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A B S T R A C T   

Shocks have attracted considerable interest in reliability and maintenance engineering because of their impact on 
vulnerable systems. Most industrial systems suffer from both internal degradation caused by fatigue and wear- 
out, and external shocks that often occur randomly due to harsh weather conditions, overloading, etc. Devel
oping maintenance optimization models without taking these stochastic shocks into account is often ineffective. 
This paper develops a model to optimize the maintenance alarm threshold for a single-component continuously 
monitored system which is exposed to both fatal and non-fatal shocks in the presence of lead time for hard time 
maintenance. The shocks occur randomly according to a homogeneous Poisson process during the whole 
degradation process and have a stochastic impact on the degradation level, while the system resistance to shocks 
decreases as the system approaches failure. We propose a new numerical maintenance optimization model to find 
the solution without Monte-Carlo simulation and the model is compared to the Wiener process. A numerical 
example and a real-time experimental case study on roller bearings are used to demonstrate the effectiveness of 
the model. The results show that the model is capable of improving maintenance decision-making in terms of 
failure probability and risk perspective.   

1. Introduction 

Shock models have been the focus of many researchers during the 
past few decades due to their extensive applications within operational 
research, maintenance modeling, and reliability theory. The failure of 
many engineering complex systems arises not only from internal gradual 
degradation such as wear-out, fatigue, and aging, but also from external 
shocks, which are mostly due to external causes, for instance overload, 
vibrations, or harsh environmental conditions [19,36]. Recently, 
various studies have focused on reliability analysis and maintenance 
policy optimization of systems exposed to competing failures. Gradual 
degradation of such systems are usually modelled by general path 
models, pure data-driven machine learning algorithms, and stochastic 
processes [20]. On the other hand, external shock models are divided 
into five categories, namely cumulative, run, delta, extreme, and mixed 
shock models [39]. Shocks due to external environment may lead to 
unexpected system failures and huge economic losses. Thus, it is very 
important to develop an effective and efficient maintenance plan for 
systems considering both gradual degradation and external shocks [19]. 

1.1. Literature review 

1.1.1. Systems with gradual degradation 
Traditionally, most researchers focused on optimization of 

condition-based maintenance (CBM) policies considering the system’s 
gradual degradation without taking external shocks into account. For 
instance, Wang et al. [35] modelled the natural degradation process 
using a monotonic non-decreasing Gamma process and proposed a CBM 
framework for continuously monitored systems, where the scheduling 
threshold for lead time to request the maintenance is integrated with 
maintenance and failure thresholds. Wang et al. [40] proposed a system 
replacement policy based on condition monitoring information. The 
system failure is induced by only natural degradation and is modelled by 
a non-monotonic Wiener process. Grall, Bérenguer and Dieulle [15] 
developed an analytical model to minimize the long-run expected cost 
per unit time following a condition-based inspection/replacement pol
icy for a stochastically deteriorating system, whose states are assumed to 
be perfectly known by means of inspections. Bérenguer et al. [2] pro
posed a maintenance policy for a system with continuous states, in 
which its stochastic degradation is modelled by a Gamma process. The 
alarm threshold was optimized by minimizing the asymptotic 
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unavailability of the system assuming a deterministic lead time. Jiang 
[20] proposed a cost model for a system with a monotonically increasing 
degradation process to optimize the maintenance alarm threshold and 
first inspection time. General path model, increment process model, and 
a condition-based degradation model are presented to solve the prob
lem. Elwany et al. [12] developed a replacement decision model to find 
the optimal replacement time for continuously monitored systems which 
follow a stochastic exponential model. As the first step, the stochastic 
degradation model is used to update the predictive distribution of the 
component’s degradation signals by means of a Bayesian approach, 
while the second step focused on modeling the replacement decision 
using a Markov decision process. 

However, as previously mentioned, the optimal CBM policies in these 
studies were developed by considering only gradual deterioration of 
systems, while the impact of external shocks on the system degradation 
and maintenance decision-making was overlooked. In reality, a large 
variety of engineering complex systems such as offshore wind turbines 
are not only subject to degradation but also exposed to external shocks 
caused by harsh marine environments, icing, waves, and earthquakes 
[3]. 

1.1.2. Systems with gradual degradation and shocks 
Recently, models that simultaneously consider degradation pro

cesses and shocks have been proposed for reliability and maintenance 
modeling of systems with discrete states and continuously monitored 
systems. In some literature, they are called degradation-threshold-shock 
(DTS) models [5]. 

With regard to systems with discrete states, researchers have focused 
on developing optimal maintenance policies using discrete models such 
as a Markov chain process. For instance, Byon, Ntaimo and Ding [4] 
derived an optimal preventive maintenance policy for wind turbines by 
minimizing the long-run expected cost, where the authors use a Markov 
decision process to formulate the problem. Sarada and Shenbagam [31] 
also presented a preventive maintenance replacement strategy for a 
deteriorating repairable system with stochastic lead time via a 
phase-type quasi-renewal process, which is a discrete-time stochastic 
process to model events that happen at random times. 

Gan, Hu and Coit [13] proposed an optimal maintenance policy 
where a multi-state system is exposed to changing environment states, 

where the system and the environment can influence each other. The 
authors use a Markov decision process to formulate the problem and find 
the optimal maintenance action at the decision time (i.e., do nothing, 
replacement, imperfect repairs). Wang et al. [37] focused on a balanced 
system with multi-state components that work during multiple 
sequential stages. The system becomes unbalanced when one of the 
components fails, and the component’s degradation characteristics vary 
based on external environments or working loads. A Markov decision 
process is used to model the system operation and find the optimal joint 
strategies. 

Yang et al. [41] also proposed a preventive maintenance policy for a 
single-component system whose failure is due to gradual deterioration 
and fatal shocks. The gradual deterioration is composed of two normal 
and defective stages, and it is modelled by the delay-time concept. The 
occurrence of external shocks is modelled by a non-homogeneous 
Poisson process (NHPP) and their objective is to find the preventive 
maintenance interval, inspection time, and the number of inspections. 
However, assuming that external shocks arrive at random times ac
cording to a NHPP is not aligned with the characteristics of the shocks. In 
other words, although the system is more vulnerable to shocks as it 
approaches failure, the intensity rate or the shocks’ rate of occurrence is 
not time dependent. This means that the shocks can occur randomly at 
any point in time, irrespective of the system’s age or condition. Thus, to 
capture the random shocks, which are unpredictable events caused by 
external factors, a homogeneous Poisson process (HPP) is a more suit
able modeling approach. Lin, Li and Zio [25] also analyzed the reli
ability of a system subject to dependent degradation process and random 
shocks using two methods of Monte-Carlo simulation (MCS) and 
finite-volume methods. The Piecewise Markov process was used to 
model the degradation and its dependencies with the random shocks. In 
addition, Liang, Peng and Li [23] proposed a multi-state degradation 
model for nuclear piping systems that are subject to dynamic environ
ment condition, fatigue degradation, and random shocks, where the 
evolutions of fatigue degradation and dynamic environment are 
described and modelled by Markov-based processes. A recent study on 
systems with shocks and degradation was carried out by Wang and Chen 
[38], who proposed a condition-based imperfect maintenance policy 
using piecewise deterministic Markov process considering a determin
istic maintenance delay or lead time. 

Notations 

CR Cost of replacement per unit time 
CF Cost of failure per unit time 
CU Cost of downtime per unit time 
TM The time when maintenance alarm is triggered and 

mobilization for maintenance is started (first hitting time 
of the maintenance threshold M) 

TC The time when renewal is completed 
TF Failure time (first hitting time of the failure threshold L) 
M Maintenance threshold 
L Deterministic failure threshold 
DT Downtime 
E(DT|M) Expected downtime as a function of the maintenance 

threshold M 
TL Lead time 
MTTM Mean time to reach the maintenance threshold M 
M∗ Optimal maintenance threshold 
C(M∗) Expected cost at M∗

y(t) System degradation level at time t 
aΔt Degradation increment from time t to time t + Δt 
g(a) The probability density function of the random 

degradation increment a 

B(•) The standard Brownian motion 
η Drift parameter of Wiener process 
σB Diffusion parameter of Wiener process 
ν Mean parameter of Inverse Gaussian (IG) distribution 
κ Shape parameter of Inverse Gaussian (IG) distribution 
ρ Intensity factor of homogeneous Poisson process 
s Stochastic magnitude of a shock 
u(s) The probability density function of the shock’s magnitude s 
α Shape parameter of Gamma distribution 
λ Scale parameter of Gamma distribution 
fb

Y(•) The probability density function (PDF) of degradation level 
y in Case 1-I 

fa
Y(•) The probability density function (PDF) of degradation level 

y in Case 1-II 
qb

Y(•) The probability density function (PDF) of degradation level 
y in Case 2-I 

qa
Y(•) The probability density function (PDF) of degradation level 

y in Case 2-II 
wb

Y(•) Final PDF of degradation level y when y is below 
maintenance threshold M, Case 2-I 

wa
Y(•) Final PDF of degradation level y when y is above 

maintenance threshold M, Case 2-II  
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In the aforementioned studies, the reliability and maintenance 
models are mostly suitable for systems with discrete states. These 
models rely on discrete modeling techniques such as the Markov process 
to represent degradation, shocks and, in some cases, the dependencies 
between them. Thus, developing maintenance models for continuously 
monitored systems exposed to random shocks still requires further 
investigation. 

When it comes to the maintenance models for continuously moni
tored systems with competing failures, several researchers have pro
posed various approaches for the optimization of maintenance alarm 
threshold, inspection intervals, inspection delay, and condition-based 
policies. As an example, Zhao et al. [46] proposed an analytical solu
tion for an optimal condition-based maintenance policy, where the 
failures were induced by random shocks and deterioration. However, 
their research work is different from ours in various aspects. First, the 
random shocks are modelled according to a NHPP and are assumed to be 
fatal (i.e., shocks that lead to system failure immediately), while 
non-fatal shocks (i.e., shocks that have stochastic impact on the degra
dation level, but does not cause system failure) were not considered. 
Second, the system degradation is modelled by a monotonic Gamma 
process, and thus the proposed algorithm can not be extended to systems 
with non-monotonic degradation behavior. 

In Castro, Caballé and Pérez [6], a condition-based maintenance 
framework of a system subject to multiple sources of failures was 
developed. The degradation and shocks were modelled by a stochastic 
Gamma process and a NHPP, respectively. The shocks could arrive to the 
system at random times and the system state was checked at regular 
inspection times. The focus was to find the optimal inspection time while 
the inspection delay or lead time was assumed to be negligible in their 
work. Deloux, Castanier and Bérenguer [8] also worked on a predictive 
maintenance policy for a gradually deteriorating system subject to 
stress, while they used a different modeling approach than our model 
based on their application context. They modelled the gradual 
increasing deterioration by a phase-type distribution, where the degra
dation increment over one fixed time unit is an exponential distribution. 
Phase-type distribution is a classical and widely used way of modeling 
the cumulative wear, crack growth, and fatigue. 

Yousefi et al. [42] developed a maintenance optimization model for 
multi-component systems to determine optimal condition-based failure 
thresholds and inspection intervals, where each component was exposed 
to both degradation and shock loads. However, the authors did not 
consider the impact of lead time on the optimal failure threshold. The 
components degradation were modelled by a Gamma process and the 
random shocks followed a Poisson process. Li and Pham [22] proposed a 
condition-based maintenance model for a system subject to two degra
dation processes (i.e., random coefficient degradation path and ran
domized logistic degradation path function) and random shocks, which 
are modelled according to a Poisson process. The expected maintenance 
cost rate function was derived to find the optimal preventive mainte
nance threshold and the inspection time based on a geometric sequence. 
The system state in the authors’ study could only be revealed after an 
inspection. Pedersen, Liu and Vatn [29] developed a condition-based 
maintenance policy for a two-component system that is exposed to 
continuous degradation and hard failure. They assumed that the 
degradation of one component is divided into a stable phase and a 
deterioration phase, and that the other component is not subject to 
aging, but it is subject to hard failure, which is the system’s sudden 
breakdown. The characteristics of their system of concern and their 
modeling framework are different from ours. The system, exposed to 
continuous degradation, remains healthy until the arrival of a shock that 
introduces a potential failure, similar to the PF model. The authors 
focused on finding the imperfect repair threshold and preventive 
renewal time by minimizing the long-run expected cost rate. In our 
paper, we consider the probability of a shock occurring in each time 
interval, taking into account possible scenarios that may arise as a result. 

Additionally, Liang, Yang and Peng [24] developed a reliability 

model for systems subject to mutually dependent degradation process 
and random shocks, where the degradation is modelled by a 
time-homogeneous stochastic process on a continuous state space, in 
particular a Gamma process, and the random shocks are modelled by a 
time-homogeneous semi-Markov process on a finite state space. Zhang 
et al. [43] also proposed a degradation-threshold-shock model for a 
system operating under dynamic environment conditions which affect 
the system degradation and shocks. A Gamma process is used to model 
the system degradation, and the environment condition is modelled via 
a continuous-time Markov chain. 

In the majority of the above literatures, a Gamma process for 
continuously monitored systems and a Markov process for systems with 
discrete states have been used to model the baseline degradation. 
However, Gamma processes are applicable for systems that degrade 
monotonically. 

Among several researchers who worked with a Wiener-based process 
as the baseline degradation model, Liu et al. [27] used a non-linear 
Wiener process to develop a maintenance model for mission-oriented 
systems that are affected by gradual degradation and shocks. Howev
er, the method in Liu et al. [27] is not a fully numerical approach as the 
authors rely on MCS to derive the long-run cost rate. Hao and Yasng [16] 
also used a non-linear Wiener process to model the air leakage of gas 
insulated transmission and considered the random degradation initia
tion time and degradation-shock dependence simultaneously. Sun et al. 
[32] also proposed a general reliability model for a system with multiple 
degradation processes, where fatal and non-fatal shocks were incorpo
rated in the model and a time-varying copula method was used to 
consider the dependency between the shocks and the internal degra
dation. However, the lead time impact was not considered in their work, 
and their modeling frameworks were different to ours with respect to 
both shocks and baseline degradation. Furthermore, Duan et al. [10] 
proposed a deterioration-integrated failure model where the degrada
tion data, failure events, and environment conditions are integrated in 
the model. The authors use a random-effect Wiener process that has a 
stochastic drift parameter accounting for the stochastic impact of envi
ronment, and a proportional hazards (pH) model to incorporate multiple 
sources of information through covariates. However, their model does 
not account for lead time or maintenance delay. 

As previously mentioned, despite the importance of lead time in 
maintenance and reliability models, it has not been thoroughly studied 
or integrated into the maintenance models before. Many have consid
ered instantaneous maintenance, meaning that, when a maintenance 
decision has been made, the system can be restored to the working state 
immediately. However, this is difficult to achieve in practice. A Long 
lead time can infer several challenges, such as the unavailability of 
critical spare parts to carry out maintenance and huge production loss 
[14,31,34]. As an example, in subsea production systems, maintenance 
crew may require several months to finalize maintenance tasks, 
depending on the weather condition and resource mobilizations [44]. 
Neglecting lead time can lead to an underestimation of the failure risk of 
the system, leading to a suboptimal maintenance policy. When main
tenance is finalized while accounting for lead time, the decision-maker 
might become more conservative when scheduling and developing 
future maintenance strategies. The lead time could potentially affect the 
decision-making process to prioritize safety or avoid potential issues 
that may arise as a result of lead time. 

In our paper, we consider the system failure probability in lead time 
in our numerical framework to optimize the maintenance alarm 
threshold for systems with non-monotonic degradation behavior 
without resorting to MCS. The system baseline degradation is a linear 
Wiener process, while the incorporated lead time benefits decision- 
makers to have a more realistic and risk-informed decision-making. 

1.2. Contributions 

To the best of our knowledge, optimizing the maintenance threshold 
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for continuously monitored systems, subject to random shocks with 
different stochastic magnitudes, while taking lead time into account, is 
rare in existing literature. There are a few researchers who have focused 
on the reliability and maintenance of such systems, but they use a 
Gamma process which is suitable for systems with monotonically 
increasing degradation process [9,46], or they use the Markov chain 
approach which only applies to systems with discrete states [21]. Some 
researchers have worked with a non-linear Wiener process for modeling 
the gradual degradation and shocks; however, they resort to MCS for 
deriving the optimization function, or they do not consider the impact of 
lead time or maintenance delay in their models [10,11]. 

The main methodological contribution is to propose a novel nu
merical routine that efficiently finds the optimal maintenance threshold 
for systems that are subject to competing failures without relying on 
MCS. We have chosen a Wiener process to model the system baseline 
degradation due to its non-monotonic degradation property that offers 
advantages over the Gamma process and aligns more closely with the 
characteristics of real-life applications. We propose the numerical so
lution in two cases: in Case 1, the system is exposed to only gradual 
degradation and, in Case 2, we extend the model to incorporate random 
shocks. The shocks are not only fatal, which are often addressed by 
previous literature, but they can be of different severity or magnitudes 
and, thus, increase the degradation level by a random extent. Shocks 
with low severity (i.e., shocks with small magnitudes) can cause only 
accumulated damage; however, this does not lead to direct failure, while 
shocks with high severity (i.e., shocks with large magnitudes) can lead to 
a system failure directly. The purpose of the numerical algorithm is to 
find the optimal maintenance threshold by minimizing the total ex
pected cost. 

Additionally, lead time was integrated in the model. During this 
period, the system will still suffer from gradual degradation and random 
shocks while waiting for maintenance. Thus, the system failure proba
bility was considered during the lead time. It was demonstrated that the 
integration of lead time in maintenance and reliability models can 
improve maintenance decision-making, whereas neglecting lead time 
results in an underestimation of the failure probability and delayed 
maintenance. 

Moreover, the impact of shock detection threshold on the objective 
function (i.e., total expected cost) was analyzed using a number of 
simulated datasets to figure out which detection threshold can correctly 
capture the real shocks in the data. It was presented that a high detection 
threshold underestimates the total expected cost and leads to suboptimal 
maintenance decisions, while lower thresholds can capture a large 
number of shocks, providing more accurate results. 

We developed a Monte-Carlo algorithm for simulation of stochastic 
processes, including the system degradation and shocks, to verify the 
correctness of the proposed model. The effectiveness of the proposed 
model was demonstrated by applying the model on a numerical example 
and a laboratory dataset collected from experiments on rotating bear
ings. The results of this paper can further contribute to replacement and 
maintenance decision-making to improve system availability and reduce 
production downtime. 

The rest of this paper is structured as follows. Section 2 presents the 
model description. Section 3 and Section 4 provide the results and dis
cussion, and Section 5 describes the conclusions and further work. 

2. Model description 

Consider a single-unit system with a stochastic degradation process 
y(t) and external shocks. The degradation process is described by a non- 
monotonic linear Wiener process (i.e., y(t) ∼ W(ηt, σB

̅̅
t

√
)). The failure 

time tF is when the degradation level y(t) hits a given known failure 
threshold L. The external stochastic shocks arrive to the system ac
cording to a homogeneous Poisson process with a constant intensity 
factor ρ. The random shocks are classified into two categories: fatal 

shocks and non-fatal shocks. Fatal shocks are the ones that have a large 
impact on the degradation process, which cause the degradation level to 
surpass the failure threshold L instantaneously. Non-fatal shocks are the 
ones that increase the degradation level by a stochastic magnitude, 
while the degradation level y(t) after the shock still remains below the 
failure threshold L. 

In a time interval Δt, there is a probability ρΔt that a shock occurs. 
The probability that the system experiences failure by a fatal shock in
creases as the system approaches the failure threshold. In other words, 
the system’s resistance to a fatal shock decreases gradually through the 
system’s lifetime due to the progressive deterioration of the system’s 
health condition. The maintenance alarm is triggered and the mobili
zation for maintenance is started when the degradation level y(t) hits the 
maintenance threshold M at time tM. It is assumed that there is a con
stant lead time TL from the time that the maintenance alarm is triggered 
(i.e., tM) until the renewal process is completed (i.e., tC). It is assumed 
that at time tC, the system will be renewed and revert back to “as good as 
new” condition. The constant lead time is valid for some systems that 
have a constant time to complete a maintenance activity. For instance, a 
battery replacement in different equipment such as a gas detector, a 
smoke detector, or a portable device can be a maintenance task with 
constant lead time. The system may fail due to gradual degradation or 
external stochastic shocks during the lead time TL (i.e., tF < tC) and 
experience a period of downtime DT (i.e., alternative a in Fig. 1). On the 
other hand, the system may survive until the maintenance time tC where 
it will be preventively maintained with no downtime (i.e., alternative b 
in Fig. 1). Fig. 1 is an illustrative picture of a sample degradation path 
with the two alternatives. For the sake of clarity, the shocks are not 
shown in Fig. 1; however, they will be illustrated later in detail. 

The goal is to find the maintenance threshold M that minimizes the 
long-run cost rate. Eq. (1) presents the long-run cost rate, which is the 
expected renewal cycle cost divided by the expected renewal cycle 
length. 

C∞(M) = lim
t→∞

C(t;M)

t
=

E[C(tC|M)]

E[tC|M]
(1)  

where E[tC|M] is the expected length of a renewal cycle and E[C(tC|M)] is 
the expected non-discounted cost within a renewal cycle as a function of 
maintenance threshold M [30]. 

Based on Eq. (1), in our model, the expected cost rate per renewal 
cycle as a function of a maintenance threshold M is as follows: 

C∞(M) =
CR + CF .Pr(tF〈tC|M) + CU. E[DT|M]

MTTM + TL
for M ∈ [0,L] (2)  

where C∞(M) is the expected long-run cost, which is a function of 
maintenance threshold M, CR is the replacement cost, CF is the cost of 
failure, and CU is the cost of downtime per unit of time. Pr(tF〈tC|M) is the 
probability of failure in lead time and E[DT|M] is defined as the expected 
downtime E[DT] as a function of maintenance threshold M. Mean time to 
maintenance MTTM is the expected time for the maintenance alarm to 
be triggered in order to mobilize for maintenance. Alternatively, it can 
be expressed as the mean time to reach the maintenance threshold M as a 
function of M (i.e., MTTM = E[tM|M]). 

According to Eq. (3), assuming that there is only one maintenance 
threshold M, the objective is to select the optimal maintenance threshold 
M∗ to minimize the expected cost per unit time in a long run. 

M∗ = argMmin[C∞(M)] (3) 

In the following sections, we propose a numerical framework for two 
different cases. Case 1 represents a Wiener process, where the gradual 
degradation occurs primarily due to aging and the model does not 
consider external shocks. In Case 2, we consider the influence of external 
shocks on the deterioration process. 

In both cases, to calculate the expected cost rate as a function of 
maintenance threshold M, the numerical framework is divided into two 
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interconnected parts. I) The first part covers the period from the sys
tem’s initial operation at time zero (i.e., y(t0) = 0) until it reaches the 
maintenance threshold (i.e., y(tM) = M), triggering maintenance alarm, 
where MTTM is calculated as a result of this part. II) The second part 
focuses on the period when the degradation level is above maintenance 
threshold M, where Pr(tF〈tC|M) and E[DT|M] are calculated as outcomes 
of the second part.  

• Case 1: Modeling – Gradual degradation 

Case 1-I) When degradation level y is below maintenance threshold 
M (i.e., y(t) ∈ [0,M]) 
Case 1-II) When degradation level y is above maintenance threshold 
M (i.e., y(t) ∈ [M,L])  

• Case 2: Modeling – Gradual degradation and external shocks 

Case 2-I) When degradation level y is below maintenance threshold 
M (i.e., y(t) ∈ [0, M]) Case 2-II) When degradation level y is above 
maintenance threshold M (i.e., y(t) ∈ [M,L]) 

In the numerical framework, the purpose is to calculate the proba
bility density function (PDF) of the degradation level y at time t +Δt as a 
function of the PDF of y at time t. In Case 1-I and Case 1-II, fb

Y(⋅) and fa
Y(⋅), 

and in Case 2-I and Case 2-II, qb
Y(⋅) and qa

Y(⋅) are used to represent the 
PDF of degradation level y when y is below and above the maintenance 
threshold M respectively. 

There are two main assumptions in this model. First, once the 
degradation level y reaches the maintenance threshold M, the mainte
nance alarm is triggered and the degradation level y does not decrease 
below maintenance threshold M thereafter. Thus, in Cases 1-I and 2-I 
where y(t) ∈ [0, M], we remove the probability that the system degra
dation level exceeds maintenance threshold M at time t before updating 
the PDF at time t+ Δt. In Case 2-I, we introduce a vector φY(⋅) for y ≥ M 
to cumulatively store the probability of system degradation level y 
crossing maintenance threshold M over time t, which is necessary for 
subsequent computations in Case 2-II. 

Second, failure occurs when the degradation level y reaches the 
failure threshold L for the first time and it does not return to below the 
failure threshold L afterwards. To hold this assumption, in Cases 1-II and 
2-II where y(t) ∈ [M, L], we first store the probability that the system 

surpasses the failure threshold L at time t in a vector called m(t), and 
then remove it before updating the PDF at time t+ Δt. 

The details of the numerical process for both cases are demonstrated 
below. In Case 1, the proposed numerical framework is compared with 
an analytical approach and, in Case 2, we compare it with MCS. 

2.1. Case 1: Modeling-Gradual degradation 

In Case 1, where the system is only exposed to gradual degradation 
followed by a Wiener process and the impact of shocks are excluded 
from the model, the degradation can be modelled analytically. This 
arises from the fact that the first hitting time (FHT) or the first time that 
the degradation level y(t) surpasses the predetermined failure threshold 
L is analytically known as Inverse Gaussian (IG) distribution. Thus, the 
optimization of the expected cost to find the optimal maintenance 
threshold M∗ in this case is rather straightforward. However, since the 
model in Case 1 serves as a solid basis to build up the model in Case 2, we 
solve the model numerically, such that we can extend it later to incor
porate additional features (i.e., stochastic external shocks) in order to 
enhance its performance for real-world scenarios. 

2.1.1. Numerical approach 
In a conventional Wiener process, the degradation process 

{y(t); t ≥ 0} is usually formulated as follows: 

y(t) = y0 + ηt + σBB(t) (4)  

where y0 is the initial degradation level of the concerned system, η is the 
drift coefficient capturing the rate of degradation, σB is the diffusion 
coefficient, and B(t) is a standard Brownian motion representing the 
stochastic dynamic of the degradation process [30,45]. The main 
properties of the Wiener process are listed as follows:  

• Property 1: The starting point in the degradation process is known: 
Pr(y(t0 = 0) = 0) = 1  

• Property 2: Degradation increments are independent. For any 
0 ≤ t1 < t2 < … < tn < ∞, y(t2) − y(t1), …, y(tn) − y(tn− 1) are 
independent.  

• Property 3: Degradation increments are stationary and normally 
distributed. y(t) − y(e) has the same distribution as y(t − e), ∀e ≤ t. 

Fig. 1. Illustration of a sample degradation path.  
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As stated before, in the numerical framework, the purpose is to 
calculate the PDF of the degradation level y at time t +Δt (i.e., fY(y, t +
Δt)) as a function of the PDF of y at time t (i.e., fY(y, t)) for t ≥ 0. 

Case 1-I) degradation level below maintenance threshold M. As presented 
in Eq. (5), if the degradation level of a system at time t is denoted by y(t)
for t ≥ 0, there is a deterioration occurring in the system with a random 
quantity a in a time interval Δt from t to t+ Δt. Due to the non-monotonic 
characteristic of the Wiener process, the deterioration quantity aΔt (i.e., 
degradation increment) can have both a positive and negative value. 

y(t+Δt) = y(t) + aΔt (5) 

We assume that the time interval Δt is determined and, thus, we 
simplify the notation of aΔt as a. Let g(a) be the PDF of the random 
degradation increment a from time t to t+ Δt. According to Eq. (6), if the 
PDF of y at time t (i.e., fb

Y(y,t)) is known, the PDF of y at time t +Δt (i.e., 
fb

Y(y, t + Δt)) can be obtained using the law of total probability. 

fb
Y(y, t+Δt) =

∫∞

− ∞

fb
Y(y − a, t ) g(a) da (6)  

where a is the degradation increment from time t to t +Δt and 
fb

Y(y − a, t ) is the PDF of the degradation level y − a at time t. As pre
sented in Eq. (7), according to the Wiener process, the PDF of the in
crements follows a normal distribution (property 3) (i.e., g(a) ∼ N(μ,
σ2

B)). Since it is assumed that the system fails when the deterioration 
level exceeds the predefined failure threshold L, Eq. (6) should be 
modified into Eq. (8). 

g
(
a; μ, σ2

B

)
=

1
σ

̅̅̅̅̅
2π

√ e−
(a− μ)2

2σ2 (7)  

fb
Y(y, t+Δt) =

∫∞

y− L

fb
Y(y − a, t ) g(a) da (8) 

Fig. 2 is an illustration of the numerical process in Case 1-I when y(t)
∈ [0, M] along with a realization of a degradation process. It presents 
how the PDF of the degradation level y is updated iteratively over time 
throughout the degradation process. Since Case 1-I is specifically related 
to y(t) ∈ [0, M], we did not illustrate the degradation level y beyond the 

point where it reaches the maintenance threshold M. However, the 
propagation of PDF of y continues until t = kΔt. 

As in the Wiener process, the starting point in the degradation pro
cess is known (property 1) (i.e., y(t0) = 0), the deterioration level at the 
first time step is y(t = Δt) = y(t0 = 0)+ a. Thus, the initial PDF of y at 
the first time step Δt (i.e., fb

Y(y, t = Δt)) in Fig. 2 is the same as the 
distribution of increments g(a) which is a Normal distribution presented 
in Eq. (7). 

The initial PDF g(a) at time Δt (i.e., fb
Y(y, Δt)) is then used as the 

starting point to update the PDF at the next time steps (i.e., 2Δt, 3Δt, …,

nΔt). In order to reduce the computational time, we stop the iteration 
process of updating the PDF of y at some time t where the probability of 
the system not exceeding the maintenance threshold M becomes zero for 

the first time (i.e., 
∫M

0

fb
Y(y,t)dy = 0). For instance, in Fig. 2, the iteration 

stops at t = kΔt. The mean time to place the maintenance request MTTM 
in Eq. (2) is now calculated as follows: 

h(t) =
∫M

0

fb
Y(y, t)dy t = 0, Δt, 2Δt, …, kΔt (9)  

MTTM =

∫∞

0

h(t) dt (10)  

where h(t) denotes the probability that the system has not reached 
maintenance threshold M at time t (white-colored area in Fig. 2). It is 
assumed that the maintenance alarm is triggered when the degradation 
level reaches M for the first time (i.e., y(t) ≥ M) and does not return to 
below maintenance threshold M afterwards. Thus, it is important to note 
that the probability that the system surpasses maintenance threshold M 

at time t (i.e., 
∫∞

M

fb
Y(y, t) dy), highlighted in the gray color in Fig. 2, 

should be removed before updating the PDF at time t + Δt (i.e., 
∫∞

M

fb
Y(y,

t + Δt) dy). Since fb
Y(y, t + Δt) is only updated based on 

∫M

0

fb
Y(y, t)dy (i. 

Fig. 2. Numerical propagation of PDF at different time steps when y(t) ∈ [0, M].
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e., the white area of the PDFs in Fig. 2), 
∫∞

M

fb
Y(y, t) dy (i.e., the gray area 

of the PDFs) becomes smaller and eventually tends to zero. 

Case 1-II) degradation level above maintenance threshold M. When the 
degradation level passes maintenance threshold M for the first time, the 
maintenance alarm is triggered and the mobilization for maintenance is 
started. This time is labeled tM = inf[t : y(t) ≥ M]. It is assumed that 
there is a lead time TL from when the maintenance alarm is triggered tM 

until the renewal is completed tC. The initial degradation level in this 
case is y(tM) = M which means Pr(y(t = tM) = M) = 1. Eq. (11) is used to 
update the PDF at each time step when the degradation level is above M. 

fa
Y(y, t+Δt) =

∫∞

− ∞

fa
Y(y − a, t)g(a) da (11) 

Fig. 3 is an illustration of the numerical process in Case 1-II when y(t)
∈ [M, L] along with a realization of a degradation process. It presents 
how the PDF of degradation level y is updated over time throughout the 
degradation process. Since Case 1-II is specifically related to y(t) ∈ [M,

L], we did not illustrate the degradation level y beyond the point where 
it reaches the failure threshold L. However, the propagation of PDF of y 
continues until t = tM + TL. 

The initial PDF of y at time t = tM + Δt (i.e., fa
Y(y, tM + Δt)) is a 

Normal distribution on the increments with the mean and standard 
deviation M+ (μ.Δt) and σ

̅̅̅̅̅
Δt

√
respectively. The PDF is then updated for 

the period of lead time (TL) to calculate the probability of failure 
Pr(tF〈tC|M) and expected downtime E[DT|M]. 

It is assumed that the failure occurs when the degradation level y hits 
the failure threshold L for the first time. Eq. (13) and Eq. (14) show how 
to calculate the probability of failure and expected downtime, where 
m(t) in Eq. (12) is the system’s failure probability at time t (i.e., the gray- 
colored area in Fig. 3). It is assumed that once the degradation level y 
exceeds L, it does not return to below that threshold. Therefore, the 
probability that the system crosses L for the first time at time t (i. 

e.,
∫∞

L

fa
Y(y, t)), highlighted in gray color in Fig. 3, should be first stored in 

a vector (i.e., m(t) in Eq. (12)), and then removed before updating the 
PDF at time t + Δt (i.e., fa

Y(y, t + Δt)). 

m(t) =
∫∞

L

fa
Y(y, t)dy t = tM + Δt, tM + 2Δt, …, tM + TL (12)  

Pr(tF〈tC|M) =

∫t=tM+TL

t=tM+Δt

m(t) dt (13)  

E[DT|M] =

∫t=tM+TL

t=tM+Δt

[TL − t] m(t) dt (14) 

The expected cost in Eq. (2) can now be computed using Eqs. (10), 
(13), and (14). 

2.1.2. Comparison with analytical solution 
In Case 1, the impact of external shocks is excluded from the model. 

Let us assume that the degradation process is continuously monitored 
without any uncertainty, and it follows a linear Wiener process. A failure 
occurs if the degradation level y(t) ≥ L for the first time. As previously 
mentioned, in a Wiener process, the distribution of the first hitting time 
to a fixed threshold follows an IG distribution. Considering one main
tenance cycle, if the degradation level y(t) hits the maintenance 
threshold M at time t (i.e., y(t) = M), the maintenance alarm is triggered 
and the mobilization for maintenance is started. RULm is defined as the 
time from t = tM until a failure occurs (i.e., tF). RULm is then IG 

distributed with the parameters νM = L− M
η and κM =

(L− M)
2

σ2
B 

where η and 

σB are the drift and diffusion parameters of the Wiener process. The 
MTTM is then equal to M

η , while Pr(tF〈tC|M) and E[DT|M] are obtained 
according to Eqs. (15) and (16). 

Pr(tF〈tC|M) =

∫t=tM+TL

t=tM+Δt

fT(t; νM, κM) dt = FT(t; νM, κM) (15)  

Fig. 3. Numerical propagation of PDF at different time steps when y(t) ∈ [M, L].
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E[DT|M] =

∫t=tM+TL

t=tM+Δt

[TL − t] fT(t; νM, κM) dt (16)  

where fT(t; νM, κM) and FT(t; νM, κM) are the PDF and cumulative dis
tribution function (CDF) of IG distribution given that y(t) = M. Eq. (17) 
presents the PDF of IG distribution. 

fT(t; ν, κ ) =

̅̅̅̅̅̅̅̅̅
κ

2πt3

√

exp −

{
κ(t − ν)2

2ν2t

}

(17)  

2.2. Case 2: modeling – Gradual degradation and external shocks 

2.2.1. Numerical approach 
Case 2 considers the probability of external shocks occurring at each 

time step Δt in addition to the system aging. Taking shocks into account 
with different stochastic magnitudes or impacts on the degradation level 
makes the model more realistic. In this case, IG distribution is no longer 
applicable to model the system deterioration process and, thus, the 
numerical solution of the model is proposed and compared with MCS. 

The model consists of two parts (i.e., Case 2-I and Case 2-II). Case 2-I 
is when the degradation level y is below maintenance threshold M (i.e., 
y(t) ∈ [0, M]). In this case, a shock may occur below the maintenance 
threshold M with a stochastic magnitude. The three different situations 
that can happen as a result are listed below and illustrated in Fig. 4:  

(a) The magnitude of the shock is small, and the degradation level 
remains below the maintenance threshold (i.e., y ≤ M).  

(b) The magnitude of the shock is medium, and the degradation level 
exceeds the maintenance threshold; however, it remains below 
the failure threshold (i.e., M < y < L).  

(c) The magnitude of the shock is large, and the degradation level 
exceeds the failure threshold (i.e., y ≥ L). 

Case 2-II is when the degradation level y is above maintenance 
threshold M (i.e., y(t) ∈ [M,L]). A shock may occur during the lead time 
TL. This means that the degradation level y in this case is above the 
maintenance threshold M since the mobilization for maintenance has 
already started, but renewal is not completed yet. The two situations 
that can occur as a result are listed below and illustrated in Fig. 5:  

(a) The magnitude of the shock is small, and the degradation level 
remains between the maintenance threshold and the failure 
threshold (i.e., M < y < L).  

(b) The magnitude of the shock is large, and the degradation level 
exceeds the failure threshold (i.e., y ≥ L). 

The numerical approach to formulate the expected cost is presented 
in the next section. Similar to Case 1, the purpose is to calculate the PDF 
of the degradation level y at time t + Δt (i.e., qY(y, t + Δt)) as a function 
of the PDF of y at time t (i.e., qY(y, t)). Once we calculate qY(y, t) at time 
t, we can use the law of total probability to combine fY(y, t) and qY(y, t)
to obtain the final PDF of y (i.e., wY(y, t)) in Case 2, accounting for both 
internal degradation modelled by the Wiener process and stochastic 
shocks modelled by HPP. 

Case 2-I) degradation level below maintenance threshold M. In this sec

Fig. 4. A schematic of the three alternatives when an external shock occurs below maintenance threshold M and the degradation level is affected by a shock with 
small, medium, and large magnitude. The dashed lines represent the impact of the shock on the degradation level. 
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tion, it is assumed that the system’s degradation process y(t) is still a 
non-monotonic Wiener process, while external shocks with stochastic 
magnitudes can occur randomly throughout the degradation process. A 
shock has a random magnitude s and can increase the degradation level 
by a random extent. We further assume that the shock magnitude s is 
independent of y(t) and follows a Gamma distribution with shape and 
scale parameters α and λ respectively. If a shock occurs, the PDF of the 
degradation level y at time t + Δt can be given as follows: 

qb
Y(y, t+Δt) =

∫∞

0

qb
Y(y − s, t) u(s) ds (18)  

where u(s) is the PDF of stochastic shocks’ magnitudes (i.e., u(s) ∼
Gamma(s; α, λ)) and qb

Y(y − s|t) is the PDF of the degradation level before 
the shock occurs at time t. The final PDF of y at time t in Case 2-I when y 
is below the maintenance threshold M (i.e., y(t) ∈ [0, M]), considering 
both gradual degradation and external shocks, is then as follows: 

wb
Y(y, t) = (1 − ρΔt) fb

Y(y, t) + ρΔt qb
Y(y, t) (19)  

where fb
Y(y, ti) and qb

Y(y, ti) are calculated using Eq. (8) and Eq. (18) 
respectively. Since a shock might bring the system either to a fault state 
(i.e., y ≥ L) or a state between the maintenance threshold and failure 
threshold (i.e., M < y < L), the probability that the system passes 
maintenance threshold M at time t (i.e., gray-colored in Fig. 2) is 

cumulatively stored in a vector φY(y) =
∫∞

0

wb
Y(y, t)dt for y ≥ M over 

time t, and then removed before updating the PDF at time t + Δt. Eq. 
(21) shows how to calculate MTTM as a function of the maintenance 
threshold M. 

h(t) =
∫M

0

wb
Y(y, t) dy (20)  

MTTM =

∫∞

0

h(t) dt (21)  

Case 2-II degradation level above maintenance threshold M. When the 
degradation level crosses the maintenance threshold M and the mobi
lization for maintenance is started, the initial PDF of y at time t = tM +Δt 
(i.e., qa

Y(y, tM + Δt)) will be as follows: 

qa
Y(y, t= tM +Δt) = φY(y) (22) 

It is important to note that 
∫∞

M

φY(y, t)dy = 1 when t→∞, since the 

numerical iteration process to update the PDF of y in Case 2-I stops at 
some time t where the probability of not reaching the maintenance 

threshold M is equal to zero (i.e., 
∫M

0

qb
Y(y, t)dy = 0). Eq. (23) is used to 

update the PDF of y at each time step for the period of lead time TL which 
initially starts with the PDF in Eq. (22). 

qa
Y(y, t+Δt) =

∫∞

0

qa
Y(y, t) u(s) ds (23) 

To obtain the final update of the PDF of y when y is above the 
maintenance threshold M, we use law of total probability which com
bines Cases 1 and 2 to account for the gradual degradation and external 
stochastic shocks in each time interval Δt. Eq. (24) represents the final 
PDF of the degradation level y at time t when y(t) ∈ [0,M] (i.e., wa

Y(y, t)): 

wa
Y(y, t) = (1 − ρΔt) fa

Y(y, t) + ρΔt qa
Y(y, t) (24)  

where fa
Y(y, t) is calculated using Eq. (11) and qa

Y(y, t) is obtained from 
Eq. (23). Similar to the numerical approach in Case 1, the probability 

that the system crosses L for the first time at time t (i.e.,
∫∞

L

wa
Y(y, t)), 

highlighted in gray color in Fig. 3, should be first stored in a vector (i.e., 
m(t) in Eq. (25)), and then removed before updating the PDF at time t +
Δt (i.e., wa

Y(y, t + Δt)). 
Eqs. (26) and (27) are used to calculate the probability of failure and 

expected downtime during lead time. 

m(t) =
∫∞

L

wa
Y(y, t)dy t = tM + Δt, tM + 2Δt, …, tM + TL (25)  

Pr(tF〈tMC|M) =

∫t=tM+TL

t=tM+Δt

m(t) dt (26)  

E[DT|M] =

∫t=tM+TL

t=tM+Δt

[TL − t] m(t) dt (27) 

The cost function in Eq. (2) can now be computed using the pa
rameters in Eqs. (21), (26), and (27). 

Fig. 5. A schematic of the two alternatives when an external shock occurs above maintenance threshold M and the degradation level is affected by a shock with small 
and large magnitude. The dashed lines represent the impact of the shock on the degradation level. 
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2.2.2. Comparison with Monte-Carlo simulation 
The Monte-Carlo simulation is used to verify the numerical approach 

in Case 2. In MCS, the degradation process is sampled for 104 number of 
times and MTTM, Pr(tF〈tC|M), and E[DT|M] are calculated for mainte
nance threshold M ∈ [0, L]. Algorithm and Algorithm are the pseudo- 
codes. 

3. Results 

3.1. Numerical example 

Without loss of generality, a numerical example with the following 
assumptions is used to illustrate the proposed model:  

• The degradation process is modelled by a non-monotonic Wiener 
process with parameters η = 0.3 and σB = 0.1.  

• The failure threshold is L = 30.  
• The lead time is TL = 4.  
• The shocks follow a homogenous Poisson process with the intensity 

rate ρ = 0.1.  
• The magnitudes of random shocks follow a Gamma distribution with 

shape and scale parameters α = 9 and λ = 0.5 respectively.  
• The cost of replacement, cost of failure, and cost of downtime per 

unit time are 500, 300, and 200 respectively. 

3.1.1. Case 1 
According to Case 1, where the degradation is described by a non- 

monotonic Wiener process and the shock is excluded from the model, 
MTTM, Pr(tF〈tC|M), E[DT|M], and the expected cost function in Eq. (2) 
are calculated numerically and analytically to find the optimal mainte
nance threshold M∗ with the minimum expected cost rate C(M∗). Fig. 6 
shows the expected cost versus different maintenance thresholds for the 
numerical example. M∗ and C(M∗) are 28.3 and 5.15 respectively. 

3.1.2. Case 2 
In Case 2, the expected total cost versus maintenance threshold M for 

our numerical example is computed, compared with MCS, and presented 
in Fig. 7. In our case, although there is a small deviation in numerical 
solution and MCS due to numerical approximations error, the optimal 
maintenance threshold M∗ is the same in both approaches (i.e., M∗= 23). 

Generally, MCS method is widely used in practice and conceptually 
easy to apply, while the numerical scheme provides more accurate re

sults with short computation time [26]. In MCS, generating numerous 
samples leads to a more accurate estimation of results and better 
simulation performance, while it increases the computation time. Some 
factors, including the desired accuracy, efficiency of the code, problem 
size, and complexity, can also affect the computation time in both MCS 
and numerical solutions. In terms of computation time, our numerical 
scheme takes 270 s, whereas MCS with 104 number of samples takes 
approximately 200 s. While MCS with 104 replications may be faster 
than the numerical scheme, it provides less accuracy. To achieve better 
accuracy, a large number of replications are required. Running MCS 
with 106 replications increases the accuracy, but takes almost four times 
longer than the numerical scheme (i.e., 960 s). Thus, the numerical 
framework is still preferable in situations where accuracy is crucial, 
since it provides more accurate results in less time compared to MCS. 

According to Fig. 8, incorporating external shocks in the model leads 
to significant changes in probability of failure. The pure Wiener process 
can not capture the impact of external shocks and underestimates the 
system’s failure probability. Thus, it makes it challenging to accurately 
assess risk and make effective maintenance decisions. However, since 
the shock model accounts for unexpected events, it gives a more reliable 
estimation of failure probability, and thus is more appropriate to model 
the real-world degradation behavior of systems. 

3.2. Numerical stability 

Numerical stability is a common challenge in employment of nu
merical methods that involve a discretization process. Discretization is a 
source of instability and is mostly required to solve the differential 
equations of systems on a computer [1]. Understanding the stability 
behavior in numerical algorithms can provide guidance in adjusting 
numerical parameters and, thus, a more accurate and reliable prediction 
result. One of the approaches to deal with instability in numerical ap
proximations is time step selection [18]. If the time step is either too 
large or too small, instability can occur due to, for instance, discretiza
tion error. In this work, different time steps (i.e., Δt = 0.1, 0.2, 0.3, …,

0.9, 1 ) have been used to solve the numerical problem. When the time 
step is too large (e.g., Δt = 1), the numerical solution can become un
stable. Thus, reducing the time step can be helpful to reduce the dis
cretization error. However, if the time step decreases too much, other 
sources of errors may become dominant, such as round-off error due to a 
large number of numerical operations required to compute the solution. 
This can lead to a situation where decreasing the time step further may 
not necessarily improve the solution’s accuracy, but instead increase the 

Algorithm 1 
Monte-Carlo simulation, MTTM.

Input: Normal distribution parameters (μ, σ), Gamma distribution parameters (α, λ), homogeneous Poisson process intensity factor (ρ), Number of simulations (nSim), Failure threshold 
(L), and time step (Δt) 

for m = 1 to Mmax do 
for n = 1 to nSim do 
y0 = 0 
t0 = 0 
while y ≤ M do   

○ Generate a random number between 0 and 1, R.   

○ Generate two random numbers from Gamma distribution with α, λ parameters, U ∼ Gamma(α, λ), and Normal distribution with μ, σ parameters, W ∼ Normal(μ, σ)
if R ≤ ρ × Δt do 
y = y+ W+ U 
else 
y = y+ W 
end if 
T = T+ Δt 
end while 
Tvector(n,1) = T 
end for 
MTTMsimulation(m) = mean(Tvector)

end for 
Output: The output is the MTTM or the mean time it takes for the simulated degradation paths to cross the maintenance threshold M.  
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overall error and computational cost. Finding an acceptable time step 
requires a balance between computational cost and the desired 
accuracy. 

In this case, reducing the time step from Δt = 1 to Δt = 0.4 decreases 
the overall error significantly. However, further reducing the time step 
from Δt = 0.4 to Δt = 0.3 increases the overall error due to round-off 
error accumulation, which can offset the benefit of smaller time steps. 
Decreasing the time step further again from Δt = 0.3 to Δt = 0.1 leads to 
a lower round-off and, consequently, overall error. Fig. 9 presents the 
expected cost versus maintenance threshold M with different time steps. 
The time step Δt = 0.1 provides the lowest deviation or overall error 
with MCS. However, Δt = 0.2 is also acceptable, leading to the same 
result while taking less computation time compared to Δt = 0.1. 

3.3. Experimental data 

A real-time experimental dataset is collected in Reliability, Avail
ability, Maintenance, and Safety (RAMS) laboratory at Norwegian 
University of Science and Technology (NTNU) to illustrate the applica
bility of the proposed model. There are 10 run-to-failure datasets from 
10 ball bearings, which are a type of rolling-element bearings that use 
balls to maintain the separation between the bearing inner and outer 
races. The bearings are degraded by contamination, which is the result 
of pouring a mixture of Silicon carbide solid particles and lubricant onto 
the bearing at regular time intervals until the amplitude of the accel
eration, in a horizontal direction, crosses the level of 10 g. The details of 
the setup and the experiments can be read in Tajiani and Vatn [33]. 

Algorithm 2 
Monte-Carlo simulation, Pr(tF〈tMC|M) and E[DT|M].

Input: The inputs for this algorithm are the same as inputs for Algorithm 1, in addition to lead time (TL) 
for n = 1 to nSim do 
for t = 1 to TL do 
y0 = 0 
t0 = 0  
○ Generate a random number between 0 and 1, R.  
○ Generate two random numbers from Gamma distribution with α, λ parameters, U ∼ Gamma(α, λ), and Normal distribution with μ, σ parameters, W ∼ Normal(μ, σ)
if R ≤ ρ × Δt do 
y(t) = y(t)+ W+ U 
else 
y(t) = y(t)+ W 
end if  
○ Count the number of simulated paths that have a degradation level larger than L (i.e., y(t) ≥ L) at a specific time t and divide it by nSim, (i.e., P(f) =

Count the number of times that y(t) ≥ L for the first time
nSim

) 

if y(t) ≥ L do  
○ Find the time that y(t) ≥ L, i.e., tfailure  
○ Calculate downtime as DT = TL − tfailure 
else  
○ DT = 0 
end if  
○ Expected downtime =

∑nSim
1 DT 

end for 
end for 
Output: The output is the probability of failure during lead time Pr(tF〈tC|M) and the expected downtime E[DT|M] given a maintenance threshold M.  

Fig. 6. Expected cost vs maintenance threshold in Case 1.  
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In each experiment, the samples of horizontal acceleration signals 
are collected every five minutes, and the lifetime of bearing is a batch of 
the collected samples. The horizontal acceleration samples are then 
decomposed into time-based segments called intrinsic mode functions 
(IMFs) and the statistical features such as kurtosis, crest factor, and root 
mean square (RMS) are extracted from the different IMFs as condition 
indicators. There have been various studies on different features and 
their associated capability for condition monitoring and remaining 
useful life (RUL) prediction of bearings. Based on our previous research 
in Tajiani and Vatn [33], the RMS feature extracted from the first IMF 
with the highest frequency is the most suitable health indicator (HI) for 

degradation modeling and RUL prediction with the lowest prediction 
error. Thus, it has been selected as the HI for the optimization of the 
maintenance threshold M. Fig. 10 shows the RMS features from the first 
IMF of 10 experimental bearings, which show increasing trends over the 
bearing lifetime. 

In real-life applications, it is often possible to detect external shocks, 
caused by natural disasters, harsh environment conditions, and seasonal 
variations. It is primarily more straightforward by collecting and 
analyzing historical data, having knowledge of the system, and 
comparing the system degradation patterns at different time periods. In 
industries, this type of data is often available, and one can differentiate 

Fig. 7. Expected cost vs maintenance threshold for Case 2.  

Fig. 8. Probability of failure in lead time for Wiener process (Case 1) and shock model (Case 2).  
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between the shocks and the system’s gradual degradation by tracking 
work orders and analyzing maintenance records. 

In our case, since particles contamination has been used to accelerate 
the bearings degradation, it is somewhat challenging to detect whether 

the Silicon carbide particles contributed to shocks or not. In addition, in 
a more controlled environment like a laboratory, the experiments are 
carried out under the same operating conditions, and the influence of 
some external random shocks such as extreme weather conditions is 

Fig. 9. Expected cost vs maintenance threshold with different time steps.  

Fig. 10. RMS degradation paths for experimental bearings. Each two consecutive colored datapoints represent the shock increment.  
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minimized. In our experimental dataset, it is assumed that the shocks 
have only positive magnitudes which increase the degradation level to a 
random extent, and the negative increments correspond to the system’s 
gradual degradation modelled by the Wiener process. This assumption is 
valid for some external factors such as operational loads. The opera
tional load on roller bearings is a factor that increases the degradation 
level (i.e., vibration) with only positive magnitudes, and negatively af
fects its lifespan and performance. The following algorithm is used to 
differentiate the increments corresponding to gradual degradation and 
shocks in bearing dataset. 

A linear Wiener process and a HPP are used to capture the behavior 
of gradual degradation and external shocks in the deterioration paths 
presented in Fig. 10, respectively. The magnitudes of the shocks (i.e., 
shock impacts on degradation level) are modelled by a Gamma distri
bution. The parameters of both Wiener process and Gamma distribution 
are estimated using Maximum Likelihood Estimation (MLE) and sum
marized in Table 1. Additionally, Table 1 shows the intensity rate of 
HPP, which is the number of shocks divided by the number of samples of 
a bearing. The lead time is assumed to be constant for the bearings, and 
it is equal to 25 samples. Given that the time interval between each two 
consecutive samples is five minutes, the lead time can be interpreted in 
time unit as well. 

The expected cost is now calculated given a maintenance threshold 
M, and the optimal maintenance threshold M∗, which minimizes the 
expected cost, is obtained numerically for the different bearings. Fig. 11 
shows the expected cost versus maintenance threshold using two 
different shock detection thresholds (i.e., 1.5σ and 2σ) for distinguishing 
the external shocks. Determining an appropriate threshold to detect 
shocks depends on the context, data characteristics, and desired risk 
tolerance. In some systems, if missing a shock has severe consequences, 
defining a more conservative threshold is required to capture a broader 
range of potentially significant events. Table 2 summarizes M∗ and 
C(M∗) for the bearings. 

The different model parameters and the lifetime of the bearings lead 
to different maintenance strategies (i.e., run-to-failure, request mainte
nance early at the life stage, etc.). For instance, in B2, the lead time is 
large compared to the bearing lifetime, which gives a higher probability 
of failure during lead time. Therefore, the optimal maintenance 
threshold to place the maintenance request is at the beginning of the 
experiment. However, in B10, the maintenance strategy according to 
1.5σ is “run-to-failure”, which means that the bearing can be operated 
until it fails or breaks down, while, according to 2σ threshold, the 
optimal maintenance threshold is 0.45 where more than half of the 
bearing lifespan has elapsed. Setting a lower threshold for detection of 
shocks provides a more sensitive analysis of any deviations from the 
system expected behavior. 

3.4. Impact of shock detection threshold on expected cost 

The thresholds 1.5σ and 2σ to identify shocks on experimental data 
are chosen heuristically based on the data characteristics. However, to 
evaluate the performance of shock detection threshold, 75 degradation 
processes including both gradual degradation increments and shocks are 
simulated using the parameters in Section 3.1 and Algorithm 3. The 
index of shocks (i.e., the location of shocks in the degradation process) 
are recorded in a vector throughout the simulation process. Different 

shock detection thresholds from 0.1σ to 3σ, where σ is the standard 
deviation of the degradation increments in a deterioration process, have 
been tested on the simulated data, to identify how precise they are in 
capturing the shocks. Eq. (28) presents the shock detection rate (SDR) to 
evaluate the performance of the thresholds. 

SDR =
Number of shocks detected

Total number of shocks
(28) 

Fig. 12 shows the average of SDR over all simulated degradation 
processes versus shock detection threshold. The thresholds 1.5σ and 2σ 
can, on average, detect 98.5% and 92.1% of the shocks, respectively. 
According to Fig. 12, fewer shocks are detected when the threshold in
creases. This is a trade-off between sensitivity and precision [17]. A 
lower threshold means the model is more sensitive to shocks; however, it 
might include false positives or increments that are incorrectly identi
fied as shocks. On the other hand, a higher threshold means the shock 
detection criteria is stricter and the shocks have more significant devi
ation from the mean of the increments. A higher threshold increases 
precision and reduces the false positives, while there is a probability of 
missing some real shocks with smaller magnitudes. Selecting the right 
balance between sensitivity and precision depends on the application 
context and can be adjusted based on the criticality of missing shocks. 

Additionally, to evaluate the impact of the shock detection threshold 
on the expected cost, we used the same simulated degradation processes 
with known shock indexes. The parameters η , σB, α , λ , ρ have been 
estimated using MLE and the expected cost C∞(M) for maintenance 
threshold M is obtained numerically for each simulated degradation 
process. Since the actual arrangement of the degradation process with 
respect to shocks and gradual degradation increments is known, M∗

Actual 
is used to denote the optimal maintenance threshold with minimum 
expected cost in this case. Similarly, the thresholds 1σ, 2σ, and 3σ are 
employed to distinguish shocks and calculate the expected cost C∞(M)

for maintenance threshold M. Fig. 13 shows the average result over all 
simulated degradation processes. The optimal maintenance thresholds 
(i.e., M∗) are marked in a black color. 

According to Fig. 13, the optimal maintenance threshold and its 
associated expected cost for the thresholds 1σ and 2σ are close to the 
actual result. This means that these two thresholds have a balanced 
sensitivity that results in a more reliable estimation of M∗and its asso
ciated expected cost. However, using the 3σ threshold to detect shocks 
leads to an underestimation of the expected cost and it suggests a larger 
maintenance threshold. This means that it delays the initiation of 
maintenance and negatively impacts the decision-making process. One 
of the reasons for this is that the 3σ threshold identifies the most extreme 
events as shocks and, thus, neglects the smaller shocks. Although the 
smaller shocks might not have a significant impact individually, their 
cumulative effect can be critical over time and contribute to the overall 
system degradation. The findings in this section are based on a limited 
number of simulated datasets and the time step Δt = 1 is used due to 
high computation costs. Despite these limitations, the overall trend of 
expected cost versus maintenance threshold demonstrated stability after 
approximately 50 simulated degradation processes. 

4. Discussion 

Some of the maintenance optimization models are often suitable for 

Table 1 
Parameters of Wiener process, Gamma distribution, and the intensity rate of HPP.   

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 

η 0.0144 0.0199 0.0042 0.0065 0.0113 0.0029 0.0048 0.0040 0.0052 0.0049 
σB 0.0645 0.0475 0.0324 0.0366 0.0494 0.0359 0.0276 0.0236 0.0410 0.0382 
α 12.5489 25.0876 13.1046 8.6036 17.9423 10.3389 17.8410 46.7518 2.6118 18.7613 
λ 0.0138 0.0096 0.0083 0.0216 0.0073 0.0126 0.0067 0.0015 0.0842 0.0061 
ρ 0.0455 0.0857 0.0342 0.0377 0.0649 0.0323 0.0267 0.0420 0.0175 0.0435  
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systems that are only subject to gradual degradation or aging [28,35, 
40]. Developing such models without considering the external shocks 
may result in an underestimated failure probability, deceptive reliability 
estimations and, consequently, misleading maintenance decisions. In 
this paper, we develop a numerical maintenance optimization model for 
continuously monitored systems that are subject to both gradual 
degradation and stochastic shocks caused by external factors based on a 
Wiener process. In the model, the random shocks can happen 
throughout the whole deterioration process with different stochastic 
magnitudes. The magnitude can be large enough to result in a direct 

failure, where the system goes beyond the failure threshold immediately 
or it can be smaller and simply increase the degradation level by a 
random extent. Comparing our results with the Wiener process shows 
that the combination of shocks and gradual degradation provides a more 
practical and realistic reliability estimation and, thus, more efficient 
maintenance decisions for systems with Wiener-based degradation 
behavior. 

Another assumption often made in maintenance models for contin
uously monitored systems subject to shocks is the negligible lead time 
before maintenance implementation. In some research works, the au
thors often focus on multi-component systems with dependent failure 
processes, while they assume that the lead time duration is too short and 
can be neglected [6,42]. However, some applications such as offshore 
wind farms and power plant facilities located in remote areas often 
experience large production loss due to prolonged lead-time delays 
while procuring critical spares [7,34]. In this paper, we also incorporate 
the maintenance lead time into our model and account for the proba
bility of system failures occurring within this period. 

5. Conclusions and further work 

This paper proposes a numerical framework to find the optimal 
maintenance threshold for single-component continuously monitored 
systems that are exposed to both gradual degradation and external 
shocks with stochastic magnitudes, in the presence of a deterministic 

Fig. 11. Expected cost rate over maintenance limit for different bearings.  

Table 2 
Optimal maintenance threshold M∗ with minimum expected costs C(M∗)

for the bearings considering a 2σ threshold.  

Bearing M∗ C(M∗)

B1 0.9 11.09 
B2 0 26.8 
B3 0.3 7.76 
B4 0.6 10.01 
B5 0.5 13.3 
B6 0.48 8.2 
B7 0.31 8.87 
B8 0.25 8.77 
B9 0.35 10.96 
B10 0.45 10.59  

Algorithm 3 
Extracting shocks from run-to-failure datasets.  

for t = 1 do 
It = Yt 

end for 
for t = 2 to Number of samples do 
Calculate the degradation increments by It = Yt − Yt− 1 

if It > 2 × σI 

The increment is assumed to be a shock which arises from external events 
else 
The increment is assumed to be a result of gradual degradation (aging) 
end if 
end for  
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lead time. The shocks can be both fatal and non-fatal, depending on the 
health condition of the system. The probability of system failure due to a 
fatal shock increases as the system approaches the failure threshold. The 
numerical solution does not resort to MCS, but it was compared with 
MCS to validate the proposed model. The result shows that our nu
merical approach can efficiently and accurately find the optimal main
tenance threshold. The advantages of the proposed model have been 
highlighted in comparison with the Wiener process, and it was demon
strated that the shock model is more beneficial and realistic for risk 
analysis, decision-making, and maintenance optimization by incorpo
rating the shocks or extreme events. The model is employed on both a 

numerical example and a real-life bearings dataset to show its applica
bility. While the model is initially proposed for systems characterized by 
the Wiener process, it can be slightly modified and adapted to systems 
that exhibit a geometric Brownian motion (GBM) by considering the 
dependency between degradation increments. This flexibility makes the 
model more applicable to a wider range of systems with different 
degradation behaviors. 

For further work, it would be valuable to study the uncertainty of 
model parameters to increase the model robustness and improve future 
decision-making. One of the possible approaches to consider uncertainty 
is to perform a sensitivity analysis to figure out how changing each 

Fig. 12. Shock detection rate versus threshold, σ is the standard deviation of the degradation increments.  

Fig. 13. Impact of shock detection threshold on expected cost.  
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individual parameter affects the total expected cost. The result of such 
analysis can help the operators make decisions that are more considerate 
of the parameters’ uncertainty. Another approach to reduce uncertainty 
is to update the key parameters of the model throughout the degradation 
process once more degradation observation is available. The key pa
rameters include parameters of the Wiener process and shock process, 
failure threshold, cost values, and lead time, which can be treated as 
stochastic variables instead of deterministic. In addition, shocks arise 
from different sources in practice. Some are caused by dynamic envi
ronmental conditions such as seasonal weather variation, and some 
others by cascading failures due to other components that have an 
interaction with the system of interest. Thus, the intensity rate of 
random shocks can be treated as a stochastic variable and can vary 
through the system degradation. 

Moreover, in our proposed model, there is only one objective func
tion, which is the total expected cost. Another interesting point to 
consider is to integrate human factors in the model and further inves
tigate how risk perception and cognitive biases of decision-makers can 
influence the maintenance threshold. In real-world applications, 
decision-makers may not only consider costs, but also non-monetary 
factors such as environmental damage and safety concerns. Another 
potential direction of further work is to take a system-level approach, 
where the interdependencies and interactions between several compo
nents are taken into account. This makes the model more realistic and 
applicable for complex industrial systems. 
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