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A B S T R A C T

The utilization of nanofluids (NFs) holds promise for enhancing the thermal efficiency of solar
thermal collectors. Among the various NF solutions, red mud (RM) NFs have gained attention due
to their effective absorption of solar thermal energy. RM comprises precious metal oxides, mak-
ing it a proficient medium for direct solar heat absorption. This study aimed to formulate water-
based RM NFs with concentrations ranging from 0.1 to 0.75 vol%. Within the temperature range
of 303–333 K, we assessed the specific heat (SH), viscosity (VST), and thermal conductivity (TC)
of the NFs. To maintain stability, we employed polyvinylpyrrolidone (PVP) surfactant. The re-
sults indicated that the SH of RM NFs is lower than that of water. Additionally, as RM NF concen-
trations increased, there was a significant improvement in TC. The highest TC enhancement of
36.9 % is observed at 333 K for a concentration of 0.75 vol% compared to water. Based on the
gathered data, unique equations were developed to estimate the properties of RM NFs within the
studied range. Our findings suggest that RM NFs have the potential to effectively replace water in
solar energy applications. Furthermore, we employed innovative ensemble-type machine learn-
ing (ML) techniques, namely Adaptive Boosting (AdaBoost) and random forest (RF), to address
the problem. We also utilized these novel ML methods to construct metamodels for predicting the
considered properties, offering accurate and efficient models for analyzing NF behavior. The in-
corporation of RM in solar thermal applications could contribute to resolving disposal challenges
associated with this waste material, thereby aiding in its long-term management.

1. Introduction
Over the last decade, NFs have undergone significant advancements, emerging as highly effective working fluids in solar energy

conversion to address the growing global energy demand. Ongoing research focuses on exploring the long-term stability, thermophys-
ical properties, and rheology of NFs, aiming to facilitate their successful application in sustainable solar collectors. While many re-
searchers have predominantly utilized NFs crafted from conventional metal oxides, metallic materials, or carbon nanoparticles (NPs),
attention is shifting towards alternative sources, particularly industrial waste products like RM, which predominantly consist of valu-
able metal oxides.

The backdrop of these technological developments is set against the backdrop of global urbanization and industrialization. While
these processes are essential for societal progress, their negative impacts on the global ecology and social well-being cannot be over-
looked. A primary concern arising from these global operations is the generation of substantial amounts of industrial waste, accompa-
nied by challenges related to its safe management and disposal. A secondary challenge is the scarcity of available land, resources, and
assets, posing constraints on continued infrastructure development [1,2].

The production of alumina gives rise to a solid industrial by-product known as RM. Its distinctive red color is attributed to a signif-
icant content of iron oxide. The type of bauxite utilized for alumina extraction and the manufacturing process plays a direct role in de-
termining the quantity of RM generated. Typically, the production of RM from the extraction of one ton of alumina exceeds 1.5 tons.
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Projections suggest an annual output of approximately 150 million tons of RM, contributing to a global stockpile surpassing 4.6 bil-
lion tons [1,2].

Traditionally, RM has been disposed of by dumping it into the sea or landfills, posing environmental hazards by contaminating
soil, water, and air in the surrounding areas. Recognizing the environmental concerns associated with RM disposal, there is a growing
emphasis on efficient recycling. RM, owing to its composition primarily comprising metal oxides along with trace amounts of Silica,
Calcium, and Sodium, holds potential for various applications. Its reuse can involve serving as a substitute material or facilitating the
recovery of metals [3,4]. Additionally, the iron-rich phases in RM, contributing to its red coloration, make it suitable for use as a dye.
There is a significant push for large-scale reprocessing of RM, aiming to establish further practical applications. Notably, the prospect
of employing RM as a building material has garnered increased attention [5].

Reducing the emissions of the principal greenhouse gas responsible for global warming and climate change is crucial. The swift ex-
pansion of sustainable and environmentally friendly sources of renewable energy is evident [6]. One widely utilized renewable en-
ergy source is solar energy, harnessed from the sun's radiant light and heat. Various technologies, including photovoltaic thermal sys-
tems, are employed to capture and convert solar energy into electricity [7]. The use of thermal energy storage technology enables the
generation of electrical power as needed, not only during the day but also at night. Thermal energy storage has gained increased at-
tractiveness due to its cost-effectiveness, enhanced thermal power conversion efficiency, environmental friendliness, and efficient en-
ergy storage capabilities [8].

NFs represent a distinctive class of fluids formed by dispersing nanoscale particles (1–100 nm) within a conventional base fluid
[9]. The term "NF" was officially coined by Choi in 1995 to describe fluids containing particles within the 1–100 nm range [10]. Tra-
ditional heat transport fluids like oil, water, paraffin, acetone, and ethylene glycol exhibit limited heat transmission capabilities,
prompting scientists to conduct numerous experiments aiming to enhance their heat transfer rates by augmenting their TC through
the addition of NPs [11]. It is imperative to enhance thermal system efficiency and promote energy conservation. An increase in TC
not only enhances efficiency but also accelerates cooling processes while reducing overall energy consumption. Optimal selection of
the base fluid and NPs can significantly enhance the overall effectiveness of thermal systems. Typically, metals and their oxides, car-
bides, or carbon nanotubes serve as NPs in NFs. The unique characteristics of NFs render them potentially advantageous in various
heat transfer applications, spanning batteries, heat exchangers, hydrogen storage reactors, microelectronics, fuel cells, lubrication,
pharmacy, and more. The thermophysical properties of NFs are notably influenced by the preparation method employed [11,12]. In
contemporary practices, researchers often prefer the two-step method over the one-step method due to the commercial availability of
NPs in liquid or powder form, making this approach increasingly prevalent [12,13].

Recent studies have shown that enhancing the thermal properties of NFs involves dispersing NPs derived from fruits, plants, and
waste materials into the base liquid [13]. Ranjbarzadeh et al. [14] investigated water-based NFs by incorporating SiO2 NPs synthe-
sized from rice husk. Sadri et al. [15] introduced an environmentally friendly approach using clove buds to covalently functionalize
multi-walled carbon nanotubes and study their heat transport in a heat exchanger. Nune et al. [16] achieved stability in NFs by syn-
thesizing gold NPs through the combination of Au ions with Darjeeling tea leaves. Stephen and Seethalakshmi [17] utilized hes-
peridin, predominantly obtained from citrus fruits, in conjunction with AgNO3 to create silver NFs. In a small heat exchanger, Bahi-
raei et al. [18] explored the performance and hydraulic properties of environmentally friendly silver NFs produced through the bio-
logical synthesis of silver NPs, utilizing green tea leaf extract as a reducing agent.

Extensive research has been conducted to investigate the factors influencing the TC and VST of NFs produced through the utiliza-
tion of commercially available NPs or a chemical synthesis approach [19]. However, there is a notable scarcity of studies focused on
the environmentally responsible production of NFs. Kontala et al. [19] demonstrated the significance of incorporating RM in the fab-
rication of hydroelectric cells, marking a noteworthy advancement. The chemical composition of RM is largely contingent on the type
of bauxite ore and the various processes involved in alumina manufacturing. Fly ash, a byproduct of coal power plants, shares similar
metal oxide compositions with RM. Kanti et al. [20] presented findings on the thermal properties of NFs derived from fly ash and a hy-
brid of fly ash and copper (Cu). Their conclusion indicated that the developed NFs exhibit superior thermal properties compared to
water. Additionally, Kanti et al. [21,22] investigated the heat transfer capabilities of the mentioned NFs across different operational
ranges. Their observations underscored the advantageous role of these fluids in heat transfer relative to water.

Sofiah et al. [23] conducted a comprehensive review outlining the diverse thermal properties of NFs in their research paper.
Meanwhile, Aslfattahi et al. [24–26] investigated and established the thermal properties of NFs based on different base fluids contain-
ing MXene for applications in green energy. Anagnostopoulos et al. [27] observed that by milling nitrate salts together with RM and
subsequently compressing and sintering the resulting mixture, composite phase change materials (CPCMs) can be developed. This in-
novative CPCM demonstrates exceptional performance over a temperature range of 25–400 °C, providing an effective solution for re-
covering waste heat from medium to high-temperature streams. Not only does this approach offer a valuable avenue for waste heat re-
covery, but it also presents an opportunity to vaporize RM as a by-product for energy-related applications. Wang et al. [28] intro-
duced a novel solar absorber with reduced RM content, showcasing favorable light absorption and photothermal conversion capabili-
ties achieved through biomass pyrolysis. When integrated into a substrate of polyvinyl alcohol and chitosan gel, the absorber achieves
an impressive light absorptance of 94.7 %. In a study by Sertkaya and Canli [29], the impact of red mud on the cooling performance
as a heat transfer fluid was investigated. Their findings suggest that incorporating 9 wt% water-based RM NF can reduce the cooling
period by approximately 14 s compared to the base fluid.

The examination of the literature reveals that RM, containing valuable metal oxides in varying mass ratios, has been transformed
into RM NF. This involves the integration of nano-sized RM particles into a fluid, typically water or another base fluid, and has been
the subject of diverse studies due to its distinctive properties and potential advantages. RM NF exhibits promise for a range of applica-
tions, including serving as heat transfer fluids, enhancing solar absorbers, contributing to phase change materials, facilitating cooling
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processes, and enabling waste heat recovery. It is crucial to emphasize that the effectiveness and appropriateness of RM NF are contin-
gent upon the specific application, the concentration of NPs, and the inherent characteristics of the base fluid.

The novelty of the work is there are no studies on the thermal properties of NFs prepared using RM. This study confirms whether
RM is useful in heat transfer applications or not. In this work, micron-sized RM particles were initially ball-milled for 48 h to get a
nano size of 21.5 nm. The water base RM NFs were developed in the 0.1–0.75 vol% range. The stability is determined for prepared
NFs. The SH, VST, and TC were determined in the 303–333 K temperature range for the defined concentrations of NFs. The prepared
RM NPs were characterized by various techniques. Using the obtained data, the correlations were developed for the prepared NFs to
estimate the above-mentioned thermal properties. The measured thermal properties determine the heat transfer ability parameter for
the studied NF. Finally, AdaBoost and RF, model-prediction techniques effectively simulated the nonlinear and complicated interac-
tion between thermal properties at different temperatures and concentrations of NFs.

2. Experimental procedure
2.1. Materials

Micron-sized RM particles (50 μm) were gathered from the NALCO alumina refinery in Dhamanjodi, Odisha, India. These particles
underwent an initial sieving process using the American Society for Testing and Materials (ASTM) 300 mesh. Subsequently, double
distilled water was utilized for multiple washes to diminish the alkalinity of the sieved material. The treated particles were then sub-
jected to a ball mill (Model: U-Tech Laboratory Stainless Steel Ball Mill) with a 1 kg jar for 48 h to achieve the necessary nano size.
Zirconia balls (20 and 10 mm) within the jar operated at a speed of 200 rpm during this milling process. This treatment led to a sub-
stantial increase in the surface area of RM, resulting in a transformation of particles from micro to nanoscale [15]. Table 1 depicts the
comparison of RM thermal properties with other NPs.

2.2. Characterization
To analyze the RM NPs, various characterization techniques were employed. Transmission Electron Microscopy (TEM) using a

JEOL JEM-2100F model, X-ray Fluorescence (XRF) with a PAN analytical Zetium model, and a Nanoparticle Size Analyzer (Winner
802 DLS model) were utilized. The stability of the NF was assessed based on zeta potential (ZP) values, and this measurement was
conducted using a Nano-zeta sizer instrument from Malvern Instruments, UK [22].

2.3. Preparation of nanofluid
The formulation of the RM NF follows a two-step method. The quantity of NPs required to achieve the specified volume concentra-

tions of RM NF is determined using Eq. (1) [21]. The calculated amount of RM NPs needed for each concentration in NF preparation is
precisely measured using a digital electrical balance with an accuracy of ±0.0001g (model: WENSAR, MAB220T). These NPs are then
dispersed in 100 mL of water. Subsequently, PVP surfactant, constituting 5 % of the NPs' weight for each concentration, is introduced
to the solution to enhance the stability of the NFs. To prevent particle agglomeration, the solution undergoes magnetic stirring
(Model: REMI MS-800 Plus) and sonication using a Hielscher ultrasonic processor (Model: 200 W, 24 kHz, UP200S) for 30 and
45 min, respectively. Fig. 1 depicts the schematic diagram for the preparation of RM NF.

Table 1
Comparison of red mud thermal properties with other nanoparticles.

Property Red-mud SiO2 [14] Fe2O3 [12] Al2O3 [7] Fly ash [21]

Density (Kg/m3) 3260 2200 5950 3890 1920
Thermal conductivity (W/m-k) 11.7 1.4 7 40 1.7
Specific heat (J/kg-K) 1316 745 451 773 745

Fig. 1. Schematic diagram for red mud nanofluid preparation. (For interpretation of the references to color in this figure legend, the reader is referred to the Web ver-
sion of this article.)
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Where φv is the volume concentration of the NF. ρ red mud and ρ water is the density of RM NP and water, respectively.m red mud andm water
is the mass of RM NP and water, respectively.

2.4. Thermal properties
To assess the SH of the synthesized NFs, a differential scanning calorimeter (Model: SI DSC Japan) was employed with an instru-

ment accuracy of ± 5 %. The authors followed the procedure outlined by O'Hanley et al. [30] for measuring the SH of NFs. The vali-
dation of this differential scanning calorimeter process was conducted by initially examining the SH of the base fluid (water) before
measuring the NF, and these results were compared with the SH of water available in the American Society of Heating, Refrigerating,
and Air-Conditioning Engineers (ASHRAE) data handbook and other literature sources [31].

The VST of the NFs was measured using the Brookfield DV-I PRIME digital viscometer. The instrument was equipped with a tem-
perature bath to maintain the samples' temperature during VST measurements [32]. The instrument has an accuracy of ± 2 % and re-
peatability of ± 5 % [32,33].

The TC of RM NFs was determined using the KD2 Pro Analyzer from Decagon Devices, USA [22]. The instrument utilizes a KS-1
stainless steel sensor (60 mm long and 1.27 mm in diameter) with a transient line heat source. By employing a small amount of pulsed
heat, the device accurately measures the working fluid's TC, minimizing convective heat transfer for precise prediction of conduction
heat transfer. The maximum error of the KD2 Pro is ±5 % [33]. TC measurements of NF samples were conducted with the samples
immersed in a hot bath at the required steady-state temperatures [32,33]. The properties of the base fluid were evaluated five times at
various temperatures before measuring the parameters mentioned above for NFs. A 15-min gap between each subsequent measure-
ment was observed to ensure equilibrium [34,35].

2.5. Machine learning methods
2.5.1. AdaBoost

AdaBoost is an ensemble strategy for improving weak estimators to build a stronger and more accurate regressor for process pre-
diction. While using this method, a regressor is first fitted to the primary data values. Afterward, further copies of the regressor are fit-
ted to the same data, but their weights are changed depending on how well the current prediction worked out [36,37]. Its core con-
cept is to combine weak learners to generate strong learners. During the AdaBoost algorithm's training phase, every weak learner is
loaded with a weight depending on the rate of accuracy, and the weight is allocated to each sample employed in training, indicating
the precision of the model training process. If any training samples are properly categorized, the weight will be lowered while a weak
learner is added [38,39]. The architecture of AdaBoost methods can be described as:

For a training dataset ‘Z’ such as Z = {(x1,y1),……,(xn,yn)}, the input vector being xn, objective vector being yn and the total num-
ber of data points is n. The weighted vectors are assigned as: wi(xi) = 1/n in case i =1,2,3,….,n., for L weak learners,
Rl

(
l = 1.2.3,…… .,L . The rate of residuals is estimated as [40,41];
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Pl
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within ∈p > 0.5

(3)

The weight bias can be estimated using:

𝛽 l = log

(
∈p

1 − ∈p

)
(4)

Weight adjustment can then be applied to all training data from ‘i’ to ‘n’ in the following stage:

wt+1

(
xi

)
= wt

(
xi

)
× e−yi Rl(xi)𝛽l ; (5)

where ∈ p > 0.001 leads to an estimation of Pl(xi).
It results in combining several weak learners with stringer learners.

R (x) = sign


L
j
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Rl (x) = y


(6)
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The Bayesian ridge regression (BRR) is employed as the base model. BRR is a Bayesian approach that assumes all regression results
have identical variance. As a result, all markers with similar genotype frequency describe the same fraction of the additive eccentrici-
ties and have the same contraction impact in an additive model. Fig. 2 (a) presents the AdaBoost technique flow chart. The procedure
published by Guelman [42] for AdaBoost was followed in this work.

2.5.2. Random forest
RF is a meta-learner technique, meaning that it is composed of several unitary learners, also referred to as decision trees. It can be

used for both classifications as well as regression. RF is primarily a bagging method, not a boosting method. Random sampling with
replacement is referred to as bootstrapping [43]. The bootstrap method helps us better understand the data set's bias and volatility.
Bootstrapping entails randomly picking a small part of the data collection. To reduce the variance of high-variance algorithms like de-
cision trees, a general strategy called bagging may be applied. Bagging enables the independent execution of each model before the

Fig. 2. Flow chart for (a) AdaBoost (b) Random Forest.
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model-neutral aggregation of the results. The trees in random forests operate in parallel, which means there is no contact between
these trees while they are being built [44]. Fig. 2 (b) presents the RF technique flow chart.

This work used Python-based libraries to execute the RF, and the RF regressor approach is used to forecast the thermo-physical
characteristics of NFs, notably TC, SH, and VST. Using the data gathered during the experimental research, the prediction models
were created. 30 % of the data points are assigned for prediction and model evaluation, and the remaining 70 % are assigned as a
training dataset for building RF models [45]. The RF regressor model was optimized using the input parameters, such as the quantity
of trees or leaf nodes. Data points were randomly divided in a 70:30 ratio to the training and testing datasets. Afterward, an RF-based
framework was created using the bagging technique and the training dataset, and each model was assessed using a variety of statisti-
cal criteria. If the RF model performs poorly, it needs to be optimized, and the expected accuracy must be tested again. After confirm-
ing that the model predictive error is within a tolerable range, the accepted model will be used to predict and evaluate the testing
dataset [46,47].

2.6. Error evaluation
A battery of statistical evaluations to measure model precision was employed in the present investigation. The correlation coeffi-

cient (R) and correlation determinant (R2) were used to measure the closeness of observed and model-predicted values [45]. Prefer-
ably the value of R/R2 should be close to 1. The root mean squared error (RMSE) was used to measure the prediction error. In recent
times, the Kling-Gupta efficiency (KGE), which combines the three components of model errors (bias, correlation, variance ratio, or
coefficients of variation) in a more balanced manner, has been widely used for calibration and evaluation of NF's thermophysical
models [46]. The following expression was used to measure the statistical indices:

R =

n
i=1


xa − xm

 
xp − ym



 n
i=1


xa − xm

2

 n
i=1


xp − ym

2

(7)
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1

n
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|||| × 100 (8)

RMSE =
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(
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)2

n
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1

2

(9)

KGE = 1 −

√
(R − 1)2 +

(
Sdp

Sda

− 1

)2

+

(
ym

xm

− 1

)2

(10)

Where the total count of terms is denoted by ‘n’ consideration, ‘i’ is under evaluation term, ‘xa’ is actual value, ‘xp’ denotes predicted
value, the values ‘xm’ and ‘ym’ represents the mean of actual and forecasted values, respectively. The ′Sdp′ ′Sda′ and denotes the stan-
dard deviation of predicted and observed values.

3. Results and discussion
3.1. Characterization

Fig. 3 (a) displays the TEM image of RM NPs. In Fig. 3 (a), it is evident that the RM NPs exhibit a spherical shape without sig-
nificant agglomeration. Fig. 3 (b) and (c) further illustrate the particle distribution of nano RM and the cumulative size distribu-
tion in water, respectively. The size of the NPs was determined using an NP size analyzer (Model: Winner 802 DLS) based on the
dynamic light scattering (DLS) principle, revealing an observed size of 21.5 nm. Table 2 provides the general chemical composi-
tion of both raw material (RM) and Bayer RM utilized in this study. The analysis reveals that RM consists of various metal oxides
in different proportions. The chemical composition of the specific Bayer RM examined in this work was determined using an X-
ray Fluorescence (Model: PAN analytical Zetium) spectrometer. RM is predominantly comprised of fine and coarse sand particles.
It is important to note that the composition, properties, and phases of RM can vary depending on the type of bauxite and the alu-
mina production process, and these characteristics may undergo changes over time [5]. In the current investigation, Bayer RM
NPs are found to contain significant components, with Fe2O3, Al2O3, and SiO2 constituting substantial portions. The mass frac-
tions of these components are 34.68, 24.86, and 20.96 %, respectively.

3.2. Stability
The quality of particle dispersion in base liquids significantly influences the stability of NFs, as indicated by their hydrodynamic

size distribution. NFs exhibit stability when they possess high absolute ZP values, while those with low absolute ZP values are prone
to aggregation. Generally, ZP values falling within the range of 40–60 mV are considered indicative of good stability, and values ex-
ceeding 60 mV are deemed to represent outstanding stability. Conversely, an absolute ZP of 30 mV is considered to reflect moderate
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Fig. 3. Red mud nanoparticle (a) TEM image, (b) Distribution, and (c) Cumulative size Distribution.

Table 2
Chemical composition of red mud.

Compounds in mass (%) in grams Al2O3 SiO2 Fe2O3 TiO2 MgO

General composition of RM [4,5] 20.77 19.41 18.15 4.29 0.62
Bayer red-mud 24.86 20.96 34.68 5.84 1.40
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stability, while values below 30 mV are associated with instability. These guidelines help assess and categorize the stability of NFs
without compromising their integrity [13,14]. Variables like temperature, pH, surfactant type and quantity, concentration, and ultra-
sonication frequency and time primarily influence the development of a stable suspension of NF. Generally, NFs exhibit better stabil-
ity when the pH is away from the isoelectric point [23,48].

The ZP values of the developed NFs were determined using a Nano-zeta sizer (Model: Malvern Instruments, UK). Five separate ZP
experiments were carried out at each concentration, and the average values, along with error bars, were employed for the research.
Fig. 4 illustrates the ZP values for various concentrations of RM NF, both immediately after preparation and 15 days post-preparation.
The results show that the ZP values measured immediately after preparation are higher than those observed after 15 days, indicating
an increase in particle agglomeration. This phenomenon is attributed to robust Van der Waals attractive forces between the particles,
underscoring the stability of the NFs [48]. However, it is noteworthy that the ZP of the RM NF remains consistently greater than
30 mV across the entire range of test concentrations for more than 15 days after synthesis. This finding confirms the excellent stability
of the RM NF, even with the observed increase in particle agglomeration over time.

3.3. Validation
Initially, the SH, VST, and TC of water were determined. Each attribute underwent five tests at various temperatures, and the

mean values were utilized for the study. The obtained results were compared with ASHRAE data [31] and findings from other re-
searchers [32,48] to assess the precision of the measuring instruments in capturing thermal properties. Fig. 5 (a) to (c) depicts the val-
idation of water characteristics against ASHRAE [31] and other researchers' data [32,48] within the temperature range of 303–333 K.
The comparison reveals no significant deviation between the collected data and the references, indicating a high level of accuracy in
the thermal properties measuring tools. Therefore, the instruments are considered to be highly reliable for assessing these properties.

3.4. Thermophysical properties
3.4.1. Specific heat

Fig. 6 (a) depicts the changes in SH values of NF against temperatures at different concentrations of RM NFs. The SH of NF con-
siderably drops at higher concentrations. It is attributed to the RM NPs' SH being significantly less compared to the water and the
density at those concentrations and temperatures [49,50]. SH of NF enhances in sync with the temperature at a constant concentra-
tion. This shows how temperature affects the NPs' crystal lattice when they are disseminated in the water. With increasing tempera-
ture, the thermal fluctuations of the NPs' lattice structure increase [49,50].

Furthermore, the augmentation of NF-SH is attributed to decreased density and improved transport properties [49]. At lower tem-
peratures and greater concentrations, SH amplification is less significant than it is at higher temperatures and lower concentrations.
The base fluid water's SH is decreased by the addition of RM NPs [49,50]. The maximum and minimum reduction in the SH of base
fluid is 31.2 and 7.93 % for the concentrations of 0.75 and 0.1 vol%, respectively, at 303 and 333 K.

Fig. 6 (b) compares the SH outcomes of RM NFs with those of fly ash NFs, as both materials are considered composite materials
comprising various metal oxides in their chemical composition [21]. It is noted that the SH of NFs decreases with concentration but
increases with rising temperatures. Across all investigated concentrations and temperatures, the SH of RM NFs is consistently lower
than that of fly ash NFs. This distinction can be ascribed to the lower SH of individual metal oxides constituting the RM NPs, as out-
lined in Tables 1 and 2

Fig. 4. Zeta potential of red mud nanofluids. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 5. Comparison of water's (a) specific heat, (b) Viscosity, and (c) Thermal conductivity with ASHRAE [31] data.

3.4.2. Viscosity
Fig. 7 (a) depicts the change in VST values of NF with concentration and temperature. Fig. 7 (a) depicts that the VST of the NFs

improves with NP fraction in base liquid when temperature is constant. Increasing concentration means adding more NPs to the
base fluid, causing the increase in Van-der Waals forces and NPs adhering. The existence of intermolecular forces between RM NPs
brings them together and leads to the clustering effect. The increase of NPs and the formation of aggregates reduce the NP's mobil-
ity and increase the friction between the fluid layers and surfaces [21,45]. At a constant temperature of 303K, maximum and mini-
mum amplification in the VST of NF is 18.9 and 2.38 % for the concentration of 0.75 and 0.1 vol%, respectively, relative to water.

Additionally, Fig. 7 (b) shows that at constant concentration, VST decreases with an increase in temperature. It is attributed to the
fact that a greater temperature diminishes the effects of intermolecular forces like van der Waals forces and intermolecular bonds,



Case Studies in Thermal Engineering 54 (2024) 104087

11

K. Praveen Kumar et al.

Fig. 6 (a). Variation of specific heat of red mud nanofluid with temperature. (For interpretation of the references to color in this figure legend, the reader is referred to
the Web version of this article.)

Fig. 6 (b). Comparison of specific heat of red mud nanofluid with fly ash nanofluid [21]. (For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)

which lowers the NF's VST [23]. In other words, decrease in adhesion forces between NPs and the fluid layers with temperature incre-
ment. Consequently, increases in NP movement result in a decrease in VST. The maximum and minimum augmentation in the VST of
NF is 18.9 and 12.6 % for the concentration of 0.75 % at 303 and 333K, respectively, relative to the base liquid.

Fig. 7 (b) presents the comparison of the VST results of RM NFs with those of fly ash NFs [21]. It is observed that the VST of NFs in-
creases with concentration but decreases with an increase in temperatures. Throughout all studied concentrations and temperatures,
the VST of RM NFs consistently surpasses that of fly ash NFs. The possible reasons for this distinction are attributed to factors such as
the greater density of RM NPs compared to the density of fly ash NPs presented in Table 1, differences in particle size [12], and the
use of surfactants [23].

3.4.3. Thermal conductivity
Fig. 8 (a) illustrates the TC variation with different temperatures and concentrations of NF. The TC improves by increasing the

concentration at any temperature [48]. This can be due to the enhanced total surface area of the base liquid with the number of NPs.
The ratio of surface to volume of NPs is often extremely greater and is shown to enhance with the decrease in the size of the RM NPs
[11–13]. Other possible reasons for the TC enhancement are stochastic and Brownian motion of NPs (21.5 nm), and particle cluster-
ing in the base fluid. Furthermore, nano RM NF consists of several metal oxides like hybrid composite NF as observed in Table 1. This
is also a possible reason for TC enhancement. The lowest and highest augmentation in the TC of NF is 3.97 and 36.9 % in the case of
0.1 and 0.75 vol% at 333 K, correspondingly, relative to water.

In addition, it is noticed from Fig. 8 (a) that the NF's TC increases with the temperature at a constant concentration. This is because
a rise in the temperature of the NFs causes a rise in the random mobility of particles within the liquid and a rise in the NP collision,
both of which encourage the augmentation in the TC of NF. Additionally, it can be shown that the TC amplifications are more promi-
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Fig. 7 (a). Variation of viscosity of red mud nanofluid with temperature. (For interpretation of the references to color in this figure legend, the reader is referred to the
Web version of this article.)

Fig. 7 (b). Comparison of viscosity of red mud nanofluid with fly ash nanofluid data [21]. (For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)

nent at greater temperatures than they are at lower temperatures [14,48]. The maximum and minimum amplification in the TC of NF
is 36.9 and 24.7 % for the concentration of 0.75 vol% at 333 and 303 K, respectively relative to the base fluid.

Fig. 8 (b) compares the TC outcomes of RM NFs with those of fly ash NFs [21]. It is noted that the TC of NFs increases with
both concentration and temperature. Across all studied concentrations and temperatures, the TC of RM NFs consistently exceeds
that of fly ash NFs. The likely explanation for this improvement lies in the chemical composition of RM NPs. In RM NPs, a signifi-
cant amount of Al2O3 and Fe2O3 is present, contributing to higher TC values compared to fly ash NPs, where SiO2 is a significant
metal oxide with a lower TC value [21].

3.5. Correlations
Numerous correlations are reported in the literature to determine the various thermal characteristics of different NFs. However,

no equations are available to estimate the thermal properties of RM NF in the considered range. The correlations developed to assess
the studied properties of NF using determined data are illustrated in Table 3.

Where Tnf and T ref are the NF and reference temperatures (273 K), respectively.

3.6. Data analysis
The pre-processing of data is an essential stage in developing a data-driven prognostic model. A comprehensive range of experi-

mental investigations was conducted to gather data on the NF's thermophysical properties. Three different sets of data points were
employed, one each for each thermal property. The NF concentration and temperature were the control factors.
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Fig. 8 (a). Variation of thermal conductivity of red mud nanofluid with temperature. (For interpretation of the references to color in this figure legend, the reader is re-
ferred to the Web version of this article.)

Fig. 8 (b). Comparison of thermal conductivity of red mud nanofluid with fly ash nanofluid [21]. (For interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.)

Table 3
Developed correlations based on obtained data for RM NF.

Property Equation Mean deviation (%) Standard deviation (%) Eq. number

Specific heat Cpnf

Cpbf
= 0.762* ( 1 + 100

φv )
−11.76* (Tref

Tnf )0.764 0.628 0.763 11

Dynamic viscosity
μbf
μnf = 1.066* ( 1 + 100

φv )
20.19* (Tref

Tnf )−0.466 0.634 0.8 12

Thermal conductivity
kbf
knf = 0.903* ( 1 + 100

φv )
37.6* (T ref

T nf )0.6254 0.81 1.07 13

The correlation heatmaps were created for all the measured properties. Fig. 9 depicts the correlation heatmap for TC, VST, and
specific heat (SH), respectively. It is the simplest graphical method to show a correlation between independent input and response
output. It can be observed from Fig. 8 that the relation between TC and NF concentration is the most significant. A high value of
R = 0.89 was observed between TC and NF concentrations. Overall, a healthy and positive correlation in the case of TC was ob-
served. The VST correlation heatmap is shown in Fig. 9. In the case of VST, the temperature shows the most significant as well as neg-
ative correlation (−0.97), while the concentration shows a positive correlation (0.22), which was expected as per the physics of the
problem. The high value of correlation between VST and temperature denotes that a temperature change is highly sensitive to a
change in the value of VST. Fig. 9 illustrates the correlation heatmap for the SH of NFs. In this case, the temperature has the most sig-
nificant and positive connection (0.69), whereas concentration has a negative correlation (−0.69), as expected, given the physics of
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Fig. 9. Correlation heatmap for (a) Thermal conductivity, (b) Viscosity, and (c) Specific heat.

the situation. The significant relationship between SH and temperature indicates that changes in SH are particularly sensitive to
changes in temperature [37].

3.7. Predictive model development
This section explores the anticipated outcomes of the two test ML techniques, AdaBoost and RF. A comparative study is used to

discover the most successful technique. Temperature and NF volume concentrations were chosen as control factors for the develop-
ment of a data-driven model. TC, VST, and SH, on the other hand, were chosen as dependent response factors.

3.7.1. Thermal conductivity model
A prediction model was built using the data set acquired through lab-based experiments. The TC values were collected at different

parameter ranges of NF's concentration, and temperature. In the first stage, a novel AdaBoost technique was employed to develop the
model. The 5-fold cross-validation strategy was used during the model development to minimize the prediction error (MSE) with a
short processing time. The 5-fold cross-validation is also an effective approach to prevent model overfitting [47]. The AdaBoost model
was then applied to the testing data (30 %) to see how well it performed in generating predictions about unknown data. The devel-
oped model was examined based on statistical indices such as R, R2, RMSE, and KGE. The statistics for the training and testing perfor-
mance metrics are shown in Table 4. The Preseason's coefficient R was 0.9983 during model training which improved to 0.9993 dur-
ing the test phase on the unknown data set. The improvement in the ‘R-value denotes that the model has not been overtrained. The
‘R2’ value for the AdaBoost model was 0.9966 and 0.9986 while the RMSE value was 0.004 and 0.002 during the training and test
phases, respectively. The KGE values were estimated to find out the prediction efficiency of the AdaBoost-based TC model. The KGE
values for TC models were 0.9961 and 0.9949, respectively.

Fig. 10 (a) depicts a comparison graph of anticipated and observed TC values around the best-fit line during the model training
phase while Fig. 10 (b) depicts the same during the test phase. Fig. 10 (c) and (d) show the residuals during the training and test
phase. The statistical indices such as KGE, R, and R2 being close to 1 with low RMSE indicate AdaBoost-based model is a robust prog-
nostic model. The graphical representation showing comparative values and residuals further fortifies the prediction efficacy of the
AdaBoost-based TC model [47].

Table 4
Statistical evaluation of prediction models.

Stat. Index Phase TC VST SH

AdaBoost RF AdaBoost RF AdaBoost RF

R Learning 0.9983 0.9934 0.9948 0.9926 0.9938 0.9929
Testing 0.9993 0.9986 0.9968 0.9953 0.9974 0.9961

R2 Learning 0.9966 0.9886 0.9896 0.9853 0.9876 0.9859
Testing 0.9986 0.9973 0.9937 0.9907 0.9948 0.9923

RMSE Learning 0.004 0.009 0.015 0.018 19.13 20.38
Testing 0.002 0.003 0.012 0.014 12.36 16.05

KGE Learning 0.9961 0.9874 0.9891 0.9821 0.9874 0.9867
Testing 0.9949 0.9843 0.9921 0.9894 0.9879 0.9754
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Fig. 10. Thermal conductivity model (a) Observed vs. model predicted during model learning, (b) Observed vs. model predicted during model testing, (c) Residuals dur-
ing model training, and (d) Residuals during model testing.

In the second phase, the random forest was employed to create the prediction model for TC. Statistical indices such as R, R2,
RMSE, and KGE were used to evaluate this model. Table 4 displays the data for the training and testing performance measures. During
model training, the Preseason coefficient R was 0.9934, and it increased to 0.9986 during the test phase on an unknown data set. The
increase in the 'R' value indicates that the model has not been overtrained. During the training and test phases, the 'R2' value for the
RF-based model was 0.9886 and 0.9973, respectively, while the RMSE value was 0.009 and 0.003. The KGE values were calculated to
determine the prediction effectiveness of the RF-based TC model. For TC models, the KGE values were 0.9874 and 0.9843, respec-
tively. Fig. 10 (a) shows a comparison graph of expected and observed TC values around the best-fit line during the model training
phase, whereas Fig. 10 (b) shows the same during the test phase. Fig. 10 (c) and (d) depict residuals during the training and testing
phases. The statistical indices KGE, R, and R2 are near to one with low RMSE, indicating that the RF-based model is a robust prognos-
tic model [45,46].

3.7.2. Viscosity
Using the data set obtained from lab-based experiments, a prediction model was VST. The VST values were taken at various NF

concentrations and temperature parameter ranges. Statistical indices such as R, R2, RMSE, and KGE were used to evaluate the devel-
oped model. Table 4 displays the statistics for the training and testing performance metrics. During model training, the Preseason co-
efficient R was 0.9948, and it increased to 0.9968 during the test phase on an unknown data set. The increase in the 'R' value indicates
that the model has not been overtrained. During the training and test phases, the 'R2' value for the AdaBoost model was 0.9896 and
0.9937, respectively, while the RMSE value was 0.0015 and 0.0012. The KGE values were estimated to find out the prediction effi-
ciency of the AdaBoost-based VST model. The KGE values for VST models were 0.9891 and 0.9921, respectively.

Fig. 11 (a) shows a comparison graph of expected and observed VST values around the best-fit line during the model training
phase, while Fig. 11 (b) shows the same during the test phase. Fig. 11 (c) and (d) depict residuals during the training and testing
phases. The statistical indices such as KGE, R, and R2 being close to 1 with low RMSE indicate AdaBoost-based model is a robust
prognostic model. The graphical representation of comparative values and residuals strengthens the prediction efficacy of the Ad-
aBoost-based VST model even more [45–47].

In the second phase, the random forest was applied to develop the prediction model for VST. This model was also evaluated using
statistical indices such as R, R2, RMSE, and KGE. The statistics for the training and testing performance metrics are shown in Table 4.
The Preseason coefficient R was 0.9926 during model training and grew to 0.9953 during the test phase on an unknown data set. The
rise in 'R' suggests that the model has not been overtrained. The RF-based model's 'R2' value was 0.9853 and 0.9907 during the train-
ing and testing stages, respectively, while the RMSE value was 0.018 and 0.014. The KGE values were obtained to assess the predic-
tive power of the RF-based VST model. The KGE values for VST models were 0.9821 and 0.9894, respectively. During the model train-
ing phase, Fig. 11 (a) shows a comparison graph of expected and observed VST values around the best-fit line, whereas Fig. 11 (b)
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Fig. 11. Viscosity model (a) Observed vs. model predicted during model learning, (b) Observed vs. model predicted during model testing, (c) Residuals during model
training, and (d) Residuals during model testing.

shows the same during the test phase. Fig. 11 (c) and (d) depict residuals during the training and testing phases. The statistical indices
KGE, R, and R2 are close to one with low RMSE, showing that the RF-based model is a good predictor.

3.7.3. Specific heat
A SH prediction model was developed using data from lab-based studies. These values were obtained across a wide range of NF

concentration and temperature parameters. The constructed model was evaluated using statistical indices such as R, R2, RMSE, and
KGE. The data for the training and testing performance indicators are shown in Table 4. Pearson's coefficient R was 0.9938 during
model training and climbed to 0.9974 during the test phase on an unknown data set. The rise in 'R' suggests that the model has not
been overtrained. During the training and testing stages, the AdaBoost model's 'R2' value was 0.9876 and 0.9948, respectively, while
the RMSE value was 19.13 and 12.36. The KGE values were calculated to determine the prediction effectiveness of the AdaBoost-
based SH model. For specific models, the KGE values were 0.9874 and 0.9879, respectively.

Fig. 12 (a) depicts a graph comparing anticipated and observed VST values around the best-fit line during the model training
phase, whereas Fig. 12 (b) depicts the same during the test phase. Fig. 12 (c) and (d) show residuals throughout the training and
testing stages, respectively. The statistical indices KGE, R, and R2 are near to one with low RMSE, indicating that the AdaBoost-
based model is a robust prognostic model. The graphical display of comparison values and residuals establishes the AdaBoost-based
SH model's prediction effectiveness even more.

The ensemble RF-based ML techniques were employed to create the prognostic model for SH. The model was used for predictions
and statistical indices such as R, R2, RMSE, and KGE were used to analyze the prognostic capability of the SH model. Table 4 displays
the data for the training and testing performance measures. During model training, Pearson's coefficient R was 0.9929, and it in-
creased to 0.9961 during the test phase on an unknown data set. The increase in 'R' indicates that the model was not overtrained. Dur-
ing the training and testing phases, the RF-based model's 'R2' value was 0.9859 and 0.9923, respectively, while the RMSE value was
20.38 and 16.05. KGE data were acquired to evaluate the prediction potential of the RF-based SH model. For this model, the KGE val-
ues are 0.9867 and 0.9754, respectively. Fig. 12 (a) depicts a comparison graph of anticipated and observed SH values around the
best-fit line during the model training phase, while Fig. 12 (b) depicts the same during the test phase. Fig. 12 (c) and (d) show residu-
als throughout the training and testing stages, respectively. KGE, R, and R2 are near to one with low RMSE, indicating that the RF-
based model is a solid predictor.

3.8. Comparative analysis using Taylor's diagrams
As discussed in previous subsections, both modern ML techniques produced a decent prediction of the thermophysical values of

the test NFs over the entire range of test settings. The statistical methods were used to examine the model's correlations, errors, and
prediction efficiency as listed in Table 4. It was observed that the outcomes of both techniques were very close to each other. Taylor's
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Fig. 12. Specific heat model (a) Observed vs. model predicted during model learning, (b) Observed vs. model predicted during model testing, (c) Residuals during
model training, and (d) Residuals during model testing.

diagrams present an excellent way of comparing prediction models. It is a visual graphical representation of inherent model proper-
ties for comparison. Taylor's diagrams for all three thermophysical properties are depicted in Fig. 13 (a) to (c). All three of Taylor's di-
agrams show that the Adaboost-based model's results are marginally superior to the Random forest-based prediction outcomes
[45–47].

3.9. Heat transfer ability parameter (HTPA)
Eq. (14), suggested by Prasher et al. [51] used to evaluate NF's heat transfer ability in the internal laminar flow. The relative VST

and TC ratio can be used to assess the HTPA. It is intended to determine whether RM NF is advantageous in laminar flow compared to
water by employing this HTPA criterion. RM NF will effectively substitute water if the HTPA<4 for internal laminar flow.

Fig. 13. Taylor's diagram for (a) Thermal conductivity, (b) Viscosity, and (c) Specific heat.
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The heat transfer ability parameter calculated using Eq. (14) is less than 4 at all concentrations, as shown in Fig. 14. Therefore,
compared to water in an internal laminar flow, considered NFs offer significant advantages in thermal applications.

Mouromtseff number ratio determines the thermal efficiency of various NFs in internal turbulent flow as contrasted to the base
fluid. The Mouromtseff value of test NF (Mnf) to the Mouromtseff value of the base fluid (Mbf) must be greater than 1 for enhanced
heat efficiency [52]. For thermal applications, having a higher Mouromtseff number ratio is advantageous. The numerical expression
employed to estimate the Mouromtseff number ratio is shown in Eq. (16) [52]. Considering all the fundamental thermal characteris-
tics of RM NF corresponding results were plotted in Fig. 15. The density of RM NF was determined by Eq. (15) based on the law of
mixture rule.

ρnf =
(
1 − 𝜑v

)
𝜌bf + 𝜑v𝜌np (15)

Fig. 14. Heat transfer ability of nanofluid in internal laminar flow.

Fig. 15. Internal turbulent flow heat transfer capability of nanofluid.
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Mouromtseff number ratio =

(
𝜌

0.8 k0.67 c0.33

p

𝜇0.47

)
nanofluid(

𝜌0.8 k0.67 c0.33
p

𝜇0.47

)
base fluid

(16)

It can be observed the developed NF provides a Mouromtseff number ratio greater than 1 in the studied range. Hence, this encour-
aging result establishes RM NF as a promising working fluid for thermal applications.

4. Conclusion
The thermophysical properties of the stable RM NF were measured within the temperature range of 303–333 K, covering concen-

trations from 0.1 to 0.75 %. Theoretical evaluations are conducted utilizing equations documented in the literature to ascertain the
heat transfer capacity of generated NFs in various flow regimes. ML approaches were employed to construct metamodels for the pre-
diction of thermal characteristics. The following are the main results drawn from this study.
1. The ball milling time of 48 h is required to reduce the size of 48 μm to 21.5 nm.
2. RM NF has a lower specific heat than water because of an inherent property of RM NPs. The peak reduction in water's specific

heat was 31.2 %, in the case when a concentration of 0.75 vol%, at 303K.
3. VST of RM NF increases with concentration and reduces with temperature. The highest and lowest VST augmentation of RM NF

is 18.9 and 1.52 % at 303 and 333K for a concentration of 0.75 and 0.1 vol% relative to water.
4. The maximum and minimum amplification in the TC of NF is 36.9 and 24.7 % for the concentration of 0.75 vol% at 333 and

303 K, respectively relative to the base fluid.
5. The chemical composition and smaller particle size of RM NP contribute to the TC enhancement of RM NF. Theoretical

assessment of the heat transfer ability of NFs shows that developed NFs are beneficial in both laminar and turbulent flows.
6. AdaBoost (R = 0.9938–0.9983, R2 = 0.9937–0.9986) was superior to random forest-based regression (R = 0.9926–0.9983,

R2 = 0.9937–0.9986).
7. The Kling Gupta efficiency also demonstrates that AdaBoost's prediction efficiency (0.9879–0.9949) was superior to RF

(0.9754–0.9894).
The present study results show that RM NFs is beneficial as a coolant fluid due to its chemical composition in green energy applica-

tions like solar energy. However, further research is needed to optimize the NP concentration, investigate the long-term stability, and
compare their performance with other types of NPs as well as in other base fluids.
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Nomenclature
Cp : specific heat (J/kg − K)
k thermal conductivity (W/m-K)
R correlation coefficient
R2 correlation determinant
T temperature (K)
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Greek symbols
⍴ density (kg/m3)
φv: Volume concentration
μ viscosity (mPa.s)

Subscripts
bf base fluid
nf nanofluid
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