Steinheim, Germany) to a 

final concentration of 20 mM. The samples were centrifuged for 20 min at 3000 x g at 4C. Plasma 

was collected and stored at -70C until analyzed. Sub-study 2 followed the same protocol, but the 

samples were incubated for 240 min instead of 120 min.  

Proinflammatory cytokines (TNF, IL-6 and IL-8) were measured using a multiplex cytokine assay 

(Bio-Rad Laboratories, Hercules, CA). The assay was performed according to the manufacturer’s 

instruction. The soluble terminal C5b-9 complement complex (TCC) assay was performed according 

to a method developed in a research laboratory at the Nordland Hospital [265]. In short, the principle 

of the TCC assay is based on a monoclonal antibody aE11 reacting with a neoepitope expressed in C9 

only after it is activated and incorporated into the C5b-9 complex. TCC concentrations are reported as 

complement activation units (CAU)/ml [265]. 

3.2.2 Paper III 

The serotype determination was conducted by the Norwegian reference laboratory for GBS (NRL-

GBS). During the period 1999 to 2005 CPS typing of GBS isolates at the GBS-NRL was done by 

immunofluorescence microscopy using rabbit antisera for CPS types (Ia, Ib, II-V) [266]. From 2006 

the laboratory switched to PCR-based typing including CPS types Ia, Ib, II-VIII, and from 2010 CPS 

type IX [267]. However, all serotyping for GBS isolates in our case-control study was reanalyzed by 

both PCR and whole genome sequencing [267].  

The detection of anti-GBS CPS IgG was conducted at a designated laboratory St Georges University 

of London (UK), with the same method as published in previous studies [268-270]. The detailed 

method of detection of anti-GBS CPS IgG in serum samples has previously been reported [270]. In 

our study, we had plasma samples and not serum. However, a bridging study (unpublished) has 
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compared the performance of the anti-GBS CPS IgG assay in adult serum and plasma samples and 

demonstrated good concordance.  

3.3 Statistical analyses  

In Paper I we used GraphPad Prism version 9.2.0 (GraphPad, San Diego, CA) for statistical analysis 

and presentation. Descriptive results are presented as means with standard deviation (SD) and medians 

with range or interquartile range (IQR; 25 to 75 percentiles). When comparing the effect of dual 

inhibition of E. coli or GBS induced inflammation at different time points with the positive control 

group, the results were analyzed by the non-parametric Wilcoxon matched-paired signed-rank test. 

Percentage inhibition of the positive control is presented related to the negative control as baseline. A 

p value <0.05 was considered statistically significant for all analyses.  

In Paper II, the main outcomes assessed were immunogenicity defined as vaccine-elicited geometric 

mean antibody concentration (GMC), and vaccine efficacy if possible. Immunogenicity data were not 

possible to meta-analyze, and are therefore presented descriptively for each study. As secondary 

outcomes, we evaluated other immunological responses (e.g. opsonophagocytosis, geometric mean 

fold rise of GBS antibodies), placental transfer ratio and adverse events (AEs). We evaluated the 

reported AEs in all studies comparing participants that received a conjugated CPS or surface subunit 

protein-based vaccine versus those who received placebo. If studies reported data on AEs separately 

for adjuvanted or non-adjuvanted vaccines, we selected the data on AEs from adjuvanted vaccines. 

Many studies reported on AEs at different vaccine doses, but we collated these together when 

analyzing the number of AEs in the vaccine group. AEs were reported differently in studies performed 

more than 15-20 years ago compared to more contemporary studies. Some of the more recent trials 

[254-262] have used the extensive MedDRA system to present AE data [263]. AE data were meta-

analyzed using the online platform recommended for Cochrane intervention reviews (RevMan Web). 

We calculated risk rations (RRs) with 95% confidence intervals (CI) for the AEs. We present the 

effect-estimates by using the random-effect model due to assumption of clinical and methodological 

diversity among the studies, subsequently often leading to statistical heterogeneity. Reactogenicity 

data were not possible to meta-analyze and therefore presented descriptively for each study. 

In Paper III, we used the Chi Square test when comparing demographics and subject characteristics 

between cases and controls. For each GBS-serotype of cases and the controls, anti-GBS CPS IgG 

concentrations were log transformed to calculate geometric mean concentrations (GMCs) and 95% 

confidence intervals (CIs). Statistical comparisons of IgG concentration between cases and controls 

were computed using Student’s t distribution. There was no imputation of missing serological results, 

and subjects with no results were excluded from the analysis; values below the lower limit of 

quantification (LLOQ) were assessed as half LLOQ (½ LLOQ) for calculation of GMC. Placental 
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transfer ratio with 95% CIs was calculated as GMCs in cord blood divided by the GMCs of plasma 

from mothers obtained around delivery, for each infant-mother dyad, and for each serotype.  

3.4 Ethical considerations  

The study in Paper I was approved by the Regional Ethical Committee (2019/834/REK nord), and all 

participating women gave informed written consent to participate in the study on behalf of themselves 

and their neonates.  

For Paper II there was no need for seeking ethical approval.  

For Paper III, which is a sub-study of the MoBa study, we received approval by the Regional ethics 

committee (REK sør-øst 2019/934). All cases from the MoBa cohort who were 18 years or older 

before analysis of cord blood samples, were also informed about the study and given an opt-out 

alternative to refuse that their samples and data could be included in this research study. The 

establishment of the MoBa-study in the 1990s, and initial data collection was based on a license from 

the Norwegian Data Protection Agency and approval from The Regional Committees for Medical and 

Health Research Ethics. All MoBa-participants have signed a written informed consent, and approved 

the use of biological specimen for health research purpose. The MoBa cohort is currently regulated by 

the Norwegian Health Registry Act.  

 

3.5 Funding  

I was funded by UiT-The Arctic University of Norway as a medical research student, and later 

supported by The Northern Norway Regional Health Authority (Helse Nord RHF), grant number 

HNF1628-22, 2022. The laboratory analysis for detection of anti-GBS capsular polysaccharide IgG 

was funded by Pfizer. 
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4 Summary of main results 

This section of the thesis also draws upon Results from Paper I-III. Consequently, some overlaps 

with the content of these articles are anticipated. 

4.1 Paper I 

Thirty mothers participated in this study [264]. Among them, two had mild preeclampsia, one had type 

1 diabetes mellitus, one had moderate anemia, one had intracranial hypertension, and the remaining 25 

were deemed healthy. Scheduled caesarean deliveries were conducted at a mean (SD) GA of 38.1(0.5) 

weeks, resulting in the birth of 18 girls and 12 boys with a mean (SD) BW of 3316 (521) g. Notably, 

all infants scored 9 or 10 on the Apgar test at 5 minutes, and none required admission to the NICU. In 

Sub-study 2, involving 13 mothers, their mean (SD) total white blood cell counts and neutrophil 

counts were 8.1(1.6) and 5.8 (1.8) ×109/L, respectively. Correspondingly, the cord blood samples from 

14 neonates exhibited mean (SD) total white blood cell counts and neutrophil counts at 12.3(3.2) and 

5.9 (2.1) ×109/L, respectively. 

Median (IQR) TCC cord plasma concentrations following 120 minutes of incubation with E. coli or 

GBS were 1.4 (0.7-3.6) CAU/mL and 1.5 (1.0-9.1) CAU/mL, respectively. These concentrations were 

significantly higher than the negative control (0.4 [0.1-0.5] CAU/mL), p < 0.001. Extended bacterial 

incubation for 240 minutes yielded similar TCC cord plasma concentrations for both E. coli (2.4 [1.5-

4.3] CAU/mL) and GBS (1.4 [0.8-3.1] CAU/mL), with significantly elevated TCC levels compared to 

the negative controls. 

Dual inhibition of C5 and CD14 effectively reduced cord TCC plasma concentrations when 

administered before bacterial challenge, as well as 15- and 30-minutes post-challenge, following both 

120- and 240-minute bacterial incubations. 

Incubation of cord blood with E. coli or GBS resulted in significant increases in plasma concentrations 

of TNF, IL-6, and IL-8 cytokines. Notably, E. coli elicited significantly higher levels of TNF, IL-6, 

and IL-8 compared to GBS. Dual inhibition demonstrated significant reductions in TNF, IL-6, and IL-

8 concentrations after E. coli challenge, but no significant effects were observed following GBS 

challenge, except for a lower concentration of IL-6 after dual inhibition. 
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Figure 7. Cord plasma concentration of TCC after 240 minutes incubation time with E. coli (Fig. A) and group B 
streptococci (Fig. B), and dual inhibition with complement C5 and co-receptor CD14 inhibitors, pre- and post-

bacterial challenge (Paper I). 

 

 
Figure 8. Cord plasma concentration of IL-6, IL-8 and TNF after 240 minutes incubation time with E. coli (Fig. 5 A-
C-E) and group B streptococci (Fig. 5 B-D-E), and dual inhibition with complement C5 and co-receptor CD14 
inhibitors, pre- and post-bacterial challenge (Paper I).  
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4.2 Paper II 

In Paper II [271], a total of 1472 publications (records) were retrieved from databases, with an 

additional 5 publications obtained from reference list citations. Following a comprehensive review, 48 

studies were deemed eligible for full-text evaluation. Exclusions primarily comprised published 

protocols, animal studies, and preclinical investigations. Ultimately, 26 publications were included, 

consisting of 20 main studies [254-262, 269, 272-281] and 6 sub-studies [282-287].  

The 20 main clinical studies included 5765 participants, including 1325 pregnant women. There were 

predominantly Phase 1 or 2 trials. The studies varied in design, with nine being double-blind 

randomized controlled trials [262, 272-279], eight being observer-blind randomized trials [254-257, 

259-261, 269], and three being non-randomized open label trials  [258, 280, 281]. The majority 

reported data on GBS-IgG response, with nine also evaluating GBS type-specific opsonophagocytic 

killing [272-274, 277-280, 285, 286].  

We found that GBS antibody response peaked within 2-8 weeks post-vaccination in healthy adults and 

pregnant women, with sustained elevation of GBS antibodies observed up to 6-12 months following 

vaccination. Dose-dependent responses were observed in several studies, particularly with surface 

subunit protein vaccines. Adjuvants such as aluminum salts or oil-in-water emulsions were employed, 

with varying impacts on immunogenicity. Placental transfer ratio varied from 0.4 to 1.4 across five 

studies. 

A second or booster vaccine doses enhanced IgG response in individuals with initially low antibody 

levels.  

Reactogenicity was predominantly mild, with no reported deaths attributed to vaccine administration. 

Serious adverse events were infrequent, with no discernible age or pregnancy-related patterns 

observed. Additionally, vaccination did not adversely impact pregnancy outcomes or HIV-infected 

individuals. 
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Figure 9. Risk of bias for immunogenicity outcomes (Paper II). 

 

 

 

 
Figure 10. Pooled results of studies comparing risk of serious adverse events between those who received a GBS 
vaccine versus placebo (Paper II). The sizes of the squares are proportional to study weights. Diamond markers 
indicate pooled effect sizes. 
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4.3 Paper III 

In Paper III we identified 57 cases of infants with invasive GBS disease within 89 days of birth in the 

MoBa cohort. To compare, 228 healthy term-born control infants were matched with the cases (4:1), 

resulting in clinical and GBS serology data from 285 mother-infant dyads from the MoBa cohort. The 

controls were randomly selected among the next healthy term born neonates in the MoBa-study, with 

cord blood available for analysis and who were not admitted to a neonatal unit in the newborn period. 

In the MoBa cohort, the incidence of GBS-EOD and GBS-LOD was 0.39 and 0.11 per 1000 live 

births, respectively. Among the GBS cases, the serotype was known in 47 out of 57 cases; 29 (51%) 

were infected with serotype III group B streptococcus, 5 (8.8%) with serotype Ia, 5 (8.8%) with 

serotype V, 4 (7%) with serotype Ib, 3 (5.3%) with serotype IV, and 1 (1.8%) with serotype II. 

Analysis of serotype distribution during the study period (1999-2009) and post-study period (2009-

2023) in Norway revealed that serotype III remained predominant, constituting 42-65% of all isolates 

in both GBS-EOD and -LOD cases. 

Mothers of cases exhibited a higher frequency of spontaneous abortion before 12 weeks’ gestation 

(17/57; 30%) compared to mothers of controls (39/228; 17%) (P = .03; χ2 test). Similarly, rupture of 

membranes for more than 12 hours was more prevalent among mothers of cases (16/57; 28%) 

compared to mothers of controls (30/228; 13%) (P = .006; χ2 test). As expected, 8.8% of the infants 

with GBS were born preterm, and 21% required respiratory support. 

For serotype III LOD there were lower anti-CPS GMCs in cases versus the controls (P = 0.019). 

Moreover, when calculated as an aggregate across all serotypes, the difference between case and 

control GMCs for LOD was also significant (P=0.006). There were no significant differences in 

GMCs between cases and controls for any other serotypes. 

We observed overall placental transfer ratios mainly were between 0.7 and 1.1 across all serotypes. 

There was a lower placental transfer ratio among cases with serotype III (0.49) than in controls (0.93), 

P = 0.025. For other serotypes there were no significant differences between cases and controls. 
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Table 1. Geometric mean IgG concentrations (mg/mL) in cord plasma of cases and all controls (Paper III). 

 
 

 

 

 

 
Table 2. Placental Transfer Ratios in cases and controls (Paper III). 
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5 Discussion  

5.1 Discussion of results  

In this work, we investigated the potential use of immune inhibitors in a neonatal inflammation blood 

model (Paper I). Furthermore, we present insights into the immunogenicity and safety of GBS 

vaccines across diverse populations, supporting their potential for reducing the burden of GBS-related 

diseases (Paper II). Finally, we investigated the potential protective anti-CPS IgG levels and placental 

transfer ratio in a large Norwegian mother-childbirth cohort (Paper III).  

5.1.1 The neonatal immune response  

The immediate immune response in neonatal sepsis depends on multifactorial components comprising 

the innate immune defense system [288]. However, limited data exist on the role of the complement 

system in neonatal inflammation and disease severity. In Paper I, we observed strong complement 

activation in cord blood after bacterial challenge with E. coli and GBS, as indicated by high levels of 

TCC. Neonatal sepsis triggers an early inflammatory response that, although less robust compared to 

older individuals it can be equally lethal [289]. In our experiments, extended bacterial incubation 

periods resulted in significantly higher levels of proinflammatory cytokines TNF, IL-6, and IL-8 after 

challenge with both E. coli and GBS, with higher cytokine release observed in response to E. coli. The 

modulation of the complement system, particularly C5 inhibition, shows promise in reducing sepsis 

morbidity and mortality [290]. Similar modulators are already widely present in the maternal-fetal 

interface of the placenta, theorized as a control mechanism for complement activation and protection 

against adverse pregnancy outcomes [291-293]. Our findings support previous studies indicating that 

dual inhibition of C5 and CD14 effectively mitigates inflammation induced by bacterial pathogens, 

although its efficacy may vary depending on the pathogen [290, 294-299].  

Generally, unless bacteria possess specific mechanisms to evade complement killing, Gram-positive 

and Gram-negative bacteria are vulnerable to elimination through opsonophagocytosis [43]. In 

addition, the complement MAC also kills predominantly Gram-negative bacteria because they have an 

outer membrane containing LPS, where MAC assembles. The LPS, also known as endotoxin, in the 

outer plasma membrane of Gram-negative bacteria is a potent inflammation-inducing molecule that 

triggers the human immune system [300]. Antibody-mediated classical pathway activation is very 

important in defense against Gram-positive bacteria, as serospecific antibodies can weaken the 

serotype III capsule [301, 302]. Deficiency in maternal type III CPS-specific IgG has been shown to 

correlate with susceptibility of neonates to the GBS infection [303], and may contribute to explain 

why cases with GBS-LOD serotype III had lower anti-CPS GS antibody levels than the controls 

(Paper III). Additionally, the presence of sialic acid residues in CPS are resistance to 

opsonophagocytosis in GBS by complement pathway [304]. This results in reduced deposition of 
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opsonic C3b and iC3b fragments on the bacterial surface, which are crucial for effective phagocytosis 

[304]. In vitro, CPS-specific IgG effectively counteracts this resistance mechanism [305]. The level of 

CPS-specific IgG directly correlates with the effectiveness of opsonophagocytic killing by 

polymorphonuclear leukocytes [301, 302] and with the generation of the complement-derived 

chemoattractant C5a [305]. We therefore hypothesize that the observed significant variation in GBS 

induced TCC compared to E. coli TCC production in the participants of Paper I may be attributed to 

the lack of knowledge regarding antibody levels, in particularly for GBS serotype III. 

Conjugated CPS-based GBS vaccines induced anti-GBS IgG levels that were efficiently transferred 

across the placenta (Paper II). The antibody levels detected in the infants, originating from transferred 

IgG, are likely a better marker for determining the risk reduction of invasive GBS disease compared to 

maternal antibody levels, even though the latter are easier to obtain [254, 255, 269, 276, 281]. In a 

study investigating serial antibody levels in vaccinated infants, functional antibodies persisted for at 

least two months in infants [276]. However, since maternal vaccination only provides passive 

immunization to the infants a decline in antibody levels is expected [242]. The placental transfer ratios 

ranged from 0.4 to 1.4 across the included studies in Paper II, and were compatible with the placental 

transfer ratios mainly between 0.7 and 1.1 in Paper III. These vaccine-induced placental transfer 

ratios can be influenced by vaccine-induced IgG subclasses, as studies suggest variations in transfer 

ratios among different subclasses [246, 306]. Additionally, factors such as naturally occurring IgG 

subclass distribution patterns in populations and potential influences of racial and ethnic factors on 

vaccination responses must be considered [307-313]. A study revealed that although sialic acid in 

GBS serotype III inhibits the alternative complement pathway activation, the addition of CPS-specific 

IgG subclass 2 significantly enhanced L-ficolin-initiated opsonophagocytic killing by increasing the 

activation of the alternative pathway [314]. 

In previous seroepidemiological investigations, most infants affected by GBS infections (“cases”) 

have exhibited anti-CPS IgG GMC < 0.01 μg/mL, and significantly lower anti-CPS IgG GMC in cases 

than healthy controls [244, 303, 315-322]. Low antibody levels in infant cases with a GBS infection 

can be due to either poor maternal production of antibodies or limited transfer of antibodies across 

placenta. We lacked detailed data on the medical history of mothers to infants with GBS-EOD in 

Paper III, but some of these pregnancies may have been complicated by a more chronic placental 

inflammation and infection around delivery [323-328]. We speculate that a more prolonged low-grade 

placental inflammation in mothers of cases with serotype III may be the reason for a lower placental 

transfer (Paper III). Higher rates of placental inflammation in low- and middle-income countries are 

also thought to explain the low placental transfer rates found in a study from South Africa [269].  

In Paper III, surprisingly we observed overall anti-CPS IgG GMCs  0.01 μg/mL across most 

serotypes in  the cases with invasive GBS infection. This contrasted previous studies, but the anti-CPS 
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IgG GMC among controls were similar to these studies  [254, 255, 269, 276, 281]. However, in LOD-

cases with serotype III we found lower anti-CPS IgG levels in LOD-cases versus the controls (Paper 

III), which is in line with the hypothesis that low antibody levels are associated with increased risk of 

infection. For EOD cases our study could not demonstrate similar association, of unclear reasons. 

Paper III had some limitations that made interpretation of data challenging. We observed a trend 

towards declining rates of GBS-EOD in Norway from 0.47 to 0.33/1000 livebirths between 1999-2009 

and 2010-2022, but we did not have national data on IAP use during this period. An increased use of 

IAP since its introduction in Norway in 1998 [121], may be one reason for declining GBS-EOD 

incidence. We speculate therefore that the use of IAP may have masked GBS-EOD cases in the 

healthy control group, as the antibiotic use would prevent the neonates with potential low antibodies 

levels from acquiring GBS-EOD. Continuing in this line of reasoning, the antibody levels in controls 

were similar to previous studies [269, 322], but the maternal rectovaginal GBS colonization rates 

around delivery was 34% in a Norwegian study from 2005 [329] and 26% in a Norwegian study from 

2009-2011 [330]. These colonization rates are higher than reported in Northern Europe (20.6%), North 

America (22%) and overall in developed regions (18.4%) [331]. Colonization with GBS not only 

contributes to the risk of GBS disease in infants but also influences the levels of anti-GBS-CPS IgG in 

pregnant women and neonates [244, 303, 315-321, 332]. Theoretically, one could have expected the 

Norwegian healthy controls to have higher levels of antibody levels than previous studies [269, 322]. 

Understanding the colonization status in combination with the IgG subclass levels in the included 

MoBa participants might have provided valuable insights into the dynamics of GBS transmission and 

its implications for maternal and neonatal immunity.  

5.1.2 Maternal Immune Response  

Paper I focus on complement system activation by analyzing TCC concentration, a key indicator of 

complement activation. Strong complement activation was observed in cord blood after bacterial 

challenge with E. coli and GBS. Low levels of ficolin-3 and mannose binding lectin (MBL), which 

activate the lectin complement pathway, have been linked to increased susceptibility to infections 

[333, 334]. In a case-control study, neonates with Gram-positive sepsis had lower ficolin-3 

concentrations, while those with Gram-negative sepsis had lower MBL concentrations [333]. 

Although serotype distribution was not known in Paper I, we know maternally transferred 

immunoglobulins targeting GBS serotype III can weaken the bacterial capsule, enhancing complement 

activation [335]. Extended bacterial incubation periods led to increased cytokine release, particularly 

TNF, IL-6, and IL-8, with differences observed between E. coli and GBS challenges. Our findings in 

Paper I contrast to Mohammed et al who reported no significant difference in cytokine release E. coli 

and GBS, but instead a more pronounced cytokine release in cord blood versus adult blood [336]. In 

our study, we focused on neonatal immune response and selected pregnant women with unknown 

colonization status and antibody levels for GBS CPS.  
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In Paper II and III, the systematic review and the seroepidemiological study revealed insight into the 

maternal immune response after GBS vaccination and the association between antibody levels and risk 

of GBS infection. The review of GBS-IgG levels across studies in Paper II revealed challenges in 

data interpretation due to variations in vaccine serotypes, assays, and assessment protocols. Protective 

maternal thresholds that translate to adequate infant protective levels remained undefined, with 

suggestions of "protective" maternal levels of around 1 μg/mL for anti-GBS-CPS IgG concentrations 

[318, 321]. The surface subunit protein vaccines’ “protective” thresholds for anti-protein IgG 

concentration remained elusive due to assay variations and study design differences [320, 337, 338]. 

In Paper II, most vaccine studies showed antibody concentrations above the arbitrary threshold of 1 

μg/mL in non-pregnant adults and pregnant women post-vaccination. In Paper III, due to limited 

number of cases we were not able to identify a specific protective blood anti-CPS IgG threshold for 

both EOD and LOD. Furthermore, serotype Ia elicited a significantly higher IgG response compared 

to other serotypes (Paper II). Still, serotype III is more common worldwide [331] as it also clearly 

was in our cohort (Paper III).  

Conjugation of GBS-CPS with toxoid proteins proved essential for achieving adequate immune 

responses, and this principle is widely recognized in other CPS-based vaccines, such as the 

pneumococcal glycoconjugate vaccine [339]. Adjuvants, notably aluminum salts, demonstrated a 

notable enhancement in immunogenicity when incorporated into surface subunit protein vaccines 

[262]. This effect was not observed in conjugated CPS-based vaccines [256, 275]. An increased 

immunogenicity after adding adjuvants may cause a placental inflammation and consequently 

theoretically less antibodies crossing the placenta. Thus, adjuvants may have the opposite effect of 

what you would expect if being used in a maternal vaccine. In contrast, commercial polyvalent 

pneumococcal CPS vaccines include adjuvants (aluminum salts) to stimulate immune responses in 

infants aged two months and older [340].  

In the Norwegian adult population there has been an average annual increase of 6.4% from 1999 to 

2019, with a shift in the distribution of CPS serotypes from the three dominant types (V, Ia, and III) to 

the six most common serotypes (Ia, Ib, II, III, IV and V) [341]. Hence, a hexavalent GBS vaccine may 

be preventative for invasive GBS infections in a larger demographic than just GBS disease in 

neonates. Although long-term antibody decline was observed in vaccinated adults in Paper II, 

functional antibodies persisted for up to two years post-vaccination in adults [272-274, 277-280, 285, 

286]. Paper II-III enhance the significance of understanding the natural immunity and mechanisms 

behind the variations observed in vaccine studies [242].  
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5.1.3 GBS vaccine safety  

Paper II assessed the safety profile of GBS vaccines, and the results were reassuring, though caution 

is warranted in interpreting the data. The review included a relatively small number of participants, 

with only 1325 pregnant women among 5765 participants. Distinguishing between pregnancy-related 

complications and vaccine-related adverse events (AEs) poses challenges in maternal vaccine studies 

due to overlapping symptoms. Factors like maternal age, obstetrical history, and health conditions 

influence pregnancy outcomes and must be considered in interpreting AEs [342].  

Identifying rare and severe adverse effects necessitates a larger cohort, exemplified by occurrences 

like vaccine-induced immune thrombotic thrombocytopenia following specific COVID-19 vaccines 

[343], or as observed in recent respiratory syncytial virus vaccine trials linked to preterm births [344]. 

Although no increased rates of premature births were observed in the GBS vaccine trials (Paper II), 

the small sample size limits definitive conclusions. Therefore, establishing a robust Vaccine Adverse 

Event Reporting System (VAERS) and maintaining vigilant safety monitoring post-licensure of a 

maternal GBS vaccine is imperative. 

5.1.4 Dual inhibition of C5 and CD14 - a novel therapy in sepsis? 

Earlier research on complement system-modulation during sepsis focused on targeting complement C3 

due to its pivotal role in amplifying the immune response [294, 296]. However, inhibiting C3, while 

effective in reducing inflammation, may increase the risk of infection by impeding the primary 

complement defense mechanism through C3-opsonization [294]. In Paper I, we opted to utilize a C5 

inhibitor. Blocking C5 prevents the formation of C5b, which initiates the assembly of C5b-9, and 

importantly, it inhibits the production of the potent proinflammatory complement protein C5a. 

Furthermore, this approach does not interfere with the opsonization of microbes by C3b [43]. Dual 

inhibition of C5 and CD14 showed promising results in reducing TCC plasma concentration and 

reduced key cytokines (IL-6, IL-8 and TNF), indicating a potential therapeutic approach for neonatal 

sepsis (Paper I). However, there are challenges when comparing our results with previous studies, 

since many studies report data from in vitro models or studies with isolated blood cells that show a 

much higher cytokine production [345-348].  

There are already some promising results in animal models for the potential use of C5 inhibition for 

reduction of sepsis mortality and morbidity [290]. Additionally, C5 inhibition drugs, such as 

eculizumab, are already in widespread clinical use, and with relatively good safety data in other 

pediatric conditions [349, 350]. Animal studies of polymicrobial sepsis have also shown clear 

beneficial effects of the dual C5 and CD14 inhibition with improved hemodynamic parameters, and 

morbidity and survival [297, 351]. Still, there is some concern about the persistent C5 inhibition due 
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eculizumabs long elimination half-life. Furthermore, we did not evaluate possible interactions with 

most used antibiotics in our model (Paper I).  

 

5.2 Discussion of methodology  

5.2.1 Methodological considerations  

Paper I primarily delves into investigating the immune response associated with neonatal sepsis and 

how this can be modified with potential new treatment strategies.  

In neonatal care, initial clinical symptoms of the two most common EOS pathogens (E. coli and GBS) 

cannot be differentiated [121, 123, 202]. In severe cases of sepsis, empiric therapy must be started 

before we know the bacterial etiology [94, 123, 202]. Thus, after careful methodological 

considerations the two most common bacteria that cause sepsis in neonates [85, 94, 125] were 

included in the study protocol. While various designs are available in the basic research sphere, we 

opted for a whole blood inflammation model that encompasses all components of blood and where the 

study could be executed under physiological conditions. This model allows for crosstalk between 

inflammatory mediators and is an advantage in comparison to in vitro models often investigating 

single components or response pathways [345-348]. 

Both Paper II and Paper III concentrate on invasive GBS disease but adopt distinct approaches to 

address similar inquiries. The fundamental question explored in both papers revolves around the 

advancement of a maternal GBS vaccine. The objective in Paper II was to systematically gather 

global knowledge pertaining immunogenicity and adverse effects of GBS vaccines. Paper III builds 

upon the knowledge gap identified in Paper II. In contrast to Paper II's global perspective, Paper III 

utilizes data and biological samples from a unique Norwegian mother-child cohort study, 

supplemented with information extracted from various Norwegian databases, to comprehensively 

analyze GBS seroepidemiology in infants with GBS-EOD and GBS-LOD. 

5.2.2 Internal validity 

Internal validity refers to the degree to which our work can accurately reflect the true relationship 

between variables, without being influenced by confounding factors or biases. It is essential for 

drawing valid conclusions from the study findings [352].  

The collection, handling, and laboratory analysis of maternal venous blood samples and cord blood 

samples in the inflammation study (Paper I) and in the MoBa cohort (Paper III) were conducted 

according to standardized procedures by skilled and experienced personnel. While the probability of 
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random error was reduced as much as possible, it can never be eliminated. In the inflammation study 

(Paper I), we implemented a comprehensive multistep laboratory method involving sample collection 

and experimentation, which could have introduced variability. We believe that utilization of a detailed 

protocol and consistent execution during experimentation, along with analysis conducted by other 

skilled researchers, mitigated potential errors and reduced the chances of detecting false associations 

(type I statistical error). The sampling in the MoBa cohort (Paper III was done by numerous 

midwives during the 10-year study period, but after a strict protocol. High quality biobanking of 

plasma samples and avoidance of frequent freeze-thaw cycles by banking in small aliquots reduced 

potential measurement bias [353]. The sample sizes in Paper I-III could unfortunately not minimize 

random errors, and with small samples there is an increased the risk of not detecting weak associations 

(type II statistical error). 

Interpreting the study results also requires consideration of bias, also known as systematic error. 

Systematic error can be categorized in three main categories: selection bias, confounding, and 

information bias [352].  

Paper I-III exhibit a degree of selection bias concerning the study population, with a higher risk of 

bias observed in the inflammation study (Paper I) and seroepidemiological study (Paper III). These 

studies primarily enrolled Caucasian participants. Regarding the function of the complement system 

(Paper I), concentrations of ficolin-3 and MBL can be affected both by intrauterine infections and 

genetic factors. MBL-deficiency affects e.g. about 30% of the white population [333]. Furthermore, 

the comprehensive informed consent form being in Norwegian (although also available in English), 

may have biased inclusion towards well-educated Norwegian women (Paper I and Paper III). In 

Paper III, the incidence of GBS-EOD in the MoBa study cohort was in line with national data [354]. 

We observed that the GBS-LOD incidence was lower at 0.11/1000 livebirths. We speculate that one of 

the reasons might be that the educational level of mothers and rates of breastfeeding are higher in 

MoBa-study participants than in the general Norwegian population [355]. Human milk with bioactive 

substances and its microbiota is important for the neonatal gut microbiome and enhances the infant's 

immunity against infections [50, 51, 356, 357].  

To minimize confounding in Paper I, we restricted the analysis to healthy pregnant women expecting 

term infants and further limited to elective cesarean section. The later thought to standardize the blood 

collection and minimize chances of inflammation due to vaginal delivery affecting our results, 

although a recent study reported that antimicrobial peptides known to be involved in anti-

inflammatory are upregulated in vaginal delivery compared to cesarean sections [358]. In the 

systematic review (Paper II), most included studies were rated as having an overall low risk of bias 

for immunogenicity data. However, there were concerns regarding 8 out of 20 studies due to 

insufficient information about whether the data was analyzed according to a predetermined analysis 
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plan before unblinded outcome data became available for analysis. The latter increases the risk of 

information bias. In Paper III, we identified several potential confounders which could influence the 

association between anti-CPS IgG levels (exposure) and GBS-EOD/GBS-LOD (outcome). First, the 

number of cases with complete serotype data was limited, and mainly sufficient for statistical analyses 

only for serotype III or all serotypes combined. Second, we did not have corresponding data on 

maternal GBS-colonization. Consequently, we were unable to pair cases with healthy controls with 

similar colonization status. Third, we lacked detailed medical history from the mothers of the healthy 

control cases, like gestational diabetes or perinatal infections that could have impacted on the placental 

transfer ratios [49]. Finally, the IAP usage is not known for mothers in the MoBa cohort, and potential 

variations in use among control mothers could theoretically influence the risk of infections among the 

controls.  

5.2.3 External validity 

External validity concerns the extent to which research findings can be generalized or applied to real-

world settings. It relies on internal validity, as the validity of generalizing study results to other 

contexts depends on the soundness of the study design and the absence of biases or confounding 

variables that could affect the internal validity of the research [352].  

Paper I-III encompass a predominantly homogeneous population (selection bias), primarily 

Caucasian, except for the systematic review, which incorporated participants from African regions. As 

previously discussed, the demographic uniformity may influence the generalizability of the findings 

across diverse populations, warranting further investigation into potential ethnic and demographic 

variations in outcomes. However, the outcomes from the inflammation and seroepidemiological 

studies are anticipated to be relevant to women of Nordic heritage, whereas the systematic review 

encompasses data from participants of African origin as well. 

 

5.3 Strengths and limitations 

The ex vivo model in Paper I assesses the innate immune response in a system with fresh cord blood 

containing both cellular and humoral immune response components. In Paper II, the strengths of our 

systematic review include our rigorous and sensitive search strategy following an a priori registered 

protocol. This is followed up in Paper III, where the study integrates samples from both cases and 

controls with comprehensive information from multiple databases, involving both mothers and 

children.  

In Paper II-III, we targeted an area of global concern and importance. GBS vaccines have been a 

focus of clinical trials since the 1990s, still only around 5600 participants were identified in the 20 
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studies in the systematic review (Paper II). One of the key constraints was the inability to conduct a 

meta-analysis for the primary outcome of immunogenicity (IgG GMCs) due to the heterogeneous use 

of seroassays across studies. However, the international consortium known as GASTON (Group B 

Streptococcus: Standardization of Laboratory Assays) has reached a consensus on a unified protocol 

for GBS antibody assays [270]. This standardized procedure marks a significant milestone in their 

collaborative efforts to ensure consistency and reliability in GBS-related research [359, 360]. This 

standardized assay has also been used in Paper III to analyze the plasma samples of the mother-child 

dyads, which makes this one of the few studies that are both comparable and reproducible. The latter 

also applies to the ex vivo model in Paper I, due to the meticulous protocol published for further 

exploration of the inflammatory response in neonates.  

There are several limitations with the chosen methods in all included papers. All studies featured a 

relatively small sample size and generally homogeneous grouping. Our inflammation model (Paper I) 

had limitations in exploring certain well-known intracellular and extracellular bacterial antigen-

specific mechanisms, which regulate cytokine secretion, by not conducting in vitro experiments [288]. 

The primary challenge in conducting a meta-analysis for the main outcome of immunogenicity (IgG 

GMCs) was due to differences in (non-comparable) seroassays used in the included studies (Paper II). 

Although we employed a standardized method for serocorrelates in Paper III, our primary limitation 

was the lack of complete data on serotypes for all GBS isolates, and no data on the use of IAP within 

the study cohort.  

In both Paper I and Paper III there were concerns regarding the healthy controls. In our 

inflammation model, although we included five mothers with well-managed medical conditions, their 

cord blood response could potentially have been misleading, albeit their results did not significantly 

differ from those of the other participants. In our seroepidemiological study, we selected a healthy 

control group from the MoBa cohort, which may have been a particularly selected group as MoBa 

participants in general were somewhat higher educated than the general population.  

Finally, some limitations arise from necessary choices made in the laboratory protocol (Paper I). In 

our inflammation model, we opted for lower GBS loads and shorter observation periods compared to 

previous studies [361]. Nonetheless, our findings demonstrated that a GBS concentration of 107 

CFU/mL was adequate, as evidenced by elevated IL-6 levels indicative of neonatal sepsis [362]. Due 

to blood volume constraints and experimental complexity, we could not include additional 

experiments with eculizumab and anti-CD14 separately. We used heat-inactivated bacteria due to 

experimental protocol intricacies, corroborating prior findings of robust immune response [363]. Heat-

inactivated GBS induces TLR2-dependent antimicrobial gene activation, with no destruction of LPS 

or LTA [364].   
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6 Conclusions 

Our investigation into the potential application of immune-modulating treatment (Paper I), such as 

the dual inhibition of C5 and CD14, demonstrated significant reductions in detrimental immune 

components, including TCC, TNF, IL-6, and IL-8. Furthermore, we conducted experiments using an 

inflammation model, where the immune inhibitors were added up to 30 minutes after the bacterial 

challenge, yielding consistent results. These findings highlight the efficacy of immune modulation in 

mitigating inflammatory responses and suggest its potential future therapeutic usage in clinical 

settings. 

Our systematic review (Paper II) highlights the extensive data pertaining to the immunogenicity, 

reactogenicity, and adverse events associated with maternal GBS vaccines tested in clinical trials, and 

with data accumulated over several decades of research. Furthermore, it sheds light on the knowledge 

regarding the placental transfer ratio of these vaccines. This comprehensive analysis underscores the 

current evidence base surrounding maternal GBS vaccination, offering valuable insights for future 

vaccine development. The restricted number of pregnant women included in GBS vaccine studies is 

also an important finding, and clearly shows that new and larger studies are needed. This systematic 

review also emphasizes the existence of significant uncertainties regarding the determinants of the 

antibody response, particularly among individuals with low baseline GBS antibodies. Moreover, our 

findings align with the recent initiative aimed at standardizing measurement methods to enhance direct 

comparison and extrapolation of results.  

Our main finding in Paper III was that antibody levels in serotype III LOD-cases were lower than in 

the healthy control infants. Additionally, the placental transfer ratio in all GBS serotype III cases were 

lower than in the healthy control infants. These data are in line with previous hypotheses that low 

antibody levels are associated with increased risk of GBS infections. However, the lack of similar 

findings for the EOD cases is more challenging to interpret. It may be partly explained by small 

sample size, lack of data on IAP usage and high maternal GBS carriage rates in Norway during the 

study period. These limitations underscore the importance of comprehensive data collection, the need 

for larger sample size and standardized methodologies in research endeavors aimed at understanding 

the dynamics of GBS epidemiology and vaccine efficacy.  
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7 Future perspectives  

7.1 Immunological studies of adjunctive therapy for neonatal sepsis 

The immediate immune response in neonatal sepsis relies on various components of the innate 

immune defense system. However, our understanding of the complement system's role in neonatal 

inflammation and disease severity is limited [288]. Further research incorporating mechanisms behind 

observed immune responses could provide a more comprehensive understanding of cytokine responses 

to bacterial antigens [288]. The assessment of antibacterial efficacy incorporation with the inclusion of 

live bacteria may enrich future findings, and further support the transition of the “dual inhibition 

concept” from our work into experimental animal models of neonatal sepsis.  

7.2 GBS vaccine  

Several key factors need to be addressed before a vaccine for a particular disease like Group B 

Streptococcus (GBS) can be introduced [271, 365].  

First, a universally accepted definition of GBS-related disease should be established. This would 

ensure consistency in diagnosis and reporting across different regions and healthcare systems. This 

standardization is crucial for accurate surveillance and assessment of disease burden [5]. 

Secondly, one should implement consistent and comprehensive monitoring systems that enable 

ongoing surveillance of GBS-related infections globally. This includes standardized protocols for data 

collection, analysis, and reporting to facilitate comparison and tracking of disease trends over time 

[242, 366, 367]. 

Thirdly, maternal anti-GBS antibodies are linked to protection against EOD (Paper II) and potentially 

serotype III LOD (Paper III). However, without a defined efficacy correlate, a phase III trial might be 

necessary for vaccine licensure. Selecting appropriate trial sites requires high GBS incidence rates in 

large birth cohorts, along with strong clinical and microbiological diagnostic capabilities [368]. 

Exploring alternate licensure pathways, like identifying serological protection correlates, followed by 

phase IV studies on vaccine effectiveness against invasive GBS disease, is also important [368]. 

However, a randomized, placebo-controlled efficacy trial offers the added benefit of assessing GBS's 

role in various neonatal complications, including culture-negative sepsis, stillbirths, prematurity, and 

low birth weight [242, 368, 369]. 

Fourthly, the access to routine prenatal care is essential for the successful implementation of a future 

GBS vaccine program [370]. By integrating vaccination into existing prenatal care services, healthcare 

providers can ensure that pregnant individuals receive timely and appropriate immunization to protect 

themselves and their newborns [366]. 
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Lastly, an effective communication and education initiatives would aid to inform healthcare 

professionals, parents, and expectant parents about GBS and the potential benefits of vaccination [371, 

372]. This includes raising awareness about the risks associated with GBS infection, the importance of 

prevention strategies such as vaccination, and addressing any concerns or misconceptions related to 

vaccination safety and efficacy [371-373].   
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BACKGROUND: Escherichia coli and Group B streptococci (GBS) are the main causes of neonatal early-onset sepsis (EOS). Despite
antibiotic therapy, EOS is associated with high morbidity and mortality. Dual inhibition of complement C5 and the Toll-like receptor
co-factor CD14 has in animal studies been a promising novel therapy for sepsis.
METHODS: Whole blood was collected from the umbilical cord after caesarean section (n= 30). Blood was anti-coagulated with
lepirudin. C5 inhibitor (eculizumab) and anti-CD14 was added 8min prior to, or 15 and 30min after adding E. coli or GBS. Total
bacterial incubation time was 120 min (n= 16) and 240min (n= 14). Cytokines and the terminal complement complex (TCC) were
measured using multiplex technology and ELISA.
RESULTS: Dual inhibition significantly attenuated TCC formation by 25-79% when adding inhibitors with up to 30min delay in both
E. coli- and GBS-induced inflammation. TNF, IL-6 and IL-8 plasma concentration were significantly reduced by 28–87% in E. coli-
induced inflammation when adding inhibitors with up to 30min delay. The dual inhibition did not significantly reduce TNF, IL-6 and
IL-8 plasma concentration in GBS-induced inflammation.
CONCLUSION: Dual inhibition of C5 and CD14 holds promise as a potential future treatment for severe neonatal EOS.
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IMPACT:

● Neonatal sepsis can cause severe host inflammation with high morbidity and mortality, but there are still no effective
adjunctive immunologic interventions available.

● Adding CD14 and complement C5 inhibitors up to 30min after incubation of E. coli or Group B streptococci in a human
umbilical cord blood model significantly reduced complement activation and cytokine release.

● Dual inhibition of C5 and CD14 is a potential future therapy to modulate systemic inflammation in severe cases of neonatal
sepsis.

INTRODUCTION
Despite advances in neonatal medicine, early-onset sepsis (EOS)
still remains a significant cause of morbidity and mortality due
to cases with severe host inflammation and limited protective
responses.1,2 EOS is caused by vertical transmission of bacteria
colonising the gut and the birth canal. Together, E. coli and
Group B streptococci (GBS) cause approximately 2/3 of all EOS
cases. Both bacteria may cause severe disease with high risk of
later sequela or death, in both term and in particular preterm
infants.3,4

The complement system and the cytokine network are key
players of the innate immune system, centrally involved in the host
inflammatory response.5 The complement system is activated by
three routes; the classical pathway, the lectin pathway and the
alternative pathway (Fig. 1).6,7 These pathways merge at C3, which

when activated, binds to bacteria. This opsonisation leads to
enhanced phagocytosis and is the main mechanism of the
complement system in bacterial defence. Other complement
mediated mechanisms are lysis of some Gram-negative bacteria
by the membrane form of the terminal C5b-9 complex and through
C5a-enhanced synthesis of inflammatory mediators and degranula-
tion of granulocytes.8 Both E. coli and GBS activate the complement
system,7–11 but in severe cases this activation can be excessive and
lead to harmful inflammation.12 During sepsis, cytokine concentra-
tions increase exponentially through a multitude of different
pathways, including activation of pattern recognition receptors,
e.g. Toll-like receptors (TLRs).9–11 Under normal conditions, TLR-
activations induce a local and self-limited response. However, in
sepsis TLR-activation can be improper and uncontrolled, leading to
a fatal systemic imbalance.12
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A range of adjunctive inflammatory interventions have failed to
show convincing beneficial effects in treatment of neonatal
sepsis.13 Complement factor C5 and the TLR co-receptor CD14
are new potential targets for sepsis therapy.12 C5 inhibition
reduces the proinflammatory effects caused by C5a and the
terminal C5b-9 complex (Fig. 1). CD14 is a co-receptor for several
TLRs,14 including TLR2 and TLR4, expressed on macrophages and
neutrophils (Fig. 1). CD14 plays an important role in the detection
of lipopolysaccharides (LPS) from Gram-negative bacteria, but also
other pathogen-associated molecular patterns such as lipoteichoic
acids (LTA) from Gram-positive bacteria.12,14–16 Studies in Gram-
negative ex vivo and animal models have indicated that the dual
inhibition of C5 and CD14 may be beneficial in attenuating the
detrimental effects of complement activation, and to modulate
the cytokine storm in fulminant sepsis.12 Similar beneficial effects
have been observed in experimental models with Staphylococcus
aureus.17 However, in most of these studies the dual inhibition of
C5 and CD14 has been “prophylactically” administered, as proof of
concept, before induction of sepsis.12

In neonates with sepsis, empiric antibiotic therapy must cover
the most commonly seen pathogens, and therapy is often started
after the baby has become symptomatic.18,19 A similar approach
would be necessary for empiric immunomodulatory treatment.
The main objective of this study was to compare E. coli- and GBS-
induced inflammation and to evaluate the effects of dual C5-CD14
inhibition in an ex vivo human umbilical cord blood model.

METHODS
Study groups and blood collection
Mothers scheduled for an elective caesarean section at the University
Hospital of North Norway in the period of October 2019 and September
2021 were invited to participate. In sub-study 1, we collected cord blood
samples (n= 16) and incubated blood with bacteria for 120min before
analyses (Fig. 2). After an interim analysis of data, we found that the
cytokine release after 120min, especially after GBS incubation, was lower

than expected from previous studies with other bacteria (E. coli and
S. aureus).17,20–23 We then performed new pilot studies in both adult and
cord blood (Supplementary Fig. 1a–h). Subsequently we decided to
perform sub-study 2 where we collected cord blood samples (n= 14) and
now incubated blood with bacteria for 240min before analyses.

Bacterial strains and culture conditions
E. coli strain LE392 (ATCC 33572; Manassas, VA) and a clinical GBS strain,
serotype III (SO-SAG18-1, kindly provided by the Norwegian GBS reference
laboratory, Trondheim, Norway) were used in all experiments. We slightly
adapted a previously described heat inactivation protocol20 for both
bacteria. E. coli was grown in Luria-Bertani (LB)-medium and GBS in Todd
Hewitt medium overnight, then washed once (3200 × g, 10min at 4 °C) with
50mL phosphate-buffered saline (PBS; Sigma-Aldrich, Steinheim, Germany).
After resuspension in PBS, E. coli and GBS were separately heat-inactivated
for 1 h at 60 °C. Growth controls after heat-inactivation confirmed that all
bacteria were killed. E. coli and GBS were batched and frozen at −70 °C.
Upon use, the heat-inactivated strains (E. coli and GBS) were thawed and

washed six times in PBS, as described above. Absolute bacterial counts
were obtained by diluting the bacteria 1:500 with PBS, followed by transfer
of 2450 μL to a tube designed for compatibility with the flow cytometer.
We added 50 μL CountBright® (Life Technologies Corporation, OR). The
samples were run on a flow cytometer (BD Biosciences, NJ) and the
concentration of E. coli and GBS were calculated using the formula
provided in the CountBright® instruction manual. A batch suspension of
7.17 × 107 E. coli/mL PBS and 6.17 × 107 GBS/mL PBS was made and kept at
4 °C for up to maximum four months.

Inhibitors
The complement C5 inhibitor, eculizumab (Soliris®) was obtained from
Alexion Pharmaceuticals (Boston, Ma). The recombinant anti-human CD14
IgG2/4 antibody (r18D11) and an isotype-matched control were produced
in our laboratory, as previously described.24

Ex vivo human cord blood model
Both the original ex vivo whole-blood model25 and the post-challenge
model22 have been described in detail previously. The major advantage of
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the ex vivo human whole-blood model is the use of the thrombin-specific
inhibitor lepirudin, which does not interfere with the complement system
or the inflammatory network, in contrast to other frequently used
anticoagulants such as EDTA, citrate and heparin.24

A time course for our study is shown in Supplementary Fig. 2. In the
current study, we aimed to optimise cord blood sampling volumes,
but volumes obtained were usually just enough for all the planned
analyses including controls and inhibition experiments. All cord blood was
drawn into endotoxin-free 4.5 mL NUNC tubes (Thermo Fischer Scientific,
Roskilde, Denmark) and lepirudin (Refludan®, Pharmion, Windsor, UK) was
added to a concentration of 50 μg/mL blood. Several pilot experiments in
adult blood were performed before the main study in order to assess
the effect of single versus dual inhibition and to compare bacterial
challenge with 107 GBS bacteria/mL versus 108 bacteria/mL (Supplemen-
tary Fig. 3a–h).
In sub-study 1, the baseline sample (T0) was processed less than

20 min after the blood was drawn. Combined inhibitors eculizumab (final
concentration 100 μg/mL blood) and anti-CD14 (final concentration
15 μg/mL blood) or isotype-matched control IgG2/4 (final concentration
15 μg/mL blood), were added to separate tubes at each of the following
time points: 8 min prior to, and 15 and 30 min after adding E. coli or GBS
to a final concentration of 107 bacteria/mL whole blood.22,25 Two
positive controls were incubated with either E. coli or GBS. The negative
control was incubated with PBS only. All samples were incubated in a
Rotamix Intelli-Mixer (Norengros, Oslo, Norway) with rotation of blood at
37 °C for 120 min after adding bacteria or PBS. Complement activation
was stopped by placing the samples on ice and adding EDTA (Sigma-
Aldrich, Steinheim, Germany) to a final concentration of 20 mM. The
samples were centrifuged for 20 min at 3000 × g at 4 °C. Plasma was
collected and stored at −70 °C until analysed. Sub-study 2 followed the
same protocol, but the samples were incubated for 240 min instead of
120 min.

Cytokine multiplex assay
Pro-inflammatory cytokines (TNF, IL-6 and IL-8) were measured using a
multiplex cytokine assay (Bio-Rad Laboratories, Hercules, CA). The assay
was performed according to the manufacturer’s instruction.

Enzyme immunoassays for complement activation products
The soluble terminal C5b-9 complement complex (TCC) assay was
performed according to a method developed in our laboratory and
described in detail previously.26 In short, the principle of the TCC assay is
based on a monoclonal antibody aE11 reacting with a neoepitope
expressed in C9 only after it is activated and incorporated into the C5b-9
complex. TCC concentrations are reported as complement activation
units (CAU)/mL.26

Data presentation and statistics
GraphPad Prism version 9.2.0 (GraphPad, San Diego, CA) was used for
statistical analysis and presentation. Descriptive results are presented as
means with standard deviation (SD) and medians with range or
interquartile range (IQR; 25–75 percentiles). When comparing the effect
of dual inhibition of E. coli or GBS induced inflammation at different time
points with the positive control group, the results were analysed by the
non-parametric Wilcoxon matched-paired signed-rank test. Percentage
inhibition of the positive control is presented related to the negative
control as baseline. A p value <0.05 was considered statistically significant
for all analyses.

RESULTS
Thirty mothers were included in this study. Two had mild
preeclampsia, 1 had a well-controlled diabetes mellitus type 1, 1
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Fig. 2 Graphical abstract: cartoon of the experimental set-up of the study.
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hadmild anaemia, 1 had a benign intracranial hypertension, and the
other 25 were healthy. Scheduled caesarean delivery was
performed at mean (SD) 38.1 ± 0.5 weeks gestation; 18 girls and
12 boys. The mean (SD) birth weight for the 30 babies was
3316 ± 521 g. All Apgar-5 min scores were 9 or 10. No infants were
admitted to the neonatal intensive care unit. Mothers in sub-study 2
(n= 13) had mean (SD) total white blood count 8.1 ± 1.6 × 109/L
and mean (SD) neutrophils 5.8 ± 1.8 × 109/L. Corresponding values
in cord blood (n= 14) were mean (SD) total white blood count
12.3 ± 3.2 × 109/L and mean (SD) neutrophils 5.9 ± 2.1 × 109/L.
Median (IQR) TCC cord plasma concentration after 120min

incubation with E. coli was 1.4 (0.7–3.6) CAU/mL, which was similar
to concentrations of 1.5 (1.0–9.1) CAU/mL after 120min incubation
with GBS (Fig. 3a, b). The stimulated TCC concentrations were
significantly increased compared to negative control at 0.4
(0.1–0.5) CAU/mL (p < 0.001). Incubation of bacteria for 240min
in sub-study 2 (Fig. 4a, b) also showed similar TCC cord plasma
concentrations with E. coli (2.4 [1.5–4.3] CAU/mL) and GBS (1.4
[0.8–3.1] CAU/mL), and significantly higher TCC after bacterial
incubation than in the negative controls. Dual inhibition of C5 and
CD14 effectively reduced cord TCC plasma concentrations when
administered before bacterial challenge, but also when added 15-
and 30-min post-challenge after both 120- and 240-min bacterial
incubation (Figs. 3 and 4).
Plasma concentrations of TNF, IL-6 and IL-8 after 240min

incubation with E. coli or GBS are shown in Fig. 5. There was a
significant increase in the plasma concentrations of all cytokines
after incubation of cord blood with E. coli or GBS (Fig. 5).
Incubation with E. coli elicited significantly higher TNF, IL-6 and
IL-8 levels compared to GBS. Significant reductions in TNF, IL-6 and
IL-8 concentrations after the dual inhibition established 8min
prior to, and 15 and 30min after E. coli challenge are summarised
in Fig. 5a, c, e. The dual inhibition also resulted in lower crude
concentrations of IL-6 after GBS challenge, but differences were
not significant (Fig. 5b). For IL-8 and TNF there were no clear
effects of dual inhibition after the GBS challenge.

DISCUSSION
This study shows that E. coli- and GBS-induced complement
activation in cord blood is significantly reduced after dual inhibition

of complement C5 and CD14 up to 30min after bacterial challenge.
Moreover, dual C5 and CD14 inhibition in the post-challenge
experiments also significantly reduced TNF, IL-6 and IL-8 plasma
concentration in cord blood after E. coli-induced inflammation. The
uniqueness of the ex vivo cord blood model with both complement
and cytokine biomarkers makes this study a novel contribution to
the understanding of acute innate inflammatory response in EOS,
and lay the grounds for further investigations of a potential new
adjunctive therapy.
The immediate immune response in neonatal sepsis depends

on the multifactorial components, which together make up the
innate immune defence system. However, there is still limited
data on the impact of the complement system and its role in
neonatal inflammation and disease severity.14 Low concentration
of ficolin-3 and mannose binding lectin (MBL), factors activating
the lectin complement pathway, have been associated with
increased susceptibility to infections.27,28 In a case-control study,
neonates with Gram-positive sepsis had significantly lower
ficolin-3 cord blood concentrations than controls, whereas infants
with Gram-negative sepsis had lower MBL cord blood concentra-
tions.27 In contrast, maternally transferred immunoglobulins
targeting GBS serotype III can weaken the bacterial capsule,
facilitate C3b deposition and thereby enhance complement
activation.7 In our study, we focused on the general activation of
the complement system by analysing the TCC concentration,
which is regarded to be the best single indicator of complement
activation.29 We found a strong complement activation in cord
blood after bacterial challenge with E. coli and GBS. High levels of
TCC have been observed in adult patients with sepsis compli-
cated by disseminated intravascular coagulation.30 A factor to
consider in our study is that we included mothers and neonates
with predominant Caucasian ethnicity. Concentrations of ficolin-3
and MBL can be affected both by intrauterine infections and
genetic factors. MBL-deficiency affects e.g. about 30% of the
white population.27

Neonatal sepsis is associated with an early inflammatory
response that is less robust compared to children and adults, but
not necessarily less lethal.31 In our initial experiments (sub-study
1) the bacterial incubation period was 120 min, and we found
only a modest cytokine release, in particular after GBS
stimulation. A previous cord blood in vitro study reported a

4

a b
10

P < 0.001

P < 0.0001

P < 0.0001
8

6

4

2

0

3

2

C
A

U
/m

L

C
A

U
/m

L

1

0

PBS
PBS

GBS

E. c
oli

Ecu
liz

um
ab

+a
CD14

 (p
re

, E
. c

oli )

Ecu
liz

um
ab

+a
CD14

 (1
5 m

in
, E

. c
oli )

Ecu
liz

um
ab

+a
CD14

 (3
0 m

in
, E

. c
oli )

lg
G2/4

 (p
re

, E
. c

oli )

lg
G2/4

 (1
5 m

in
, E

. c
oli )

lg
G2/4

 (3
0 m

in
, E

. c
oli )

Ecu
liz

um
ab

+a
CD14

 (p
re

, G
BS)

Ecu
liz

um
ab

+a
CD14

 (1
5 m

in
, G

BS)

Ecu
liz

um
ab

+a
CD14

 (3
0 m

in
, G

BS)

lg
G2/4

 (p
re

, G
BS)

lg
G2/4

 (1
5 m

in
, G

BS)

lg
G2/4

 (3
0 m

in
, G

BS)

Fig. 3 TCC cord plasma concentrations after 120 min incubation time. Cord plasma concentration of TCC after 120min incubation time
with E. coli (a) and group B streptococci (b), and dual inhibition with complement C5 and co-receptor CD14 inhibitors, pre- and post-bacterial
challenge (Sub-study 1; cord blood n= 16). Graphic presentations of bar charts with median and IQR values. PBS phosphate-buffered saline,
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time-dependent release of proinflammatory cytokines, where
TNF was detected first (after 60–120 min), followed by increased
concentration of IL-8, IL-6 and IL-1β.32 We therefore extended
the bacterial incubation period to 240 min (sub-study 2) and
then detected markedly higher TNF, IL-6 and IL-8 concentrations
after bacterial challenge compared to at 120 min. We also found
a higher cytokine release after challenge with E. coli versus GBS.
This stands in contrast to Mohammed et al. who reported no
significant difference in cytokine release between the same two
bacteria.32 Other studies also report a high neonatal cytokine
release in response to pathogenic E. coli, in particular in the
preterm infant.33,34

There are challenges when comparing our results with previous
studies. Many studies report data from in vitro models or studies
with isolated blood cells. In our ex vivo model we evaluate the
results of the inflammatory crosstalk between a range of cell lines,
which is an approach closer to the biology of the innate immune
system, and thus theoretically closer to the pathophysiology of
neonatal sepsis. Specific factors that may explain variations from
other studies are preparation of blood samples, types of
stimulators, duration of incubation of blood samples and different
assays used for cytokine detection. Experimental studies claiming
to mimic EOS vary from in vitro to ex vivo models. In our ex vivo
whole blood model we do not claim to have a sepsis model, but a
model that reflects the complement activation and release of
central pro-inflammatory cytokines induced by bacteria com-
monly causing EOS in neonates. Using lepirudin as anticoagulant
improves the translational value of our results. We found lower
cytokine release in our study compared to studies using in vitro
models35–38 suggesting a limitation of the reductionistic in vitro
models.32 This is a further argument to pursue the use of ex vivo
models before moving to animal models.25 We chose the post-
challenge approach since it would be more clinically relevant to
start empiric therapy after the patient has experienced a septic
insult. However, due to limited cord blood we did not include all
the timepoints used in our previous post-challenge model.22 We
found that adding inhibitors after 15 and 30min would be more
relevant than already after 5 min. In order to compare our model
to previous whole blood models, we also include a pre-challenge
timepoint as a reference point. It is common to allow between

5 and 10min of stabilisation for an active drug before a sepsis
challenge,24,25 so we selected 8min as the appropriate pre-
incubation period in this study.
Activation of the complement system plays an important role in

sepsis pathophysiology.39 Complement acts as a first-line sensor
of danger and may accentuate the inflammatory explosion, in an
orchestrated effort with other first-line sensors like TLRs.39 We
therefore decided to use an “empiric” approach with dual
inhibition of both the C5 molecule of the complement system
and CD14, an important co-receptor for TLRs. It is well known that
anti-CD14 has no effect on the complement system.22 However,
the dual inhibition of C5 and CD14 was used for all experiments to
simplify the protocol, and also because it was not feasible to
include separate inhibition studies in the complex experimental
set up with limited blood volume. Previous studies have targeted
complement C3 because of its central role in the response
amplification. However, even though C3 inhibition strongly reduce
inflammation, it may also lead to an increased risk of infection
by inhibiting the main complement protection through C3-
opsonization.12 Therefore, we chose to use a C5 inhibitor.
Inhibition of C5 prevents formation of C5b that induce the
assembly of C5b-9 and most importantly, it prevents formation of
the potent proinflammatory complement protein C5a. Moreover,
this approach does not affect the opsonization of microbes by
C3b.12 Our results are in line with previous studies showing that
C5 inhibition significantly reduces TCC plasma concentration in E.
coli-induced inflammation.12 Similar to a previous post-challenge
whole blood study,22 we observed a significant inhibition of TCC
even when the dual inhibition was added up to 30minutes after
the bacterial challenge, and the effect was similar in E. coli- and
GBS-induced inflammation. These are promising results for the
potential use of C5 inhibition for modulation of the neonatal
immune system to reduce sepsis mortality and morbidity. Keshari
et al. have already shown that inhibition of C5 protects against
organ failure and reduces mortality in a baboon model of E. coli
sepsis.40 Another advantage of C5 inhibition is that drugs, such as
eculizumab, are already in widespread clinical use, and with
relatively good safety data in other paediatric conditions.41,42 Still,
there is some concern that persistent C5 inhibition, due
eculizumabs long elimination half-life, potentially may lead to an
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Fig. 5 Cytokine cord plasma concentrations after 120 min incubation time. Cord plasma concentration of IL-6, IL-8 and TNF after 240min
incubation time with E. coli (a, c, e) and group B streptococci (b, d, f), and dual inhibition with complement C5 and co-receptor CD14
inhibitors, pre- and post-bacterial challenge. (Sub-study 2; n= 14). Graphic presentations of bar charts with median and IQR values. PBS
phosphate-buffered saline, Pre 8min prior to adding bacteria, 15 and 30min after adding bacteria.

A.U. Bjerkhaug et al.

517

Pediatric Research (2023) 94:512 – 519



increased risk of subsequent infections. Thus, C5 inhibition in
acute sepsis should optimally be treated with C5 inhibitors having
shorter elimination half-life.
A previous study has shown that IL‐8 release in an LPS-

induced inflammation model was significantly reduced by anti-
CD14.43 In our model we showed a significant, but modest
reduction of the TNF, IL-6 and IL-8 release after dual inhibition to
the E. coli challenge. We did not observe any significant
reduction in the already quite low cytokine release in response
to the GBS challenge. Skjeflo and co-workers showed that the
simultaneous inhibition of CD14 and complement efficiently
reduced the inflammatory response induced by various strains
of Staphylococcus aureus in a similar human whole blood model,
as used in our experiments.17 However, in contrary to Gram-
negative-induced inflammation, the responses were primarily
dependent on complement, whereas CD14 inhibition played a
less important role in the Gram-positive S. aureus model.17 Our
results point to similar findings for GBS-induced inflammation,
and we found no obvious inhibition of cytokine release using
the dual inhibition in the GBS-arm of our study. However, animal
studies of polymicrobial sepsis have shown clear beneficial
effects of the dual C5 and CD14 inhibition with improved
hemodynamic parameters, and morbidity and survival, and
the dual inhibition may thus be relevant for a broader range of
sepsis pathologies.44,45

Our study has strengths and limitations. The most obvious
strength is the ex vivo model assessing the innate immune
response in a system with fresh cord blood containing both
cellular and humoral immune response components. We
assessed a novel immunological approach with promising
results in adult and animal pre-challenge models and found
similar potential beneficial effects in the neonatal inflammatory
ex vivo model. However, the study also has limitations. First, our
model did not allow us to address some of the known
intracellular and extracellular bacterial antigen-specific mechan-
isms which can be done in in vitro experiments.14 Second, five
mothers with well-managed underlying medical conditions were
included, but baseline values and post challenge values
(complement and cytokines) of these five did not deviate from
the remaining 25 included. Third, other studies have used a
higher GBS load of 108 CFU/mL or extended observation time up
to 24 h, and these authors suggested that this is necessary to
mimic the first stages of neonatal sepsis.46 However, a GBS
concentration of 107 GBS/mL should be adequate, and indeed
the median IL-6 value observed after GBS challenge was
markedly above a suggested cut-off levels for neonatal sepsis.47

Fourth, due to limited blood volume and the complexity of the
experimental set-up it was not possible to add an experimental
part using eculizumab and anti-CD14 as separate and single
inhibition agents. Finally, due to the complexity of the
experimental protocol and the need to activate the blood
within 20 min of sampling we decided to use heat-inactivated
bacteria and limit the outcomes analysed, like in other
studies.17,20–23 Previous vaccine studies have shown that heat
inactivated GBS elicit a clear immune response, and our findings
confirm this.48 Moreover, heat-inactivated GBS induce TLR2-
dependent antimicrobial gene activation,49 and neither LPS nor
LTA are destroyed by the heat inactivation process. However,
the heat-inactivated GBS and E. coli strains/serotypes used in the
current study may not be representative for all GBS and E. coli
strains that infect neonates.
In conclusion, promising results in this umbilical cord blood

inflammation model, using bacteria with clinical relevance for EOS,
along with similar findings in previous adult blood models and
animal studies indicate that the dual inhibition of C5 and CD14
might be a future approach for treating severe cases of neonatal
sepsis. Further experiments in animal models may be the first step
to assess this novel strategy.
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A B S T R A C T   

Purpose: To systematically review immunogenicity and safety data of maternal group B streptococcal (GBS) 
vaccines in published clinical trials until July 2023. 
Methods: EMBASE, MEDLINE, Cochrane Library and clinicaltrial.gov. databases were searched for clinical studies 
that reported immunogenicity and/or safety of GBS vaccine in non-pregnant adults, pregnant women and infants 
between 1st of January 1996 to 31st of July 2023. Pairs of reviewers independently selected, data extracted, and 
assessed the risk of bias of the studies. Discrepancies were resolved by consensus. (PROSPERO 
CRD42020185213). 
Results: We retrieved 1472 records from the literature search; 20 studies and 6 sub-studies were included, 
involving 4440 non-pregnant participants and 1325 pregnant women with their newborns. There was a signif-
icantly higher IgG Geometric Mean Concentration (GMC) and IgG placental transfer ratios in vaccinated 
compared to placebo groups, with peak response 4–8 weeks after vaccination. Placental transfer ratio varied 
from 0.4 to 1.4 across five studies. The different clinical trials used different assays that limited direct com-
parison. There were no significant differences in the risk of serious adverse events (adjusted OR 0.73; 95 % CI 
0.49–1.07), serious adverse events leading to withdrawal (adjusted OR 0.44; 95 % CI 0.13–1.51), and systemic 
illness or fever (adjusted OR 1.05; 95 % CI 0.26–4.19) between the vaccine and placebo groups. 
Conclusions: The published clinical trials show significant IgG GMC response in subjects receiving the conjugated 
capsular polysaccharide and surface subunit protein vaccines compared to placebo. In current clinical trials of 
experimental GBS maternal vaccines, there have been no observed serious adverse events of special interest 
directly linked to vaccination.   

1. Introduction 

Group B streptococcus (GBS) or Streptococcus agalactiae is widely 
recognized as the primary cause of severe bacterial infections in new-
borns during the initial weeks following birth [1–3]. Every year, it is 
estimated that around 200,000 newborns worldwide are affected by 
early-onset GBS disease and approximately 160,000 newborns affected 
by late-onset GBS disease. Maternal and infant GBS disease is also 
associated with approximately 2 million stillbirths, nearly 0.5 million 
preterm births, at least 91,900 deaths in children, and over 37,000 cases 
of moderate to severe neurodevelopmental impairment in children who 

survive invasive GBS infections [4]. 
Research on GBS vaccines started almost five decades ago by 

demonstrating a correlation between level of GBS antibodies and risk of 
neonatal infection [5–8]. Several GBS virulence factors have been 
identified as potential vaccine candidates, including the GBS capsular 
polysaccharides (CPS) and key surface subunit proteins. All 10 CPS- 
serotypes of GBS can cause disease [9], but the prevalence of the 
different CPS-serotypes varies worldwide [10,11]. The six CPS-serotypes 
Ia, Ib, II, III, IV and V are responsible for the majority of invasive in-
fections and are included in the current vaccines in development 
[1,3,12]. GBS surface subunit proteins, such as Alp family proteins, 
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serine-rich repeat proteins, C5a peptidase, and pilus islands, are also 
associated with invasiveness of GBS strains and are included in vaccines 
in various stages of clinical development [13–16]. 

Maternal vaccination leads to increased placental transfer of 
maternal antibodies [17]. This approach is employed to safeguard in-
fants against many infections e.g. pertussis [18,19], tetanus [20], 
coronavirus 2 (SARS-CoV-2) [21], and influenza [22]. The development 
of a successful maternal GBS vaccine has great potential to alleviate the 
global burden of invasive GBS infections and to reduce antibiotic use in 
labour [1,3,10]. The purpose of this review is to systematically review 
and evaluate immunogenicity and safety data of maternal GBS vaccines 
in published clinical trials until July 2023. 

2. Methods 

This review follows the updated Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses [23] and is registered in the inter-
national prospective register of systematic reviews; PROSPERO ID: 
CRD42020185213. 

2.1. Search strategy and selection criteria 

We identified articles by searching electronic databases EMBASE, 
MEDLINE, Cochrane Library and clinicaltrial.gov. from 1st of January 
1996 up to the 31st of July 2023, with the search terms in the following 
combinations: “Streptococcus agalactiae” OR “Streptococcus Group B” 
OR “GBS6″ OR ”GBS“ AND ”Vaccine“ OR ”Streptococcal vaccine“ OR 
”Maternal vaccine“ OR ” Maternal immunization“ OR ”Maternal im-
munization“ OR ”Active immunization“ OR ”Active immunization“ OR 
”conjugate“ OR ”trivalent“ OR ”second dose“ OR ”immunogenicity“. 
Identified studies were collated and duplicates/triplicates were manu-
ally removed. All English-language published clinical trials (randomised 
and non-randomised) were eligible if they included an experimental GBS 
vaccine and reported on immunogenicity of the vaccine in human par-
ticipants. The exclusion criteria were animal studies, studies dealing 
with screening and epidemiology, cost-effectiveness and attitudes to-
wards a potential GBS vaccine. We also excluded studies reporting data 
solely on non-conjugated CPS vaccines, as non-conjugated CPS vaccines 
have been shown to be clearly inferior to conjugated CPS vaccines [24]. 
Full-text was read for studies eligible for inclusion to verify its suitability 
for inclusion. Reference lists of included studies and recent reviews were 
examined to identify additional studies. We did not conduct searches in 
the “grey literature”, i.e. unpublished studies, non-peer reviewed 
studies, conference abstracts and studies not indexed in high-quality 
databases. 

2.2. Data extraction 

Two reviewers (A.U.B. and S.R.) screened titles and abstracts inde-
pendently according to predetermined inclusion and exclusion criteria, 
with disagreements between the reviewers being resolved through 
consensus with the third author (C.K.). We extracted the following 
variables: paper identification (title, first author and publication year), 
study design, inclusion and exclusion criteria, characteristics of the 
population (pregnant or non-pregnant adult, adult or infant, average 
age/gestation and week/day after delivery), study site for clinical trials, 
characteristics of the vaccines, characteristics of analytical assays, 
antibody response after vaccination, placental transfer ratio of GBS 
antibodies and adverse events after vaccination. 

2.3. Data synthesis and analysis 

The main outcomes assessed were immunogenicity defined as 
vaccine-elicited geometric mean antibody concentration (GMC), and 
vaccine efficacy if possible. Immunogenicity data were not possible to 
meta-analyse, and are therefore presented descriptively for each study. 

As secondary outcomes, we evaluated other immunological responses 
(e.g. opsonophagocytosis, geometric mean fold rise of GBS antibodies), 
placental transfer ratio and adverse events (AEs). We evaluated the re-
ported AEs in all studies comparing participants that received a conju-
gated CPS or surface subunit protein-based vaccine versus those who 
received placebo. If studies reported data on AEs separately for adju-
vanted or non-adjuvanted vaccines, we selected the data on AEs from 
adjuvanted vaccines. Many studies reported on AEs at different vaccine 
doses, but we collated these together when analysing the number of AEs 
in the vaccine group. AEs were reported differently in studies performed 
more than 15–20 years ago compared to more contemporary studies. 
Some of the more recent trials [25–33] have used the extensive MedDRA 
system to present AE data [34]. Three authors (A.U.B, C.K and R.M) 
assessed AEs independently and compared the findings. In order to 
obtain similar and comparable AE data across both older and more 
recent vaccine trials we report rates of the following AEs; serious AEs, 
AEs leading to withdrawal from the vaccine study, fever/systemic illness 
in relation to vaccine administration and vaccine-related death. Dis-
agreements were discussed and resolved by consensus. AE data were 
meta-analysed using the online platform recommended for Cochrane 
intervention reviews (RevMan Web). We calculated risk rations (RRs) 
with 95 % confidence intervals (CI) for the AEs. We present the effect- 
estimates by using the random-effect model due to assumption of clin-
ical and methodological diversity among the studies, subsequently often 
leading to statistical heterogeneity. Reactogenicity data were not 
possible to meta-analyse and therefore presented descriptively for each 
study. 

2.4. Risk of bias of included studies 

We used version 2 of the Cochrane risk-of-bias tool for randomized 
trials (RoB 2), with five domains of bias, to assess study quality [35]. The 
clinical studies were assessed by the adherence to the intervention (the 
“per-protocol” effect) and we evaluated the failures in implementing the 
intervention that could have affected the outcomes. 

3. Results 

3.1. Study selection 

We retrieved 1472 records from databases and an additional 5 re-
cords from citations of reference lists. From these 1477, 48 studies were 
eligible for full-text review. The majority of excluded studies were 
published protocols, animal studies and preclinical studies. After full- 
text review we ended up including 26 publications of which 20 re-
ported data from a main study [25–33,36–46] and six reported data 
from a sub-study of the main study [47–52]. Fig. 1 demonstrates the 
selection process of the included main studies and sub-studies. 

3.2. Characteristics of the included studies 

The 20 main clinical studies included a total of 5765 participants, of 
which 1325 were pregnant women. The characteristics of included 
studies and the main findings are summarized in Table 1. All studies 
were either Phase 1 or 2 trials. Nine of the included studies were double- 
blind randomized controlled trials (RCT) [33,36–43], eight were 
observer-blind randomized trials [25–28,30–32,46] and three were non- 
randomized open label trials [29,44,45]. All studies reported data on the 
elicited GBS-IgG response, except for one study that focus on vaginal 
GBS colonization [28]. Nine studies evaluated the GBS type-specific 
opsonophagocytic killing in adult study participants 
[36–38,41–44,50,51] and one study evaluated this only in sera from 
infants [40]. 
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3.3. Risk of bias 

Fig. 2 shows a summary of findings from the risk of bias assessment 
of the primary outcome immunogenicity. The overall risk of bias was 
rated as low for immunogenicity data in 12 of the 20 main studies 
[25–33,44–46]. Eight studies were downgraded to “some concerns” 
because they had insufficient information about whether the data was 
analyzed according to a predetermined analysis plan before unblinded 
outcome data became available for analysis [36–43]. Despite two 
studies [44,45] being open label and having a high risk of bias, and one 
study [29] being partially non-randomized and scoring “some concerns” 
in “Domain 1″, it was unanimously agreed that the open-label nature of 
these studies would not impact the immunogenicity data based on the 
judgement of the other domains. 

3.4. Immunogenicity 

Most studies showed that the GBS antibody GMC response peaked 
around 4–8 weeks after vaccine administration in healthy adults and 
pregnant women [31,32,36–43,45]. However, among pregnant women 
who received vaccinations, three studies reported that the levels of an-
tibodies continued to increase for a minimum of 3 months after child-
birth [25,26,31]. The GMC response remained markedly elevated 
compared to placebo up to 6–12 months after vaccination in both 
healthy adults and pregnant women [26–28,32,36–39,41–44,46]. Three 
studies evaluated antibody levels in infant serum during the first 3–6 
months after birth [25,31,45]. One of these studies showed a GBS 
antibody half-life of 42 days in infants without HIV infection [45]. The 
other two studies found that infant antibody levels were 22–25 % of 
birth levels three months after birth [25], and while IgG GMCs in 
vaccinated infants declined with age, they remained 3–9 times higher 
than in the placebo group at day 90 [31]. One study found that breast 
milk sIgA GMCs were significantly higher in the Ia/Ib/III-vaccine group 

compared to the placebo group [31]. In five studies, including the sur-
face subunit protein vaccine, the GMC response was dose-dependent 
[33,37,38,50] and correlated with in vitro opsonophagocytic activity 
[37,38,43,50]. In four other CPS vaccine dose–response studies there 
were no significant differences when increasing the dosage 
[26,27,32,44]. However, while the hexavalent CPS vaccine did not 
demonstrate a significant difference in testing various doses in non- 
pregnant adults [32], the interim descriptive analysis of the recent 
vaccine study in pregnant women suggests that the immune response in 
pregnant women was dose dependent [46]. 

The conjugated vaccines included in this review utilized diphtheria 
(D) toxoid, tetanus (T) toxoid or CRM197 (a non-toxic variant of diph-
theria toxin) as conjugates. In the trials comparing a non-conjugated 
versus a conjugated GBS type-specific CPS vaccine there was a signifi-
cant higher increase in the IgG GMC response in recipients of the con-
jugated vaccines versus the unconjugated vaccines [36–38,44]. The 
response for the conjugated CPS vaccine showed lower levels of IgG 
GMC in the HIV-infected pregnant women and their infants, compared 
to the HIV-uninfected pregnant women and their infants (44). A clinical 
trial investigating the surface subunit protein vaccine in immunocom-
promised women (NCT04596878) has been completed, but the results 
are not yet published. 

A variety of adjuvants were used in many of the trials including 
aluminium salts [27,39] or oil-in-water emulsion adjuvant (e.g. MF59 
®) [27]. For the CPS vaccine studies, these adjuvants did not clearly 
increase immunogenicity [27,39]. In contrast, the surface subunit pro-
tein vaccine adjuvanted with aluminium hydroxide elicited a signifi-
cantly higher GMC response compared to the same vaccine without 
adjuvant [33]. One study compared the effect of a fully liquid versus a 
lyophilized formulation of a trivalent (serotypes Ia, Ib and III) GBS 
vaccine, and found no differences in IgG GMCs 30 days after receiving 
the single-dose administration of each vaccine formulation in healthy 
non-pregnant women [30]. A detailed summary of the immunogenicity 

Fig. 1. PRISMA overview of systematic search results.  
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Table 1 
Included clinical studies om maternal GBS vaccines, immunogenicity data and placental transfer ratio.  

Ref. nr. Main study 
First author, 
year, country 

Sub-study Vaccine antigens 
and dose 

Population N Intervention 1. Geometric mean concentrations (GMC) of 
GBS-IgG in μg/mL (95 % CI) 
2. Geometric mean fold rise (GMFR) of GBS- 
IgG  

Placental transfer ratio  

[36] 
Kasper 1996 
USA 

Guttormsen 
2002  

CPS III 
(monovalent) 
Dose: 3.6, 14.5 or 
58 μg 

Healthy non-pregnant 
adults 

100 III-TT vs III-non- 
conjugated 

(1) Four weeks after first dose: GMC against 
serotype III was 1.0 (0.3–3.6), 2.5 (1.9–7.3) 
and 4.2 (1.8–9.9), for three different doses, 
respectively. 
(2) Promoted GBS type-specific OPK up to 4 
weeks post vaccination.   

[37] 
Baker 1999 
USA 

Brigtsen 
2002  

Edwards 
2012  

CPS Ia and Ib 
(monovalent) 
Dose Ia-TT: 3.75, 
15 or 60 μg 
Dose Ib-TT: 3.94, 
15.75 or 63 μg  

Healthy non-pregnant 
adults 

190 Ia-TT vs Ia-non- 
conjugated vs 
Placebo 
Ib-TT vs Ib-non- 
conjugated vs 
Placebo 

(1) Four weeks after first dose: GMC against 
serotype Ia was 1.5 (0.6–4.3), 13.1 
(4.3–39.8) and 25.5 (12.6–51.4), for three 
different doses, respectively. 
(2) Four weeks after first dose: GMC against 
serotype Ib was 2.9 (1.1–7.1), 10.7 
(3.2–35.7) and 14.2 (5.8–35.0), for three 
different doses, respectively. 
(3) No cross-immunization. 
(4) Promoted GBS type-specific OPK up to 
24 months.   

[38] 
Baker 2000 
USA 

– CPS II 
(monovalent) 
Dose: 3.6 or 14.3 or 
57 μg 

Healthy non-pregnant 
adults 

75 II-TT vs II-non 
conjugated vs 
Placebo 

(1) Four weeks after first dose: GMC against 
serotype II was 12.7 (6.9–23.2), 39.4 
(17.9–86.4) and 39.2 (21.5–71.2), for three 
different doses, respectively. 
(2) Promoted GBS type-specific OPK up to 4 
weeks post vaccination.   

[39] 
Paoletti 2001 
USA 

– CPS III 
(monovalent)  

Dose: 12.5 μg 

Healthy non-pregnant 
adults 

96 III-TT vs III-TT with 
AlPO4 

2nd dose of III-TT 
(without adjuvant) 

(1) Four weeks after first dose: GMC against 
serotype III was 3.6 (1.1–12.3). 
(2) Four weeks after 2nd dose: Only a booster 
effect, with a GMFR of 4, was observed after 
initial immunization in the eight participants 
who had undetectable III CPS-specific IgG 
before the first dose.  

[40] 
Baker 2003 
USA 

– CPS III 
(monovalent)  

Dose: 12.5 μg 

Healthy pregnant adults, 
30–32 w GA 

30 III-TT vs Placebo (1) Four weeks after vaccination 95 % of 
recipients had a GMC > 1.0 
(2) Four weeks after vaccination the GMFR 
was > 50-fold increased, and it persisted at 
delivery and 2 months postpartum. 
(3) Placental transfer ratio 1.4. 
(4) Promoted GBS type-specific OPK in infant 
sera 2 months after birth.   

[41] 
Baker 2003 
USA 

– CPS II and/or III 
(mono- or bivalent) 
Dose: 3.6 μg or 
12.5 μg or 
combined 3.6/12.5 
μg 

Healthy non-pregnant 
adults 

75 II-TT and III-TT vs. 
bivalent II/III-TT 

(1) Four weeks after first dose of 3.6 μg: GMC 
against serotype II was 6.7 (3.3–13.5). 
(2) Four weeks after first dose of 12.5 μg: 
GMC against serotype III was 2.0 (0.7–5.8). 
(3) Four weeks after first dose of 3.6/12.5 μg: 
GMC against serotype II/III was 13.8 
(5.8–32.8). 
(4) Promoted GBS type-specific OPK up to 4 
weeks post vaccination.   

[42] 
Baker 2004 
USA 

Edwards 
2012 

CPS V 
(monovalent) 
Dose: 50 μg 

Healthy non-pregnant 
adults 

35 V-TT vs V-CRM197  (1) Four weeks after first dose V-TT: GMC 
against serotype V was 8.9 (3.5–22.4). 
(2) Four weeks after first dose V-CRM197: 
GMC against serotype V was 6.5 (2.7–16.0). 
(3) Promoted GBS type-specific OPK up to 
24 months.   

[43] 
Palazzi 2004 
USA 

– CPS V 
(monovalent) 
Dose: 38.5 μg 

Healthy non-pregnant 
adults 

32 V-TT vs V-Td (1) Four weeks after first dose V-TT: GMC 
against serotype V was 2.2 (0.7–6.8). 
(2) Promoted GBS type-specific OPK up to 4 
weeks post vaccination.   

[44] 
Baker 2007 
USA  

– CPS V 
(monovalent) 
Dose: 38.5 μg 

Healthy non-pregnant 
adults 

60 V-TT vs V-non- 
conjugated 

(1) Four weeks after first dose V-TT: GMC 
against serotype V was 11.8 (3.7–37.2). 
(2) Promoted GBS type-specific OPK up to 4 
weeks post vaccination.  

(continued on next page) 
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Table 1 (continued ) 

Ref. nr. Main study 
First author, 
year, country 

Sub-study Vaccine antigens 
and dose 

Population N Intervention 1. Geometric mean concentrations (GMC) of 
GBS-IgG in μg/mL (95 % CI) 
2. Geometric mean fold rise (GMFR) of GBS- 
IgG  

Placental transfer ratio  

[25] 
Donders 2016 
Belgium and 
Canada 

Fabbrini 
2018 

CPS Ia/Ib/III 
(trivalent) 
Dose: 5 μg 

Healthy pregnant adults, 
24–35 w GA  

172 Ia/Ib/III-CRM197 vs 
placebo 

(1) Maternal GMCs at delivery, were against 
serotypes Ia 5.2 (3.4–8.1), serotype Ib 2.4 
(1.5–3.9) and serotype III 1.9 (1.2–3.1). 
(2) Infant GMC at birth, were against 
serotypes Ia 0.3 (0.2–0.3), serotype Ib 0.2 
(0.2–0.3) and III 0.3 (0.2–0.3). 
(3) No interference with diphtheria vaccine. 
(4) Promoted GBS type-specific OPK at 
delivery. 
(5) Placental transfer ratio 0.7–0.8.   

[45] 
Heyderman 
2016 
Malawi and 
South-Africa 

– CPS Ia/Ib/III 
(trivalent) 

Pregnant women with/ 
without HIV and 
newborns 

536 Ia/Ib/III -CRM197 (1) Four weeks after vaccination of HIV- 
uninfected participants GMCs against 
serotypes were for Ia 6.6 (4.4–10), Ib 5.4 
(3.6–7.9) and III 5.4 (3.7–7.8). 
(2) Four weeks after vaccination of HIV- 
infected (low CD4 count) participants GMCs 
against serotypes were for Ia 2.7 (1.7–4.1), 
serotype Ib 2.6 (1.6–4.2) and serotype III 1.5 
(1.0–2.4).   

[26] 
Madhi 2016 
South Africa 

Madhi 2017  CPS Ia/Ib/III 
(trivalent)  

Dose: 2.5 or 5 μg 

Healthy non-pregnant 
and pregnant women and 
newborns 

697 Ia/Ib/III -CRM197 vs 
placebo 

(1) Four weeks after vaccination of pregnant 
women (merged data for dose 2.5 and 5 μg) 
GMC against serotypes were for Ia ~ 20 
(10–40), Ib ~ 5.5 (2–9) and III ~ 3.5 (2–6). 
(2) GMCs were lowest in those whose 
baseline concentration was lower than lower 
limit of detection, particularly for serotype Ib 
and III. 
(3) Placental transfer ratio 0.5–0.8. 
(4) Vaginal colonization unchanged at 
delivery.   

[27] 
Leroux-Roels 
2016 
Belgium  

– CPS Ia/Ib/III 
(trivalent)  

Dose: 5 or 20 μg  

Healthy non-pregnant 
women 

678 Ia/Ib/III -CRM197 

With/without 
adjuvant and vs 
placebo 

(1) Two months after vaccination with 
trivalent 20 μg vaccine without adjuvants 
GMCs against serotypes were: Ia 16 (6.9–38), 
Ib 3.9 (1.6–9.6) and III 2.8 (1.2–6.7). 
(2) GMCs were lowest in those whose 
baseline concentration was lower than lower 
limit of detection. 
(3) Two months after vaccination against the 
three serotypes the GMFRs were 14–89 in the 
vaccine groups, and remained at 4–5-fold 
above baseline two years after vaccination.  

[28] 
Hillier 2019 
USA 

– CPS III 
(monovalent) 
Dose: 12.55 μg  

Healthy non-pregnant 
adults 

667 III-TT vs tetanus/ 
diphtheria toxin 

(1) One month after vaccination with the III- 
TT vaccine GMCs against serotype III was ~ 
12 (10–16). 
(2) The GMFR was 40 one month after 
vaccination (III-TT) compared to baseline 
values. 
(3) III-TT resulted in significant delay in 
rectovaginal GBS colonization.   

[29] 
Leroux-Roels 
2020 
Belgium 

– CPS Ia/Ib/III 
(trivalent) 
Dose: 5 μg  

Healthy non-pregnant 
adults 

80 Ia/Ib/III -CRM197, no 
adjuvant. 
Second dose 4–6 
years after first dose 
vs a first dose 

(1) One month after second dose vaccination 
(both doses without. adjuvant) GMCs against 
serotypes were: Ia 142.4 (54–379), Ib 56.3 
(22–145) and III 111.3 (42–294). 
(2) Two months after second dose, 90–98 % 
of women with undetectable baseline 
concentrations before first dose reached the 
8 µg/mL threshold across all three serotypes. 
(3) Two months after first dose, 36–56 % of 
women reached the 8 µg/mL threshold across 
all three serotypes.   

[30] 
Beran 2020 
Czech 
Republic, 
Belgium, USA 

– CPS Ia/Ib/III 
(trivalent)   

Healthy non-pregnant 
adults 

1050 Ia/Ib/III -CRM197 

Fully liquid vs 
lyophilized 

(1) One month after vaccination with a 
liquid trivalent vaccine (5 μg) the GMCs 
against serotypes were: Ia 6.8 (5.5–8.4), Ib 
2.9 (2.4–3.6) and III 2.4 (2.0–3.0). 
(2) One month after vaccination the GMFR 
was 8–16 higher than at baseline. 

(continued on next page) 
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outcomes is presented in Table 1. 
A second dose or a booster dose improved IgG GMC in study par-

ticipants with low initial CPS-specific IgG GMC after the first dose in 
both the conjugated CPS-vaccine and the surface subunit protein vaccine 
[29,33,39]. There was no additional benefit of a booster for participants 

with an adequate initial CPS-specific IgG GMC concentration [27,39]. In 
HIV-infected pregnant women, the serotype-specific antibody concen-
trations were lower compared to the HIV-uninfected pregnant women 
[45]. 

Table 1 (continued ) 

Ref. nr. Main study 
First author, 
year, country 

Sub-study Vaccine antigens 
and dose 

Population N Intervention 1. Geometric mean concentrations (GMC) of 
GBS-IgG in μg/mL (95 % CI) 
2. Geometric mean fold rise (GMFR) of GBS- 
IgG  

Placental transfer ratio 

(3) GMCs were lowest in those whose 
baseline concentration was lower than lower 
limit of detection.   

[31] 
Swamy 2020 
USA 

– CPS Ia/Ib/III 
(trivalent) 

Healthy pregnant 
women, 24–34 w GA, 
and newborns 

75 Ia/Ib/III -CRM197 vs 
placebo 

(1) One month after vaccination GMCs 
against serotypes were: Ia 9.0 (4.7–17.0), Ib 
7.3 (3.5–15) and III 3.6 (1.5–8.6). 
(2) The GMFR was 13–23 fold higher in 
vaccine vs placebo recipients on day 31 and 
persisted until postpartum day 90. 
(3) At birth, antibody GMCs in cord blood of 
infants born to GBS vaccinated. 
women were 8–39-fold higher than in infants 
born to placebo recipients. 
(4) Placental transfer ratio 0.6–0.8.   

[32] 
Absalon 2021 
USA 

– CPS Ia/Ib/II/ III/ 
IV/V 
(hexavalent)  

Dose: 5 or 10 or 20 
μg   

Healthy non-pregnant 
adults 

365 Ia/Ib/II/III/ IV/V 
-CRM197 in different 
doses vs Placebo. 
With/without 
adjuvant. 

(1) One month after vaccination with GBS6 
10 μg (no AlPO4) GMCs against serotypes 
were: Ia 41.8 (17.7–98.6), serotype Ib 3.6 
(1.4–9.3), serotype II 57.0 (31.9–101.8), 
serotype III 12.8 (6.2–26.4), serotype IV 4.9 
(2.9–8.3) and serotype V 5.1 (2.4–11.0). 
(2) One month after vaccination. GBS 
serotype-specific IgG GMFR. ranged from 25 
to more than 200 for each serotype. 
(3) The GMFR remained 10–56 for all doses 
and formulations of GBS6 at 6 months after 
vaccination compared with placebo.   

[33] 
Fischer 2021 
UK 

Pawlowski 
2022 

Protein subunit 
NN/NN2 
Dose: 10 or 50 or 
100 μg 

Healthy non-pregnant 
adults, (non-vaccinated 
pregnant women and 
newborns, n = 304)  

240 NN/NN2 in different 
doses vs placebo. 
With/without 
adjuvant. 

(1) Four weeks after vaccination, two doses 
of 50 μg, the GBS-NN IgG GMC was 6.0 
(3.9–9.3). Maximal response was 16.9 
(11.3––25.4) 85 days after vaccination. 
(2) For the 2-dose (50 μg) regimen 100 % and 
89 % of the subjects achieved antibody levels 
above the arbitrary thresholds of 1 and 4 μg/ 
ml, respectively. 
(3) Added effect of a second dose most 
pronounced for subjects with pre-existing 
IgG levels below the median of the entire 
cohort. 
(4) The natural occurring placental transfer 
ratio 1.1–1.2.   

[46] 
Madhi 2023 
South Africa  

CPS Ia/Ib/II/ III/ 
IV/V 
(hexavalent) 
Dose: 5 or 10 or 20 
μg  

Healthy pregnant 
women, 27–36 w GA, 
and newborns 

360 Ia/Ib/II/III/ IV/V 
-CRM197 in different 
doses vs placebo. 
With/without 
adjuvant. 

(1) Maternal GMCs at delivery, after 
vaccination with GBS6 20 μg (no AlPO4), 
were against serotypes: Ia 40.3 (23.9–68.2), 
serotype Ib 1.3 (0.6–2.9), serotype II 27.6 
(15.6–48.9), serotype III 6.4 (2.8–14.4), 
serotype IV 2.5 (1.5–4.2) and serotype V 0.9 
(0.4–2.0). 
(2) Infant GMC at birth after maternal 
vaccination with GBS6 20 μg (no AlPO4), 
were against serotypes: Ia 29.6 (17.0–51.5), 
serotype Ib 0.7 (0.3–1.8), serotype II 20.8 
(10.7–40.5), serotype III 3.2 (1.3–7.7), 
serotype IV 2.1 (1.2–3.7) and serotype V 0.6 
(0.2–1.4). 
(3) Placental transfer ratio 0.4–1.3 across the 
different serotypes. 

Abbreviations: Ref. nr., reference number; CI, confidence interval; CPS, capsular polysaccharide; OPK, Opsonophagocytic killing; GMC, Geometric mean antibody 
concentration; TT, Tetanus toxoid conjugated vaccine; CRM197, non-toxic mutant form of the 58-kd diphtheria toxin; Td, Tetanus-diphtheria toxoid vaccine; NN/NN2, 
N-terminal domains of the Rib and AlphaC proteins vaccine; AlPO4, aluminium phosphate; GA, gestational age. 
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3.5. Placental transfer ratio 

The placental transfer ratio, defined as the ratio between the level of 
GBS-specific antibodies in maternal serum during pregnancy and cor-
responding level in cord blood or infant serum shortly after birth, was 
investigated in five vaccine studies [25,26,40,45,46]. In three studies 
the IgG placental transfer ratios were 1.42 for III-TT [40], 0.66–0.79 for 
Ia/Ib/III-CRM197 [25] and 0.49–0.79 for Ia/Ib/III-CRM197 [26]. In one 
study the placental transfer ratio was 0.49–0.72 both in the HIV- 
uninfected group and the HIV-infected groups [45]. In a recent study 
reporting data from the hexavalent vaccine, the placental transfer ratio 
ranged from approximately 0.4 to 1.3. In this study the highest antigen 
dose provided IgG GMCs in infant sera associated with an estimated 75 
% risk reduction of perinatal GBS disease in 57–97 % participants, 
depending on the serotype [46]. For the surface subunit protein vaccine 
the natural placental transfer ratio was 1.22 for αC-N-specific IgG and 
1.12 for Rib-N-specific IgG, but not assessed after vaccination [51]. 

3.6. Reactogenicity and adverse events 

All 20 original articles reported data on reactogenicity and more 
severe AEs/safety in non-pregnant adults [26–30,32,33,36–39,42–44], 
pregnant women [25,26,31,40,41,45,46] and infants [31]. Mild vaccine 
reactogenicity symptoms such as pain at the injection site, tenderness or 
local swelling were described in all studies. These were more frequently 
reported in studies comparing adjuvanted versus not adjuvanted vac-
cines [26,27,32,37,38,42,44,46]. The most frequent solicited systemic 
AEs were fatigue and headache [25,26,37,42]. Most solicited AEs were 
mild or moderate. 

There were no reported deaths relating to the trial vaccines across 
the 20 clinical trials [25–33,36–46]. Fig. 3a-c shows an overview of 
serious AEs, AEs leading to withdrawal from the vaccine study and 
fever/systemic illness in 11 of 20 of the clinical trials included in this 
review [25–27,31–33,36,37,40,42,46], while Table 2 shows an over-
view of reactogenicity and AEs across the 20 studies. One study pre-
sented a significantly lower rate of serious AEs in the CPS vaccine 
conjugated with tetanus-toxoid versus tetanus-diphtheria toxoid group 
[28]. We did not identify any age pattern for AEs 
[26–30,32,33,36–39,42–44], and no higher incidence of pregnancy- 
related AEs reported after vaccination [25,26,31,40,41,45,46]. There 
were no increased systemic AEs reported after the second dose when 
comparing it to the first dose administration [29,33,39]. 

In two studies [30,33] reporting on pregnancies after receiving the 
GBS-vaccine, none of the adverse pregnancy outcomes were assessed as 
related to vaccination (Table 2). The capsular conjugate vaccine studied 

in HIV infected pregnant mothers showed no effect on CD4 count and 
viral loads [45]. 

4. Discussion 

The global public health impact of perinatal GBS disease is a matter 
of great concern and the development of GBS vaccines for maternal 
immunization is therefore top priority [53]. 

In this systematic review we identified and included a total of 20 
primary studies published between 1996 and 2023. There were 5765 
participants, of which only 1325 were pregnant women. Our review 
revealed large disparities in the methods used to measure immunoge-
nicity and how AEs were reported. Still, there are three key findings. 
First, the vast majority of participants, exposed to conjugated CPS vac-
cines or the surface subunit protein vaccine, exhibited markedly 
increased IgG GMC concentrations compared to placebo. There were 
also an increase in the antibody GMC following a second dose in those 
who had low baseline antibody GMC, and antibody levels remained 
clearly above baseline values for at least 6–12 months 
[25,26,29–33,36–45]. Second, placental transfer ratios ranged from 0.4 
to 1.4 indicating that antibody crosses the placenta and can protect in-
fants from invasive GBS disease [25,26,40,45,51]. Third, we found low 
levels of reactogenic events and serious AEs regarding the experimental 
vaccines, in non-pregnant adults [26–30,32,33,36–39,42–44], pregnant 
women [25,31,40,41,45,46] and infants [31]. 

4.1. Immunogenicity 

Evaluating the reported GBS-IgG levels in the studies included in this 
review was challenging as they varied by different serotypes covered in 
the vaccines, the immunogenicity assays and reagents used, and the 
different time schedules for assessment across studies. Thus, data were 
not possible to meta-analyze and were summarized for each study 
separately. Naturally acquired anti-GBS IgG concentrations associated 
with a reduced risk of disease among infants are reported from seroe-
pidemiological studies [46,54–57]. However, it is important to note that 
suggested protective thresholds are based on a limited number of cases 
versus controls in seroepidemiological study, which poses a limitation to 
the findings. There is also no uniform agreement on how to establish 
“protective” GBS-IgG levels, and there is limited data in particular for 
the low-prevalent CPS-serotypes vaccines and the surface subunit pro-
tein vaccines [58]. Some data suggest that anti-GBS-CPS IgG concen-
trations at around 1 μg/mL or higher are “protective” [55,59]. In all 
studies evaluating CPS-IgG levels in our review the majority of elicited 
anti CPS-IgG concentrations were above 1 μg/mL in non-pregnant adults 

Fig. 2. Risk of bias for immunogenicity outcomes.  
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and pregnant women 4–8 weeks after vaccination. For the multivalent 
conjugated CPS vaccines, we observed different immunogenicity among 
the different serotypes. The main pattern was a markedly higher IgG 
GMC response to serotype Ia versus the other serotypes Ib, II, III, IV, V 
[25–27,30–32,37,41,46], though the potential clinical importance of 
this observation in unclear. Regarding the surface subunit protein vac-
cine, there is no specified threshold for protective anti-protein IgG 

concentration [60–62], and comparing the studies estimating this has 
been challenging due to variations in assay methods, protein sources, 
absence of a common reference serum, and differences in study designs 
[58]. 

Polysaccharides are weak vaccine antigens and therefore often con-
jugated to an immunogenic protein, eliciting a strong T-cell dependent 
response with establishment of B-cell memory and long-term 

Fig. 3. Forest Plots of adverse effects in studies comparing a GBS vaccine versus placebo. a. Pooled results of studies comparing risk of serious adverse events 
between those who received a GBS vaccine versus placebo. The sizes of the squares are proportional to study weights. Diamond markers indicate pooled effect sizes. 
b. Pooled results of studies comparing risk of serious adverse events leading to withdrawal from the study between those who received a GBS vaccine versus placebo. 
The sizes of the squares are proportional to study weights. Diamond markers indicate pooled effect sizes. c. Pooled results of studies comparing risk of fever/systemic 
illness between those who received a GBS vaccine versus placebo. The sizes of the squares are proportional to study weights. Diamond markers indicate pooled 
effect sizes. 
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immunization [63]. Toxoids are often selected as the carrier proteins 
due to their inherent immunogenicity and the potential for a booster 
effect in previously immunized recipients [64]. Conjugation of the GBS- 
CPS with a toxoid protein carrier was essential to achieve an adequate 
immune response in the studies in this review comparing conjugated and 
non-conjugated vaccines [36–38,44]. This principle is well known from 
other CPS-based vaccines like the pneumococcal glycoconjugate vaccine 
[63]. For the surface subunit protein vaccine conjugation was not 
needed as proteins are more antigenic than polysaccharides. Including 
GBS surface subunit proteins in future vaccines offers advantages over 
unrelated proteins like tetanus toxoid or CRM197. It could simplify 
coverage for additional strains beyond the CPS serotypes included and 
enhance protection against some strains. However, using a range of 
carrier proteins in some conjugate vaccines may increase reactogenicity 
and potentially suppress the immune response to CPS [65]. 

Vaccine adjuvants are also often added to enhance the ability of a 
vaccine to elicit strong and durable immune responses, especially in 
immunologically compromised individuals like immature neonates and 
immunosuppressed individuals [66]. Adjuvants, e.g. aluminum salts, 
may also reduce the antigen dose needed and subsequently the number 
of immunizations [67]. For the surface subunit protein vaccine, adding 
an adjuvant enhanced immunogenicity [32]. When examining the 
conjugated CPS-based GBS vaccines in our review, we did not observe 
any indications that adjuvants enhanced immunogenicity [27,39]. 
However, it is important to acknowledge that these vaccines were pre-
dominantly evaluated in immunocompetent adults. In contrast, the 
commercial polyvalent pneumococcal CPS-vaccines contain aluminum 
salts, in order to elicit immune response in young infants from the age of 
2 months and upwards [68]. We belive it is less likely that future com-
mercial CPS-based GBS vaccines for pregnant women will be manufac-
tured with adjuvants. 

The majority of the trials had a follow-up period of 6 months 
[25,31–33,36,38,40,41,45,46] and some even longer 
[26,28,29,37,39,42–44]. These studies report a decline of antibody 
levels in both the mother and child, in line with the expected gradual 
decrease of antibodies levels over a period of 6–12 months. While the 
majority of studies did not assess the functionality of maternal anti-
bodies, earlier research has demonstrated that functional GBS antibodies 

can endure for as long as two years after vaccination 
[36–38,41–44,50,51] and at least 2 months in infants [40]. 

4.2. Placental transfer 

Our review found that conjugated CPS-based vaccines resulted in 
induction of anti GBS-IgG which were effectively transmitted across the 
placenta. The infant antibody levels, derived from transferred IgG, is 
also most likely more relevant for defining a level for risk reduction of 
acquiring invasive GBS disease compared to maternal antibody levels. 
Only five studies provided data from infant sera after maternal vacci-
nation [25,26,40,45,46]. Overall, the placental transfer ratios varied 
between 0.4 and 1.4 across these five studies. Evaluating placental 
transfer ratios from different vaccines should ideally also include pre-
sentation of vaccine induced IgG subclasses. Studies indicate the IgG1 
has the highest transfer ratio and IgG2 the lowest [69,70]. However, the 
placental transfer ratio could also be affected by the IgG subclass dis-
tribution pattern in a population [69,70]. Similarly, earlier vaccine 
studies have indicated that vaccination response can be influenced by 
racial and ethnic factors [71–77]. 

4.3. Safety and adverse events 

Overall, the safety profile of GBS vaccines evaluated in this system-
atic review were reassuring. However, our data must be interpreted with 
caution. First and foremost, the number of participants included in our 
review were only 5765 participants, of which only 1325 were pregnant 
women. Secondly, distinguishing between pregnancy related compli-
cations and symptoms, and vaccine-related AEs is challenging in 
maternal vaccine studies. This difficulty arises because both pregnancy 
and vaccines can lead to similar symptoms, such as nausea, making it a 
complex task to determine whether these symptoms are solely attrib-
utable to normal pregnancy experiences or are indicative of AEs. Factors 
like maternal age, obstetrical history, and health conditions influence 
pregnancy outcomes. Understanding these factors is vital for interpret-
ing AEs in clinical vaccine trials [78]. Additionally, a much higher 
number of participants will be needed to detect rare and severe side 
effects, like the vaccine-induced immune thrombotic thrombocytopenia 

Fig. 3. (continued). 
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Table 2 
Adverse events reported in 20 GBS vaccine studies.  

Ref. nr. First author, 
year, 
country 

Population N Intervention Reactogenicity Adverse events (AEs) and 
serious adverse events 
(SAEs) 

Adverse events of special 
interest (AESI)  

[36] 
Kasper 1996 
USA 

Healthy non- 
pregnant adults 

100 III-TT vs III-non- 
conjugated vs 
placebo 

(1) 7 % experienced serious 
redness/swelling at the 
injection site in the 14.5 μg 
III-TT group. 
(2) No severe systemic 
reactions reported. 

None  1.7 % in III-TT group had a 
temperature of 100.38◦F 
coupled with RTI that 
resolved within 24 h.  

[37] 
Baker 1999 
USA 

Healthy non- 
pregnant adults 

190 Ia-TT vs Ia-non- 
conjugated vs 
Placebo 
Ib-TT vs Ib-non- 
conjugated vs 
Placebo 

(1) Ia-TT vs Ia-non- 
conjugated vs Placebo: None 
experienced serious pain or 
redness/swelling at the 
injection site. 
(2) Ib-TT vs Ib-non- 
conjugated vs Placebo: 3.3 
% experienced serious pain 
or redness/swelling at the 
injection site in the 63 μg Ib- 
TT group. 
(3) No severe systemic 
reactions reported.  

None No significant changes in CBC 
or blood chemistry values 
noted 2 days after 
vaccination in all groups.  

[38] 
Baker 2000 
USA 

Healthy non- 
pregnant adults 

75 II-TT vs II-non 
conjugated vs 
Placebo 

(1) 10 % experienced 
serious redness/swelling at 
the injection site in the 57 μg 
II-TT group and none in the 
II CPS group. 
(2) 6.7 % experienced chills, 
malaise, headache, and 
temperature to 37.8 ◦C up to 
36 h after immunization in 
the 14.3 μg II-TT group. 

None  Not retrievable  

[39] 
Paoletti 2001 
USA 

Healthy non- 
pregnant adults 

96 III-TT vs III-TT with 
AlPO4 

2nd dose of III-TT 
(without adjuvant) 

(1) III-TT vs III-TT with 
AlPO4: 6.7 % experienced 
serious pain at the injection 
site both with and without 
adjuvant. 
(2) 2nd dose of III-TT 
(without adjuvant): 2.8 % 
experienced serious 
redness/swelling at the 
injection site. 
(3) 2.8 % in the 12.5 μg, first 
dose, III-TT experienced 
severe systemic reactions. 

(1) 1 experienced fever of 
100.4◦F associated with 
chills, malaise, and headache 
18 h after receiving the first 
dose of GBS III-TT conjugate 
(accidently) combined with 
GBS II-TT. 
(2) No SAEs reported. 

Not retrievable 

[40] Baker 2003 
USA 

Healthy pregnant 
adults, 30–32 w 
GA 

30 III-TT vs Placebo (1) No serious pain or 
redness/swelling reported at 
the injection site in either 
group. 
(2) No severe systemic 
reactions reported. 

None Not retrievable  

[41] 
Baker 2003 
USA 

Healthy non- 
pregnant adults 

75 II-TT and III-TT vs. 
bivalent II/III-TT 

(1) No serious pain or 
redness/swelling at the 
injection site reported in the 
groups. 
(2) 2 with reported severe 
systemic reactions. 

(1) AEs: 2 experienced fever 
of 100.6◦F and 100.4◦F at 11 
h and 17 h after immunization 
with monovalent GBS III–TT 
and bivalent II/III-TT, 
respectively. Fever combined 
with chills, mild headache, 
malaise, and myalgia. 
(2) No SAEs reported. 

Not retrievable  

[42] 
Baker 2004 
USA 

Healthy non- 
pregnant adults 

35 V-TT vs V-CRM197 

Placebo 
(1) No serious pain or 
redness/swelling reported at 
the injection site in the 
groups. 
(2) 6.7 % in the V-TT group 
experienced systemic 
reactions. 

(1) AEs: 3.3 % in V-TT 
experienced headache, 
malaise, myalgia, and nausea 
a few hours after 
immunization. 
(2) No SAEs reported. 

Not retrievable  

[43] 
Palazzi 2004 
USA 

Healthy non- 
pregnant adults 

32 V-TT vs Td (1) No serious pain or 
redness/swelling at the 
injection site reported in the 
groups. 
(2) No severe systemic 
reactions reported. 

(1) AEs: 1 reported fatigue 
and myalgia within a few 
hours of immunization in the 
V-TT group, while in the Td 
group 1 reported moderate 
fatigue on day 2 after 

Not retrievable 

(continued on next page) 
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Table 2 (continued ) 

Ref. nr. First author, 
year, 
country 

Population N Intervention Reactogenicity Adverse events (AEs) and 
serious adverse events 
(SAEs) 

Adverse events of special 
interest (AESI) 

immunization. 
(2) No SAEs reported.  

[44] 
Baker 2007 
USA  

Healthy non- 
pregnant adults 

60 V-TT vs V-non- 
conjugated 

(1) 6.7 % in the 38.5 μg V- 
TT group experienced 
serious pain at the injection 
site. 
(2) No severe systemic 
reactions reported. 

None 1 reported fever, sore throat, 
malaise and myalgias 6 h 
after vaccination, coupled 
with RTI that resolved within 
24 h.  

[25] 
Donders 
2016 
Belgium and 
Canada 

Healthy pregnant 
adults, 24–35 w 
GA  

172 Ia/Ib/III-CRM197 vs 
placebo 

(1) No serious pain or 
redness/swelling reported at 
the injection site in the 
vaccine group, while 0–6 % 
in the placebo group 
reported severe local 
reactions. 
(2) 0–6 % in placebo group 
reported systemic reactions. 

(1) AEs: 63 % [95 % CI 
48.1–75.9 %] and 74 % [95 % 
CI 56.7–87.5 %] reported in 
vaccine and placebo, 
respectively. 
(2) SAEs: reported in 24 % 
and 31 % of infants in the 
vaccine and placebo groups, 
respectively. No SAEs in 
maternal groups. 

Obstetric outcomes were 
similar between the vaccine 
and placebo groups.  

1 neonatal asphyxia 
occurring 28 days after 
maternal vaccination.  

[45] 
Heyderman 
2016 
Malawi and 
South-Africa 

Pregnant women 
with/without 
HIV and 
newborns 

536 Ia/Ib/III-CRM197 (1) 2 %, 0 % and 4 % 
reported severe pain at 
injection site in HIV-infected 
low CD4 cell count, HIV- 
infected high CD4 cell count 
and HIV-uninfected, 
respectively. 
(2) Fever only reported in 
HIV-infected low CD4 cell 
count group (n = 3). 

(1) AEs: 7 %, 13 % and 23 % 
reported AE possibly related 
to vaccine in HIV-infected low 
CD4 cell count, HIV-infected 
high CD4 cell count and HIV- 
uninfected, respectively. In 
infants the rates were 0 %, 2 
% and 1 %, respectively. 
(2) SAEs: None at least 
possibly related to 
vaccination. 
(3) Similar rates of maternal 
and infant SAEs reported 
across all groups. 
(4) No differences in obstetric 
outcomes and pregnancy 
events were recorded across 
the three groups. 
(5) No association between 
vaccine administration and 
change in viral load was seen 
in the HIV-infected groups. 

1 maternal death in the HIV- 
infected high CD4 cell count 
group.  

4, 2 and 2 neonatal deaths in 
HIV-infected low CD4 cell 
count, HIV-infected high CD4 
cell count and HIV- 
uninfected, respectively.  

[26] 
Madhi 2016 
South Africa 

Healthy non- 
pregnant and 
pregnant women 
and newborns 

697 Ia/Ib/III-CRM197 vs 
placebo 

(1) No serious pain or 
redness/swelling at the 
injection site reported. 
(2) Systemic reactions were 
reported by 95 % and 90 % 
of the women in the vaccine 
and placebo groups, 
respectively, with the most 
reported reactions being 
myalgia, headache, and 
fatigue. Similar rates for 
pregnant and non-pregnant 
women. 

(1) AEs: Unsolicited were 
reported by 30 (75 %) 
participants in the vaccine 
group and 16 (80 %) 
participants in the placebo 
group, with 40 % per group 
(23 % for pregnant) 
considered possibly related to 
study vaccination. Similar 
rates for pregnant and non- 
pregnant. 
(2) SAEs: None at least 
possibly related to 
vaccination. 

Obstetric outcomes were 
similar between the vaccine 
and placebo groups.  

3 stillbirths were recorded in 
placebo group (4 %) and 4 (2 
%) in vaccine groups.  

[27] 
Leroux-Roels 
2016 
Belgium  

Healthy non- 
pregnant women 

678 Ia/Ib/III-CRM197 

With/without 
adjuvant (AlOH or 
MF59) and vs 
placebo 

(1) No serious pain or 
redness/swelling at the 
injection site reported. 
(2) 50 %–85 % across 
vaccine groups, and 58 %– 
65 % in the placebo groups 
reported systemic reactions. 

(1) AEs: On average 26 % (no 
adjuvant), 14 % (AlOH) and 0 
% (placebo) in enrolment 
group 1. On average 11 % 
(MF59 half), 18 % (MF59 full) 
and 5 % (placebo) in 
enrolment group 2. Similar 
rates in possibly related to 
vaccination. 
(2) SAEs: None at least 
possibly related to 
vaccination. 

None mentioned  

[28] 
Hillier 2019 
USA 

Healthy non- 
pregnant adults 

667 III-TT vs tetanus/ 
diphtheria toxin 

(1) No serious pain or 
redness/swelling at the 
injection site reported. 
(2) 41 % in the III-TT and 
none in the Td groups 
reported systemic reactions 
(headache, malaise, muscle 
aches). 

1) AEs: Around 9.8 % 
considered to be vaccine 
associated in all groups. 
(2) SAEs: None at least 
possibly related to 
vaccination. 

None mentioned 

(continued on next page) 
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Table 2 (continued ) 

Ref. nr. First author, 
year, 
country 

Population N Intervention Reactogenicity Adverse events (AEs) and 
serious adverse events 
(SAEs) 

Adverse events of special 
interest (AESI) 

(3) Women who received Td 
vaccine reported local 
symptoms of greater 
severity compared to 
women who received GBS 
III-TT vaccine  

[29] 
Leroux-Roels 
2020 
Belgium 

Healthy non- 
pregnant adults 

80 Ia/Ib/III-CRM197 vs 
non-vaccinated 
Second dose 4–6 
years after first dose 
vs a first dose 

(1) 7 % in the GBS without 
adjuvant group experienced 
serious pain at the injection 
site. 
(2) No severe systemic 
reactions reported. 

(1) AEs: Across groups, 29 %– 
67 % of women reported 
unsolicited AEs within 31 
days postvaccination.  

(2) SAEs: None at least 
possibly related to 
vaccination.  

2 in the prior GBS group 
reported RTI and hot flush 
after immunization, while 2 
in the no prior GBS group 
reported injection site 
erythema and nasal 
congestion after 
immunization.  

[30] 
Beran 2020 
Czech 
Republic, 
Belgium, USA 

Healthy non- 
pregnant adults 

1050 Fully liquid vs 
lyophilized trivalent 
GBS vaccine 

(1) 0.2 % experienced 
serious pain and redness/ 
swelling at the injection site 
in the fully liquid vaccine 
group, while 0.2 % 
experienced serious pain in 
the lyophilized vaccine 
group. 
(2) No more than 2.1 % 
experienced severe systemic 
reactions in either group.  

(1) AEs: 11 % and 10 % of 
women in Liq and Lyo, 
respectively. 
(2) SAEs: None at least 
possibly related to 
vaccination. 

10 women became pregnant 
during the study; 5 singleton 
liveborn babies, 1 stillbirth, 2 
abortions (one spontaneous 
and one therapeutic) and 2 
pregnancies lost to follow-up.  

[31] 
Swamy 2020 
USA 

Healthy pregnant 
women, 24–34 w 
GA, and 
newborns 

75 Ia/Ib/III-CRM197 vs 
placebo 

1) No serious pain or 
redness/swelling at the 
injection site reported in the 
groups. 
(2) 1 % (vaccine) and 2 % 
(placebo) experienced 
severe systemic reactions 
(fatigue). 

(1) AEs: None related to 
maternal vaccination. 
(2) SAEs: 15 % and 12 % of 
infants in the vaccine and 
placebo groups, respectively. 
None related to maternal 
vaccination. 

16 % in the vaccine group 
experienced ten AESI in total 
(amniotic cavity infection, 
arrested labor [five cases], 
gestational hyper- tension, 
pre-eclampsia, premature 
separation of placenta, 
prolonged labor) and 15 % in 
the placebo group 
experienced six AESI 
(anemia, cholelithiasis, 
breech presentation, pre- 
eclampsia, umbilical cord 
prolapse, nephrolithiasis). 
None related to vaccine.  

[32] 
Absalon 2021 
USA 

Healthy non- 
pregnant adults 

365 Ia/Ib/II/III/ IV/V- 
CRM197 in different 
doses vs Placebo 

(1) No serious pain or 
redness/swelling reported at 
the injection site in the 
groups. 
(2) No severe systemic 
reactions reported. 

(1) AEs: Rates ranging from 
12 % in the 10 μg without 
AlPO4 group to 29 % in the 
20 μg with AlPO4 group and 
placebo group. Most common 
upper respiratory tract 
infection and sinusitis. 
(2) SAEs: Reported on 3 GBS6 
with AlPO4 recipients 
(diabetic ketoacidosis, 
suicide, metrorrhagia) and 
none in the GBS6 without 
AlPO4 and placebo groups.  

None of the changes in 
laboratory values after 
vaccination were associated 
with clinical findings.   

[33] 
Fischer 2021 
UK 

Healthy non- 
pregnant adults, 
(non-vaccinated 
pregnant women 
and newborns, n 
= 304)  

240 NN/NN2 in different 
doses vs placebo 
(Part A) and 
comparing effects of 
single dose versus 
booster (Part B). 
With/without 
adjuvant. 

(1) No serious pain or 
redness/swelling reported at 
the injection site in either 
group. 
(2) No severe systemic 
reactions reported. 

(1) AEs: Similar across 
vaccine and placebo 
(gastrointestinal, nervous 
system and infections and 
infestations system organ 
classes). 
(2) SAEs: None at least 
possibly related to 
vaccination. 

12 pregnancies reported (6 in 
placebo and 6 in GBS-NN); 7 
liveborn, 4 spontaneous 
abortions (2 in each group), 
and 1 lost to follow-up.  

[46] 
Madhi 2023 
South Africa  

Healthy pregnant 
women, 27–36 w 
GA, and 
newborns 

360 Ia/Ib/II/III/ IV/V 
-CRM197 in different 
doses vs placebo. 
With/without 
adjuvant. 

(1) No serious pain or 
redness/swelling reported at 
the injection site in either 
group. 
(2) Severe systemic events 
were reported in 4 GBS6 
recipients and 4 placebo 
recipients (fever). 

(1) AEs: 45 to 70 % in the 
GBS6 groups and 61 % in 
placebo group reported (fetal 
distress syndrome most 
common). Only headache and 
vomiting related to vaccine. 
(2) SAEs: None at least 
possibly related to 
vaccination. 

1 stillbirth in GBS6. 1 fatal 
motor vehicle accident. None 
related to the vaccine. 

(continued on next page) 
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observed after the adenoviral vector covid19-vaccine [79]. The current 
GBS vaccine candidates are based on bacterial surface subunit protein 
products and by definition inactivated or killed vaccines, and considered 
more safe than live vaccines. This safety extends to pregnancy, where 
purified macromolecule vaccine types such as subunit vaccines, conju-
gate vaccines, and inactivated toxoids are considered suitable. Never-
theless, continuous safety monitoring remains crucial to assess their 
appropriateness for this vulnerable population [80]. A recent maternal 
vaccination trial against respiratory syncytial virus indicated that the 
vaccine might increase the rate of premature births [81]. Our data did 
not show any signal towards increased rates of premature births, but 
with only 1325 pregnant participants in GBS vaccine trials this potential 
side effect could not be ruled out in our dataset. Hence, it is crucial to 
establish a robust Vaccine Adverse Event Reporting System (VAERS) and 
maintain vigilant safety monitoring post-licensure of a maternal GBS 
vaccine. 

4.4. Strengths and limitations 

The strengths of our systematic review include our rigorous and 
sensitive search strategy following an a priori registered protocol. 
Additionally, we targeted an area of global concern and importance. 
GBS vaccines have been focus for clinical trials since the 1990s, still only 
around 5800 participants were identified in the 20 studies in this sys-
tematic review. A greater volume of data is necessary, even in cases 
where a vaccine’s licensure relies on sero-correlation information rather 
than clinical efficacy. Another key constraint was the inability to 
conduct a meta-analysis for the primary outcome of immunogenicity 
(IgG GMCs) due to the heterogeneous use of seroassays across studies. 
The international consortium known as GASTON (Group B Strepto-
coccus: Standardization of Laboratory Assays) has reached a consensus 
on a unified protocol for GBS antibody assays. This standardized pro-
cedure marks a significant milestone in their collaborative efforts to 
ensure consistency and reliability in GBS-related research [82,83]. Our 
evaluation of adverse events data revealed no significant issues con-
cerning the various GBS vaccine candidates. Comparable levels of 
reactogenicity and adverse effects were noted in both the intervention 
and control groups. However, limited sample sizes prevent us from 
drawing a definitive conclusion regarding adverse effects. 

4.5. Implication and conclusion 

All candidate maternal GBS vaccines presented good immunoge-
nicity and safety data. A multivalent CPS-based vaccine or a broad- 
spectrum surface subunit protein vaccine are the most promising vac-
cine candidates. This systematic review also highlights that there are 
still significant uncertainties in the determinants of the antibody 
response, particularly in people who have low baseline GBS antibodies. 
Our findings also support the recent initiative to standardize measure-
ment methods in order to facilitate direct comparison and extrapolation 
of results. 
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