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ABSTRACT 

STUDY QUESTION: Can generative artificial intelligence (AI) models produce high-fidelity images of human blastocysts?

SUMMARY ANSWER: Generative AI models exhibit the capability to generate high-fidelity human blastocyst images, thereby 
providing substantial training datasets crucial for the development of robust AI models.

WHAT IS KNOWN ALREADY: The integration of AI into IVF procedures holds the potential to enhance objectivity and automate 
embryo selection for transfer. However, the effectiveness of AI is limited by data scarcity and ethical concerns related to patient data 
privacy. Generative adversarial networks (GAN) have emerged as a promising approach to alleviate data limitations by generating 
synthetic data that closely approximate real images.

STUDY DESIGN, SIZE, DURATION: Blastocyst images were included as training data from a public dataset of time-lapse microscopy 
(TLM) videos (n¼ 136). A style-based GAN was fine-tuned as the generative model.

PARTICIPANTS/MATERIALS, SETTING, METHODS: We curated a total of 972 blastocyst images as training data, where frames were 
captured within the time window of 110–120 h post-insemination at 1-h intervals from TLM videos. We configured the style-based 
GAN model with data augmentation (AUG) and pretrained weights (Pretrained-T: with translation equivariance; Pretrained-R: with 
translation and rotation equivariance) to compare their optimization on image synthesis. We then applied quantitative metrics in-
cluding Fr�echet Inception Distance (FID) and Kernel Inception Distance (KID) to assess the quality and fidelity of the generated 
images. Subsequently, we evaluated qualitative performance by measuring the intelligence behavior of the model through the visual 
Turing test. To this end, 60 individuals with diverse backgrounds and expertise in clinical embryology and IVF evaluated the quality 
of synthetic embryo images.

MAIN RESULTS AND THE ROLE OF CHANCE: During the training process, we observed consistent improvement of image quality 
that was measured by FID and KID scores. Pretrained and AUG þ Pretrained initiated with remarkably lower FID and KID values com-
pared to both Baseline and AUG þ Baseline models. Following 5000 training iterations, the AUG þ Pretrained-R model showed the 
highest performance of the evaluated five configurations with FID and KID scores of 15.2 and 0.004, respectively. Subsequently, we 
carried out the visual Turing test, such that IVF embryologists, IVF laboratory technicians, and non-experts evaluated the synthetic 
blastocyst-stage embryo images and obtained similar performance in specificity with marginal differences in accuracy and 
sensitivity.

LIMITATIONS, REASONS FOR CAUTION: In this study, we primarily focused the training data on blastocyst images as IVF embryos 
are primarily assessed in blastocyst stage. However, generation of an array of images in different preimplantation stages offers 
further insights into the development of preimplantation embryos and IVF success. In addition, we resized training images to a reso-
lution of 256 � 256 pixels to moderate the computational costs of training the style-based GAN models. Further research is needed to 
involve a more extensive and diverse dataset from the formation of the zygote to the blastocyst stage, e.g. video generation, and the 
use of improved image resolution to facilitate the development of comprehensive AI algorithms and to produce higher- 
quality images.

WIDER IMPLICATIONS OF THE FINDINGS: Generative AI models hold promising potential in generating high-fidelity human blasto-
cyst images, which allows the development of robust AI models as it can provide sufficient training datasets while safeguarding pa-
tient data privacy. Additionally, this may help to produce sufficient embryo imaging training data with different (rare) abnormal 
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features, such as embryonic arrest, tripolar cell division to avoid class imbalances and reach to even datasets. Thus, generative 
models may offer a compelling opportunity to transform embryo selection procedures and substantially enhance IVF outcomes.
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Introduction
Traditionally IVF involves selecting embryos based on a few mi-
croscopic observations or static images captured at specific time-
points during post-insemination development (De los Santos et al., 
2016). However, these approaches capture only limited informa-
tion about the dynamic changes that occur during early in vitro 
embryogenesis. The implementation of time-lapse microscopy 
(TLM) in human embryology (IVF laboratories) provides a continu-
ous temporal overview of preimplantation development, includ-
ing the pace and evenness of cell divisions, timepoints of 
developmental events such as morula or blastocyst formation 
that can be indicative of normal or abnormal preimplantation de-
velopment and pregnancy outcome (Wong et al., 2010). Although 
embryo morphology scoring has been the standard practice for 
IVF embryo selection, it is important to note that visual inspec-
tions by clinical embryologists introduce subjectivity, diminishing 
reproducibility, and predictive accuracy for successful pregnancy 
(Storr et al., 2017), which is primarily due to limited visibility of 
embryonic features in 2D images and that microscopic image 
analyses only capture a specific timepoint of the development. 
For instance, it has been shown that counting pronuclei would 
not necessarily differentiate an abnormal embryo from a normal 
embryo both in terms of morphology and genome integrity 
(Destouni et al., 2018). Therefore, artificial intelligence (AI)-based 
automatic annotations, characterized by high accuracy and reli-
ability, which capture and evaluate the continuous development 
of IVF embryos can enhance embryo selection strategies and pre-
diction of IVF success (Jiang and Bormann, 2023).

The incorporation of AI into medical imaging has seen remark-
able progress in the areas of automation of medical processes and 
the development of precision medicine (Zhou et al., 2021; Chen 
et al., 2022). Nonetheless, AI-driven methods heavily rely on abun-
dant labeled data, a requirement often met with difficulties in 
many medical imaging datasets, including severe class imbalance 
where the distribution of labeled data is uneven (Miotto et al., 
2017). To address these challenges, generative adversarial net-
works (GAN) have been developed (Goodfellow et al., 2014), such 
that synthetic images that closely resemble the distribution of 
real data could be generated (Kazeminia et al., 2020). GAN has 
been proven to have a wide range of capabilities in medical imag-
ing, including image synthesis, segmentation, reconstruction, de-
tection, and classification tasks (Kazeminia et al., 2020), as well as 
domain shifting between the source and target datasets from dif-
ferent centers with different imaging systems (Kanakasabapathy 
et al., 2021). In general, GAN has broader applications in image 
synthesis, which can be categorized into two modes: uncondi-
tional and conditional. Unconditional training mirrors the original 
GAN model, functioning in an unsupervised manner, and generat-
ing data primarily from a noise vector, with limited influence on 
the output. Deep convolutional GAN (DCGAN) (Radford et al., 
2016), leveraging convolutional networks, has played a substan-
tial role in serving as both unconditional and conditional training 

models. For example, the combination of real and generated 
images to train DCGAN led to improved pathology classification 
of chest X-rays when compared to networks trained solely on real 
images (Salehinejad et al., 2019). Additionally, the BrainGAN 
(Alrashedy et al., 2022) framework proposed a fusion of original 
GAN and DCGAN for generating brain magnetic resonance (MR) 
images, along with an automatic way to classify the generated 
images. Conditional GAN (cGAN) (Mirza and Osindero, 2014) inte-
grates valuable prior information as the condition into the train-
ing process, allowing for greater control over the generation 
procedure. For instance, generating cardiac MR images with heart 
tissue labels for segmentation analysis (Al Khalil et al., 2023). 
Another approach, CycleGAN (Zhu et al., 2017), uses image-to- 
image translation with unpaired data, streamlining the training 
process, particularly in scenarios with limited data and desired 
classes. Notably, the application of CycleGAN for augmentation 
(AUG) with lung computed tomography (CT) slices has demon-
strated significant enhancements in the performance of deep 
learning models for automatic diagnosis (Ghassemi et al., 2023).

A style-based generator for GAN (StyleGAN) (Karras et al., 
2018) adjusts the ‘style’ of the embedded image features at every 
convolution layer, representing a state-of-the-art generative 
model for generating high-resolution images. It enables progres-
sive training with varying input resolutions and noise injection 
into network, leading to improved image quality and training sta-
bility. For instance, using StyleGAN to augment microfluidic chip 
images demonstrated significantly enhanced accuracy of mobile 
health diagnostics for infectious diseases (Shokr et al., 2021). 
Additionally, StyleGAN has been successfully applied in medical 
imaging by transforming latent style vectors between CT and MR 
for cross-modality analysis (Fetty et al., 2020). A previous study, 
HEMIGEN (Dirvanauskas et al., 2019) employed GAN to generate 
images representing different stages of human embryo develop-
ment, including one, two-, and four-cell cleavage stage embryos. 
While this study showed promise in aiding the advancement of 
novel algorithms designed for processing embryo images, the 
specific GAN architecture is limited to producing 200 � 200 pixels 
images. Additionally, no 8-cell cleavage stage embryos or blasto-
cysts were included, as Day 3 and Day 5 embryos are the primar-
ily used timepoints for clinical morphological assessment in IVF.

In this study, we assessed the ability of generative models to 
synthesize human embryo images. To this end, we assessed a 
style-based GAN model performance by leveraging pretrained 
weights and data AUG, to generate a sufficient number of 
blastocyst-stage embryo images and assess their quality and fi-
delity compared to real human embryo images.

Materials and methods
Training data curation
Given the limited number of publicly available datasets, the 
training data for this study was obtained from an accessible TLM 
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dataset (Fordham et al., 2022), which was captured using the 
EmbryoScope® time-lapse system (Vitrolife, Sweden). To acquire 
blastocyst images, frames captured within the time window of 
110–120 hours post-insemination (hpi), with 1-h intervals, were 
included. This time window was chosen due to its relevance to 
the developmental stage of embryos, which transitions from the 
post-morula stage to the blastocyst stage, accounting for tempo-
ral differences in blastocyst formation (Alpha Scientists in 
Reproductive Medicine and ESHRE Special Interest Group of 
Embryology, 2011; Barnes et al., 2023). Consequently, the training 
dataset consisted of 972 blastocyst images. The original images 
were sized at 500 � 500 pixels, and for uniformity, model train-
ing, and processing efficiency, all images were resized to 256 �
256 pixels (Fig. 1a).

Generative adversarial networks
Our GAN model comprises two fundamental components: a 
discriminator ðDÞ and a generator ðGÞ. The objective of the dis-
criminator is to differentiate real images ðxÞ from those pro-
duced by the generator ðGðzÞÞ, while the generator aims to 
generate synthetic images that effectively deceive the discrimi-
nator (Fig. 2). This procedure is directed by the utilization of the 
cost function: 

min
G

max
D

V
�

D;GÞ

¼ Ex�pdataðxÞ½log
�

D
�

x
��
� þ Ez�pzðzÞ½1 � logðDðGðz

���
�

where E represents the expected value, x represents real data, 
and z represents noise vectors sampled from the probability dis-
tribution pzðzÞ.

The primary goal of the discriminator is to maximize the like-
lihood of precisely categorizing real images DðxÞ and synthetic 
images DðGðzÞÞÞ, while the generator aims to reduce the classifi-
cation error 1 � logðDðGðzÞÞÞ: This cost function guides the opti-
mization process of both the discriminator and generator during 
the adversarial training process. In simpler terms, the discrimi-
nator learns to distinguish real from synthetic images, while the 
generator aims to create synthetic images that are so convincing 
that they fool the discriminator. This adversarial process leads 
to the continuous improvement of the generator in producing 
high-quality synthetic data. The noise vector z injected into the 
generator represents a source of random variability. It allows 
the generator to introduce diversity into the synthetic data it 
produces, enhancing its ability to generate a wide range of real-
istic images.

In this study, we adapted the StyleGAN3 (Karras et al., 2021) 
network due to its outstanding performance on generating high- 
resolution images and diverse samples. Specifically, each module 
was tailored to a specific purpose: (i) Baseline training (Baseline): 
Involves training the model with randomly initialized weights, 
providing a baseline for comparison with other configurations to 
assess the model’s original performance without prior knowl-
edge. (ii) Pretrained model with translation equivariance 
(Pretrained-T): Uses pretrained weights from the FFHQ dataset— 
a diverse human face dataset (Karras et al., 2021) to investigate 
the benefits of transfer learning. By initializing the model with 
pretrained weights from another large dataset, it is anticipated 
that the generation of realistic embryo images will be enhanced. 
(iii) Augmented training on Baseline model (AUG þ Baseline): 
Incorporates data AUG strategies such as mirroring during train-
ing to enhance the diversity of the training data. This setup 

evaluates the impact of data AUG on Baseline model’s generative 
capabilities. (iv) Augmented and pretrained model (AUG þ
Pretrained-T): Combines pretrained weights from FFHQ with data 
AUG, facilitating the comprehensive assessment of both strate-
gies’ combined impact on generating high-quality embryo 
images. (v) Augmented and pretrained model with translation 
and rotation equivariance (AUG þ Pretrained-R): In addition to 
pretrained weights and data AUG, this design adds translation 
and rotation equivariance during training to explore how it inter-
acts with pretrained weights and AUG to influence generative 
performance (Fig. 1b).

Quantitative assessment
Fr�echet inception distance (FID) (Heusel et al., 2017) and kernel 
inception distance (KID) (Bi�nkowski et al., 2018) are essential met-
rics employed in the field of generative modeling to quantita-
tively assess the quality and similarity between real and 
generated images. FID is based on the assumption that features 
extracted by a pretrained Inception-v3 network (Szegedy et al., 
2015), specifically at the pool3 layer, can be modeled as Gaussian 
distributions. It quantifies the resemblance between these fea-
ture distributions in real and generated data by computing the 
Fr�echet distance between the corresponding multivariate 
Gaussian distributions: 

FID ¼ k lr � lg k
2 þ Tr Rr þ Rg � 2 RrRg

� �1=2
� �

where N lr;Rrð Þ and N lg;Rg
� �

are Gaussian distributions fitted 
to real and generated data, respectively. FID relies on the as-
sumption that these features follow Gaussian distributions 
and measures their similarity. In contrast, KID offers a non- 
parametric approach to assessing image resemblance. It does 
not rely on any specific distribution assumptions, enhancing 
its versatility and robustness. KID complements FID by provid-
ing an alternative metric that captures image quality without 
assuming Gaussian distributions. Both FID and KID are valu-
able measurements for evaluating the performance of genera-
tive models and assessing how closely generated images 
resemble real data (Fig. 1c).

Visual Turing test to assess quality of 
generated images
In addition to quantitative metrics, this study implemented a vi-
sual Turing test (Geman et al., 2015) survey to evaluate the qual-
ity of the generated images. We sent out email invitations to 
perform the visual Turing Test, mainly targeted at clinicians/ 
researchers working in the reproductive health field, those IVF 
fertility centers including Homerton Healthcare NHS Foundation 
Trust, Oslo University Hospital, Baltic Fertility Society, UZ 
Brussel, UZ Leuven, Amsterdam University Medical Center 
(UMC), UMC Utrecht, UMC Groningen, Radboud UMC, and 
Maastricht UMC. A total of 60 evaluators responded to the task of 
visually comparing both real and generated images of IVF blasto-
cysts. These evaluators were categorized into three groups: 
Group I consisted of 25 experienced embryologists, with 19 indi-
viduals possessing over 5 years of expertise in assessing embryo 
quality; Group II comprised 15 IVF lab technicians, with 10 of 
them having more than 5 years of experience in working with 
IVF embryos; and Group III included 20 non-experts who had no 
experience on human embryo microscopic imaging. Each evalua-
tor independently assessed a set of 100 blastocyst images, com-
prising 50 synthetic and 50 authentic images. True images 
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were randomly selected from the training dataset, and the gener-
ated images were produced using random seeds. Evaluators oper-
ated without time constraints and were unaware of the 
distribution of synthetic and real images. They were presented 

with two choices to classify image fidelity: ‘Real’ or ‘Fake’. To 
facilitate the evaluation process, we created an online form to 
randomly present images to the evaluators (Supplementary Fig. 
S1). Evaluation metrics were computed based on the results of 

Generated image

(i) (ii) (iii) (iv) (v)

Time-lapse video

Image frame

Training dataBlastocyst image

110-120 hpi
1-h intervals

500x500 256x256

...

(b) Model configuration

(a) Data preparation

(c) Training process

(d) Visual Turing test

Pretrained weights

Data augmentation

Rotation

Translation

Training results comparison
Training to 25k iterations

Generated images (n=50)

Real images (n=50)

Randomization

Evaluation results analysis

Training 5k iterations

Image Visual Turing Test

Real

Fake

Image evaluation

data

model

Metrics comparison Fedility check

FID/KID

Figure 1. Schematic overview of the study. (a) Blastocyst images from 110 to 120 hpi were extracted with 1-h intervals from embryo time-lapse videos. 
Training images were resized before feeding into the generative model. (b) Model configurations from left to right: (i) Baseline, the original StyleGAN3 
model with randomly initiated training weights. (ii) Pretrained-T, model equipped with pretrained weights with translation equivariance. (iii) AUG þ
Baseline, data augmented training on Baseline model. (iv) AUG þ Pretrained-T, data augmented and pretrained model with translation equivariance. 
(v) AUG þ Pretrained-R, data augmented and pretrained model with translation and rotation equivariance. (c) Models were trained at 5000 iterations to 
compare their FID and KID values. The best model was continued training till 25 000 iterations to generate high-fidelity images. (d) Randomly selected 
real images (n¼ 50) and fake images (n¼ 50) were assessed by visual Turing test, i.e. human evaluators, through an online survey. These evaluating 
metric results were analyzed subsequently.
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this visual Turing test, providing quantitative measures to 
the ability of participants to distinguish real from 
synthetic images, including accuracy, sensitivity, and specific-
ity (Fig. 1d).

Computational and statistical analysis
The computational resources used in this study included four 
Tesla V100 graphics processing units (GPUs) with 32 GB of mem-
ory each. Each model underwent 5000 iterations for training, 
which took 26 h to complete. For further refinement in image 
quality before undergoing the visual Turing test, the best model 
continued training to 25 000 iterations as default setting for 
StyleGAN3 training, requiring approximately 128 h (equivalent to 
5 days and 8 h). For statistical analysis, a Kruskal–Wallis test was 
conducted for each metric (accuracy, sensitivity, and specificity) 
to assess significant differences among the three evaluator 
groups. Statistical analysis was performed using Python, with a 
significance level set at P<0.05.

Results
Artificial neural network architecture and (hyper) 
parameter configurations
We adapted a style-based GAN as baseline training model 
(Karras et al., 2021), with superior performance which can be at-
tributed to several key features: (i) the progressively growing 
GAN allows the generator to start with low-resolution images 
and progressively refine them, making it proficient at handling 
high-dimensional outputs, (ii) the use of an intermediate embed-
ding space, combined with adaptive instance normalization and 
noise injection, which enhances image quality and diversity, 
and (iii) mixing regularization and noise injection further im-
prove the robustness and diversity of generated images (Karras 
et al., 2018). We distributed the training over four GPUs to accel-
erate the training process and handle the computational 
demands effectively. (Hyper)parameter settings are chosen with 
specific goals. Specifically, the use of ‘mirror’ for augmenting 
the dataset with random x-flips, which doubles the number of 
training images. Additionally, parameter ‘aug¼ada’ allows adap-
tive discriminator augmentation (ADA), which stabilizes training 
in limited data regimes to against overfitting (Karras et al., 2020). 
Based on the size of the training dataset and image resolution, 
we set the batch size as 32, with discriminator’s learning rate of 
0.002, and gamma (R1 regularization weight) value of 2. The use 

of ‘freezed’ to freeze the first layers of discriminator was set to 

13, according to experimental experience.

Quantitative assessment via Fr�echet inception 
distance and kernel inception distance
FID scores serve as a measure of the dissimilarity between gener-

ated and real images, with lower scores indicating better alignment. 

All models exhibited similar trends in their FID curves, demonstrat-

ing a gradual decline in FID values over successive training itera-

tions (Fig. 3a). The Baseline and AUG þ Baseline models started 

with a relatively elevated FID score of 472.0, indicating significant 

disparities between its initially generated and real images. 

However, as training progresses, FID value consistently diminished, 

reflecting a continuous enhancement in image quality. During 

training, both models experienced rapid FID reduction followed by 

stabilization. After 5000 iterations, FID of Baseline and AUG þ

Baseline model was 189.6, 191.4, respectively (Fig. 3c).
Conversely, both Pretrained and AUG þ Pretrained initiated 

with a notably lower FID value of 336.0 compared to Baseline 

models. This suggests that models initialized with pretrained 

weights generate images that closely align with the distribution 

of real images from the outset. The FID value continued to de-

crease during training, indicating the substantial contribution of 

pretrained weights to generating high-quality images resembling 

real ones (Fig. 3a). The FID of Pretrained-T model after 5000 train-

ing iterations was 46.4. The FID of AUG þ Pretrained-T and AUG 

þ Pretrained-R was 16.5 and 15.2, respectively (Fig. 3c).
The KID scores serve as a compensatory metric for FID in 

assessing the resemblance between actual and generated 

images: lower KID scores indicate a closer resemblance. Across 

all models, consistent trends were observed in their KID curves, 

illustrating a gradual decrease in KID values as training pro-

gresses (Fig. 3b). In both Baseline and AUG þ Baseline, the KID 

values underwent a steady reduction, indicating an improved 

ability of the model to generate samples close to real data. After 

5000 iterations, KID of Baseline and AUG þ Baseline is 0.252 and 

0.257, respectively (Fig. 3c).
As training processes, the Pretrained and AUG þ Pretrained 

models displayed a rapid decrease in KID values, signifying sub-

stantial advancements in generating more realistic samples 

(Fig. 3b). After 5000 iterations, the KID of Pretrained-T model was 

0.042. The KID of AUG þ Pretrained-T and AUG þ Pretrained-R 

was 0.006 and 0.004, respectively (Fig. 3c).

Real/FakeRandom noise

Real image

Generator
Generated image

Discriminator

Loss

Figure 2. GAN architecture. GAN consists of two main modules: a generator and a discriminator. The discriminator aims to distinguish real images 
from those generated by the generator, while the generator aims to produce synthetic images that effectively deceive the discriminator.
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Qualitative assessment via visual Turing test
The AUG þ Pretrained-R model achieved its optimal training 
results after 5000 iterations (Fig. 3c) and continued training up to 
25 000 iterations to produce high-quality synthetic images for the 
visual Turing test. The image survey received a total of 60 
responses by inviting participants to discriminate the true and 

synthetic blastocyst images. Inside the experts group (Group I 
and II), 72.5% had more than 5 years of experience working with 
IVF embryos, 10.0% with 3–5 years of experience and 17.5% of 
them having a maximum of 3 years of working with IVF embryos 
(Fig. 4a). For the visual Turing test results, Group I displayed ac-
curacy of 55.7% (±6.2), sensitivity of 65.9% (±14.1), and specificity 
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Figure 3. Evaluation of generative models training results. (a) FID values of four generative models for training 5000 iterations. (b) KID values of four 
generative models for training 5000 iterations. (c) Training results comparison in different models.
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of 45.1% (±17.8). Group II showed 54.2% (±4.7) of accuracy, sensi-
tivity of 65.9% (±17.6), and specificity of 42.0% (±19.6). Group III 
had the accuracy of 50.1% (±3.8), sensitivity of 49.3% (±10.8), and 
specificity was 50.9% (±10.4). Statistical analysis indicated signifi-
cant differences in accuracy (Kruskal–Wallis test, P¼ 1.2 � 10−3) 
and sensitivity (Kruskal–Wallis test, P¼ 1.6 � 10−4) among the 
three groups, highlighting varying performance levels. No sta-
tistically significant difference was observed in specificity 
among three groups (Kruskal–Wallis test, P¼0.5, Fig. 4b and d). 
We visualized the positive likelihood ratio (sensitivity/(1 − spe-
cificity)), which denotes the likelihood of accurately distin-
guishing real and generated images within the three groups 
(Fig. 4c). Group I, Group II, and Group III, depicted in red, green, 

and blue, respectively, demonstrated the positive likelihood ra-

tio around the random guessing line (50%), underlining that the 

majority of the participants achieved a comparable accuracy 

with a random guess in discriminating between real and syn-

thetic images.

Interpretation of generated images
This section explains the interpretation of generated blastocyst 

images to gain insights into their fidelity and identify potential 

areas for improvement. We asked one experienced embryologist 

to report the key features on the generated images that were 

identified as fake by the majority of embryologists (70%, n¼18). 

Only 8% of generated images (4 out of 50) were detected as ‘fake’ 

ExpertsNon-experts >5 years

3-5 years

<3 years

29 (72.5%)

4 (10.0%)

7 (17.5%)EmbryologistIVF lab technician

15 (37.5%) 25 (62.5%)20 (33.3%) 40 (66.7%)

Experts Image working experience
Participants

Accuracy (%)

Sensitivity (%)

Specificity (%)

Group I (n=25) Group II (n=15) Group III (n=20) P value

55.7 (±6.2) 54.2 (±4.7) 50.1 (±3.8) 1.2x10-3

65.9 (±14.1) 65.9 (±17.6) 49.3 (±10.8) 1.6x10-4

45.1 (±17.8) 42.0 (±19.6) 50.9 (±10.4) 0.5
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Figure 4. Visual Turing test results from participants evaluation. Group I: embryologists; Group II: IVF laboratory technicians; and Group III: non- 
experts. (a) Proportions of participants’ background and embryo microscopy/imaging working experience. (b) Distribution of evaluation metrics 
including accuracy, sensitivity, and specificity. (c) Visualization of positive likelihood ratio (Sensitivity/(1 − Specificity)), showing the likelihood of 
accurately distinguishing real and generated images within the three groups. (d) Evaluation metric results table. Kruskal–Wallis test was conducted for 
each metric to assess the statistical difference.
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by these experts following the visual Turing test due to features 
that were considered artificial (Fig. 5a). One of the most remark-
able observations was the presence of neatly arranged small bub-
bles, white dots or artifacts within the zona pellucida that were 
perceived as artificial and inconsistent with true blastocyst 
images. Furthermore, hatched embryos presented unique char-
acteristics that made them distinguishable from in vitro blasto-
cysts. Specifically, the generated images of hatched blastocysts 
exhibited varying degrees of distortion in the hatched cells, set-
ting them apart from the typical appearance of cells in real blas-
tocyst images (Fig. 5a). Additionally, we presented generated 
images that managed to deceive a significant majority of experts 
(80%, n¼20), as they were not immediately recognized as fake 
images (Fig. 5b).

Discussion
The development of AI-based methods has substantial potential to 
improve the understanding of embryogenesis and IVF clinical out-
come. However, there have been limited publicly available data-
sets for developing AI methods to study embryo morphokinetics 
for embryo selection with the aim of improving IVF outcome. 
Therefore, we set out to explore the application of generative mod-
els to produce good-quality synthetic images for the purpose of de-
veloping robust AI models to select viable embryos. Here we 
demonstrate that adapting generative AI models, particularly a 
style-based GAN with pretrained weights and data AUG, substan-
tially enriches embryo imaging datasets. This enrichment has a 
broad range of implications for advancing AI methods in embryo 
selection and improving clinical outcomes in IVF.

To date, AI-based models have been applied in embryo auto-
matic grading (Chen et al., 2019; Khosravi et al., 2019), implanta-
tion prediction (Tran et al., 2019; Bormann et al., 2020; Geller et al., 
2021; Fordham et al., 2022; Duval et al., 2023), and ploidy 

prediction (Chavez-Badiola et al., 2020; Huang et al., 2021; Lee 
et al., 2021; Diakiw et al., 2022; Barnes et al., 2023). While these 
models have shown promise in various aspects of IVF, ethical 
and privacy concerns, along with limited access to embryo imag-
ing data, continue to challenge the efficacy of AI-based 
approaches to enhance embryo selection procedure and improve 
clinical outcomes.

In this study, we carried out both quantitative and qualitative 
assessments to test the performance of generative models. For 
quantitative evaluation, we employed FID and KID to objectively 
measure the dissimilarity between generated and true images. 
Both FID and KID consistently yielded lower values at 5000 itera-
tions compared to previous medical research using generative 
techniques. For instance, generating lung CT images using 
StyleGAN achieved FID of 220.1 (Toda et al., 2022), and FID results 
from liver, cardiac, and diabetic retinopathy datasets ranging 
from 23.7 to 29.1 (Skandarani et al., 2021). In this study, the FID 
from the AUG þ Pretrained-R model was 15.2 at 5000 iterations, 
exhibiting a decrease to 11.8 at 25 000 iterations. These findings 
provided valuable insights into the quality of the synthetic em-
bryo images. In a visual Turing test involving 60 evaluators with 
three levels of embryo classification expertise including clinical 
embryologists, IVF lab technicians, and non-experts. 
Embryologists (Group I) and IVF lab technicians (Group II) 
achieved a higher accuracy than non-experts in distinguishing 
real from generated embryo images. However, the accuracy rate 
for embryologists (Group I) is only 55.7%, compared to 61.3% 
from assessing synthetic gastroscopy images (Shin et al., 2023), 
and 67.4%, 69.9% from evaluating two sets of generated chest 
radiographs (Jang et al., 2023). Additionally, in this study, individ-
uals without specialized expertise in embryo imaging performed 
at a level approximately equivalent to random guessing (50%). 
These results underscore the ability of the generative model, as it 
poses a substantial challenge to human visual discrimination. 

Figure 5. Samples of generated images that were evaluated by participants. (a) Generated images recognized as ‘Fake’ by 70% of embryologists 
(n¼18). White marks annotated as the obvious features that were considered artificial, including neatly arranged small bubbles in the zona pellucida, 
artificially looking white dots in the zona pellucida and inner cell mass, swirly structure in the inner cell mass, and distorted shape of the hatched cells 
(explained from left to right). (b) Generated images deceived 80% of embryologists (n¼20) that were not considered as fake images in the visual 
Turing test.
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Additionally, we provided a resource of synthetically generated 

images (n¼ 5000) that facilitate future AI-based embryo selection 

model developments.
To the best of our knowledge, this is the first study generating 

blastocyst images tackling embryo imaging scarcity, and the first 

study involving a great number of human participants (n¼ 60) 

both experts and non-experts for evaluating generated images. 

The synthesis of human embryo images using generative models 

presents great promise in developing AI methods in reproductive 

medicine. Primarily, it could provide extensive data where syn-

thetic embryo images exhibit diverse developmental characteris-

tics. This would substantially enhance the training data, 

empowering AI-based methods to excel in the assessment of em-

bryo quality and developmental potential. Particularly, generative 

models may provide sufficient data in rare (abnormal) events dur-

ing embryogenesis, such as tripolar cell division. Second, the incor-

poration of generated images paves the way for the development 

and validation of innovative embryo scoring systems. These sys-

tems could integrate dynamic morphological features, offering the 

potential for more comprehensive and precise assessments. 

Ultimately, this can lead to enhanced embryo selection procedures 

and might improve success rates in IVF treatments.
This study has some limitations. The training data only fo-

cused on blastocyst-stage embryo images because blastocysts 

represent the stage at which embryologists often assess both the 

morphological quality of embryos and perform cell biopsies for 

preimplantation genetic testing. Furthermore, it has been 

reported that the 100–120 hpi duration during embryo develop-

ment holds the highest predictive value when employing AI- 

based methods (Erlich et al., 2022). To address the scarcity of data 

and contribute to advancements in embryo selection procedures, 

we utilized generative models focused on blastocyst images, gen-

erating a diverse array of such images to offer insights for future 

AI studies, i.e. morphokinetics annotation, blastocyst segmenta-

tion, and automatic grading tasks. However, it is also necessary 

for future research to broaden its scope by incorporating a more 

extensive and diverse dataset, with the aim of facilitating the de-

velopment of comprehensive AI algorithms. For instance, the gen-

eration of the whole time-lapse video could provide more 

dynamic captures and facilitate the understanding of embryogen-

esis. This enriched data could help develop robust data-driven 

approaches to advance automation in IVF. Another limitation is 

the resolution of 256 � 256 pixels that we used to mitigate compu-

tational costs and given the resource-intensive nature of training 

StyleGAN. Subsequent research will be conducted to improve the 

image resolution to provide supreme-quality of generated images. 

Future work is needed to provide evidence on elucidating the ben-

efits derived from data enrichment through generative models, 

such that data augments from generated images could enhance 

the performance and robustness of AI algorithms for embryo se-

lection. In addition, integrative clinical, e.g. pregnancy and live- 

birth outcomes, and imaging AI-models are required to illuminate 

the clinical impact of GAN in embryo selection procedures.
In conclusion, in this pilot study, we demonstrated that the 

generative models have the capacity to generate high-fidelity hu-

man embryo images, indicating the potential of generative AI in 

revolutionizing embryo selection and advancing IVF procedures.

Supplementary data
Supplementary data are available at Human Reproduction online.

Data availability
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ing visualization notebooks are available in the same repository.

Acknowledgements
We thank all the evaluators who contributed their time to the im-
age assessment survey.

Authors’ roles
P.C., A.S., and M.Z.E. conceived and designed the study. P.C. cu-
rated the dataset, analyzed the data, and wrote the initial draft 
of manuscript. P.C., H.B., G.A., A.S., and M.Z.E. contributed to 
manuscript writing and data interpretation. A.S. and M.Z.E. over-
saw and supervised the work. J.D. and E.C. provided expertise in 
clinical embryology. All authors have revised and approved the 
final version of the manuscript.

Funding
Horizon 2020 innovation grant (ERIN, EU952516); a Horizon 
Europe grant (NESTOR, 101120075) of the European Commission 
to A.S. and M.Z.E.; the Estonian Research Council (PRG1076) to A. 
S.; the EVA (Erfelijkheid Voortplanting & Aanleg) specialty pro-
gram (KP111513) of Maastricht University Medical Centre 
(MUMCþ) to M.Z.E.

Conflict of interest
None declared.

References
Al Khalil Y, Amirrajab S, Lorenz C, Weese J, Pluim J, Breeuwer M. On 

the usability of synthetic data for improving the robustness of 

deep learning-based segmentation of cardiac magnetic reso-

nance images. Med Image Anal 2023;84:102688.
Alpha Scientists in Reproductive Medicine and ESHRE Special 

Interest Group of Embryology. The Istanbul consensus workshop 

on embryo assessment: proceedings of an expert meeting. Hum 

Reprod 2011;26:1270–1283.
Alrashedy HHN, Almansour AF, Ibrahim DM, Hammoudeh MAA. 

BrainGAN: brain MRI image generation and classification frame-

work using GAN architectures and CNN models. Sensors 2022; 

22:4297.
Barnes J, Brendel M, Gao VR, Rajendran S, Kim J, Li Q, Malmsten JE, 

Sierra JT, Zisimopoulos P, Sigaras A et al. A non-invasive artificial 

intelligence approach for the prediction of human blastocyst 

ploidy: a retrospective model development and validation study. 

Lancet Digit Health 2023;5:e28–e40.
Bi�nkowski M, Sutherland DJ, Arbel M, Gretton A; Demystifying MMD 

GANs. arXiv. http://arxiv.org/abs/1801.01401, 2018, preprint: not 

peer reviewed.
Bormann CL, Kanakasabapathy MK, Thirumalaraju P, Gupta R, 

Pooniwala R, Kandula H, Hariton E, Souter I, Dimitriadis I, 

Ramirez LB et al. Performance of a deep learning based neural 

network in the selection of human blastocysts for implantation. 

Elife 2020;9:e55301.

Artificial intelligence and IVF embryo imaging | 1205  
D

ow
nloaded from

 https://academ
ic.oup.com

/hum
rep/article/39/6/1197/7643856 by U

iT The Arctic U
niversity of N

orw
ay user on 06 August 2024

https://academic.oup.com/humrep/article-lookup/doi/10.1093/humrep/deae064#supplementary-data
https://github.com/CellularGenomicMedicine/StyleEmbryo
https://github.com/CellularGenomicMedicine/StyleEmbryo
http://arxiv.org/abs/1801.01401


Chavez-Badiola A, Flores-Saiffe-Far�ıas A, Mendizabal-Ruiz G, 

Drakeley AJ, Cohen J. Embryo ranking intelligent classification al-

gorithm (ERICA): artificial intelligence clinical assistant predict-

ing embryo ploidy and implantation. Reprod Biomed Online 2020; 

41:585–593.
Chen T-J, Zheng W-L, Liu C-H, Huang I, Lai H-H, Liu M. Using deep 

learning with large dataset of microscope images to develop an 

automated embryo grading system. FandR 2019;1:51–56.
Chen X, Wang X, Zhang K, Fung K-M, Thai TC, Moore K, Mannel RS, 

Liu H, Zheng B, Qiu Y. Recent advances and clinical applications 

of deep learning in medical image analysis. Med Image Anal 2022; 

79:102444.
De los Santos MJ, Apter S, Coticchio G, Debrock S, Lundin K, Plancha 

CE, Prados F, Rienzi L, Verheyen G et al. Revised guidelines for 

good practice in IVF laboratories (2015). Hum Reprod 2016; 

31:685–686.
Destouni A, Dimitriadou E, Masset H, Debrock S, Melotte C, K Van 

Den B, Esteki MZ, Ding J, Voet T, Denayer E et al. Genome-wide 

haplotyping embryos developing from 0PN and 1PN zygotes 

increases transferrable embryos in PGT-M. Hum Reprod 2018; 

33:2302–2311.
Diakiw SM, Hall JMM, VerMilyea MD, Amin J, Aizpurua J, Giardini L, 

Briones YG, Lim AYX, Dakka MA, Nguyen TV et al. Development 

of an artificial intelligence model for predicting the likelihood of 

human embryo euploidy based on blastocyst images from multi-

ple imaging systems during IVF. Hum Reprod 2022;37:1746–1759.
Dirvanauskas D, Maskeli�unas R, Raudonis V, Dama�sevi�cius R, 

Scherer R. HEMIGEN: human embryo image generator based on 

generative adversarial networks. Sensors 2019;19:3578.
Duval A, Nogueira D, Dissler N, Maskani Filali M, Delestro Matos F, 

Chansel-Debordeaux L, Ferrer-Buitrago M, Ferrer E, Antequera V, 

Ruiz-Jorro M et al. A hybrid artificial intelligence model leverages 

multi-centric clinical data to improve fetal heart rate pregnancy 

prediction across time-lapse systems. Hum Reprod 2023; 

38:596–608.
Erlich I, Ben-Meir A, Har-Vardi I, Grifo J, Wang F, Mccaffrey C, 

McCulloh D, Or Y, Wolf L. Pseudo contrastive labeling for predict-

ing IVF embryo developmental potential. Sci Rep 2022; 

12:2488–2414.

Fetty L, Bylund M, Kuess P, Heilemann G, Nyholm T, Georg D, 

L€ofstedt T. Latent space manipulation for high-resolution medi-

cal image synthesis via the StyleGAN. Z Med Phys 2020; 

30:305–314.
Fordham DE, Rosentraub D, Polsky AL, Aviram T, Wolf Y, Perl O, 

Devir A, Rosentraub S, Silver DH, Gold Zamir Y et al. Embryologist 

agreement when assessing blastocyst implantation probability: 

is data-driven prediction the solution to embryo assessment sub-

jectivity? Hum Reprod 2022;37:2275–2290.
Geller J, Collazo I, Pai R, Hendon N, Lokeshwar SD, Arora H, Molina 

M, Ramasamy R. An artificial intelligence-based algorithm for 

predicting pregnancy success using static images captured by 

optical light microscopy during intracytoplasmic sperm injec-

tion. J Hum Reprod Sci 2021;14:288–292.

Geman D, Geman S, Hallonquist N, Younes L. Visual Turing test for 

computer vision systems. Proc Natl Acad Sci USA 2015; 

112:3618–3623.

Ghassemi N, Shoeibi A, Khodatars M, Heras J, Rahimi A, Zare A, 

Zhang Y-D, Pachori RB, Gorriz JM. Automatic diagnosis of COVID- 

19 from CT images using CycleGAN and transfer learning. Appl 

Soft Comput 2023;144:110511.
Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair 

S, Courville A, Bengio Y. Generative adversarial nets. Adv Neural 

Inf Process Syst 2014;27.

Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S. GANs 

trained by a two time-scale update rule converge to a local nash 

equilibrium. Adv Neural Inf Process Syst 2017;30.
Huang B, Tan W, Li Z, Jin L. An artificial intelligence model (euploid 

prediction algorithm) can predict embryo ploidy status based on 

time-lapse data. Reprod Biol Endocrinol 2021;19:185.
Jang M, Bae H, Kim M, Park SY, Son A-YEON, Choi SJ, Choe J, Choi HY, 

Hwang HJ, Noh HN et al. Image Turing test and its applications on 

synthetic chest radiographs by using the progressive growing 

generative adversarial network. Sci Rep 2023;13:2356.

Jiang VS, Bormann CL. Artificial intelligence in the in vitro fertiliza-

tion laboratory: a review of advancements over the last decade. 

Fertil Steril 2023;120:17–23.

Kanakasabapathy MK, Thirumalaraju P, Kandula H, Doshi F, 

Sivakumar AD, Kartik D, Gupta R, Pooniwala R, Branda JA, Tsibris 

AM et al. Adaptive adversarial neural networks for the analysis of 

lossy and domain-shifted datasets of medical images. Nat Biomed 

Eng 2021;5:571–585.
Karras T, Aittala M, Hellsten J, Laine S, Lehtinen J, Aila T. Training 

generative adversarial networks with limited data. Adv Neural Inf 

Process Syst 2020;33:12104–12114.

Karras T, Aittala M, Laine S, H€ark€onen E, Hellsten J, Lehtinen J, Aila 

T. Alias-free generative adversarial networks. Adv Neural Inf 

Process Syst 2021;34:852–863.
Karras T, Laine S, Aila T. A style-based generator architecture for 

generative adversarial networks. arXiv. http://arxiv.org/abs/ 

1812.04948, 2018, preprint: not peer reviewed.
Kazeminia S, Baur C, Kuijper A, van Ginneken B, Navab N, 

Albarqouni S, Mukhopadhyay A. GANs for medical image analy-

sis. Artif Intell Med 2020;109:101938.
Khosravi P, Kazemi E, Zhan Q, Malmsten JE, Toschi M, Zisimopoulos 

P, Sigaras A, Lavery S, Cooper LAD, Hickman C et al. Deep learning 

enables robust assessment and selection of human blastocysts 

after in vitro fertilization. NPJ Digit Med 2019;2:21–29.

Lee C-I, Su Y-R, Chen C-H, Chang TA, Kuo EE-S, Zheng W-L, Hsieh 

W-T, Huang C-C, Lee M-S, Liu M. End-to-end deep learning for 

recognition of ploidy status using time-lapse videos. J Assist 

Reprod Genet 2021;38:1655–1663.
Miotto R, Wang F, Wang S, Jiang X, Dudley JT. Deep learning for 

healthcare: Review, opportunities and challenges. Brief Bioinform 

2017;19:1236–1246.
Mirza M, Osindero S. Conditional generative adversarial nets. arXiv. 

http://arxiv.org/abs/1411.1784, 2014, preprint: not peer reviewed.
Radford A, Metz L, Chintala S. Unsupervised representation 

learning with deep convolutional generative adversarial networks. 

arXiv. http://arxiv.org/abs/1511.06434, 2016, preprint: not 

peer reviewed.
Salehinejad H, Colak E, Dowdell T, Barfett J, Valaee S. Synthesizing 

chest X-ray pathology for training deep convolutional neural net-

works. IEEE Trans Med Imaging 2019;38:1197–1206.
Shin K, Lee JS, Lee JY, Lee H, Kim J, Byeon J-S, Jung H-Y, Kim DH, Kim 

N. An image Turing test on realistic gastroscopy images gener-

ated by using the progressive growing of generative adversarial 

networks. J Digit Imaging 2023;36:1760–1769.
Shokr A, Pacheco LGC, Thirumalaraju P, Kanakasabapathy MK, 

Gandhi J, Kartik D, Silva FSR, Erdogmus E, Kandula H, Luo S et al. 

Mobile health (mHealth) viral diagnostics enabled with adaptive 

adversarial learning. ACS Nano 2021;15:665–673.
Skandarani Y, Jodoin P-M, Lalande A. GANs for medical image syn-

thesis: an empirical study. arXiv. http://arxiv.org/abs/2105. 

05318, 2021, preprint: not peer reviewed.
Storr A, Venetis CA, Cooke S, Kilani S, Ledger W. Inter-observer and 

intra-observer agreement between embryologists during 

1206 | Cao et al.  

D
ow

nloaded from
 https://academ

ic.oup.com
/hum

rep/article/39/6/1197/7643856 by U
iT The Arctic U

niversity of N
orw

ay user on 06 August 2024

http://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/2105.05318
http://arxiv.org/abs/2105.05318


selection of a single Day 5 embryo for transfer: A multicenter 
study. Hum Reprod 2017;32:307–314.

Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the 

Inception architecture for computer vision. Proc IEEE Comput Soc 
Conf Comput Vis Pattern Recognit 2016;2818–2826.

Toda R, Teramoto A, Kondo M, Imaizumi K, Saito K, Fujita H. Lung 
cancer CT image generation from a free-form sketch using 

style-based pix2pix for data augmentation. Sci Rep 2022; 
12:12867–12810.

Tran D, Cooke S, Illingworth PJ, Gardner DK. Deep learning as a 

predictive tool for fetal heart pregnancy following time-lapse 
incubation and blastocyst transfer. Hum Reprod 2019;34:1011–1018.

Wong CC, Loewke KE, Bossert NL, Behr B, De Jonge CJ, Baer TM, Pera 
RAR. Non-invasive imaging of human embryos before embryonic 
genome activation predicts development to the blastocyst stage. 

Nat Biotechnol 2010;28:1115–1121.
Zhou SK, Greenspan H, Davatzikos C, Duncan JS, van Ginneken B, 

Madabhushi A, Prince JL, Rueckert D, Summers RM. A review of 
deep learning in medical imaging: Imaging traits, technology 

trends, case studies with progress highlights, and future prom-
ises. Proc IEEE Inst Electr Electron Eng 2021;109:820–838.

Zhu J-Y, Park T, Isola P, Efros AA. Unpaired image-to-image transla-

tion using cycle-consistent adversarial networks. arXiv. http:// 
arxiv.org/abs/1703.10593, 2017, preprint: not peer reviewed.

Artificial intelligence and IVF embryo imaging | 1207  
D

ow
nloaded from

 https://academ
ic.oup.com

/hum
rep/article/39/6/1197/7643856 by U

iT The Arctic U
niversity of N

orw
ay user on 06 August 2024

http://arxiv.org/abs/1703.10593
http://arxiv.org/abs/1703.10593


# The Author(s) 2024. Published by Oxford University Press on behalf of European Society of Human Reproduction and Embryology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/ 
), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Human Reproduction, 2024, 39, 1197–1207
https://doi.org/10.1093/humrep/deae064
Original Article

D
ow

nloaded from
 https://academ

ic.oup.com
/hum

rep/article/39/6/1197/7643856 by U
iT The Arctic U

niversity of N
orw

ay user on 06 August 2024



Put your patients 
one step ahead

1.  Hardy, K. & Spanos, S. (2002) Growth factor expression and function in the human and mouse preimplantation embryo. J Endocrinol 172: 221-236. 
2.  Sipahi, M., Mümüşoğlu, S. et al. (2021). The impact of using culture media containing granulocyte-macrophage colony-stimulating factor on live birth rates in patients 

with a history of embryonic developmental arrest in previous in vitro fertilization cycles. Journal of the Turkish German Gynecological Association, 22(3), 181–186.

•  SAGE 1-Step™ GM-CSF medium is the first single-
step culture and transfer medium containing the  
GM-CSF cytokine and Hyaluronan.

•  GM-CSF supports embryo-endometrial communication 
for improved implantation and chances of pregnancy.1

•  Provides an additional treatment option for patients 
with a previous failed treatment cycle.2

Upgrade your lab with  
innovation that matters.

Click to explore

https://www.coopersurgical.com/product/sage-1-step-gm-csf-culture-and-transfer-medium/

	Active Content List
	Introduction
	Materials and methods
	Results
	Discussion
	Supplementary data
	Data availability
	Acknowledgements
	Authors&#x02019; roles
	Funding
	Conflict of interest
	References


