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Abstract

The efficient operation of heavy machinery is crucial to the success of mining and civil construction operations. To
guarantee this performance, equipment performance is assessed using the Reliability Index, which analyzes failures to
study the ability of a system to carry out its intended functions under predetermined conditions. On the other hand, the
failure rate and operational environmental condition (such as management decisions, maintenance performance, etc.,
that are defined as “risk factors”) over the life cycle of industrial systems pose a significant challenge to reliability
analysis. This paper proposes an approach to address these challenges by extending Weibull family functions with
regression models. Then, the effectiveness of this approach using 12-month failure data from the Komatsu 785-5 dump-
truck engine refueling system is demonstrated. The most appropriate reliability function for two scenarios with different
environmental conditions over the performance interval is fitted. The results indicate that both scenarios exhibit lower
reliability than the baseline, highlighting the influence of environmental conditions on equipment reliability.

Keywords: Mining truck, reliability, weibull distribution family, proportional hazard model, fuel injection system

1. Introduction

I n the 21st century, the world has become more
complicated in terms of social, political, eco-

nomic, technological aspects, etc. This complexity is
reflected in many man-made products and systems.
The expectations of customers to receive a product
or service (a specific output from a specific system)
are defined according to the ability of that product
or system to perform the desired activity at a specific
time and under specific environmental conditions,
which is called reliability in engineering sciences [1].
Every year, billions of dollars are spent on produc-
ing various types of equipment for use in different
mines worldwide, and this cost is increasing rapidly.
On the other hand, the competitive economy has
required mining companies to update their opera-
tions through technology upgrades, optimization, or

changes in the existing system [2]. With new tech-
nological changes, mines have become increasingly
mechanized and somewhat automated in various
sectors. Heavy machines were introduced to the
mining industry in the early 1950s, and the second
big wave of change was achieved in the early 1990s
with the introduction of computers. After the
introduction of heavy machines and complex min-
ing equipment, mining systems have also become
more complicated, and therefore, the management
of these systems requires new approaches. Reli-
ability engineering is a new management method
that improves system performance through
behavior measurement. This science examines the
possibility of failure operation and its performance
by examining the failures that occurred in a system.
Failure in reliability analysis is defined as the
inability to perform the expected activity due to
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various factors such as high stress (like fracture,
buckling, deformation, and adhesion) and depreci-
ation (such as corrosion, rubbing, penetration, crack
initiation, diffusion, and, radiation) can cause it. In
addition, they may be classified as mechanical
(deformation, buckling, fracture, cracking, creep
and creep cracks), electrical (electrostatic discharge,
dielectric hazards, connection hazards), thermal
(heating, thermal expansion and contraction), radi-
ation (radioactivity, secondary cosmic rays), chemi-
cal (corrosion, oxidation, etc.) or a combination of
these [1]. From the mid-1960s to the late 1980s, this
index was introduced by researchers such as Lev-
kovich & Chalenko [3], Al’tshuler [4], Ivko and co-
workers [5], Freidina and co-workers [6], these years
can be known as the period when the mining
community became familiar with the concept of
reliability. These articles are mostly short, and due
to the weakness of the data bank and the lack of
development of statistical modeling software, they
are not very strong in terms of content. In the late
1980s, Goodman investigated the reliability of
emergency escape routes in room and base coal
mines [7]. Kumar and his co-workers (1989) imple-
mented a coherent process for analyzing the reli-
ability of loading fleets [8]. In the next two decades,
similar to the process proposed by Kumar again [9],
Javad Barabady et al. [10,11]. In the latest research
on the approach mentioned earlier, Gustafson et al.
compared two conventional and automatic under-
ground loaders [12]. Hashemi and his colleague,
Rakhshanimehr, have also had software reliability
and simulation activities in recent years [13,14]. The
common feature of the research reviewed up to this
point about reliability is ignoring the environmental
conditions considered “risk factors or covariates” in
the analysis. In these studies, classical statistical
methods such as distribution functions (normal,
exponential, Weibull, etc.) and simple models based
on time data, such as the power law process, carry
the major share of analysis. However, as it is clear
from the title of these factors (environmental con-
ditions), they are considered environmental factors
such as the type of rock, road conditions, weather
conditions, etc., and it is necessary to enter them to
achieve more accurate analysis and close to the real
conditions. Regression approaches, such as the
proportional hazard model (PHM), are among the
approaches that include the effects of risk factors in
the analysis and modeling of the system’s reliability.
In 1993, in an article, Kumar and Klefsj€o, for the first
time, gave a relatively complete review of the pro-
portional hazard model (PHM) to use to include the
effect of environmental conditions in the reliability

analysis [15]. A year later, the researchers
mentioned above used the PHM to analyze the
reliability of electricity transmission cables [16]. In
1995, Kumar also extended the PHM for repairable
systems [17]. Kumar and Westberg’s research in
1996 also continued on the loading machine, and
during it, the assumption of constant risk factors
over time for the PHM was evaluated [18]. Prasad
and Rao (2002) examined three study samples [19].
From 2005 to 2012, Ghodrati et al., for the first time,
used the combination of the effects of environ-
mental conditions, such as weather, humidity,
operator skills, etc., on reliability in managing spare
parts such as washers and brake systems and hy-
draulic jacks. In this research, in addition to esti-
mating the number of spare parts needed, they also
determined the time to renew the stock (purchase
again to fill the stock) [20]. In 2011, Abbas Barabadi
used the stratified Cox regression model (SCRM) in
reliability analysis [21]. In 2012, Wijaya presented
his Ph.D. dissertation on improving the accessibility
of tunnel-boring devices [22]. In 2014, Rahimdel and
co-workers analyzed the reliability of the drilling rig
fleet [23]. In the same years, Sinha and Mukho-
padhyay used FMEA and TTT-plot methods to
check the stone crushing system [24]. In recent
years, Nouri et al. analyzed the reliability of the
stone crusher system in the cement factory in
different subsystems such as stone crusher,
conveyor, stacker, and reclaimer [25,26]. He has also
studied loading, transportation, and storage ma-
chinery [25,27]. In 2018, Hotma also studied the
reliability of loading subsystems with the same
approach [28]. In the same year, Moniri and col-
leagues used PHM to analyze the loading system
[29]. In 2019, Shakhatreh and his friends introduced
a new lifetime distribution to describe and analyze
the failure rate. The main part of their attention was
on the fundamental relationship between the failure
rate and the average remaining life according to
their change points [30]. In 2020, Zhang addressed
an old and fundamental problem in estimating the
reliability of Weibull parameters and reliability with
zero-failure data [31]. In 2021, Amirzadi and his
friends focused on the inverse generalized Weibull
distribution’s scale parameter and reliability esti-
mates [32]. Kayid et al., in 2022, also presented a
flexible inverse modified Weibull model with a
concave Weibull probability diagram that describes
various reliability phenomena [33]. In reliability
engineering, it is known that complex systems
usually have more than one failure mode or cause.
Between reviewed literature, it has not been used
appropriate distribution in the PHM models. On the
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other hand, some studies have ignored the influence
of environmental conditions (risk factors) and
fixable distribution (as a baseline function). How-
ever, most researchers use Weibull distributions for
data analysis due to their strong and flexible nature.
Consequently, this approach is highly effective in
adapting to various failure data analysis. Therefore,
this article attempts to provide a coherent frame-
work for reliability analysis with a suitable function
of various Weibull distribution functions under the
title “Weibull distribution family” and to consider
the effects of risk factors. The article is divided into
three general parts, including research theory,
which provides general information about reliability
and the proposed methodology. In the next part, the
breakdowns of the engine fueling system of a min-
ing dump truck are analyzed using the proposed
methodology, and finally, the results are analyzed.

2. Research theory and methodology

Having a correct estimate of the behavior of each
system (subsystem, component, or part) plays a
fundamental role in its planning and function. It is
one of the most significant challenges for engineers.
As mentioned, using different modes of the Weibull
function, or in better words, the “Weibull distribu-
tion family”, is one of the ways to face this challenge.
Despite the existence of different modes for this
model or its family, one of the key issues in applying
the Weibull function is the lack of practical guidance
for choosing the most appropriate model from this
family. However, this model alone cannot cover all
aspects of a function. To address this weakness, this
article also considers environmental conditions as
risk factors (or covariates) in addition to this family.
Figure 1 illustrates the proposed algorithm for
entering the effect of environmental conditions on
performance indicators. In this algorithm:

� First stage: The system’s identification and dif-
ferentiation rely on the researcher’s diverse
perspectives. It is essential to clearly distinguish
between system levels and various failure
modes, ensuring no overlap.

� Second stage: Identifying the mechanism of
failures in the system and its components can be
achieved through condition monitoring, inspec-
tion, pre-existing failure data, and information
from sensors.

� Third stage: Collecting the required information
from different sources and integrating this in-
formation to form a general data bank that can
respond to analyses based on time data and the
impact of environmental conditions.

� Fourth stage: Determining the impact of risk
factors.

� Fifth stage: Determining the reliability function
is done in parallel, ignoring the effects of envi-
ronmental conditions.

� Sixth stage: The basic function will be integrated
with the influence of environmental conditions,
and the behavioral function will be obtained for
any desired state in different scenarios.

Due to the scope of the statistical issues, more
details about each stage are discussed based on the
actual data on the fueling system failure of the
Komatsu 785-5 dump truck engine from the Sungun
copper mine.

2.1. Identifying and restricting the system (first
stage)

According to the meeting and expert interviews,
a Komatsu 785-5 dump truck from the Sungun
copper mine was selected as the machine to be
analyzed. The Sungun copper mine complex is
85 km northwest of Ahar City and 35 km north of
Varzeqan. It has geographical coordinates of 46�

42min 20 s of longitude and 38� 41min 30 s of lati-
tude. Cold and frosty winters and mild summers are
the climatic features of the Sungun region. The
average maximum temperature is 33�C in summer
and 20�C in winter. This machine is critical because
the number of these machines is limited due to the
large volume of loading devices. Significant repair
work is focused on this device, and many manage-
ment decisions are based on it.
The dump truck system in the mine, based on the

studies conducted and the opinions of the special-
ists of the repair shop (shift manager, mechanical
engineers, repairmen, operators), is divided into
five subsystems: 1. Machine: including the body,
operator’s cabin, container, and tires, 2. Power
transmission: spring and shock absorbers, wheels,
and appendages, 3. Hydraulics: all pumps, jacks,
hydraulic motors, hydraulic equipment, and hoses,
4. Gearbox: all parts and components of gearboxes
and turbines, and 5. Engine: mechanical-diesel
engine, which, according to failure statistics and
costs, this subsystem was considered a critical
subsystem.

2.2. Identifying the mechanism of the occurred
failures (second stage)

In the next step, based on the type of failures that
occurred and the configuration of the system, which
was examined according to experts’ opinions, the
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fault tree for the five main failures considering the
engine structure was determined in Figure 2. As can
be seen, four types of failure have occurred for the
engine as follows:

� Mechanical: failure of the apron, turbocharger,
radiator, etc.

� Fuel injection (fuel circulation and transfer),
such as puncture of the pipe, wear of diesel
pump needles, etc.

� Pneumatic: failures related to the transfer of
wind energy in the system, such as compressor
failure, hoses, etc.

� Electrical: burning out of the lamp, horn failure,
starter: all failures related to the starter system.

Figure 3 shows the Pareto chart for various failure
modes. In this chart, the columns show the number
and frequency percentage of breakdowns related to
eachmode, the upper curve displays the number and

Fig. 1. Reliability analysis by considering the impact of environmental conditions.
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cumulative percentage of breakdowns, the vertical
axis on the left shows the number of accumulations,
and the right axis represents the percentage of fre-
quency and cumulative frequency. At the bottom of
the chart, the failure mode and the numerical values
of the number, frequency percentage, and cumula-
tive frequency percentage of each failure mode are
included. Based on this chart, it should be noted that
101 failures were recorded for the engine, of which 36
failures were related to the fuel injection system. This
includes about 40% of the total failures, so this failure
mode was chosen for wider analysis.

2.3. Collecting and extracting the required data
(third stage)

The data required in this research are time data in
the form of “time between failures (TBFs)” and the
effects of environmental conditions in the form of
risk factors. The desired data were collected for 12
months from various sources, including daily re-
ports, repair shops’ meteorology, interviews and
meetings, warehousing, etc. Table 1 shows an
example of system data along with risk factors. In
this table, the first column is the failure number, the
second column is the time between failures in
hours, the third column is the failure status (Status)
in terms of complete failure (f) or censored (s), and
the next column shows the risk factors including a
discrete risk factor which consists of weather con-
ditions (z1), which is divided into four parts; clear
and sunny (4), partly cloudy (3), cloudy (2) and
heavy fog (1). Continuous risk factors include slope
(z2), hourly capacity (z3), precipitation (z4), and
temperature (z5).

2.4. Determining the effects of risk factors (fourth
stage)

As mentioned, the system’s reliability is a function
of the system’s time and operating environmental
conditions. Hence, the reliability study requires
a framework that includes technical, operational,

Fig. 2. FTA diagram of dump truck engine failure.

Fig. 3. Pareto diagram of dump truck engine failure modes.
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commercial, and managerial issues and risk factors
in general [34]. This article uses the proportional
hazard model and extensions to estimate reliability
features better. These models were used in the 1970s
due to their ability to calculate the reliability of a
system [15,35]. Risk factors change randomly and
may also change failure times [36]. As mentioned,
PHM and its various extensions, such as SCRM and
EPHM, are the most widely used regression models
for introducing risk factor effects. Models based on
risk factors in reliability analysis are mainly based
on the proportional hazard model. PHM is a non-
parametric or semi-parametric approach first
developed by Cox (1972) for survival data in the
medical field [37]. This model is a valuable statistical
process for estimating failure risk according to the
system conditions and environment. This model
assumes that the risk function is a component or
subsystem. It combines its basic risk rate function
and an expression including the effects of risk fac-
tors [38]. The hazard rate function of this model is
expressed as equation (1):

lðt; zÞ¼l0ðtÞjðz;aÞ ð1Þ
In this equation, l(t, z) is the hazard rate function

(response variable). z: risk factor (a linear vector
containing risk factor parameters) that includes the
degree of effect of each risk factor on the risk rate,
and t represents the time until failure in a device or
the time it is working. l0ðtÞ: baseline hazard rate,
j(z, a): link function [39], it is a function for which
different states can be considered. Exponential
mode exp(za), logistic mode log(1 + exp(za)), inverse
linear 1/(1 + (za)), and linear 1 + (za) are some of
these modes, of which the exponential mode is the
most widely used [15]. Assuming an exponential
function for the function j(z, a), the hazard rate
becomes (2):

lðt; zÞ¼l0ðtÞexpðzaÞ¼l0ðtÞexp
 Xn

i¼1

ziai

!
ð2Þ

The multiplication factor expðzaÞ can indicate the
risk of failure due to the presence of the risk factor.
In za ¼Pn

i¼1ziai equation, a is a column vector of
unknown parameters of the model or regression
coefficients related to the risk factor [15]. The

reliability function for PHM is also in the form of
equation (3) [40]:

Rðt; zÞ¼ðR0ðtÞÞ
exp

�Pn
i¼1

ziai

�
ð3Þ

In this equation, R0ðtÞ is the baseline reliability,
which is only based on time. This model is based on
the time independence of risk factors, the propor-
tional ratio between two risk rates over time, known
as the proportionality assumption (PH). This
assumption is statistically expressed as equation (4)
[41]:

miðt; z1Þ
mjðt; z2Þ

¼q;constant overt ð4Þ

In this equation, mi is risk rate i and mj is risk rate j.
This assumption is rejected if the risk rate graphs
are crossed for two risk factors, z1 and z2. Of course,
various methods exist to evaluate this assumption,
including graphical methods, a goodness-of-fit test
process, and a method based on time-dependent
variables [41]. If the risk factors are time-dependent,
the accelerated failure time model (AFT) or some
extensions of PHM, such as the stratified Cox
regression model (SCRM), can be used. For more
information, refer to Refs. [19,21,41]. According to
the algorithm, all obvious risk factors are extracted
from various sources, interviews, and meetings. The
possibility of merging some of these factors or even
removing them is examined. According to the above
algorithm, the first step is to check the presence or
absence of dependency between risk factors. The
correlation test between the risk factors and the time
data was performed for this purpose. The analysis
results for the risk factors and system operation time
can be seen in Table 2, which shows the dependency
of the risk factors. As it is clear from the dependency
test result, there is no dependency between the risk
factors.
In the next step, the assumption of the propor-

tionality of the risk rate (PH) should be evaluated to
ensure the non-dependency of risk factors on time.
For this purpose, using the PH assumption evalua-
tion test provided for each risk factor is possible.
There are different methods for this test. Graphic
methods are one of the most widely used. This

Table 1. Example of TBF data of dump truck engine system along with failure risk factors.

Failure data Failure status Risk factors

slope (z2) hourly capacity (z3) precipitation (z4) temperature (z5) weather (z1)

23.75 f 0 3.07 0.02 0.47 1
26.75 f 0.03 1.45 0.02 0.56 1
10 f 0 2.9 0 1.39 4
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method provides a visual image of the parallelism of
risk rates, from which proportionality should be
assumed. In this method, they are visually
compared to determine their parallelism after
drawing the risk rate for different values of the risk
factors. However, the problem is, what kind of
parallelism is meant by “parallelism?” Because this
issue will lead to separate conclusions based on
different logic. The next problem will be layering
continuous risk factors such as rainfall or tempera-
ture. Because more layering will make the layer
thinner and the data inside it less.
The third problem is evaluating the PH assump-

tion for several risk factors simultaneously. For this
purpose, an analytical GOF test is used to evaluate
this assumption. In this treatise, Harrell and Lee’s
test, a modified form of Schoenfeld’s test (1982)
known as the “Schoenfeld’s residuals” test, is
applied. This method is more attractive because it
presents results based on p-values and provides
easier evaluation using mathematical logic. A sig-
nificant p-value of more than 0.1 indicates the
acceptability of the PH assumption [42].
In contrast, a p-value smaller than 0.05 for a risk

factor indicates that the PH assumption is not
satisfied. In other words, the null hypothesis test
states that if the PH hypothesis is established, the
Schoenfeld residuals will not correlate with time
(Ho: r¼ 0). If the null hypothesis is rejected, the PH
hypothesis will also be rejected. The results of the
test for risk factors in outpatient data are presented
in Table 3. As can be seen, the p(PH)-value for risk
factors is not significant at 5%. Therefore, PH is valid
for all risk factors. So, the assumption of propor-
tionality or time-independent risk factors for system
failure data can be accepted. According to the al-
gorithm, the PHM model estimates the effects of
risk factors. In Table 4, the model fitted to failure
data is entered. In this table, the coefficient values of

the risk factors are indicated by Alpha, and the
hazard ratio of the coefficients is specified by Exp
(Alfa). The risk rate indicates that if one unit of the
factor increases, the overall risk rate will increase by
that amount. For example, the temperature risk
factor, the risk factor coefficient is 1.39, and the risk
rate is 4.017. This means that a one-unit increase in
the risk factor will increase the risk rate capacity by
almost 400%.
Table 4 fitted the model to estimate the effects of

risk factors (a) and also shows the standard error
(S.E.), Wald coefficient (Wald), significance value
(p-value), and the effective hazard rate value of each
risk factor (hazard rate) in an exponential form.

2.5. Determining the reliability function of the
Weibull family (fifth stage)

As mentioned, a system’s functional behavior
should be determined before making any decision.
By considering the system’s downtime and sleep
time, reliability and repairability are two critical
behavioral indicators of overall performance. In the
following, the accessibility index will combine these
two to establish a maintenance strategy. In any case,
a detailed analysis of the above two indicators is the
main pillar of the subsequent analysis. In this re-
gard, the Weibull distribution function is one of the
most versatile and flexible statistical functions. It can
cover wide changes or coincidences in the data of
these two indicators. Weibull family applications
and extensions can be found in the following ref-
erences [43,44]. In 2004, Murphy reviewed the types
of Weibull models and discussed 40 types of this
function and their relationship to the two-parameter
Weibull. Most Weibull family functions have spe-
cific shapes in the Weibull probability plot (WPP).
For example, the double Weibull model has an S
shape, and the two-parameter Weibull model can
be seen as a straight line in this diagram [45]. The
axes of the WPP diagram will be based on the
Weibull transformation in the form of equations (5)
and (6):

y¼ lnð � lnð1� FðtÞÞÞ ð5Þ

Table 2. Dependence of risk factors on working periods.

Statistic Dependence of risk factors

z1 z2 z3 z4 z5

Pearson correlation �0.093 �0.033 �0.167 �0.147 �0.214
p-value 0.59 0.848 0.329 0.391 0.21

Table 3. p-values to evaluate the assumption of the PH of system failure
risk factors.

Statistic Dependence of risk factors

z1 z2 z3 z4 z5

Pearson correlation e e e 0.072 0.029
p-value e e e 0.877 0.869

Table 4. Fitted the model to estimate the effects of risk factors.

Model Proportional hazard model (PHM)

Statistic a S.E. Wald p-value exp(a)

Risk factors Z4 4.2 1.5 7.5 0.01 68.85
Z5 1.4 0.5 6.9 0.01 4.02

It should be mentioned that the backward step-wise model is
completely used to analyze models based on the risk factor. The
results are related to the last step of the analysis.
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x¼ lnðtÞ ð6Þ

Where t represents a lifetime of the component
and FðtÞ is the probability of failure before time t and
y is called Weibull probability plot versus x. This
diagram provides a systematic process to determine
the most suitable model for a data set. In this sec-
tion, using exactly this, a guide according to Figure 4
is proposed for choosing the appropriate model
from the Weibull family. This algorithm is proposed
in six general steps as follows:

2.5.1. First step: collecting data
In the first step, the required data is collected after

checking the system and identifying different levels.
At this stage, to analyze the failure data, the risk
factor of the weather condition (z1 ¼ 3) and the
average value of the risk factors of rainfall and slope
(z2) were considered basic values.

2.5.2. Second step: preliminary analysis
At this stage, preliminary analyses, including

calculating the minimum, maximum, average,
variance, mode, correlation, and quartiles, are
performed to gain an initial insight into the data. At
this stage, bootstrapping was used to verify the
results. Bootstrapping is a computational-statisti-
cal-computer method to determine estimators’ ac-
curacy from sample data. The term bootstrap refers
to a self-starting process without external input.
This method accurately calculates standard errors
and confidence intervals for estimators such as
mean, mode, median, percentiles, correlation, and
regression coefficients. Bootstrapping refers to
estimating an estimator’s properties (such as vari-
ance) by utilizing measures of these properties in
an approximate distribution of the entire sample
data. With this technique, it is possible to estimate
almost any statistic of the sample data distribution
with only a very simple method. Generally, this
method is considered one of the resampling
methods. When a set of observations can be
assumed from an independent and equally
distributed population, bootstrapping can be
implemented by creating several replicates. Each
replicate is a random sample taken from the orig-
inal data set. Also, this method can be employed to
test statistical hypotheses. This method is usually
used as an alternative to inferential methods based
on parametric assumptions when doubt exists
about these assumptions. Also, we use boot-
strapping in parametric inference when calculating
the standard error of the calculation formula is
complicated [47].

2.5.3. Third step: determining the reliability model
In this step, a sample of data is selected todetermine

the analysis model. Themost significant parameter in
this step is the number of observations (failures),
which is indicated by n and is divided into three cat-
egories: small (n< 20), medium (20� n� 50), and
large (n> 50). If the number of failures is small, all the
data areused todraw theWPPchart. The averagedata
will be selected from the bootstrapping or jack-knife
approach to generate new samples, and the WPP
chart will be used for each of them. The bootstrap
approach, as previously discussed, considers the
initial data as input and produces updated data
samples by removing or replacing the data. The jack-
knife approach is similar to this method, removing
one data in each iteration [43,48].
Finally, for failures with a large number, the data

is divided into two groups of 20% (S1) and 80% (S2)
of the total data. The model selection is done for S1,
and S2 validates the selected model. This will be
done k times, depending on the data type and
sensitivity. According to the extracted data bank and
the diagram illustrated in Figure 3, the number of
fuel injection failures is 36. This is part of the me-
dium category, which requires data generation. This
article used a bootstrapping approach with 20 pro-
duction iterations. Figure 4 shows the WPP chart
that must be drawn for all production data. The TBF
diagram and batch of fuel injection failure data are
shown in Figure 5. As can be seen, these graphs
have a slight S shape (Dogleg) and do not have as-
ymptotes when the data are connected, drawn
roughly with dashed lines.
This position happens when there is not enough

data available, the process of collecting and
recording data is facing an error, or the collected
data has more than one state and is the so-called
“multi-modal data set”, which should be fitted by
several different models. As a result, according to
the Weibull mixture distribution model algorithm, it
will be suitable for describing these data. Weibull
mixture distribution is one of these models that
plays a fundamental role in operational applica-
tions. Bokar believes that when you know nothing
about the system structure, you can estimate its
reliability with this function [49].
Composite functions are discrete or finite mix-

tures obtained from linearly integrating two or more
functions. Functions can have a normal, exponen-
tial, Weibull, etc. distribution. A simple description
of this function can be expressed as follows: the
population under analysis consists of 2� n sub-
populations, and the contribution of each sub-pop-
ulation to the total function and its value for the
whole society is in the form of equation (7) [45]:
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Xn
i¼1

ui¼1 i¼ 1;2;…;n;0<ui<1 ð7Þ

In this equation ui is a contribution of each sub-
population (layer). Therefore, for a random variable t

from the population, the density function of the com-
posite distribution can be expressed as equation (8):

fmðtÞ¼
Xn
i¼1

uifiðtÞ i¼ 1;2;…;n;0<ui<1 ð8Þ

Fig. 4. Algorithm for selecting the appropriate model for reliability from the Weibull family (adapted from (Barabadi, 2013)).
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In this equation fmðtÞ is the density function of the
composite distribution and fiðtÞ is the density func-
tion of each sub-population. The reliability function
is represented by equation (9):

RmðtÞ¼
Xn
i¼1

uiRiðtÞ i¼ 1;2;…;n; 0<ui<1 ð9Þ

Also in this equation RmðtÞ is the reliability func-
tion of the composite distribution and RiðtÞ is the
reliability function of each sub-population. If we
assume a two-parameter Weibull (shape parameter
(b) and scale (h)) of all the distribution functions of
the sub-populations, the shape of the reliability
function will be as shown in equation (10):

RmðtÞ¼
Xn
i¼1

ui exp

"
�
�
t
hi

�bi
#

i¼1;2;…;n;0<ui < 1

ð10Þ
In this regard, if n¼ 2, the distribution function is

called a “Two-fold Weibull mixture” [50e52].

2.5.4. Fourth & fifth step e parameter estimation and
goodness-of-fit test of functions
According to the results of the WPP diagram, the

mixture distribution function should be used for
fuel failure. The four-fold Weibull mixture function
was fitted based on the goodness of fit test. Figure 6
shows the WPP diagram of fuel injection failure
data. As seen in this graph, the line fitted to the data

covers the real state of the data. In a way, it provides
the most accurate fit for the data.
Table 5 shows the results of the adapted functions

for the failure mode. The function fitted to this state
is the four-fold Weibull mixture, and the PHM
function defines risk factors. In the next columns,
the contribution of each layer (ui) and the corre-
sponding shape and scale parameters are estimated.
In the last two columns, the goodness-of-fit coeffi-
cient of the Kolmogorov-Smirnov test is compared
to the critical value, and the test’s p-value, which is
100%, is determined.
The failure reliability function is in the form of

equation (11):

RðFuel systemÞðtÞ¼0:2 exp

"
�
�

t
8:38

�1:63
#

þ0:31 exp

"
�
�

t
22:5

�7:99
#

� exp

"
�
�

t
44:63

�6:77
#

þ 0:31 exp

"
�
�

t
113:79

�2:13
#

ð11Þ

2.6. Entering the effects of risk factors on system
performance indicators (sixth step)

As discussed, the fitted function in the previous
step is considered a “baseline function”. In this step,

Fig. 5. WPP diagram of fuel injection failure mode.
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these functions will be updated based on environ-
mental conditions. Because the baseline functions
are Weibull, the extension of the approach pre-
sented by Dr. Ghodrati can be used to include the
effects of environmental conditions in the composite
function [40]. He proved that the risk factors only
affect the scale parameter value (h) and do not
change the shape parameter (b). These changes can
be defined with new parameters of shape (bsi) and
scale (hsi) to introduce the influence of environ-
mental conditions. If b0i and h0i are respectively

fitted to the shape and scale parameters of each fold
in the basic functions, then (bsi) and (hsi) are
respectively as equation (12) [40]:

bsi¼b0ihsi¼h0i

"
exp

 Xn
i¼1

ziai

!#� 1
b0i

ð12Þ

As a result, the reliability function (Rsm) by
entering the effects of risk factors is presented as
follows:

Table 5. Fitted function and goodness of fit test (GOF).

Distribution
or model

Risk factors
model

Estimation of parameters and contribution of fitted functions Goodness-of-fit

subpopulation 1 subpopulation 2 K-S test p-value

portion beta eta portion beta eta

Weibull-mixed
(4-fold)

PHM 0.2 1.63 8.38 0.31 7.99 22.5 0% 100%
subpopulation 3 subpopulation 4
portion beta eta portion beta eta
0.19 6.77 44.63 0.31 2.13 113.79

Fig. 6. WPP diagram of failure data of failure of fuel injection.
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RsmðtÞ¼
Xn
i¼1

ui exp

"
�
�

t
hsi

�bsi
#

i¼1;2;…;n;0<ui < 1

ð13Þ

Accordingly, the function of reliability and
repairability for mechanical failure modes is equa-
tion (14). According to Table 6, two scenarios are
considered to check the impact of risk factors. In
these scenarios, two risk factors affecting reliability,
namely rainfall and temperature, were considered.
If relations (14) are used, the diagram of reliability
and risk rate of the failure mode for 50 h of system
operation in the basic mode, scenarios 1 and 2, is
shown in Figure 7.
As can be seen, both scenarios exhibit lower reli-

ability than the basic state. This highlights the

impact of environmental conditions on reliability.
The chaotic state of the hazard rate function in three
different scenarios also demonstrates the impact of
risk factors. Furthermore, the changes in this graph
during the performance period confirm the use of
the composite function in describing industrial
systems’ failure behavior.

3. Conclusion

In the literature review, one of the shortcomings
in analyzing the analysis system’s functional
behavior is primarily associated with time data.
This type of study focuses on time data (failure
times) and ignores the impact of environmental
factors (risk factors) on reliability. The issue appears
to be rooted in two places. Firstly, researchers
usually ignore the mathematical analysis process
and infer the involvement of effects from the same
time data. Second, apart from the science of
analyzing risk factors simultaneously with time
data, and much more significant than the first

Table 6. Defined scenarios for reliability.

Row Scenarios z4 z5

1 First semester cheap maintenance 0.039 0.485
2 Second semester expensive maintenance 0.040 0.117

RsFuelðtÞ¼0:2exp

"
-

 
t

8:38
�
expð4:232z4þ1:39z5Þ

�- 1
1:63

!1:63#
þ0:31exp

"
-

 
t

22:5
�
expð4:232z4þ1:39z5Þ

�- 1
7:99

!7:99#

þ0:19exp

"
-

 
t

44:63
�
expð4:232z4þ1:39z5Þ

�- 1
6:77

!6:77#
þ0:31exp

"
-

 
t

113:79
�
expð4:232z4þ1:39z5Þ

�- 1
2:13

!2:13#

ð14Þ

Fig. 7. Figure reliability function and mixture failure rate function for fuel injection system failure mode.
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reason, is the lack of access or the inability to form a
data bank for this type of analysis. Because in in-
dustrial environments, especially in mining opera-
tions, data registration has often not been done or
recorded correctly. In addition, registration sources
are so extensive that integration is regrettable. This
is even though regardless of the effects of risk fac-
tors on performance behavior, especially in harsh
environments such as mining, it will lead to ana-
lyses far from reality. Therefore, accurate and
realistic analysis of system behavior requires
considering these effects. The next point is that
according to the behavior of industrial systems in
the form of a bath-tub diagram during their life-
time, both classical methods and methods based on
risk factors, such as the proportional hazard model,
cannot cover this type of system behavior in the
form of an integrated function. One of the main
limitations of this model is the lack of compliance
with reliability process changes during the research
period. Therefore, this paper presents a coherent
framework for integrating temporal data and risk
factors with the Weibull family functions. In addi-
tion to integrating the system’s statistical behavior
with environmental effects, this approach also
covers the reliability graph’s variable shape (more
realistic mode) during the performance interval. In
the analysis of the case study of the Songun copper
mine with the proposed approach, in the first step
of the algorithm of failure tree analysis (FTA) and
the drawn Pareto diagram of the engine of a mining
dump truck system, the fuel injection subsystem
was identified as a critical subsystem.
The appropriate database was extracted from the

collected information in the next step. About 80%
of this information is quantitative and includes
various reports. The remaining 20% is qualitative,
and experts’ opinions in different departments
must be considered. The reliability performance
index should be determined to understand failure
behavior accurately. The following estimates the
proposed algorithm for integrating environmental
conditions into reliability. First, the number of risk
factors’ effects was estimated using regression
methods, and second, the basic state of reliability
was estimated using the Weibull family functions.
In the first step, Pearson’s coefficient was used to
examine the relationship between the risk factors
of the fuel supply system, including weather con-
ditions, and four continuous risk factors: slope,
hourly capacity, precipitation, and temperature
were examined. The results showed no specific
dependence between them; therefore, the selected
risk factors are independent. After determining
the risk factors, the assumption of proportionality

(PH) was evaluated using an analytical method to
select the appropriate regression function in the
next step. The test result indicated that at a sig-
nificance level of 5%, no dependence on time was
observed for the risk factors. Therefore, the PH
assumption is valid. Therefore, PHM was chosen
to determine the impact of the risk factors. Sec-
ondly, to solve the problem of trend changes
during the working interval, an algorithm was
proposed based on the Weibull family distribution
functions. This was the first time. In this algorithm,
the Weibull Mixture Distribution is utilized for
data with trend changes during the working in-
terval. In this function, after determining the
baseline function from the Weibull family based
on the presented algorithm, the parameters of this
function were updated based on the effects of risk
factors to integrate the regression function from
the Weibull family functions. Next, to evaluate the
effects of environmental conditions on perfor-
mance, two different scenarios were used to check
the system’s performance in different situations.
The results obtained for these two scenarios in the
reliability diagram clearly show the impact of risk
factors and the variability of the distribution
function during the performance.
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