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Abstract

Motivated by a connection to Timofte’s degree and half-
degree principle we study canonical hyperbolic slices, that
is, sets of univariate hyperbolic polynomials that share the
same first few coefficients. We study the geometric and
combinatorial properties of a natural stratification of these
slices and use these properties to improve upon the degree
principle.

Amongst the geometric properties we establish is a
description of the dimension and relative interior of the
strata along with a characterisation of some natural points
of “escapes” from these strata. And on the combinatorial
side we show that the lattice of strata is determined by the
zero-dimensional strata and that the boundary complex of
the dual lattice is generically a combinatorial sphere.

We finish by showing that a similar story can be told
about a natural stratification of even-hyperbolic slices.
These are the subsets of hyperbolic slices consisting of
the polynomials with only nonnegative roots and such
sets arise in the context of the degree principle for the
hyperoctahedral group.
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Sammendrag

Grunnet en kobling til Timoftes grad- og halvgradprinsipp
studerer vi såkalte hyperbolske stykker. Dette er mengder
bestående av hyperbolske polynomer i en variabel som har
de samme første koeffisientene. Vi studerer geometriske og
kombinatoriske egenskaper ved en naturlig stratifikasjon
av hyperbolske stykker og bruker disse egenskapene til å
forbedre Timoftes gradprinsipp.

Innenfor geometri så viser vi hvilke dimensjoner
stratene kan ha og vi beskriver det relative indre til
strataene i tillegg til å karakterisere noen naturlige
“rømningspunkter” fra strataene. Innen kombinatorikk så
viser vi at stratifikasjonen er bestemt av de nulldimen-
sionale strataene og at randkomplekset til den duale de-
lordnede mengden av strata er en kombinatorisk sfære.

Vi avslutter med å vise at en naturlig stratifikasjon
av parhyperbolske stykker har lignende geometriske og
kombinatoriske egenskaper. Parhyperbolske stykker er
delmengder av hyperbolske stykker bestående av de
polynomene med kun ikke-negative røtter og slike mengder
har en kobling til gradprinsippet for den hyperoktaedriske
gruppen.
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Introduction

In this thesis we will mainly study the surprisingly nice geometric
and combinatorial structure of certain hyperbolic slices. That is,
sets of univariate hyperbolic (real-rooted) polynomials that share
the same first few coefficients. Since the coefficients of hyperbolic
polynomials can be expressed with the elementary symmetric
polynomials, the context in which hyperbolic slices appear is coming
from the study of the natural action of the symmetric group on
real multivariate polynomials. In particular, since the elementary
symmetric polynomials generate the algebra of invariants of the
symmetric group, hyperbolic slices can be seen as cross-sections
of the orbit space of the symmetric group. In a similar manner
is the action of the hyperoctahedral (signed symmetric) group on
real multivariate polynomials connected to even-hyperbolic slices.
That is, sets of univariate hyperbolic polynomials that share the
same first few coefficients and has only nonnegative roots. We will
study a natural stratification of both hyperbolic and even-hyperbolic
slices, in particular the geometric structure of the strata and the
combinatorial structure of the poset of strata.

The study of polynomials is of interest in general as polynomials
and their zero sets occur in many areas of mathematics like algebra,
geometry, analysis and number theory. Polynomials and their zero
sets also occur outside of mathematics in areas such as optimisation,
statistics, chemistry and physics and thus has uses in all the sciences
as well as in medical fields, data security and finance. In the
cases where the polynomials has an invariant structure, it is often
possible to reduce questions about the polynomials or their zero
sets to easier questions by modding out the invariant structure. In
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particular, the action of the symmetric group is of interest as it
plays a fundamental role in Galois theory, combinatorics and even
in the study of group theory itself, thus it makes sense to study
the action of the symmetric group on polynomials. We also have
that the symmetric group along with the hyperoctahedral group
appear as two of the main examples of Weyl groups. The Weyl
groups have been studied extensively in the past and are generated
by the reflections through a certain set of hyperplanes in Euclidean
space, thus their action is quite straightforward to visualise. These
reflections offer a rich combinatorial structure which we will exploit
in our study of hyperbolic and even-hyperbolic slices.

From invariant algebraic sets to slices of orbit spaces

The origin of the study of hyperbolic slices is their connection to
symmetric real algebraic sets. This connection comes from the fact
that the orbit space of the natural action of the symmetric group on
Rn can be identified with the set of monic hyperbolic polynomials of
degree n by using the Vieta map. So the image of a symmetric real
algebraic set under the Vieta map is a particular set of hyperbolic
polynomials and hyperbolic slices are certain subsets of such images.
This connection was used in [27] to provide an elementary proof of
Timofte’s degree and half-degree principle for the symmetric group
and it was used in [28] to generalise these results. After we have
studied hyperbolic slices we will also exploit this connection to make
further improvements on the degree principle.

To show how hyperbolic slices and the degree principle connect,
let f ∈ R[t] be a monic hyperbolic polynomial of degree n, then by
the Fundamental Theorem of Algebra

f := tn + f1t
n−1 + ...+ fn =

n∏
i=1

(t− ai)

for some a1, ..., an ∈ R. We can see by expanding the product above
that fi = (−1)iEi(a1, ..., an), where E1, ..., En are the elementary
symmetric polynomials in n variables. Thus we can think of the
monic hyperbolic polynomials of degree n as the orbit space of the
symmetric group S(n) acting on Rn.

x



Suppose F1, ..., Fk ∈ R[x1, ..., xn] are symmetric polynomials of
degree at most s ≤ n, then it follows from a closer study of a classical
proof of the Fundamental Theorem for Symmetric Polynomials (see
Proposition 2.3 in [27]) that for each i ∈ [k] := {1, 2, ..., k} we have

Fi = Gi(E1(x), ..., Es(x))

for some Gi ∈ R[y1, ..., ys]. Thus F1, ..., Fk has a common zero
b := (b1, ..., bn) ∈ Rn if and only if G1, ..., Gk has the point
(E1(b), ..., Es(b)) ∈ Rs as a common zero. In other words F1, ..., Fk

has a common zero if and only if

E1(x) = w1, ..., Es(x) = ws

has a real solution for some common zero (w1, ..., ws) ∈ Rs of
G1, ..., Gs. As we have seen, these equations have a solution if and
only if there exists a monic hyperbolic polynomial, f , of degree n
with

f1 = −w1, ..., fs = (−1)sws.

This connection was used in [27] to prove Timofte’s degree
principle, namely that F1, ..., Fk has a common zero if and only if
they have a common zero with at most s distinct coordinates. It
also leads us to the main topic of this thesis which is to study the
following sets:
Definition. Let H denote the set of all monic hyperbolic polynomials
of degree n and let f ∈ H. Then for any s ∈ [n], we call the subset
of hyperbolic polynomials

Hs(f) := {tn + h1t
n−1 + ...+ hn ∈ H | hi = fi ∀ i ∈ [s]}

a (canonical) hyperbolic slice.
We introduce a natural stratification of hyperbolic slices defined

by considering the order and multiplicities of the roots of the
corresponding hyperbolic polynomial. Then we show that the strata
of hyperbolic slices have much in common with faces of polytopes
and that the poset of strata have a lot in common with the face
lattice of polytopes despite the fact that hyperbolic slices and their
strata are rarely convex sets.
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Specifically, if f is a monic hyperbolic polynomial of degree n with
distinct roots a1 < ... < al and respective multiplicities m1, ...,ml,
we let

c(f) := (m1, ...,ml)
be the composition of f . For two compositions of n, µ and ν, we let
µ ≤ ν if µ can be obtained from ν by replacing some of the commas
in ν with plus signs and so we define the strata of Hs(f) as follows:
Definition. Let µ be a composition of n, then

Hµ
s (f) := {h ∈ Hs(f) | c(h) ≤ µ}

is a stratum of Hs(f).
Hyperbolic slices have implicitly been studied in several articles

before. In [3], [13] and [18] they studied the related Vandermonde
varieties which are real algebraic sets given by weighted power sums.
In particular they showed that the strata of hyperbolic slices are
contractible sets. Also, in [3] and [23] they studied a particular
kind of extremal points of hyperbolic slices that in a natural way
represents an “escape” from the domain of hyperbolic polynomials.
We build on these works and delve into other geometric properties of
the strata, but more importantly we use these properties to study the
somewhat unexplored combinatorial structure of the poset of strata
of hyperbolic slices. This in turn leads us to make improvements on
Timofte’s degree principle.

The degree principle for the symmetric group can also be extended
to other Weyl groups (see [12]), in particular to the hyperoctahedral
group. And similar to the connection between the symmetric group
and hyperbolic slices we can connect the hyperoctahedral group to
even-hyperbolic slices. Specifically, if F1, ..., Fk ∈ R[x1, ..., xn] are
polynomials of degree at most 2s ≤ 2n and they are invariant under
the natural action of the hyperoctahedral group B(n), then for all
i ∈ [k] we have

Fi = Gi(E1(x2), ..., Es(x2))
for some Gi ∈ R[y1, ..., ys] and where x2 := (x2

1, ..., x
2
n).

Thus, by applying the variable change zi = x2
i , we see that

F1, ..., Fk has a common zero if and only if

E1(z) = w1, ..., Es(z) = ws

xii



has a real solution with only nonnegative entries for some common
zero (w1, ..., ws) ∈ Rs of G1, ..., Gs. These equations have a real
solution with only nonnegative entries if and only if there exists a
monic hyperbolic polynomial, f , degree n and with only nonnegative
roots such that

f1 = −w1, ..., fs = (−1)sws.

We call hyperbolic polynomials with only nonnegative roots, even-
hyperbolic and analogously to the symmetric group we define the
following sets:
Definition. Let N denote the set of all monic even-hyperbolic
polynomials of degree n and let f ∈ N . Then for any s ∈ [n],
we call the subset

Ns(f) := Hs(f) ∩ N

a (canonical) even-hyperbolic slice.
Such slices have implicitly been studied in [4], [13] and [29],

however we will see that by considering even-hyperbolic polynomials
as a subset of hyperbolic polynomials, many properties of even-
hyperbolic slices follow easily from hyperbolic slices.

To see how we stratify even-hyperbolic slices, note that zero
coordinates of a point in a hyperoctahedral-invariant real algebraic
set plays a particular role since the orbits of points with zero
coordinates are smaller. This leads us to stratify Ns(f) a bit
differently from Hs(f). Namely, we will let N µ

s (f) := Hµ
s (f) ∩ N

be a stratum of Ns(f), but we will also include strata of the form

N −µ
s (f) := {h ∈ N µ

s (f)|h(0) = 0}

and we call ±µ a signed composition.
We show that many of the geometric properties of the hyperbolic

strata transfer to the even-hyperbolic strata. Furthermore we will see
that many of the combinatorial properties of the poset of strata of
hyperbolic slices can be established for the poset of even-hyperbolic
strata and we also obtain an improvement of the degree principle for
the hyperoctahedral group.
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Contribution

The main geometrical results we contribute with in this thesis is
firstly a description of the relative interior of the strata (Theorem
2.1.9). Next, we show that the strata of hyperbolic slices are either
empty, a point or of maximal possible dimension (Theorem 2.1.10)
and we show that the strata equals the closure of their relative
interior (Corollary 2.1.11). These results tell us a lot about how
the polynomials in hyperbolic slices are distributed. We continue by
generalising the main theorem from [23] and show that any stratum
has a unique polynomial with a minimal (s + 1)th coefficient and
a unique polynomial with a maximal (s + 1)th coefficient and we
characterise the composition of these polynomials (Theorem 2.2.3).
Finally, we show that similarly to the strata, the relative interior of
the strata are also contractible when nonempty (Theorem 2.3.4).

The main combinatorial results we contribute with are firstly to
show that the poset of strata of hyperbolic slices are graded, atomic
and coatomic lattices (Theorem 3.1.7). This gives us a combinatorial
algorithm to compute the lattice of strata from its zero-dimensional
strata (Algorithm 3.1.8) which allows us to study more examples
than we otherwise would have been able to. Next, we show that
the boundary complex of the dual lattice is generically a shellable
simplicial complex (Theorem 3.2.6) and thus a combinatorial sphere
(Corollary 3.2.10). This lets us provide general bounds on the
number of i-dimensional strata in a hyperbolic slice. That is, we get
a “g-conjecture” and an “upper bound theorem” for generic (resp.
general) hyperbolic slices (Corollary 3.2.14 and Corollary 3.2.16).

These results are what we use to derive improvements on the
degree principle for the symmetric group. We use them to cut down
on the number of orbit types needed to consider when checking if a
symmetric real algebraic set is empty or not. We present a set of
orbit types which is sufficient to check (Theorem 4.1.1) which gives
an upper bound for the number of orbits needed to check and we
provide lower bounds for the number of orbit types needed to check
(Theorem 4.1.4). As neither of these bounds are sharp in general, we
show how one may use our results to find smaller test sets of orbit
types for given values of s and n (subchapter 4.2).
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Before we look at the even-hyperbolic strata, we show that if
we order any hyperbolic polynomials’ roots from smallest to largest,
then the polynomial with the minimal first root also in a hyperbolic
slice have either the minimal or the maximal (s+1)th coefficient and
conversely for the polynomial with the maximal first root (Theorem
5.1.3). This gives us a condition to check which even-hyperbolic
strata are nonempty subsets of hyperbolic strata and allows us to
extend many of the properties of hyperbolic strata to even-hyperbolic
strata. Namely, we show that the even-hyperbolic strata are either
empty, a point or of maximal possible dimension (Theorem 5.1.7)
and we provide a new way to show that the strata are connected
when nonempty (Theorem 5.1.9). We also show that the strata
of nonnegative slices have a unique polynomial with a minimal
(s+1)th coefficient and a unique polynomial with a maximal (s+1)th

coefficient and we characterise their signed compositions (Theorem
5.1.11).

Finally, we use these properties to establish that the poset of even-
hyperbolic strata is a lattice that can be computed combinatorially
from its zero-dimensional strata (Algorithm 5.2.3). We also identify
the posets of even-hyperbolic strata for s and n as a subset of
potential posets of hyperbolic strata for s + 1 and n + 1 which
means that the boundary complex of the dual lattice is a shellable
simplicial complex and thus a combinatorial sphere (Theorem 5.2.5).
And as with the hyperbolic slices, we show that we can make some
improvements on the degree principle for the hyperoctahedral group
(Theorem 5.2.10). In particular we find that improvements on the
degree principle for s+1 and n+1 with the symmetric group can be
translated to improvements on the degree principle for s and n with
the hyperoctahedral group.
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Chapter 1

Background

1.1 Symmetric and hyperoctahedral group

We start by introducing some important definitions and results
from representation theory of the symmetric and hyperoctahedral
group. Throughout the article, we denote by S(n) the symmetric
group on the set [n]. We will consider the natural action of S(n)
on R[x] := R[x1, ..., xn] and so we let R[x]S(n) denote the ring of
symmetric polynomials.

When S(n) acts on R[x] by permuting the variables, this induces
an action of S(n) on Rn given by permutation of the coordinates. The
orbit of a point a ∈ Rn is described by the partition λ = (λ1, ..., λk),
where a = σ(b1, ..., b1, ..., bk, ..., bk) for some σ ∈ S(n) and bi occurs
λi times and bi ̸= bj for any i ̸= j. Therefore we call λ, the orbit
type of a. We see that the only points in Rn that are invariant are
the points whose orbit type is (n), namely the points with only one
distinct coordinate. For invariant polynomials in R[x], the story is a
bit more involved.
Definition 1.1.1. For i ∈ [n], we denote by

Ei :=
∑

1≤j1<···<ji≤n

xj1 · · ·xji

the ith elementary symmetric polynomial and by

Pi :=
n∑

j=1
xi

j

the ith power sum.

1



Chapter 1. Background

We see that both the power sums and the elementary symmetric
polynomials are symmetric. Moreover, we can pass between them by
using Newton’s identities:
Proposition 1.1.2 (Newton’s identities). For i ∈ [n] we have

iEi =
i∑

j=1
(−1)j−1Ei−jPj,

where we set E0 := 1.

Proof. See the proof of Theorem 8 in [8].

The Fundamental Theorem of Symmetric Polynomials states that
every symmetric polynomial can be uniquely written in terms of the
elementary symmetric polynomials, but it can also be strengthened
to the following:
Theorem 1.1.3 (Fundamental Theorem of Symmetric Polynomi-
als). Any symmetric polynomial F ∈ R[x]S(n) of degree s ≤ n, can be
uniquely written as

F = G(E1, . . . , Es),

where G is a polynomial in R[y1, . . . , ys].

Proof. Proposition 2.3 in [27].

This formulation of the Fundamental Theorem of Symmetric
Polynomials is a key tool in the proof of the degree principle in [27].
Theorem 1.1.4 (Degree principle). Let F1, . . . , Fk ∈ R[x]S(n) be
symmetric polynomials of degree at most s ≤ n. Then the real
algebraic set

VR(F1, . . . , Fk) := {a ∈ Rn|F1(a) = ... = Fk(a) = 0}

is nonempty if and only if it contains a point with at most s distinct
coordinates.

To define the hyperoctahedral group, let us for a moment think
of the symmetric group S(2n) as the permutations of the set −[n] ∪
[n] = {−n,−n+1...,−1, 1, 2, ..., n}. Then the hyperoctahedral (or
signed symmetric) group is the subgroup B(n) ⊂ S(2n) consisting of
the permutations σ such that −σ(i) = σ(−i) for all i ∈ −[n] ∪ [n].

2



1.1. Symmetric and hyperoctahedral group

We let B(n) act on R[x] by permutation and sign change, that is,
for F ∈ R[x] we let

σ(F ) := F (δσ(1)x|σ(1)|, ..., δσ(n)x|σ(n)|),

where δσ(i) = σ(i)
|σ(i)| and we see that the reflections xi = ±xj, for

1 ≤ i ≤ j ≤ n, generate B(n). Thus the action on R[x] induces an
action on Rn by sign change and permutation of coordinates. But
due to the sign changes the orbit types under the hyperoctahedral
group is slightly different. Just note that if a ∈ Rn has a coordinate
equal to zero, then we can change the sign of this coordinate without
changing a.

To find the generators of the ring of invariant R[x]B(n), note that
if F ∈ R[x]B(n), then F (x) = F (x1, ..., xi1,−xi, xi+1, ..., xn) for any
i ∈ [n]. Thus every term of F that contains the variable xi must
contain xi to an even degree. So we see that F is of even degree
and we can replace each instance of x2

i with yi and get a polynomial
G ∈ R[y1, ..., yn] that is invariant with respect to the symmetric
group. Thus we have a bijection ϕ : R[x]B(n) → R[y]S(n) given by

x2
i 7→ yi,

which by Theorem 1.1.3 gives the following:
Theorem 1.1.5. Any polynomial F ∈ R[x]B(n) of degree 2s ≤ 2n,
can be uniquely written as

F = G(E1(x2), . . . , Es(x2)),

where G is a polynomial in R[y1, . . . , ys] and x2 := (x2
1, ..., x

2
n).

Similarly to the method in [27], this can be used to prove the
following:
Theorem 1.1.6. Let F1, . . . , Fk ∈ R[x]B(n) be polynomials of degree
at most 2s ≤ 2n. Then the real algebraic set

VR(F1, . . . , Fk) := {a ∈ Rn|F1(a) = ... = Fk(a) = 0}

is nonempty if and only if it contains a point with at most s distinct
coordinates.

Proof. See Theorem 2 in [12].

3



Chapter 1. Background

1.2 Polytopality and sphericity

Here we introduce some key concepts and results from combinat-
orics. As names and notations often seem to be an individual choice
in combinatorics note that we will mostly be following conventions
from [32] and [37].
Definition 1.2.1. A poset (L,≤), or partially ordered set, is a
set L equipped with a partial order ≤.

We usually just write L if the partial order is clear from context.
Also, we say that an element a, of a poset, L, covers b ∈ L if b ≤ a
and for any c ∈ L with b ≤ c ≤ a, we have either c = a or c = b.
Definition 1.2.2. A totally ordered subset of a poset is a chain
and if a chain is maximal with respect to inclusion, it is a maximal
chain. A poset in which every maximal chain has the same length
is called graded (or pure).

To see why we call such a poset graded let y0 < ... < yl and
z0 < ... < zl be two maximal chains of a finite graded poset L,
where yi = zj for some i and j. Then we have i = j, otherwise
y0 < y1 < ... < yi = zj < zj+1 < ... < zl is a maximal chain which
is not of length l + 1 contradicting the gradedness of L. Thus the
rank of yi, rank(yi) := i, is well defined and the poset is the union
L = ∪k≥0L(k), where L(k) contains the rank k elements. Also, we
say that the rank of a graded poset is the length of a maximal chain.

We will largely concern ourselves with the following type of poset:
Definition 1.2.3. A lattice is a poset L such that there exists a
least upper bound for any subset Q ⊆ L and a greatest lower bound.
We call it the join (resp. meet) of Q.

We will also need to look at the following subposet of lattices: If
L has the maximal element 1, then we call L\{1}, the boundary
complex of L. Note that if a poset L is finite and any subset Q ⊆ L

has a join, then L is a lattice since the meet of Q will have to be
the join of of all the elements a ∈ L such that a ≤ b for all b ∈ Q.
We will look at a particular type of lattice but before we introduce
these, note that the poset (L,≥), where the partial order is reversed,
is called the dual poset of (L,≤). Thus in particular, if L is a lattice,
the dual poset is also a lattice as the notion of join and meet are dual.

4



1.2. Polytopality and sphericity

Definition 1.2.4. In a lattice with a smallest element 0, the elements
covering 0 are called atoms. The lattice is called atomic if any
element can be expressed as the join of atoms. Conversely, a lattice
with a greatest element 1, is called coatomic if if the dual lattice is
atomic.

Typical examples of atomic and coatomic lattices come from
polytopes, namely the face lattice of a polytope P ⊂ Rn which
is the poset of faces of P (including P and ∅) partially ordered by
inclusion. In fact it is known that the poset of faces of a polytope is
a graded, atomic and coatomic lattice (see [37], Theorem 2.7).

We will be concerned with the question of whether or not a lattice
is “polytopal” in this thesis, so for the next definition note that we
call two posets (L,≤) and (Q,≤∗) isomorphic if there exists an
order-preserving bijection between L and Q whose inverse is also
order-preserving.
Definition 1.2.5. A lattice is polytopal if it is isomorphic to the
face lattice of a polytope.

The problem of determining whether or not a lattice is polytopal
is often referred to as Steinitz problem and is generally considered to
be a difficult problem. In fact for graded lattices of rank 5 or more
there are no known combinatorial way of classifying these lattices,
therefore we will introduce a slight weakening of this property.
Definition 1.2.6. A polytope complex is a family, C, of polytopes
in Rm, such that each face of a polytope is in C and such that the
intersection of two polytopes is a face of each.

We see that in particular a polytope is a polytope complex. And
just as for polytopes we call the elements of C faces. The dimension
of C is the dimension of its highest-dimensional faces. The proper
faces that are maximal with respect to inclusion are called facets, the
second largest are called ridges. Similarly, the smallest nonempty
faces are called vertices and the second smallest are called edges.

If a poset L is isomorphic to the poset of faces of a polytope
complex C, we call C a geometric realisation of L. And as we
will not be working with the geometric realisations directly we will
abuse the terminology and call a poset a polytope complex if it has
a geometric realisation. If we find it too difficult to determine if a
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lattice L is polytopal, we may instead ask if the boundary complex
of L is a polytope complex. And as the following will show this can
oddly enough be a much easier question to answer if our guess that
L is polytopal was correct. Firstly we need another definition:
Definition 1.2.7. A simplicial complex is a family of finite sets
that is closed under taking subsets.

Thus any simplicial complex may be identified with a family,
C, of subsets of [m] for some nonnegative integer m, such that if
A ⊂ B ∈ C, then A ∈ C. We may identify the smallest nonempty
sets of C with the points e1, . . . , em ∈ Rm, where ei is the i-th
standard basis vector, and then take the convex hull of ei1, . . . , eik

whenever {i1, . . . , ik} is an element of C. Then it is not too difficult
to see that this is a geometric realisation of C so C is a polytope
complex.

If a lattice L is polytopal, then it might very well be isomorphic
to the face lattice of a simplicial polytope (a polytope whose
proper faces are simplices) since simplicial polytopes are the generic
polytopes with the appropriate notion of genericity (see Chapter
0 in [37]). And if L is isomorphic to a simplicial polytope,
then its boundary complex must be a simplicial complex which is
realisable. However, there are many simplicial complexes that are not
isomorphic to the face poset of the boundary of a simplicial polytope
so let us look a different weakening of the question of polytopality.
Definition 1.2.8. A polytope complex is a sphere if it has a
geometric realisation which is homeomorphic to a sphere.

If a spherical polytope complex is also a simplicial complex, we
call it a simplicial sphere. Since a the boundary of a polytope is
homeomorphic to a sphere, we see that sphericity is also a weakening
of polytopality. However, similarly to polytopality, sphericity is a
property that is generally quite difficult to establish. For that reason
we need to introduce a subclass of spheres that can be easier to
recognize.
Definition 1.2.9. A subdivision of a polytope complex C is a
polytope complex S such that

⋃
I∈S

I =
⋃

J∈C

J ⊂ Rm

6



1.2. Polytopality and sphericity

and such that each face of S is contained in a face of C. Moreover,
we say a subdivision S is simplicial if S is a simplicial complex.
Definition 1.2.10. A combinatorial (or PL) (m-1)-sphere is a
polytope complex for which there exists a simplicial subdivision which
is isomorphic to a simplicial subdivision of the boundary of an m-
dimensional simplex.

A great tool for recognizing combinatorial spheres is the notion
of shellability.
Definition 1.2.11. A shelling of a pure simplicial complex, C, is
an ordering of the facets, F1, . . . , Fk, such that for any i ∈ {2, . . . , k},
the simplicial complex

i−1⋃
j=1

Fj ∩ Fi

is graded of dimension dim(C) − 1. If there exists a shelling of C,
then C is called shellable.

From Proposition 1.2 in [9] we have the following useful result:
Proposition 1.2.12. A shellable simplicial complex of dimension m,
where each ridge is contained in exactly two facets, is a combinatorial
m-sphere.

7
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List of notations

- n ∈ N = {1, 2, ...}
- [n] = {1, 2, ..., n}
- S(n) is the symmetric group
- B(n) is the hyperoctahedral group
- dist(a, b) =

√∑n
i=1(ai − bi)2 for a, b ∈ Rn.

- Bk
ϵ (a) is the open ball around a ∈ Rk of radius ϵ.

- H the set of monic hyperbolic polynomials of degree n
- f = tn + f1t

n−1 + ...+ fn ∈ H
- c(f) is the composition of f
- Hs(f) = {tn + h1t

n−1 + ...+ hn|h ∈ H and hi = fi ∀ i ∈ [s]}
- Hµ

s (f) = {h ∈ Hs(f)|c(h) ≤ µ}
- µ = (µ1, ..., µl) and ℓ(µ) = l

- λ/µ = ν, where ν is such that λ = (µ1 + ...+ µν1, ..., µl−νℓ(λ)+1 +
...+ µl)

- Ei(x) is the ith elementary symmetric polynomial in n variables.
- For x ∈ Rl, Eµ

i (x) = Ei(x1, ..., x1, ..., xl, ..., xl), where xi is
repeated µi times.

- Eµ(x) = tn − Eµ
1 (x)tn−1 + · · · + (−1)nEµ

n(x)
- Pi(x) is the ith power sum in n variables.
- For x ∈ Rl, P µ

i (x) = Pi(x1, ..., x1, ..., xl, ..., xl), where xi is
repeated µi times.

- Vs(f) = {x ∈ Rn| − E1(x) − f1 = 0, ..., (−1)sEs(x) − fs = 0}
- Vµ

s (f) = {x ∈ Rl| − Eµ
1 (x) − f1 = 0, ..., (−1)sEµ

s (x) − fs = 0}
- Wl = {x ∈ Rl|x1 ≤ ... ≤ xl}
- πr : Rk → Rk−r denotes projection (a1, ..., ak) 7→ (a1, .., ak−r)
- ιµ : Vµ

s (f) ∩ Wl → Cn denotes the inclusion (x1, ..., xl) 7→
(x1, ..., x1, ..., xl, ..., xl), where xi is repeated µi times

- Ls(f) is the lattice of strata of Hs(f)
- L∆

s (f) is the dual of Ls(f)
- ∂(L∆

s (f)) is the boundary complex of L∆
s (f)

8



1.2. Polytopality and sphericity

- For two elements, u and v, of a lattice, u ∨ v denotes the join
and u ∧ v denotes the meet.

- C(n) is the compositions of n
- C(n, s) is the compositions of n of length s

- P(n) is the partitions of n
- P(n, s) is the partitions of n of length s

- Cmin(n, s) = {µ ∈ C(n, s)|µ is alternate odd}
- Cmax(n, s) = {µ ∈ C(n, s)|µ is alternate even}
- Pmin(n, s) := {λ ∈ P(n, s)|λ⌊ s

2⌋+1 = ... = λs = 1}

- Pmax(n, s) := {λ ∈ P(n, s)|λ⌈ s
2⌉+1 = ... = λs = 1}

- N the set of monic even-hyperbolic polynomials of degree n
- h = tn + h1t

n−1 + ...+ hn ∈ N (in the last chapter)
- Ns(h) = Hs(h) ∩ N
- sc(h) is the signed composition of h
- N ν

s (h) = {g ∈ Ns(h)|sc(g) ≤ ν}
- ν = c|ν| = c(ν1, ..., νl), ℓ(ν) = l and sgn(ν) = c ∈ {−1, 1} (in

the last chapter)
- Ks(h) is the lattice of strata of Ns(h)
- K∆

s (h) is the dual of Ks(h)
- ∂(K∆

s (h)) is the boundary complex of K∆
s (h)

- SC(n) is the signed compositions of n
- SP(n) = ∪n

i=0(n− i) × P(i)
- SP(n, s) = {m× λ ∈ SP(n)|ℓ(λ) = s}
- ψ : SC(n) → C(n) is the map given by

ν 7→

(1, ν1, ..., νl), if sgn(ν) = 1,
(ν1 + 1, ν2, ..., νl), if sgn(ν) = −1.

9



Chapter 1. Background

10



Chapter 2

Geometry...

In this chapter we establish several geometric/topological prop-
erties of the strata of hyperbolic slices. In the first part we see that
the previous study of Vandermonde varieties in [18] implies that the
strata are contractible. This gives us a tool to determine the possible
dimension of any stratum and describe the relative interior and its
closure. In the second part we generalise the main theorem from [23]
on the “escape from hyperbolic space” and show that any stratum
has a unique polynomial with a maximal (s + 1)th coefficient and a
unique polynomial with a minimal (s + 1)th coefficient. Lastly, in
part three we use this result to show that the relative interior of the
strata are also contractible.

Before that we will define the stratification and have a look at an
example of a stratified hyperbolic slice. Throughout this thesis we
will let f := tn + f1t

n−1 + · · · + fn ∈ R[t] be a monic hyperbolic
polynomial of degree n. That is, f is a monic polynomial of degree
n with only real roots. Then we will study the following sets of
hyperbolic polynomials:
Definition 2.0.1. Let H denote the set of all monic hyperbolic
polynomials of degree n. Then for s ∈ [n], we call the subset

Hs(f) := {tn + h1t
n−1 + ...+ hn ∈ H | hi = fi ∀ i ∈ [s]}

a (canonical) hyperbolic slice.
We will also let s ∈ {0, ..., n} throughout this thesis. For an

h = tn + h1t
n−1 + ... + hn ∈ Hs(f), we will refer to hi as the ith

coefficient of h and if s < n, we refer to hs+1 as the first free

11



Chapter 2. Geometry...

coefficient of h. To introduce our stratification of hyperbolic slices
we recall the notion of compositions and their partial order.
Definition 2.0.2. A composition of n is a tuple of positive
integers, µ = (µ1, ..., µl), that sum up to n. We call ℓ(µ) := l the
length of µ and the µi’s the parts of µ.

We will let µ be a composition of length l throughout this thesis
and we partially order the compositions the following way:
Definition 2.0.3. For two compositions of n, µ and λ we let λ ≤ µ
if there is a composition, ν, of l = ℓ(µ) of length ℓ(λ) such that

λ = (µ1 + · · · + µν1, . . . , µl−νℓ(λ)+1 + · · · + µl).

Thus µ ≤ λ if µ can be obtained from λ by replacing some of the
commas in λ with plus signs. For a hyperbolic polynomial h with
distinct roots b1 < · · · < bl and respective multiplicities m1, . . . ,ml

we will let c(h) := (m1, . . . ,ml) denote the composition of h. We
stratify Hs(f) as follows:
Definition 2.0.4. Let µ be a composition of n, then

Hµ
s (f) := {h ∈ Hs(f) | c(h) ≤ µ}

is a stratum of Hs(f).
Note that since the composition (1n) := (1, 1, ...., 1) is greater

than any other composition then H(1n)
s (f) = Hs(f). Also, by

definition of the strata, if µ ≤ ν, then Hµ
s (f) ⊆ Hν

s(f). However, the
reverse statement does not need to hold as not all compositions need
to occur in any hyperbolic slice. For instance, already in the following
example of a stratified hyperbolic slice, not all the compositions
occur:
Example 2.0.5. Let d = 5 and s = 2 and let

h = (t+ π)(t+
√

2)t(t− 1,23456789123456789)(t− e),

then if we plot the last three coefficients of the polynomials in H2(h),
we get this picture:

12



.
There is no polynomial with only one distinct root in H2(h), that

is, the composition (5) does not occur and so H(5)
2 (h) = ∅. The

other compositions does occur however and the polynomials with no
repeated roots make up the interior, the other compositions occur in
the parts of the boundary as indicated by the following picture:

.
In the example above we see that the strata of H2(h) have some

nice geometrical properties. For instance, they are all compact and
connected. Also, we can see that the poset of strata is isomorphic
to the face lattice of a tetrahedron. Thus, other than not being
convex, H2(h) and its strata have a lot in common with a tetrahedron
and its faces. Since the main point of this project is to explore
hyperbolic slices, we can think of polytopes as a “guiding star” as we
will establish some of the similarities between hyperbolic slices and
polytopes.

13
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2.1 Hyperbolic strata

To study the geometric properties of the strata of hyperbolic slices
we need to introduce Vandermonde varieties. For this recall that we
let Ei, for i ∈ [n], denote the ith elementary symmetric polynomial.
Definition 2.1.1. For s ∈ [n] we let

Vs(f) := VR(−E1(x) − f1, . . . , (−1)sEs(x) − fs) =

{x ∈ Rn| − E1(x) − f1 = · · · = (−1)sEs(x) − fs = 0} .

Real algebraic sets as above is usually referred to as the
Vandermonde varieties (see [3] for the general definition). If
a = (a1, ..., an) ∈ Rn is a tuple of the roots of h ∈ H, then h can be
written as tn − E1(a)tn−1 + ... + (−1)nEn(a). Thus we see that the
hyperbolic slice Hs(f) arise as the image of the Vandermonde variety
Vs(f) under the Vieta map,

E : Rn → H,

given by
x 7→ tn − E1(x)tn−1 + · · · + (−1)nEn(x).

Furthermore, we see that the Vieta map is a bijection between the
hyperbolic slice and the intersection of the Vandermonde variety with
the Weyl chamber

Wn := {x ∈ Rn | x1 ≤ ... ≤ xn}.

More generally we have the following definition:
Definition 2.1.2. Let the map Eµ : Rl → H be given by

x 7→ tn − Eµ
1 (x)tn−1 + · · · + (−1)nEµ

n(x),

where
Eµ

i (x1, ..., xl) := Ei(x1, ..., x1, ..., xl, ..., xl)
and xj is repeated µj times.

Then the image of Wl under Eµ are the polynomials in H whose
composition is smaller than or equal to µ. Furthermore, Eµ is a
bijection between the stratum Hµ

s (f) and the intersection of Wl and:

Vµ
s (f) := {x ∈ Rl | (−1)iEµ

i (x) = fi ∀ i ∈ [s]}.

14
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The reason for the terminology comes from the following: by
Newtons identities (Proposition 1.1.2) we can find some c1, ..., cs ∈ R
and rewrite Vµ

s (f) as
{x ∈ Rl | P µ

i (x) = ci ∀ i ∈ [s]},
where

P µ
i (x1, ..., xl) := Pi(x1, ..., x1, ..., xl, ..., xl)

and xj is repeated µj times. As we will see later, the Jacobian
of the first s power sums is a constant multiple of a Vandermonde
determinant.

We can now get started at studying the hyperbolic strata and due
the preceding discussion we immediately have the following:
Lemma 2.1.3. The stratum Hµ

s (f) is a semialgebraic set.

Proof. We just saw that the stratum Hµ
s (f) is image of the

semialgebraic set Vµ
s (f) ∩ Wl under a polynomial function. And

a well known consequence of the Projection Theorem, see Theorem
2.2.1 in [6], is that a polynomial function maps semialgebraic sets to
semialgebraic sets.

Thus a hyperbolic stratum is the polynomial image of a subset of
a real algebraic set given by s polynomials and we will call it generic
if it contains no polynomial with at most s− 1 distinct roots. Thus
if a hyperbolic slice is generic, then all its strata are generic. It can
be shown (using for instance Proposition 3.2.8) that there is an open
dense subset U ⊂ H such that Hs(f) is generic for any f ∈ U .

We will often identify a polynomial f = tn +f1t
n−1 + · · ·+fn with

(f1, ..., fn) ∈ Rn without mentioning this change of basis, thus we can
consider Hs(f) as a subset of Rn−s. Therefore we equip hyperbolic
slices and their strata with the subspace topology of the Euclidean
topology. Similarly, we equip the Weyl chamber and Vandermonde
varieties with the subspace topology of the Euclidean topology.

We will soon see that work by [13] and [18] implies that the
strata of hyperbolic slices are contractible. But first we need to
show that the restriction of the Vieta map is a homeomorphism. So
let Bk

ϵ (a) denote the open ball about a ∈ Rk of radius ϵ > 0 and
let its closure be denoted by Bk

ϵ (a). Unless we work with balls of
different dimensions, we omit the superscript k.

15
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Lemma 2.1.4. The stratum Hµ
s (f) is closed in Rn−s and

Eµ : Vµ
s (f) ∩ Wl → Hµ

s (f),

where l = ℓ(µ), is a homeomorphism.

Proof. Recall that Eµ is a bijection and a polynomial mapping, thus
it is a continuous bijection. To see that the inverse map is continuous
and that Hµ

s (f) is closed in Rn−s, we show that the image of closed
sets in Vµ

s (f) ∩ Wl are closed in Rn−s.
Let S be a closed subset of Vµ

s (f) ∩ Wl, then since Vµ
s (f) and Wl

are closed in Rl, so is S. Let

ιµ : Vµ
s (f) ∩ Wl → Cn

be the inclusion (x1, ..., xl) 7→ (x1, ..., x1, ..., xl, ..., xl), where xi is
repeated µi times. Then Eµ(x) = (E ◦ ιµ)(x) and clearly ιµ(S) is
a closed subset of Cn.

Let h = tn+h1t
n−1+...+hn /∈ Eµ(S) have the roots a = (a1, ..., an)

and let hi = fi ∀ i ∈ [s]. Let ϵ > 0 be such that Dk
ϵ (σ(a)) ∩ ιµ(S) is

empty for any σ ∈ S(n), where Dk
ϵ (z) denotes the complex open ball

about z ∈ Ck of radius ϵ. If b1, ..., bk are the distinct roots of h with
respective multiplicities ν1, .., νk, then by [36] there is a δ > 0 such
that any polynomial, g, of degree n, with |hi − gi| ≤ δ for all i ∈ [n]
has exactly νi zeroes in D1

ϵ (bi). Since Dk
ϵ (σ(a)) ∩ ιµ(S) is empty for

any σ ∈ S(n), then so is Bδ(h) ∩ Eµ(S) and therefore is Eµ(S) closed
in Rn−s.

Proposition 2.1.5. The sets Vµ
s (f)∩Wl and Hµ

s (f) are contractible
or empty.

Proof. We have seen that we can use Newton’s identities to define
Vµ

s (f) in terms of the first s power sums in n variables. Then the
proof that Vµ

s (f) ∩ Wl is contractible or empty can be found in [18]
(Theorem 1.1). By Lemma 2.1.4 the map Eµ : Vµ

s (f)∩Wl → Hµ
s (f) is

a homeomorphism, thus Hµ
s (f) is contractible if it is nonempty.

To see how this proposition can be used to further describe our
strata we need some more definitions. First note that as Hµ

s (f)
is semialgebraic the dimension of the stratum is the maximum
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integer, d, such that Hµ
s (f) contains a nonempty open set which

is homeomorphic to an open set of Rd (see Chapter 2.8 of [6]).
Definition 2.1.6. If Hµ

s (f) is a nonempty stratum of dimension d,
then

• the relative interior of Hµ
s (f) is the set of polynomials h ∈

Hµ
s (f) for which there exists an open neighbourhood of h which

is homeomorphic to an open set in Rd and
• the relative boundary of Hµ

s (f) is the set of polynomials in
Hµ

s (f) which does not lie in the relative interior.
We can use Proposition 2.1.5 to give a description of the relative

interior and relative boundary of our strata and also determine their
dimension. But the first consequence of the proposition that we need
is the following:
Lemma 2.1.7. If ℓ(µ) ≤ s, then Hµ

s (f) contains at most one
polynomial.

Proof. Suppose h ∈ Hµ
s (f) has the distinct roots a = (a1, ..., ak) and

composition ν = (ν1, ..., νk), then k ≤ ℓ(µ) ≤ s. If k = 1, then
ν = (n) and there is only one solution to the equation

−Eν
1 (x) = −nx1 = f1.

And so we have Hν
s(f) = Hν

k(f) = {h}. If k > 1, then as previously
mentioned, Vν

k (f) can be defined as

{x ∈ Rk | P µ
1 (x) = c1, ..., P

µ
k (x) = ck},

where c1, ..., ck ∈ R are obtained from f1, ..., fk using Newton’s
identities.

The map P : Rk → Rk, where P (x) = (P1(xv), ..., Pk(xv)),
is a continuously differentiable function whose Jacobian matrix is
(iνjx

i−1
j )i,j≤k and so its determinant is

k∏
i=1

iνi

∏
1≤j<r≤k

(xj − xr).

Since all the ai’s are distinct, the determinant is nonzero at a.
Thus the Jacobian matrix is invertible and by the Inverse Function
Theorem, P is invertible on some neighbourhood U of P (a) =
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(c1, ..., ck). By Proposition 2.1.5, V ν
k (f)∩Wk is contractible and since

a is isolated in this set, it must be the only point there. Therefore
we have Hν

s(f) = Hν
k(f) = {h}.

So for any composition γ ≤ µ, that occurs in Hµ
s (f), we have that

Hγ
s (f) contains a single polynomial. Since there are finitely many

compositions smaller than or equal to µ, Hµ
s (f) contains finitely

many polynomials. But since Hµ
s (f) is contractible it can contain

at most one polynomial.

We will let
πr : Rk → Rk−r

denote projection that forgets the last r coordinates. This map will
be very useful, firstly for helping us describe the relative interior of
the strata.
Lemma 2.1.8. If l = ℓ(µ) > s, then the map

πn−l : Hµ
s (f) → Rl−s

is a homeomorphism onto its image and the image is closed in Rl−s.

Proof. Firstly we consider the case when l = 1. Then µ = (n) and
s = 0 so for any a ∈ R we have that (t − a)n = tn − natn−1 + ... +
(−a)n ∈ Hµ

0 (f). Thus πn−1((t− a)n) = −na and so the map

πn−l ◦ Eµ : R → R

is essentially just mapping a to −na. This is naturally a
homeomorphism and since, by Lemma 2.1.4, Eµ is a homeomorphism,
then so is πn−l. Lastly, since the image of πn−l is all of R, the image
is closed in R.

Next suppose l ≥ 2. By Lemma 2.1.7, the polynomials of Hµ
s (f)

are uniquely determined by their first l coefficients, thus πn−l is a
bijection between Hµ

s (f) and πn−l(Hµ
s (f)). Also, the topology on

Hµ
s (f) is the subspace topology of the product topology on Rn−s

with respect to the projections on each coordinate. Thus the map
πn−l is by definition continuous.

To see that the inverse is continuous and that πn−l(Hµ
s (f)) is

closed we will show that the image of closed subsets of Hµ
s (f) are

closed in Rl−s. So let S be a closed subset of Hµ
s (f) and let g be
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a point in the closure of πn−l(S). Then for any ϵ > 0, the closed
ball Bϵ(g) meets πn−l(S) and since πn−l ◦Eµ is continuous by Lemma
2.1.4, the inverse image

M = (Eµ ◦ πn−l)−1(Bϵ(g) ∩ πn−l(S))

is nonempty and closed. Since Vµ
s (f) ∩ Wl is closed in Rl, then so is

M . We also have that

M ⊆ (Eµ)−1(S) ∩ {x ∈ Wl|gi − ϵ ≤ (−1)iEµ
i (x) ≤ gi + ϵ ∀ i ∈ [l]}.

So if a ∈ M , then Eµ
1 (a) ≤ g1 − ϵ and Eµ

2 (a) ≥ g2 − ϵ since l ≥ 2.
Thus, by Newton’s identities, we have

P µ
2 (a) = (Eµ

1 (a))2 − 2Eµ
2 (a) ≤ g2

1 − 2g1ϵ+ ϵ2 − 2g2 + 2ϵ

and so M is bounded. Since M is closed and bounded, it is compact.
Since πn−l ◦ Eµ is continuous and the continuous image of a

compact set is compact, we have that (πn−l ◦ Eµ)(M) is compact.
Thus

g ∈ (πn−l ◦ Eµ)(M) ⊆ πn−l(S)
and so πn−l(S) is closed in Rl−s. Therefore πn−l is a closed map and
thus πn−l is a homeomorphism. Lastly, by setting S = Hµ

s (f), we see
that πn−l(Hµ

s (f)) is closed in Rl−s.

We see from Lemma 2.1.8 that when l ≥ s, the largest dimension
that Hµ

s (f) can have is l − s. Therefore we say that the maximal
dimension of Hµ

s (f) is max{l − s, 0}.
Theorem 2.1.9. If Hµ

s (f) contains a polynomial with composition µ,
then Hµ

s (f) is maximal dimensional and its relative interior consists
of the polynomials with composition µ.

Proof. If s = 0, the map Eµ : Wl → Hµ
0 (f) is a homeomorphism by

Lemma 2.1.4 and since the dimension of Wl is l and its interior are
the points with no repeated coordinates, then the dimension of Hµ

0 (f)
is l and its relative interior are the polynomials with composition µ.

Next suppose s > 0 and let Ar
fi

denote the affine hyperplane of
Rr defined by fixing the ith coordinate to be equal to fi. Then

πn−l(Hµ
s (f)) = πn−l(Hµ

0 (f) ∩ An
f1

∩ ... ∩ An
fs

) =
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πn−l(Hµ
0 (f)) ∩ Al

f1
∩ ... ∩ Al

fs
.

Thus if there is a polynomial h ∈ Hµ
s (f) with composition µ then

by the first paragraph and Lemma 2.1.8, πn−l(h) lies in the interior
of πn−l(Hµ

0 (f)) and therefore also in the interior of πn−l(Hµ
s (f)) and

πn−l(Hµ
s (f)) must be of dimension max{l − s, 0}. Since πl−s is a

homeomorphism, Hµ
s (f) is maximal dimensional and h lies in its

relative interior.
For the reverse inclusion, suppose l > s so that Hµ

s (f) is at least
one-dimensional. If its relative interior contains a polynomial g with
c(g) < µ, then πn−l(g) lies in the interior of the (l − s)-dimensional
set πn−l(Hµ

s (f)) ⊆ Rl−s. Thus πn−l(g) lies in the interior of the one-
dimensional set πn−l(Hµ

l−1(g)) = πn−l(Hµ
s (f))∩Al

gs+1
∩ ...∩Al

gl−1
⊆ R.

By Lemma 2.1.7, there are finitely many polynomials in Hµ
l−1(g)

with a smaller composition than µ. Thus there are two polynomials
p− and p+ in Hµ

l−1(g), with composition µ, and a δ > 0 such that

πn−l(p−) = πn−l(g) − δ and πn−l(p+) = πn−l(g) + δ.

Since πn−l(p−) and πn−l(p+) are in the interior of πn−l(Hµ
0 (f)),

there is an ϵ > 0 such that Bϵ(πn−l(p−)) and Bϵ(πn−l(p+)) are
contained in the interior of πn−l(Hµ

0 (f)). And since πn−l(g) is in
the boundary of πn−l(Hµ

0 (f)), the ball Bϵ(πn−l(g)) must contain a
point q = (q1, ..., qn−l) that is not in πn−l(Hµ

0 (f)).
Thus Al

q1
∩ ... ∩ Al

ql−1
is a line that passes through q and the

two balls Bϵ(πn−l(p−)) and Bϵ(πn−l(p+)). But if q separates the
nonempty sets

Bϵ(πn−l(p−)) ∩ Al
q1

∩ ... ∩ Al
ql−1

and
Bϵ(πn−l(p+)) ∩ Al

q1
∩ ... ∩ Al

ql−1
,

then

πn−l(Hµ
0 (f)) ∩ Al

q1
∩ ... ∩ Al

ql−1
= πn−l(Hµ

l−1(p+)) ⊂ R

is nonempty but not contractible. This contradicts Proposition 2.1.5
and g can therefore not be in the relative interior of Hµ

s (f).
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2.1. Hyperbolic strata

Thus, if l > s, the stratum Hµ
s (f) is of maximal dimension if and

only if it contains a polynomial with composition µ. We can use
this observation to determine all the possibilities for the dimension
of Hµ

s (f). It is worth mentioning that a similar observation to the
following can be found in [5], Proposition 5.
Theorem 2.1.10. If ℓ(µ) > s and Hµ

s (f) contains a polynomial with
at least s distinct roots, then Hµ

s (f) is maximal dimensional. If not,
then Hµ

s (f) is either empty or a single polynomial.

Proof. Any composition occurs in H0(f) and so by Theorem 2.1.9,
any stratum is maximal dimensional. Similarly, if s = 1, then for
any composition µ, the polynomial −Eµ

1 (x) − f1 has a real zero with
l distinct coordinates ordered increasingly. To see this pick l real
numbers a1, ..., al such that a1/µ1 < .... < al/µl and let

a = − f1∑
i ai

a1

µ1
, ...,

al

µl

,
then

−Eµ
1 (a) =

∑
j

µj
f1∑
i ai

aj

µj
= f1∑

i ai

∑
j

aj = f1.

Thus the composition µ occurs in H1(f) and so by Theorem 2.1.9,
Hµ

1 (f) is maximal dimensional.
Next we suppose s ≥ 2. If l ≤ s or Hµ

s (f) does not
contain a polynomial with at least s distinct roots, then Hµ

s (f) =
∪γ≤µ|ℓ(γ)=s−1Hγ

s (f). By Lemma 2.1.7, Hγ
s (f) contains at most one

polynomial when ℓ(γ) = s − 1. Since there are finitely many
compositions of length s − 1, then Hµ

s (f) contains finitely many
polynomials and since Hµ

s (f) is contractible it contains at most one
polynomial.

So suppose h ∈ Hµ
s (f) has k ≥ s distinct roots and c(h) < µ. Let

ν ≤ µ be a composition that covers c(h). Then ℓ(ν) = k + 1 and so
by Lemma 2.1.8, Hν

k(h) is at most one-dimensional. Since c(h) < ν
we can write h as ∏k+1

i=1 (t−bi)νi and without loss of generality we may
assume that b1 < ... < bk = bk+1.

Since Vν
k (h) equals {x ∈ Rk+1|P ν

1 (x) = c1, ..., P
ν
k (x) = ck}, the

Jacobian matrix of the defining polynomials is (iνjx
i−1
j )i≤k,j≤k+1.
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Thus the determinant of the leftmost k × k submatrix is
k∏

i=1
iνi

∏
1≤j<r≤k

(xj − xr).

Since the first k coordinates of b = (b1, ..., bk+1) are distinct,
the determinant does not vanish at b ∈ Vν

k (h). So by Proposition
3.3.10 in [6], b is a nonsingular point of a one-dimensional irreducible
component, V , of Vν

k (h). Thus b lies in an open neighbourhood U of
V where U is a one-dimensional manifold.

By Lemma 2.1.7, the one-dimensional manifold U only intersects
the hyperplane H = {x ∈ Rk+1|xk = xk+1} once. So U must meet the
open halfspace H+ := {x ∈ Rk+1|xk < xk+1} and thus there is a point
in Vν

k (h) ∩ Wk+1 with no repeated coordinates. So Hν
k(h) ⊆ Hν

s(f)
contains a polynomial with composition ν. So by induction we can
find a polynomial with composition µ and by Theorem 2.1.9, Hµ

s (f)
is therefore maximal dimensional.

Corollary 2.1.11. Any hyperbolic stratum equals the closure of its
relative interior.

Proof. By Theorem 2.1.10 we may suppose Hµ
s (f) is maximal

dimensional and at least one-dimensional. We will prove the
statement by induction on the dimension of the strata. If Hµ

s (f)
is one-dimensional, then it is connected by Proposition 2.1.5. Thus
the relative boundary contains at most two polynomials and any
open ball about a polynomial of Hµ

s (f) contains infinitely many
polynomials from the relative interior. Thus Hµ

s (f) is the closure
of its relative interior.

Suppose the statement is true for all (m− 1)-dimensional strata,
where m − 1 ≥ 1. Suppose Hµ

s (f) is n-dimensional and h ∈ Hµ
s (f).

By Proposition 2.1.5, Hµ
s (f) is connected, so for any ϵ > 0, Bϵ(h)

must contain infinitely many polynomials from Hµ
s (f). Since there

are finitely many polynomials in Hµ
s (f) with at most s distinct roots,

there is a g ∈ Bϵ(h) ∩ Hµ
s (f) with at least s+ 1 distinct roots.

Then by Theorem 2.1.10, Hµ
s+1(g) is (m− 1)-dimensional and by

the induction hypothesis, g is in the closure of its relative interior. So
by Theorem 2.1.9, any open ball about g contains a polynomial with
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2.2. Escaping hyperbolic strata

composition µ. Thus Bϵ(h) contains a polynomial with composition
µ and so h is in the closure of the relative interior of Hµ

s (f).

2.2 Escaping hyperbolic strata

In this subchapter, we look at the question of which polynomials
in a stratum of a hyperbolic slice have a minimal or maximal first
free coefficient. This question was asked for hyperbolic slices in
[23] and it turned out that the question could be fully answered by
looking at the compositions of the polynomials. Thus they classified
which polynomials in Hs(f) have the maximal first free coefficient
and which have the minimal (when such polynomials exist). We
shall give an analogous classification, except that we will restrict the
domain to be any of the strata of Hs(f).

To state the result, we first need some terminology.
Definition 2.2.1. If s < n we call h ∈ Hµ

s (f) a minimal (resp.
maximal) polynomial of Hµ

s (f) if hs+1 ≤ gs+1 (resp. hs+1 ≥ gs+1)
for all g ∈ Hµ

s (f).
Note that if h ∈ Hµ

s (f), then h = ∏l
i=1(t − bi)µi for some

b1 ≤ ... ≤ bl, so bi must have multiplicity at least µi for any
i ∈ [l], thus we can mod out this information. Also, note that if a
composition λ is less than or equal to µ, there is a unique composition
ν such that λ = (µ1 + · · · + µν1, . . . , µl−νℓ(λ)+1 + · · · + µl).
Definition 2.2.2. If λ ≤ µ, let λ/µ denote the composition ν such
that λ = (µ1 + · · · + µν1, . . . , µl−νℓ(ν)+1 + · · · + µl).

So λ/µ can be thought of as “modding out” µ, not dividing by
µ. Lastly, we call the composition µ alternate odd if µl = µl−2 =
· · · = 1 and alternate even if µl−1 = µl−3 = · · · = 1.
Theorem 2.2.3. Let λ be the composition of h ∈ Hµ

s (f) and let
s ≥ 2, then

1. there is a unique minimal (resp. maximal) polynomial in Hµ
s (f)

and
2. the polynomial h is minimal (resp. maximal) if and only if λ/µ

is less than or equal to an alternate odd (resp. even) composition
of length s.
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Example 2.2.4. Let d = 5 and s = 3 and let f = (t + 2)3(t − 5)2,
then if we map the last two coefficients of the polynomials in H3(f)
we get the following picture:

.
We see that f is maximal in the stratum Hµ

3 (f), where µ = (2, 1, 1, 1),
and that c(f) = (3, 2). This fits with Theorem 2.2.3 since c(f)/µ =
(2, 2) and this is smaller than the alternate even composition (1, 1, 2)
of length 3. Similarly, we see that (2, 2, 1)/µ = (1, 2, 1), which is
alternate odd and of length 3, so the polynomial with composition
(2, 2, 1) is minimal in Hµ

3 (f).
When s = 1 there is also a maximal polynomial for all strata,

but no minimal polynomial for any strata other than Hµ
1 (f), where

µ = (n). The maximal polynomial for all the strata is the unique
polynomial with only one distinct root. This follows from [23] and
therefore we only focus on the cases when s ≥ 2.

Note that in the generic case, one can replace λ/µ being “less than
or equal” by “equal” in the above theorem since no two compositions
of the same length are comparable. It should be said that the proof
of Theorem 2.2.3 is based on many of the same ideas as in [3] and
[23], however some of their techniques do not work in this general
setting and others need to be adjusted. We start by proving the first
item and we will let l = ℓ(µ) > s for this subchapter as Hµ

s (f) is
either empty or a point if l ≤ s according to Theorem 2.1.10.

24



2.2. Escaping hyperbolic strata

Proof of Item 1 from Theorem 2.2.3. The statement is clear when
Hµ

s (f) is just a point so we will assume Hµ
s (f) is (l− s)-dimensional.

Since Vµ
s (f) is given by the first s powersums and s ≥ 2, then Vµ

s (f)
lies on a sphere and is therefore compact. Since Eµ is continuous,
then Hµ

s (f) is also compact so the existence of minimal and maximal
polynomials is clear.

Let h ∈ Hµ
s (f) be a minimal polynomial. To show uniqueness, we

assume that Hµ
s+1(h) contains another polynomial which by Theorem

2.1.10 means that it is of dimension l−s−1 > 0. By Theorem 2.1.9,
Hµ

s+1(h) therefore contains a polynomial g with composition µ. By
Lemma 2.1.8 and Theorem 2.1.9, πn−l(Hµ

s (f)) is full-dimensional and
its interior is the image of the polynomials in Hµ

s (f) with composition
µ. This contradicts g being minimal in Hµ

s (f) as only the boundary
of πn−l(Hµ

s (f)) can have minimal coordinates. The argument for
maximal polynomials is analogous.

The proof of the second part of Theorem 2.2.3 will require a lot
more work and so we start with some useful tools. For the proof we
will use some local arguments so we will need a local definition of
minimality and maximality.
Definition 2.2.5. If s < n we call h ∈ Hµ

s (f) a locally minimal
(resp. locally maximal) polynomial of Hµ

s (f) if hs+1 ≤ gs+1 (resp.
hs+1 ≥ gs+1) for all g ∈ N , where N ⊂ Hµ

s (f) is some open
neighbourhood of h.
Lemma 2.2.6. Any locally minimal or locally maximal polynomial
in Hµ

s (f) has at most s distinct roots.

Proof. Assume Hµ
s (f) is at least one-dimensional since otherwise it

follows from Theorem 2.1.10. By Lemma 2.1.8, πn−l : Hµ
s (f) → Rl−s

is a homeomorphism onto its image which is closed in Rl−s. So
by Theorem 2.1.9, the image of the polynomials whose composition
is strictly smaller than µ make up the boundary of πn−l(Hµ

s (f)).
Thus a locally minimal or locally maximal polynomial lies in the
relative boundary and therefore has strictly less than l roots and so
the statement follows inductively.

Note that due to the following lemma, we can just work with the
local definition of minimal and maximal polynomials:
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Lemma 2.2.7. A polynomial h ∈ Hµ
s (f) is locally minimal (resp.

locally maximal) if and only if it is minimal (resp. maximal).

Proof. One implication is clear, so suppose h ∈ Hµ
s (f) is locally

minimal but not minimal. If Hµ
s+1(h) is at least one-dimensional

then by Corollary 2.1.11, for any ϵ > 0 there is a polynomial
g ∈ Hµ

s+1(h)∩Bn−s−1
ϵ (h) with composition µ. Thus, by Lemma 2.1.8,

there is a δ with 0 < δ < ϵ such that πn−l(Hµ
s (f)) ∩ Bl−s

δ (πn−l(g))
lies in the interior of πn−l(Hµ

s (f)). So there is a polynomial in
Hµ

s (f) ∩ Bn−s
ϵ (h) whose first free coefficient is smaller than the first

free coefficient of h contradicting the local minimality of h.
Thus, by Theorem 2.1.10, Hµ

s+1(h) must be a point. Since Hµ
s (f)

is contractible, there is a path, Φ : [0, 1] → Hµ
s (f), where [0, 1] is the

unit interval, from h to the minimal polynomial. Since Hµ
s+1(h) is a

point we may assume that the first free coefficient of Φ(y) is strictly
smaller than the first free coefficient of h for all y ∈ (0, 1]. But this is
a contradiction since h was assumed to be locally minimal. Thus if
h is locally minimal, it must also be minimal. The proof for locally
maximal polynomials works analogously.

To prove the second part of Theorem 2.2.3 we will first consider
the generic case and do an induction on the dimension of the strata,
then we extend the statement to the general case. For the initial
step of the induction we consider a generic one-dimensional stratum
Hµ

s (f). Since s ≥ 2, the one-dimensional stratum, Hµ
s (f), is compact

and therefore has two polynomials, h and g, in the boundary. Due
to Lemma 2.2.6, one of those is the minimal polynomial and the
other one is the maximal polynomial and since Hµ

s (f) is generic both
c(h)/µ and c(g)/µ are alternate. We will use Lagrange multipliers
to determine which is which and we should point out that this part
of the argument (from here up to and including Proposition 2.2.9)
we get from [3] we just go through it for completeness.

Firstly, for the Lagrange multiplier argument it will be useful to
work with power sums instead of elementary symmetric polynomials.
Lemma 2.2.8. Let a, b ∈ Rn and suppose Ei(a) = Ei(b) for all
i ∈ [s], then Ps+1(a) > Ps+1(b) if and only if (−1)s+1Es+1(a) <
(−1)s+1Es+1(b).
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2.2. Escaping hyperbolic strata

Proof. This is straightforward to show using Newtons identities.

Due to Lemma 2.2.8, instead of looking at the minimisers (resp.
maximisers) of (−1)Eµ

s+1, we will look at the maximisers (resp.
minimisers) of P µ

s+1. Recall that the set Vµ
s (f) can be written as

Vµ
s (f) = {x ∈ Rs+1 | P µ

i (x) = ci ∀ i ∈ [s]} and that the Jacobian
matrix of (P µ

1 (x), . . . , P µ
s (x)), where x = (x1, ..., xs+1), equals

J(x) = (iµjx
i−1
j )i≤s,j≤s+1.

Let x ∈ Vµ
s (f) ∩ Ws+1 be one of the two points with s distinct

coordinates. Suppose xj1, .., xjs
are the distinct coordinates of x, then

as we have seen before the s× s submatrix of J(x) consisting of the
rows j1, ..., js has the determinant c∏

ji<jk
(xji

−xjk
) for some positive

constant c. Since the xji
’s are distinct, the determinant does not

vanish and ∇P µ
1 (x), . . . ,∇P µ

s (x) are linearly independent.
Similarly, the Jacobian of P µ

1 (x), . . . , P µ
s (x), P µ

s+1(x) has a
vanishing determinant since x only has s distinct roots. Therefore
∇P µ

1 (x), . . . ,∇P µ
s+1(x) are linearly dependent and so there exist

scalars a1, . . . , as such that ∇L(x) = 0, where

L(x) = P µ
s+1(x) −

s∑
i=1

aiP
µ
i (x).

The gradient of L at x is

∇L(x) = ∇P µ
s+1(x) −

s∑
i=1

ai∇P µ
i (x) = (µ1Q(x1), . . . , µs+1Q(xs+1))),

where Q(t) = (s+1)ts −∑s
i=1 aiit

i−1. The univariate polynomial Q(t)
is of degree s and since Q vanishes at xj for any j, then Q have s
distinct roots. Thus we have the following:
Proposition 2.2.9. Let Hµ

s (f) be generic and one-dimensional, then
h ∈ Hµ

s (f) is the minimal (resp. maximal) polynomial if and only if
ℓ(c(h)) = s and c(h)/µ is alternate odd (resp. even).

Proof. We continue with the notation above and let x = (x1, ..., xs+1),
where x1 ≤ .. ≤ xs+1, be the roots of a polynomial, h, in the relative
boundary of Hµ

s (f) and let a1, .., as and Q be as above. From Lemma
2.2.6, h has at most s distinct roots and since Hµ

s (f) is generic h have
exactly s distinct roots.
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By Theorem 5.4 in [34], x is a local maximiser of P µ
s+1 (resp.

minimiser) if vtH(x)v < 0 (resp. vtH(x)v > 0) for all nonzero
vectors v ∈ Rs+1 in the kernel of J(x) where

H(x) := ∇2L(x) =



µ1Q
′(x1) 0 · · · 0
0 . . . . . . ...
... . . . . . . 0
0 · · · 0 µs+1Q

′(xs+1)

 .

Let xk = xk+1 be the repeated coordinate of x. If vk+vk+1 = 0 and
all other coordinates of v are zero, then v lies in the kernel of J(x).
Also, since the set of such vectors is a one-dimensional subspace of
Rs+1, they make up the kernel of J(x). So we have that

vtH(x)v =
∑
j

µjQ
′(xj)v2

j = Q′(xk)(µkv
2
k + µk+1v

2
k+1)

is negative (resp. positive) for all v ̸= (0, ...0) in the kernel of J(x)
if and only if Q′(xk) is positive (resp. negative).

The univariate polynomial Q has only the simple roots x1 < ... <

xk < xk+2 < ... < xs+1, so by Rolle’s Theorem the roots of Q′ strictly
interlace the roots of Q. Also, since the leading coefficient of Q is
positive, Q′(xs+1) is positive and thus Q′(xs) < 0, Q′(xs−1) > 0, ....
Thus x is a maximiser (resp. minimiser) of P µ

s+1 if and only if
k = s+ 1 − 2m (resp. k = s− 2m) for some nonnegative integer m.
That is, x is a minimiser (resp. maximiser) of (−1)s+1Eµ

s+1 if and
only if c(h)/µ is alternate odd (resp. even).

Remark 2.2.10. The reason we will not use the Lagrangian
argument above for higher-dimensional strata is that it is not a priori
clear that the tuple of roots of a locally minimal (resp. maximal)
polynomial in an stratum is a local minimiser (resp. maximiser) of
(−1)s+1Eµ

s+1 over Vµ
s (f). Other than that, the argument would work

similarly as above for the higher-dimensional strata. So it might be
possible to use a Lagrange multiplier argument with the additional
inequalities, xi ≤ xi+1 ∀ i ∈ [ℓ(µ)], for the higher-dimensional strata.
However, the main tools for the inductive step in the following proof
is needed later on anyway so it makes sense for us not to look any
further into other methods.
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Having settled the initial step of our induction, we need to
establish some tools for the inductive step. For the inductive step
we need to show that if a polynomial is minimal (resp. maximal)
in all strict substrata of a stratum Hµ

s (f), it is also minimal (resp.
maximal) in Hµ

s (f). For that we need to look closer at the projection
π. It should be noted that the following discussion and lemma is
analogous to the approach in [18], where the image of the power
sums are studied instead of the elementary symmetric polynomials.
Before we begin recall that l > s for this subchapter.

By Lemma 2.1.8, Hµ
s (f) is homeomorphic to πn−l(Hµ

s (f)) ⊂ Rl−s

and thus by Theorem 2.1.10, M := πn−l(Hµ
s (f)) is full-dimensional

when Hµ
s (f) is neither empty nor a single polynomial. If we apply

the projection to M , that is, we let π : M → Rl−s−1 be the projection
given by (x1, . . . , xl−s) 7→ (x1, . . . , xl−s−1), then for h ∈ Hµ

s (f), the
fibre π−1(π(πn−l(h))) is equal to πn−l(Hµ

l−1(h)). This fibre is by
Theorem 2.1.10, either the point πn−l(h), in which case it must lie
on the boundary of M , or it is an interval. And if it is an interval,
then its endpoints must lie on the boundary of M and its relative
interior must lie in the interior of M .

Thus the boundary of M can be written as the union of a “lower”
and an “upper” part, L ∪ U , where
L = {(x1, . . . , xl−s) ∈ M | xl−s ≤ yl−s ∀ (y1, . . . , yl−s) ∈ π−1(π(x))},
and
U = {(x1, . . . , xl−s) ∈ M | xl−s ≥ yl−s ∀ (y1, . . . , yl−s) ∈ π−1(π(x))}.

Lemma 2.2.11. The sets L and U are closed.

Proof. We just show that U is closed since the proof for L is
analogous. So suppose πn−l(q) is in the closure of U but not in U .
By Lemma 2.1.8, the boundary of M is closed and thus πn−l(q) ∈ L.
The fibre π−1(π(πn−l(q))) is an interval whose relative interior lies in
the interior of M . Let πn−l(g) be one of those relative interior points
and let ϵ > 0 be such that Bϵ(πn−l(g)) ⊂ M .

For any πn−l(h) ∈ Bϵ(πn−l(g)), the point π−1(π(πn−l(h))) ∩L lies
below Bϵ(πn−l(g)). Thus the distance between πn−l(q) and any point
in U is at least as large as ϵ/2. Thus πn−l(q) cannot be in the closure
of U which is a contradiction and so πn−l(q) must lie in U .
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Lemma 2.2.12. Let l ≥ s + 2, then the polynomial h ∈ Hµ
s (f) is

minimal (resp. maximal) if and only if it is minimal (resp. maximal)
for all strata that contain h and that are strictly contained in Hµ

s (f).

Proof. One implication is clear, so we just have to show that if for
all compositions ν with h ∈ Hν

s(f) ⊂ Hµ
s (f) we have that h is

minimal in Hν
s(f), then h is minimal in Hµ

s (f). We assume Hµ
s (f)

is (l − s)-dimensional since the statement is clear when it is just a
single polynomial. Also, the argument for maximal polynomials is
analogous so we just prove it for minimal polynomials.

Suppose h is not minimal in Hµ
s (f), then by Lemma 2.2.7 it is

not locally minimal. So for any i ∈ N, B1/i(h) ∩ Hµ
s (f) contains a

polynomial gi whose first free coefficient is smaller than the first free
coefficient of h. Without loss of generality assume πn−l(h) lies in
the upper part of the boundary of M = πn−l(Hµ

s (f)). Then for each
fibre π−1(π(πn−l(gi))), let πn−l(qi) be the point in the upper part
of the boundary of M . Since the upper part is compact, (πn−l(qi))
converges to a point in the upper part which by design equals πn−l(h).

As there are finitely many compositions, there is an infinite
subsequence of (πn−l(qi)), where all the qi’s have the same
composition λ ̸= µ, that converges to πn−l(h). By Lemma 2.1.8,
Theorem 2.1.9 and Corollary 2.1.11, the image πn−l(Hλ

s (f)) is the
closure of its relative interior which consists of the images of the
polynomials with composition λ. Thus h ∈ Hλ

s (f) and it is by
construction not the minimal polynomial. This is a contradiction
and so h must be minimal in Hµ

s (f).

For the inductive step we need something analogous to Lemma
2.2.12 on the combinatorial side:
Lemma 2.2.13. Let λ, γ < µ be compositions of n, then λ < γ if
and only if λ/µ < γ/µ and in this case we have λ/γ = λ/µ

γ/µ.

Proof. Let ν = λ/µ, τ = γ/µ and let r = ℓ(λ) = ℓ(ν) and
k = ℓ(γ) = ℓ(τ). Then

λ = (µ1 + ...+ µν1, ...., µl−νr+1 + ...+ µl)

and
γ = (µ1 + ...+ µτ1, ...., µl−τk+1 + ...+ µl).
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2.2. Escaping hyperbolic strata

Thus λ < γ if and only if there is a composition, ρ, of k of length r
with

λ = (γ1 + ...+ γρ1, ...., γk−ρr+1 + ...+ γk) = ∑
i≤τ1+...+τρ1

µi, ....,
∑

i>τ1+...+τk−ρr

µi


which equals (µ1 + ...+ µν1, ...., µl−νr+1 + ...+ µl) if and only if

ν1 =
ρ1∑

j=1
τj, ..., νr =

k∑
j=k−ρr+1

τj,

that is, if and only if ν < τ. In particular, we see that in this case
λ/γ = ρ = ν/τ .

Now we just need one small lemma before we are ready to prove
Theorem 2.2.3 for the generic case:
Lemma 2.2.14. Let l = ℓ(µ) ≥ s + 2 and let h ∈ Hµ

s (f) have
s distinct roots. Then there are two polynomials with distinct
compositions, γ and ν, in Hµ

s (f) of length ℓ(µ) − 1 and with c(h) <
γ, ν.

Proof. Let λ = c(h), then since l ≥ s + 2, ℓ(λ) = s and λ < µ

one must replace at least two of the commas in µ with plus signs to
obtain λ. So let j ̸= i be two indices such that

γ = (µ1, . . . , µj−1, µj + µj+1, µj+2, . . . , µl)

and
ν = (µ1, . . . , µi−1, µi + µi+1, µi+2, . . . , µl)

are both greater than λ. By Theorem 2.1.9 and Theorem 2.1.10,
both of these compositions must occur in Hµ

s (f).

Proposition 2.2.15. Let Hµ
s (f) be of (l − s)-dimensional and

generic. Then h ∈ Hµ
s (f) is the minimal (resp. maximal) polynomial

if and only if ℓ(c(h)) = s and c(h)/µ is alternate odd (resp. even).

Proof. We prove this by induction in the poset of strata of Hµ
s (f).

The initial step is when l = s+1 and is covered by Proposition 2.2.9.
Next, we assume the statement is true for the strata of dimension
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l− s− 1 ≥ 1 and we show that it is true when the stratum is (l− s)-
dimensional. We will just show the proof for minimal polynomials
as the proof for maximal polynomials is analogous.

Let λ = c(h) and suppose λ/µ is alternate odd and that ℓ(λ) = s.
Let γ be any composition with λ < γ < µ such that Hγ

s (f) is at least
one-dimensional. By Lemma 2.2.13 we have that λ/γ = λ/µ

γ/µ . Note
that the ith part of λ/γ is equal to the ith part of λ/µ minus some
integer, thus λ/γ is alternate odd since λ/µ is. So by the induction
hypothesis, h is the minimal polynomial of Hγ

s (f) and thus by Lemma
2.2.12, h is the minimal polynomial of Hµ

s (f).
For the reverse statement, let h be the minimal polynomial. Then

by Lemma 2.2.6, h has s distinct roots. Since Hµ
s (f) is at least two-

dimensional, then by Lemma 2.2.14, there are at least two distinct
(l− s− 1)-dimensional strata Hγ

s (f) and Hν
s(f) in Hµ

s (f) containing
h and thus ℓ(γ) = ℓ(ν) = l− 1. By Lemma 2.2.12 and the induction
hypothesis λ/γ and λ/ν are alternate odd compositions. And since
γ and ν are of length l − 1, there are two indices j ̸= i such that

λ = (µ1, . . . , µj−1, µj + µj+1, µj+2, . . . , µl)

and
ν = (µ1, . . . , µi−1, µi + µi+1, µi+2, . . . , µl).

Thus γ/µ = (1, . . . , 1, 2, 1, . . . , 1), where the index 2 is in the jth

position and ν/u = (1, . . . , 1, 2, 1, . . . , 1), where the index 2 is in the
ith position. Since λ/γ = λ/µ

γ/µ and λ/ν = λ/µ
ν/µ , we have

λ/γ = ((λ/µ)1, . . . ., (λ/µ)j−1, (λ/µ)j − 1, (λ/µ)j+1, . . . , (λ/µ)s)

and

λ/ν = ((λ/µ)1, . . . ., (λ/µ)i−1, (λ/µ)i − 1, (λ/µ)i+1, . . . , (λ/µ)s).

Since j ̸= i then λ/γ ̸= λ/ν and since both compositions are alternate
odd then so must λ/µ be.

Now that we have established the second part of Theorem 2.2.3
for the generic case we will extend it to the non-generic cases. Firstly
recall that l > s, then we need the following lemma:
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Lemma 2.2.16. If Hµ
s (f) is (l−s)-dimensional, then there is a δ > 0

such that for any ϵ, with 0 < ϵ < δ, there is a monic polynomial p of
degree n− s such that Hµ

s (f ± ϵp) is generic and nonempty.

Proof. By Theorem 2.1.9, there is an h ∈ Hµ
s (f) with composition µ

and by Theorem 2.1.10, Hµ
s−1(f) is of dimension l− s+ 1 > 0. Thus

h is in the relative interior of Hµ
s (f) and by Lemma 2.1.8 we can

choose a δ > 0 such that Bδ(πn−l(h)) ⊂ πn−l(Hµ
s−1(f)). Since there

are finitely many polynomials in Hs−1(f) with at most s− 1 distinct
roots we can choose δ such that for any πn−l(g) ∈ Bδ(πn−l(h)) with
gs ̸= fs, Hµ

s (g) is generic. By Theorem 2.1.9, c(g) = µ and we can
choose g such that gs = fs ± ϵ for any 0 < ϵ < δ.

Lemma 2.2.17. If h ∈ Hµ
s (f) and c(h) < γ for some γ of length

s where γ/µ is alternate odd (resp. even), then h is minimal (resp.
maximal).

Proof. We will let γ/µ be alternate odd as the proof is analogous
when γ/µ is alternate even. If Hµ

s (f) is just a point, the statement is
clear so by Theorem 2.1.10, we may assume it is (l− s)-dimensional.

Suppose h is not minimal, then by Lemma 2.2.7, h is not locally
minimal. Thus for any δ > 0, there is a q ∈ Bn−s

δ (h) ∩ Hµ
s (f) with

hs+1 − qs+1 = r > 0. By Corollary 2.1.11, Hµ
s (f) is the closure of

its relative interior, so we may assume c(q) = µ. Thus by Theorem
2.1.9 and Lemma 2.1.8, πn−l(q) is in the interior of πn−l(Hµ

0 (f)) and
so Bl

ϵ(πn−l(q)) ⊂ πn−l(Hµ
0 (f)) for some ϵ with 0 < ϵ < r/2.

Next, note that all compositions occur in H0(f) and since Hγ
0(f)

is the closure of its relative interior then Bl
ϵ(πn−l(h)) ∩ πn−l(Hγ

0(f))
contains a point, πn−l(g), where c(g) = γ. The intersection

πn−l(Hµ
s (g)) ∩Bϵ(πn−l(q)) = Al

g1
∩ ... ∩ Al

gs
∩Bl

ϵ(πn−l(q))

is nonempty since qi = hi ∀ i ∈ [s] and Al
g1

∩ ... ∩ Al
gs

∩ Bl
ϵ(πn−l(h))

is nonempty. Thus there is a polynomial from Bn
ϵ (q) in Hµ

s (g).
By Lemma 2.2.16, we may pick g such that Hµ

s (g) is generic so
by Proposition 2.2.15, g must be the minimal polynomial in Hµ

s (g).
However the first free coefficient of any polynomial from Bn

ϵ (q) is
smaller than hs+1 − r/2 and gs+1 is greater than hs+1 − r/2. This is
a contradiction and so h must be minimal in Hµ

s (f).
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Lemma 2.2.18. If h ∈ Hµ
s (f) and c(h) ̸≤ ν for any ν of length s

where ν/µ is alternate odd (resp. even), then h is not minimal (resp.
maximal).

Proof. Again we just show the statement for alternate odd
compositions. If s = 2, then by the main theorem in [23] either
f has only one distinct root and H2(f) = {f} or H2(f) contains
no polynomials with strictly less than two distinct roots. Since
h ∈ Hµ

s (f) does not have composition (n), H2(f) is generic and
the statement follows from Proposition 2.2.15.

Next we let s ≥ 3 and by the previous paragraph we have that
H2(f) is generic and all but the composition (n) occurs. By Corollary
2.1.11, Hµ

2 (f) is the closure of its relative interior, so for any integer
i ≥ 1 there is a polynomial gi ∈ B1/i(h) ∩ Hµ

2 (f) with composition
µ. Due to Lemma 2.2.16, we may pick the gi’s such that Hµ

s (gi)
is generic. Thus, by Proposition 2.2.15, the composition, ν, of the
minimal polynomial in Hµ

s (gi) is such that ν/µ is alternate odd.
Since there are finitely many compositions with this property,

there is a composition ν such that for infinitely many i, the minimal
polynomial of Hµ

s (gi) has composition ν. For notation’s sake we will
assume that for all i ≥ 1, the minimal polynomial, qi, of Hµ

s (gi) has
the same composition ν. Since (1/i)i≥1 converges to zero and Hµ

2 (f)
is compact, the sequence (gi)i≥1 converges. Similarly, since Hµ

2 (f)
is sequentially compact, an infinite subsequence of (qi)i≥1 converges
and so for notation’s sake we will assume this is the sequence (qi)i≥1.

The limit of (gi)i≥1 is h and since the first s + 1 coefficients of
qi is equal to the first coefficients of gi, the limit, q, of (qi)i≥1 also
lies in Hµ

s (f). Since Hν
2(f) is the closure of its relative interior and

c(qi) = ν for all i, then c(q) ≤ ν and thus by Lemma 2.2.17, q is
the minimal polynomial of Hµ

s (f). Since c(h) is not smaller than a
composition γ such that γ/µ is alternate odd, then c(h) ̸< ν and
thus h ̸= q. So h is not the minimal polynomial of Hµ

s (f).

Proposition 2.2.15, covers the second part of Theorem 2.2.3 for
the generic cases and the combination of proves it for the non-generic
cases. And since we proved the first part of Theorem 2.2.3 for all
cases in the beginning of this subchapter, we are done.
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2.3 Contractible interior

An interesting consequence of Theorem 2.2.3 is that we can,
without too much work, argue that the relative interior of any
hyperbolic stratum is connected. From that point on we only
need to slightly strengthen the argument in [18] to show that the
relative interior is also contractible. Before we do that however,
note that in Theorem 2.1.10 we saw that a stratum is either
empty, a single polynomial or maximal dimensional. Thus Theorem
2.2.3 immediately gives a condition to determine when a nonempty
stratum is maximal dimensional and when it is just a single
polynomial:
Corollary 2.3.1. Let s ≥ 2 and let Hµ

s (f) be nonempty. Then Hµ
s (f)

is a single polynomial if and only if for any h ∈ Hµ
s (f), c(h)/µ is

smaller than an alternate odd and an alternate even composition of
length s.
Remark 2.3.2. The condition in Corollary 2.3.1 can also be phrased
as in [23]: that is, let m be the number of odd sequences of consecutive
1’s lying between integers greater than 1 in the composition ν =
c(h)/µ and let

w = m+
∑

νi>2
(νi − 2).

If ν < (1, 1, ..., 1), then ν is smaller than or equal to an alternate odd
(resp. even) composition of length s and no alternate even (resp.
odd) composition of length s if and only if w = l − s− 1 and ν ends
in an odd (resp. even) number of 1’s. Similarly, ν is smaller than
or equal to both an alternate odd and an alternate even composition
of length s if w > l − s− 1.

Now we are ready to show that the relative interior of the
hyperbolic strata are connected and the argument is roughly as
follows: by arguing inductively, starting from s = l − 1 and then
let s = l − 2 and so on, we can see that by the inductive hypothesis
a stratum is like a string of sausages and then we can use Corollary
2.3.1 to say that there can be at most one sausage in this string.
Lemma 2.3.3. [Sausage Lemma] The relative interior of Hµ

s (f) is
either empty or connected.
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Proof. We prove the statement with induction starting at the case
when Hµ

s (f) is one-dimensional and going up in dimension. So
suppose Hµ

s (f) is one-dimensional. Then by Proposition 2.1.5,
πn−l(Hs(f)) ⊂ R is an interval and so the interior is connected. By
Lemma 2.1.8, Hs(f) is homeomorphic to πn−l(Hs(f)), so the relative
interior of Hµ

s (f) is also connected.
Assume the statement is true whenever Hµ

s (f) is d-dimensional
for d ≥ 1, then we will show that it is true if Hµ

s (f) is (d + 1)-
dimensional. So let Hµ

s (f) be (d + 1)-dimensional. By induction
we have that the relative interior of Hµ

s+1(h) is connected for any
h ∈ Hµ

s (f). That is any affine hypersurface, An−s
a ⊂ Rn−s, defined

by fixing the first free coordinate to be a, meets only one connected
component of the relative interior of Hµ

s (f).
Suppose the relative interior of Hµ

s (f) has more than one
connected component. By Proposition 2.1.5 and Corollary 2.1.11,
Hµ

s (f) is connected and the closure of its relative interior. So if
B is one connected component of the relative interior then there is
another connected component, C, of the relative interior with

dist(B,C) := inf{dist(g, h) : g ∈ B and h ∈ C} = 0,

where dist(g, h) denotes the Euclidean distance.
Since dist(B,C) = 0 and any hypersurface An−s

a meets only one
connected component of the relative interior of Hµ

s (f), then there is
a value b ∈ R and δ ∈ R, with δ > 0, such that An−s

b±ϵ meets B and
An−s

b∓ϵ meets C for all 0 < ϵ < δ and where

An−s
b ∩B = An−s

b ∩ C = ∅.

Without loss of generality, assume that An−s
b+ϵ meets B for some

ϵ > 0. Then B contains only polynomials where the first free
coefficient is greater than b and C contains only polynomials where
the first free coefficient is smaller than b. But by Proposition 2.1.5
Hµ

s (f) is connected, thus there is a polynomial h ∈ Hµ
s (f) with

hs+1 = b. By Theorem 2.1.10, Hµ
s+1(h) is either of dimension d ≥ 1

or a single polynomial.
If it is d-dimensional, then by Theorem 2.1.9, it contains a

polynomial, g, with composition µ. Therefore g is a relative interior
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point of Hµ
s (f) and sits in a connected component, D, of the relative

interior. By Lemma 2.1.8, πn−l(g) sits in the connected component
πn−l(D) of the interior of πn−l(Hµ

s (f). Thus there is a 0 < ϵ′ < δ such
that Bϵ′(πn−l(g)) ⊆ πn−l(D) and thus the hyperplane Al−s

b+ϵ′/2 ⊂ Rl−s

meets both πn−l(D) and πn−l(B). But that means D = B, since
the relative interior of Hµ

s (f) ∩ An−s
b+ϵ′/2 is connected and Hµ

s (f) and
πn−l(Hµ

s (f)) are homeomorphic. This is a contradiction and thus
Hµ

s+1(h) must be a point.
By Corollary 2.3.1 and Remark 2.3.2, we therefore have that

m+
∑

νi>2
(νi − 2) > l − s− 2,

where m is the number of odd sequences of consecutive 1’s lying
between integers greater than 1 in ν = c(h)/µ. Thus by Remark 2.3.2
and Theorem 2.2.3, h is either the minimal or maximal polynomial of
Hµ

s (f). But this is a contradiction since any polynomial in B have a
first free coefficient greater than hs+1 and any polynomial in C have
a first free coefficient smaller than hs+1. Thus the relative interior of
Hµ

s (f) is connected.

Theorem 2.3.4. The relative interior of Hµ
s (f) is either empty or

contractible.
Proving that the relative interior of Hµ

s (f) is contractible is
by Lemma 2.1.8 equivalent to proving that the interior of M :=
πn−l(Hµ

s (f)) ⊂ Rl−s is contractible, so we will do this instead.
This will be done by an inductive argument starting with the
one-dimensional set πl−s−1(M) and then the two-dimensional set
πl−s−2(M) and so on. Thus we will need to study the projection
π : πk(M) → Rl−s−k−1 that forgets the last coordinate. We will
follow the line of argument in section 2.4 of Kostov’s article [18] (see
statements 2.7 to 2.12), but we need to strengthen a technical part
in Kostov’s argument. However the main idea can be found in his
article so we will be a little less rigid with the proof.

We will assume that M is (l−s)-dimensional and we let l > s and
k < l − s− 1 for the remainder of this subchapter. Also, we will let
s ≥ 2 since the theorem follows from Lemma 2.1.4 when s ≤ 1. Note
that as s ≥ 2, any closed subset K ⊆ M is compact and since π is
continuous, then π(K) is compact. Thus π maps open sets to open
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sets and similar for πk. The first step is to generalise Lemma 2.2.11
and show that the boundary of πk(M) can be split into a “lower”
and an “upper” part, both of which are closed.
Lemma 2.3.5. Every fibre of π : πk(M) → Rl−s−k−1 is either a point
or a compact interval.

Proof. If p ∈ πk+1(M), then p = πn−l+k(h) for some h ∈ Hµ
s (f)

and π−1(p) = πn−l+k(Hµ
l−k−1(h)). As usual we view πn−l(Hµ

l−k−1(h))
as a subset of Rk+1 and by Lemma 2.1.8 and Proposition 2.1.5,
πn−l(Hµ

l−k−1(h)) is connected and either a single point or of dimension
k + 1. Thus π−1(p) ⊂ R is a point or an interval and since πk maps
compact sets to compact sets πn−l+k(Hµ

l−k−1(h)) is compact.

Lemma 2.3.6. Every fibre of π : πk(M) → Rl−s−k−1 that is an
interval contains exactly two points from ∂(πk(M)), these points are
the endpoints of the interval.

Proof. We saw that if p ∈ πk+1(M), then π−1(p) = πn−l+k(Hµ
l−k−1(h))

for some h ∈ Hµ
s (f), thus π−1(p) is the intersection of πk(M) and a

line in Rl−s−k. Therefore a boundary point of π−1(p) is a boundary
point of πk(M), so we just need to show that these are the only
points in π−1(p) from ∂(πk(M)).

First we show that there are finitely many points from ∂(πk(M))
in π−1(p). To see this note that as πk maps open sets to open
sets, then for any composition ν with ℓ(ν) > l − k − 1, it maps
the relative interior of Hν

s(f) into the relative interior of π(Hν
s(f))

and so the boundary of πk(M) consists of some of the points πk(q),
where q ∈ Hµ

s (f) has at most l−k−1 distinct roots. So any point in
π−1(p) from ∂(πk(M)) are of the form πk(g), where g ∈ Hµ

l−k−1(h) has
a composition of length at most l− k− 1. But for each composition
ν < µ of length l − k − 1, Hν

l−k−1(h) is at most a single polynomial,
thus since there are finitely many compositions, there must be finitely
many points from ∂(πk(M)) in π−1(p).

Lastly, we can use this to argue just as in the proof of Theorem
2.1.9 so we just sketch the argument here. We assume that π−1(p)
contains a point q in its interior, where q ∈ ∂(πk(M)). Then since
there are finitely many points from ∂(πk(M)) in π−1(p) = conv(a, b),
there is a q− ∈ Int(πk(M)) lying between q and a and a point,
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q+ ∈ Int(πk(M)) lying between q and b. Thus there is an ϵ > 0 such
that the balls Bl−s−k

ϵ (q−) and Bl−s−k
ϵ (q+) lie in πk(M) and Bl−s−k

ϵ (q)
does not. By translating the line spanned by q− and q+ slightly, it
will meet all three balls but contain a point from Bl−s−k

ϵ (q) that lies
outside πk(M). Thus the intersection of the line with πk(M) is a
disconnected set of the form πn−l+k(Hµ

l−k−1(r)), for some r ∈ Hµ
s (f),

which contradicts Proposition 2.1.5.

Due to Lemma 2.3.6, we can separate the boundary of πk(M)
into a lower and an upper part. That is ∂(πk(M)) = Lk ∪Uk, where

Lk = {x = (x1, ..., xl−s−k) ∈ πk(M)|
xl−s−k ≤ yl−s−k ∀ (y1, ..., yl−s−k) ∈ π−1(π(x))},

and

Uk = {x = (x1, ..., xl−s−k) ∈ πk(M)|
xl−s−k ≥ yl−s−k ∀ (y1, ..., yl−s−k) ∈ π−1(π(x))}.

The following is proven just like Lemma 2.2.11 so we will skip the
proof:
Lemma 2.3.7. The sets Lk and Uk are closed.

Since π maps open balls in Rl−s−k to open balls in Rl−s−k−1,
the fibre of a point in ∂(πk+1(M)) must contain only points from
∂(πk(M)). Thus by Lemma 2.3.5 and Lemma 2.3.6, the fibre is a
single point. However, due to the connectedness of the interior of M
we get the following strengthening of statement 2.11 in [18]:
Lemma 2.3.8. The fibre π−1(p) of π : πk(M) → Rl−s−k−1 is a point
if and only if p ∈ ∂(πk+1(M)).

Proof. We will do a contrapositive proof, but firstly note that as πk

maps open balls to open balls and by Lemma 2.1.8 and Corollary
2.1.11, M is the closure of its interior so is πk(M). Also, by Lemma
2.3.3 Int(M) is connected and since πk is continuous the interior of
πk(M) is connected.

Let p lie in the interior of πk+1(M) and suppose the fibre
π−1(p) = πn−l+k(Hµ

l−k−1(h)) just contains the point πn−l+k(h). Since
p = πn−l+k+1(h) lies in the interior of πk+1(M), which is of dimension
l−s−k−1 ≥ 1, then πn−l+k+1(Hµ

l−k−2(h)) is one-dimensional and so
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πn−l+k(Hµ
l−k−2(h)) is two-dimensional. Thus for notation’s sake we

will assume πk(M) is already two-dimensional.
Since p = πn−l+k+1(h) lies in the interior of πk+1(M) there is

a point in πk(M) that have a first coordinate greater than the
first coordinate of πn−l+k(h) and a point whose first coordinate is
smaller than the first coordinate of πn−l+k(h). We can chose those
points to be interior points because πk(M) is the closure of its
interior. Thus πn−l+k(h) separates the interior of πk(M) which is
a contradiction.

Due to Lemma 2.3.8 we see that π(Lk ∩ Uk) = ∂(πk+1(M)) and
we are now in a position to prove Theorem 2.3.4:

Proof of Theorem 2.3.4. We will do an induction on the dimension of
∂(πk(M)) and the interior of ∂(πk(M)) is clearly contractible when
∂(πk(M)) is one-dimensional. So let the dimension of ∂(πk(M)) be
greater than one, that is, we have that k < l − s− 1.

The restrictions π|Lk
: Lk → πk+1(M) and π|Uk

: Uk → πk+1(M)
are continuous and bijective. Also, due to the Closed Graph Theorem
(see exercise 8 in paragraph 26, chapter 3 of [25]), their inverses are
continuous since Lk and Uk are closed by Lemma 2.3.7. Therefore
π|Lk

and π|Uk
are homeomorphisms and thus so is the map

ϕ : πk+1(M) → πk(M),

given by
ϕ(p) = 1

2(π|−1
Uk

(p) − π|−1
Lk

(p)).

Combined with the induction hypothesis, there is therefore a
deformation retract

θ′ : ϕ(Int(πk+1(M))) × [0, 1] → ϕ(Int(πk+1(M)))

of ϕ(Int(πk+1(M))) to some point q ∈ ϕ(Int(πk+1(M))).
The projection P := ϕ ◦ π : πk(M) → πk(M) is continuous and

maps the interior of πk(M) onto ϕ(Int(πk+1(M))), so the map

ψ : Int(πk(M)) × [0, 1] → Int(πk(M)),

given by
ψ(a, t) = (1 − t)a+ tP (a),
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is a deformation retract of the interior of πk(M) onto the subset
ϕ(Int(πk+1(M))). Thus the map

Ψ : Int(πk(M)) × [0, 1] → Int(πk(M)),

given by

Ψ(a, t) =
ψ(a, 2t), if t ∈ [0, 1/2],
θ(a, 2t− 1), if t ∈ [1/2, 1],

is a deformation retract of Int(πk(M)) to the point q ∈ Int(πk(M)).
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Chapter 3

... and combinatorics

In this chapter we use the results from the previous chapter to
establish several combinatorial properties of “hyperbolic lattices”,
that is, posets of hyperbolic strata. In the first part we ask which
compositions occur in any given hyperbolic slice. To answer this
we show that similarly to the face lattice of polytopes, hyperbolic
lattices are graded, atomic and coatomic lattices. In particular, this
gives us a combinatorial algorithm to compute which compositions
occur in a hyperbolic slice assuming we know which compositions of
length at most s occur. This enables us to compute more examples
of hyperbolic lattices than we otherwise would be able to.

In the second part we imitate a line shelling of polytopes and
show that in the generic case the boundary complex of the dual of
hyperbolic lattices are shellable simplicial complexes. In particular
that means that generically the boundary complex of the dual of
hyperbolic lattices are combinatorial spheres. This gives us bounds
and relations on the number of i-dimensional strata in hyperbolic
slices since, according to [2], combinatorial spheres satisfy the g-
theorem. Next we show that the boundary complex of the dual of
hyperbolic lattices are generically like “subdivisions” of the boundary
complex of some non-generic dual hyperbolic lattice. This allows us
to show that the dual lattices satisfy the Upper Bound Theorem
(UBT) in general.
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3.1 The hyperbolic lattice

In this subchapter we establish that the poset of strata of
Hs(f) is a graded, atomic and coatomic lattice and we use this to
construct a combinatorial algorithm to compute which compositions
occur hyperbolic slices. We end by giving a restriction to which
compositions can occur in hyperbolic slices which can improve the
algorithm further. We begin by establishing that the poset of
compositions is a simplex before we move on to the posets of strata.
So let C(n) denote the poset of compositions of n.
Lemma 3.1.1. The poset of compositions of n is isomorphic to the
face lattice of an (n− 2)-dimensional simplex.

Proof. Let D(n − 1) denote the subsets of [n − 1] partially ordered
by inclusion and let ϕ : C(n) → D(n− 1) be the map given by

(µ1, ..., µl) 7→ {µ1, µ1 + µ2, ..., µ1 + ...+ µl−1}.

Also, let θ : D(n− 1) → C(n) be the map given by

{m1, ...,mk} 7→ (m1,m2 −m1, ...,mk −mk−1, n−mk),

where the mi’s are ordered increasingly. Then it is clear that both ϕ
and θ are injective and we see that θ ◦ ϕ is the identity map on C(n)
so θ is the inverse of ϕ. Secondly, we can see that the composition
ν is smaller than µ if and only if ϕ(ν) ⊆ ϕ(µ), thus ϕ is a poset
isomorphism. Since D(n− 1) is isomorphic to the face lattice of any
(n− 2)-dimensional simplex then so is C(n).

Note that in particular the poset of compositions is a lattice and
the isomorphism in the preceding proof lets us compute the join and
meet of any two compositions quite easily. That is, if µ and ν are
two compositions of n, then their join, µ ∨ ν, equals ϕ−1(M), where
M is the smallest subset of [n − 1] containing both ϕ(µ) and ϕ(ν).
Similarly, the meet of µ and ν equals the preimage of the largest
subset contained in both ϕ(µ) and ϕ(ν).

From Lemma 3.1.1 we also get that the set of strata of Hs(f),
partially ordered by inclusion, form a lattice. To see this let us
determine the meet of two faces of Hs(f), Hµ

s (f) and Hν
s(f): The

meet of two strata must be contained in their intersection since the

44
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partial order is given by inclusion. Also, by definition the of the
strata we have

Hµ
s (f) ∩ Hν

s(f) = Hµ∧ν
s (f),

so the intersection is a stratum of Hs(f). Thus we have that
Hµ

s (f) ∧ Hν
s(f) = Hµ∧ν

s (f)
and we have shown that the poset of strata of Hs(f) is a lattice. This
gives rise to the following definition:
Definition 3.1.2. We let Ls(f) denote the lattice of strata of Hs(f)
and we call Ls(f) a hyperbolic lattice.

Note that by Theorem 2.1.9 and Theorem 2.1.10, Ls(f)\∅ is
isomorphic to the poset of compositions occurring in Hs(f). Thus
we will identify Ls(f) with

{c(h)|h ∈ Hs(f)} ∪ {(n)}
when it makes the notation easier.

It is worth pointing out that just because the meet of Hµ
s (f) and

Hν
s(f) equals Hµ∧ν

s (f), this does not a priori mean that µ ∧ ν is
the only composition, γ, such that Hµ

s (f) ∧ Hν
s(f) = Hγ

s (f). For
instance if Hµ

s (f) is empty, then Hµ
s (f) ∧ Hν

s(f) = Hµ
s (f) even when

µ ∧ ν ̸= µ, so different compositions may label the same stratum.
Thus {c(h)|h ∈ Hs(f)} ∪ {(n)} is a subposet of the compositions of
n and a lattice since Ls(f) is a lattice, but it need not be a sublattice
of the compositions of n.

We shall get started on studying the lattice properties of
hyperbolic posets. First we will shortly discuss what happens when
s = 0 and s = 1 and then we move on to the more interesting
case of s ≥ 2. When s = 0 naturally all compositions occur in
H0(f) so L0(f) is isomorphic to the set of compositions of n. Also,
note that there are no maximal or minimal polynomials in H0(f),
so all compositions occur in H1(f) and L1(f) is isomorphic to the
set of compositions of n. Thus by Lemma 3.1.1, L0(f) and L1(f)
are isomorphic to the face lattice of an (n − 2)-dimensional simplex
which by Theorem 2.7 in [37] means that these lattices are graded,
atomic and coatomic.

For the remainder of this subchapter we will let s ≥ 2 and recall
that when s ≥ 2 the strata are compact. Also note that by the main
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theorem in [23] there is one maximal polynomial h ∈ H1(f). It is
the unique polynomial in H1(f) with only one distinct root and h
is maximal for all the strata of H1(f). Thus if s ≥ 2 and Hs(f)
does not equal H(n)

s (f), then the stratum H(n)
s (f) must be empty

and since the composition (n) is smaller than all compositions, then
every stratum contains the empty set. Thus we will also assume
Hs(f) ̸= H(n)

s (f) for the remainder of this subchapter.
Proposition 3.1.3. When s ≥ 2 the lattice Ls(f) is graded and the
rank of a stratum is one more than its dimension.

Proof. The statement is clear when Hs(f) contains only one
polynomial so suppose it contains more than one polynomial.
Suppose a stratum Hµ

s (f) is strictly contained in Hν
s(f), then by

Theorem 2.1.10, dim(Hµ
s (f)) < dim(Hν

s(f)). Also, since Ls(f)
contains the empty set as its minimal element, any maximal chain in
the lattice of strata has length at most dim(Hs(f)) + 1 = n− s+ 1.

Conversely, suppose we have that Hµ
s (f) is strictly contained in

Hν
s(f), where dim(Hµ

s (f)) < dim(Hν
s(f)) − 1, let us show that there

is a stratum, Hγ
s (f), with Hµ

s (f) ⊂ Hγ
s (f) ⊂ Hν

s(f). Firstly, if Hµ
s (f)

is empty, Hν
s(f) is at least one-dimensional and by Theorem 2.1.9 its

relative interior are the polynomials with composition ν. But since
it is compact it must contain a nonempty stratum, Hγ

s (f), in its
relative boundary. Since Hγ

s (f) contains the empty stratum Hµ
s (f)

we have Hµ
s (f) ⊂ Hγ

s (f) ⊂ Hν
s(f).

Next, if Hµ
s (f) is nonempty and contains no polynomials with

at least s distinct roots, then by Theorem 2.1.10, Hµ
s (f) is a single

polynomial. Since Hµ
s (f) is zero-dimensional, Hν

s(f) is at least two-
dimensional and by Proposition 2.1.5, it is contractible. Since it
is compact and contractible, its relative boundary is at least one-
dimensional and connected. If Hµ

s (f) is not contained in a one-
dimensional stratum of Hν

s(f), it must be an isolated part of the
relative boundary of Hν

s(f). But since the relative boundary is
connected, Hµ

s (f) must be the whole relative boundary which is
impossible since Hµ

s (f) is zero-dimensional. Thus there is a one-
dimensional stratum, Hγ

s (f) ⊂ Hν
s(f), which strictly contains Hµ

s (f).
Lastly, if there is a h ∈ Hµ

s (f) with at least s distinct roots, then
we may assume µ = c(h) by Theorem 2.1.9 and Theorem 2.1.10.
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3.1. The hyperbolic lattice

Since all compositions greater than µ occurs in Hs(f) and

ℓ(µ) − s = dim(Hµ
s (f)) < dim(Hν

s(f)) − 1 = ℓ(ν) − s− 1,

then ℓ(µ) < ℓ(ν)−1 and so there is a composition γ, with µ < γ < ν.
By Theorem 2.1.10, Hγ

s (f) is of dimension (ℓ(γ) − s) and therefore
Hµ

s (f) ⊂ Hγ
s (f) ⊂ Hν

s(f).
Thus any maximal chain will be at least of length n−s+1 and so

any maximal chain has length n−s+1. Also, by the above argument
any stratum of dimension m ≥ 0 covers a stratum of dimension m−1,
thus its rank must be m+ 1.

Next up, we will show that hyperbolic lattices are atomic.
Lemma 3.1.4. If s ≥ 2 and m > 0, any m-dimensional hyperbolic
stratum contains at least two distinct (m− 1)-dimensional strata.

Proof. By Proposition 3.1.3, an m-dimensional stratum, Hµ
s (f), con-

tains an (m − 1)-dimensional stratum Hν
s(f) which, by Proposi-

tion 2.1.5, is contractible. But since Hµ
s (f) is compact its relative

boundary is nonempty and not contractible so Hν
s(f) cannot be the

whole relative boundary of Hµ
s (f). Also, since Hν

s(f) is closed, then
RelBd(Hµ

s (f))\Hν
s(f) is relatively open in RelBd(Hµ

s (f)). Thus by
Corollary 2.1.11, RelBd(Hµ

s (f))\Hν
s(f) is (m−1)-dimensional and so

there must be another (m− 1)-dimensional stratum in Hµ
s (f) since,

by Theorem 2.1.9, the polynomials with composition µ does not lie
in the relative boundary of Hµ

s (f).

Proposition 3.1.5. The lattice Ls(f) is atomic.

Proof. By convention the empty set is the join of an empty set of
atoms and an atom is naturally the join of itself. Also, by Proposition
3.1.3, the lattice is graded and a stratum’s rank is its dimension plus
one, so the atoms are the zero-dimensional strata.

If Hµ
s (f) is an m-dimensional stratum, where m > 0, then by

Lemma 3.1.4, there are two distinct (m − 1)-dimensional strata,
Hν

s(f) and Hγ
s (f), contained in Hµ

s (f). Since Hν
s(f) and Hγ

s (f) are
distinct, then by Proposition 3.1.3 any stratum that contains both
strata must be at least m-dimensional. Since Hµ

s (f) is m-dimensional
and contains both Hν

s(f) and Hγ
s (f), it must be the join of Hν

s(f)
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and Hγ
s (f). By induction, both Hν

s(f) and Hγ
s (f) are joins of atoms

and since Hµ
s (f) is the join of Hν

s(f) and Hγ
s (f), it must also be a

join of atoms.

Similar to the property that hyperbolic lattices are atomic we will
show that hyperbolic lattices are also coatomic.
Lemma 3.1.6. If Hs(f) contains at least two polynomials and s ≥ 2,
then for m < n − s − 1 any m-dimensional hyperbolic stratum is
contained in at least two distinct (m+ 1)-dimensional strata.

Proof. Let Hµ
s (f) be an m-dimensional stratum. If m > 0 the

statement follows from Lemma 2.2.14. If m = 0, then Hµ
s (f) = {h}

and since n − s > 1, the set Hs(f) is at least two-dimensional.
By Proposition 3.1.3, h is contained in a two-dimensional stratum,
Hγ

s (f), and a one-dimensional stratum, Hν
s(f) ⊂ Hγ

s (f). By
Theorem 2.1.9, Hν

s(f) is in the one-dimensional relative boundary
of Hγ

s (f) and h is in the relative boundary of Hν
s(f).

According to Corollary 2.1.11, Hγ
s (f) is the closure of its relative

interior which by Lemma 2.3.3 is connected. Thus, starting from h,
we can traverse its boundary clockwise or counter-clockwise. But
since h is one of the relative boundary points of Hν

s(f), at most
one of the directions consists immediately of polynomials whose
composition is ν. Thus there must be some other one-dimensional
stratum for which h is a boundary point.

Lastly, if m = −1, then Hµ
s (f) is empty. Since Hs(f) is at least

one-dimensional and, by Proposition 3.1.5, the lattice of strata is
atomic, it must contain at least two atoms. Thus the empty stratum
is contained in at least two zero-dimensional strata.

All together we therefore have:
Theorem 3.1.7. When s ≥ 2 the lattice Ls(f) is graded, atomic and
coatomic and it is ranked by dim(Hµ

s (f)) + 1.

Proof. The argument for coatomicity is analogous to the proof of
atomicity, just start the induction from the (n− s− 1)-dimensional
strata and use Lemma 3.1.6 instead of Lemma 3.1.4 for the induction
step.
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3.1. The hyperbolic lattice

3.1.1 Computing lattices

We will use Theorem 3.1.7 to construct an algorithm to compute
which compositions occur in Hs(f) based on the compositions of
length at most s that occurs. Next, we will use what we know about
minimal and maximal polynomials to bound which compositions can
occur in a generic slice and thus improve the computation of which
compositions occur in Hs(f).
Algorithm 3.1.8. Let s ≥ 2, Hs(f) be (n − s)-dimensional and let
U denote the set of compositions in Hs(f) of length at most s.

Step 1: Compute the join of every pair of compositions in U :
V := {µ ∨ ν|µ, ν ∈ U & µ ̸= ν}.

Step 2: Compute the upward closure of V :
V := {γ|∃ ν ∈ V with ν ≤ γ}.

Then U ∪ V is the set of all compositions occurring in Hs(f).

Proof. Let γ ∈ W , then γ ≥ µ ∨ ν for some µ, ν ∈ U . Thus both µ

and ν occur in Hs(f) and so Hγ
s (f) contain at least two polynomials.

So by Theorem 2.1.10, Hγ
s (f) is maximal dimensional and therefore

there is a polynomial with composition γ. Thus all compositions
computed in the algorithm occurs in Hs(f).

Suppose a composition µ, with ℓ(µ) > s, occurs in Hs(f).
Then by Theorem 2.1.10, Hµ

s (f) is at least one-dimensional and
by Theorem 3.1.7, Hµ

s (f) is the join of at least two distinct atoms
Hν

s(f) = {h} and Hγ
s (f) = {g}. We may assume ν and γ are the

compositions of h and g respectively. Then ν ∨γ ∈ V and ν ∨γ ≤ µ,
thus µ ∈ W so it was not left out by the algorithm.

Remark 3.1.9. We can see from Theorem 2.1.10 and Proposition
3.1.3 that if Hs(f) is generic, step 1 in Algorithm 3.1.8 can be skipped
and one can just compute the upward closure of the set U to compute
all the compositions occurring in Hs(f).
Remark 3.1.10. Step 1 in Algorithm 3.1.8 can be accomplished
using the method described after Lemma 3.1.1. That is, the join
of µ and ν can be computed by first constructing the set

M = {µ1, µ1 + µ2, ..., n, ν1, ν1 + ν2, ..., n}.
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Next, let m1, ....,mk be distinct, increasingly ordered and such that
{m1, ...,mk} = M . Then the join of µ and ν is the composition

(m1,m2 −m1,m3 −m2, ...,ml −ml−1).

However, compositions and our partial order are both implemented
in Sage ([30]), so the algorithm can easily be implemented there.

We finish by discussing how to find the compositions of length
at most s that occurs in Hs(f). At first glance this requires one to
check which of the sets Vµ

s (f)∩Ws are nonempty for all compositions
µ of length s, or equivalently, check which compositions the points
in Vλ

s (f) gives rise to for all partitions λ of length s. However for
generic slices we can improve this approach.
Proposition 3.1.11. Suppose µ and ν are the minimal and maximal
compositions, respectively, of some generic slice Hs(f). If ℓ(γ) = s

and γ occurs in Hs(f), then γi ≤ max{µi, νi} for all i ∈ [s].

Proof. By Remark 3.1.9 and Lemma 2.2.7 if γ ̸= ν there is a
composition of the form γ′ = (γ1, ..., γs−j−1, γs−j − 1, 1, γs−j+1, ..., γs)
in Hs(f) such that γ is the minimal composition in the stratum
Hγ′

s (f). Thus by Theorem 2.2.3 j is in the set {1, 3, 5, ...}.
Similarly, the maximal composition in Hγ′

s (f) must be of the form
(γ′

1, ..., γ
′
s−i+1, γ

′
s−i + γ′

s−i−1, γ
′
s−i−2, ..., γ

′
s) with i ∈ {2, 4, 6, ...} and

thus has a strictly larger (s− i)th part than γ.
That is, for every composition other than the maximal compos-

ition, there is a composition with a strictly larger (s − i)th part for
i ∈ {2, 4, 6, ...}. So unless ν has the maximal (s− i)th part, for every
i ∈ {2, 4, 6, ...}, then there are infinitely many compositions in Hs(f)
which is impossible. Thus ν has the maximal (s− i)th part for every
i ∈ {2, 4, 6, ...}. The argument for minimal compositions is analogous
so we conclude that γi ≤ max{µi, νi} for all i.

Remark 3.1.12. When s = 3, and Hs(f) is generic, it can be shown
that the compositions in Proposition 3.1.11 will all occur in Hs(f).
This happens since when s = 3 and Hs(f) is generic, there is only
one choice for a minimal composition of any stratum. However, when
s = 4, there are more choices of minimal and maximal compositions
and one can find a counterexample.
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Thus if Hs(f) is generic, we can start by looking for the minimal
and maximal compositions. That is we can check which of the
sets Vµ

s (f) ∩ Ws is nonempty for all alternate odd and alternate
even compositions, µ, of length s. Next, we check which of the
sets Vγ

s (f) ∩ Ws are nonempty for all compositions, γ, of length s,
whose parts are bounded by the parts of the minimal and maximal
composition. For non-generic slices we can do something similar by
considering a generic slice “close by”, see Proposition 3.2.8 in the
following subchapter.

3.2 Sphericity of the dual

In this subchapter we focus on the dual of Ls(f) and we will
first see that the boundary complex of this lattice is generically
a simplicial complex. This will make it easier to show that the
boundary complex of the dual lattice is shellable in the generic case.
This implies that the complex is generically a combinatorial sphere
and we can in particular make use of the g-theorem for spheres to
bound the number of i-dimensional strata. Next we show that the
boundary complex of the dual of a non-generic hyperbolic lattice is
like a weld of some generic complex, that is, the boundary complex
of a dual generic lattice is like a subdivision of the boundary complex
of some dual non-generic lattice. Thus we can use the Upper Bound
Theorem for spheres to give an upper bound on the number of i-
dimensional strata in general.

We denote the dual lattice of Ls(f) by L∆
s (f) and the boundary

complex of L∆
s (f) by ∂(L∆

s (f)) := L∆
s (f)\∅. As we saw in the

beginning of the previous subchapter, Ls(f) is a simplex when s ≤ 1
and therefore the dual lattice is also a simplex. Thus for this
subchapter we will restrict to the cases when s ≥ 2.
Lemma 3.2.1. The boundary complex of L∆

s (f) is generically a
simplicial complex of dimension (n− s− 1).

Proof. Since Hs(f) is generic, then by Remark 3.1.9, Ls(f)\∅ is the
upward closure in C(n) of the compositions of length s that occurs in
Hs(f). So by Lemma 3.1.1, ∂(L∆

s (f)) is a collection of simplices and
by Proposition 3.1.3 these simplices have dimension n− s− 1.
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Remark 3.2.2. The restriction to the generic case in Lemma 3.2.1
is sufficient, but not necessary. That is, there are examples of non-
generic slices where the boundary complex, ∂(L∆

s (f)), is a simplicial
complex and examples where it is not (see for instance Example 2.2.4
in the previous chapter and Example 3.3.5 in the next subchapter).
However, the same kind of argument as in Lemma 3.2.1 can be used
to show that if we remove the empty set and the zero-dimensional
strata from Ls(f), then the dual poset is a simplicial complex even
for non-generic cases.

We will consider a generic slice Hs(f) and construct a shelling of
the pure simplicial complex ∂(L∆

s (f)). To do so we shall use Theorem
2.2.3 to define a partial order on the zero-dimensional strata of Hs(f).
This will allow us to imitate dual line shellings of polytopes and give
a shelling order for the dual lattice. So let V1, . . . , Vk be the zero-
dimensional strata of Hs(f), then V1, ..., Vk are also the facets of
∂(L∆

s (f)).
Definition 3.2.3. Let “≤p” denote the partial order on V1, . . . , Vk

that is defined by Vi ≤ Vj if there are indices i = m1,m2, ...,md = j

such that for any r ∈ [d− 1], Vmr
and Vmr+1 are contained in a one-

dimensional stratum for which the polynomial in Vmr
is minimal and

the polynomial in Vmr+1 is maximal.
Lemma 3.2.4. Let S be a stratum of Hs(f) and let h ∈ Vj be the
minimal (resp. maximal) polynomial of the stratum S. If Vi ⊆ S,
then Vj ≤p Vi (resp. Vj ≥p Vi).

Proof. Since h is minimal in S, then either Vi = Vj or S contains a
one-dimensional stratum, S1, for which g ∈ Vi is maximal. Otherwise
g would be minimal in S by Lemma 2.2.12. By Theorem 2.2.3, the
stratum S1 also contains a minimal polynomial q ∈ Vm for some m
and therefore Vm <p Vi.

And by the same argument as above, either q = h or there must
be a one-dimensional stratum S2 ⊆ S, for which q is maximal. We see
that by continuing this process we must eventually end up at h and so
Vj ≤p Vi. The argument for maximal polynomials is analogous.

Definition 3.2.5. Let ≤ and ≤∗ be partial orders on a set P . Then
≤ is finer than ≤∗ if for any a, b ∈ P with a ≤∗ b we have a ≤ b.
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Theorem 3.2.6. Let Hs(f) be generic and let ≤ be a total order on
the zero-dimensional strata {V1, . . . , Vk}. If ≤ is finer than ≤p, then
the total order (and its reverse) induces a shelling of ∂(L∆

s (f)).

Proof. We may assume by relabelling that V1 < · · · < Vk. As we
are shelling the boundary complex of the dual lattice we will first
rephrase the definition of a shelling to suit our setting:

V1, . . . , Vk is a shelling of ∂(L∆
s (F )) if for any i ∈ {2, . . . , k} and

any j ∈ [i− 1], there is an r ∈ [i− 1] such that the minimal stratum
containing both Vi and Vj also contains a one-dimensional stratum,
R, which contains both Vi and Vr. Note that this guarantees that in
∂(L∆

s (f)), the intersection of the facets Vi and Vj is contained in the
ridge R, which again is contained in the facets Vi and Vr.

So let S be the smallest stratum containing both Vi and Vj. The
polynomial h ∈ Vi cannot be the minimal polynomial of S, otherwise
Vi <p Vj by Lemma 3.2.4, which would contradict ≤ being finer than
≤p. So by Lemma 2.2.12, h is maximal for a one-dimensional stratum
R ⊂ S. Let g ∈ Vr be the minimal polynomial of R. then Vr <p Vi

and therefore Vr < Vi since ≤ refines ≤p and so r ∈ [i− 1].

Corollary 3.2.7. The boundary complex of L∆
s (f) is generically a

combinatorial (n− s− 1)-sphere.

Proof. Any ridge of ∂(L∆
s (f)) corresponds to a one-dimensional

stratum Hµ
s (f) ∈ Ls(f). As we have seen before, since s ≥ 2 Hµ

s (f)
is compact and thus there are exactly two distinct zero-dimensional
strata in Hµ

s (f) making up its relative interior. That is, ∂(L∆
s (f)) is

an (n− s− 1)-dimensional shellable simplicial complex where every
ridge is contained in exactly two facets. So by Proposition 1.2.12,
∂(L∆

s (f)) is a combinatorial (n− s− 1)-sphere.

Next let us look at how the non-generic lattices differ from generic
lattices. The main difficulty lies in the fact that ∂(L∆

s (f)) is not
always a simplicial complex and thus it is not so easy to see if
refinements of ≤p will induce a shelling of ∂(L∆

s (f)). An even bigger
problem is that since ∂(L∆

s (f)) is not always a simplicial complex (for
instance the pyramid in Example 3.3.5), it is not clear if ∂(L∆

s (f)) is
even a polytope complex in general. However we can use Theorem
2.2.3 to compare non-generic slices to generic slices “close by”.
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Proposition 3.2.8. If f has no repeated roots and n − s > 0, then
there is a δ > 0 such that for all ϵ with 0 < ϵ < δ,

1. Hs(f + ϵtn−s) is nonempty and generic,
2. λ ∈ Ls(f + ϵtn−s) =⇒ λ ≥ µ for some µ ∈ Ls(f),
3. µ ∈ Ls(f) & ℓ(µ) ≥ s =⇒ µ ∈ Ls(f + ϵtn−s) and
4. for any µ ∈ Ls(f) with ℓ(µ) < s, there is a λ ∈ Ls(f + ϵtn−s)

of length s such that λ ≥ µ and λ is incomparable with all other
compositions of length at most s in Ls(f).

Proof. Note that as f has no repeated roots and n − s > 0, then
dim(Hs(f)) ≥ 1 by Theorem 2.1.9. The first statement follows from
Lemma 2.2.16. For the second statement, let λ ∈ Ls(f + ϵtn−s) and
let h be the minimal polynomial of Hλ

s−1(f). By Theorem 2.2.3, h has
at most s− 1 distinct roots. Thus since Hs(f + ϵ′tn−s) is nonempty
and generic for any 0 < ϵ′ ≤ ϵ, h does not lie in Hs(f + ϵ′tn−s). So
we either have h ∈ Hs(f) and c(h) < λ or h ̸∈ Hs(f) and λ ∈ Ls(f).

For the third statement, let q be a polynomial in Hs(f) with at
least s distinct roots and composition µ. By Theorem 2.1.10, Hµ

s−1(f)
is of dimension ℓ(µ) − s + 1 > 0. By Theorem 2.2.3, Hµ

s−1(f) has
a maximal polynomial, g, with at most s − 1 distinct roots. Thus
the first free coefficient of g ∈ Hs−1(f) is at least as large as fs + δ.
Since Hµ

s−1(f) is contractible the intersection of Hµ
s−1(f) and either of

the hyperplanes Afs+δ ⊂ Rn−s+1 and Afs
is nonempty, thus so is the

intersection with the hyperplane Afs+ϵ. So Hµ
s (f+ϵtn−s) is nonempty

and contains no polynomial with strictly less than s distinct roots.
Thus Hµ

s (f + ϵtn−s) contains a polynomial with composition µ.
For the last statement, suppose p ∈ Hs(f) is a polynomial with at

most s−1 distinct roots. By Theorem 2.2.3, p is neither the minimal
nor the maximal polynomial of Hs−1(f). Therefore s − 1 > 1 by
the main theorem in [23] and so by Lemma 2.2.12, there is a one-
dimensional stratum Hλ

s−1(f) for which p is the minimal polynomial.
Similar to the argument above, Hλ

s (f+ϵtn−s) must therefore contain a
polynomial with composition λ. Also, by Theorem 2.1.10, the length
of λ is s since Hλ

s (f + ϵtn−s) is generic and zero-dimensional. Lastly,
by Theorem 2.2.3, p is the unique minimal polynomial of Hλ

s−1(f),
thus c(p) is the only composition in Ls(f) with c(p) ≤ λ.
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Remark 3.2.9. We see in Proposition 3.2.8 that a non-generic slice
Hs(f) can be obtained from some generic slice Hs(h) by “contracting”
some of the strata of Hs(f) to points. This corresponds to merging
some of the faces of ∂(L∆

s (h)). In other words if ∂(L∆
s (f)) is

a polytopal complex, then the simplicial complex ∂(L∆
s (h)) is a

simplicial subdivision of ∂(L∆
s (f)). Thus, in particular, whenever

∂(L∆
s (f)) is a polytopal complex it is also a combinatorial sphere.

Conjecture 3.2.10. The boundary complex ∂(L∆
s (f)) is a polytope

complex and thus by Remark 3.2.9, a combinatorial sphere.
Proving the conjecture above includes proving that the upward

closure of a zero-dimensional stratum is a polytopal lattice. It is
clearly a lattice, and as we saw in Remark 3.2.2, the boundary
complex of the dual lattice of the upward closure of a zero-
dimensional stratum is a simplicial complex even in the general case
and thus realisable. This is not enough to prove Conjecture 3.2.10,
however it may be a good place to start.

3.2.1 Bounding f-vectors

Due to Corollary 3.2.7, we can make use of some previously
established results for simplicial spheres to say something about
the number of i-dimensional strata in Ls(f). Namely we get a
“g-theorem” for generic slices and an “Upper Bound Theorem” for
general slices.
Definition 3.2.11. Let d = dim(Hs(f)) and for i ∈ {0, 1, . . . , d},
let αi denote the number of i-dimensional strata of Hs(f). Then
(α0, . . . , αd) is the f-vector of Ls(f).

Note that the dimension of a stratum is one less than its rank
in Ls(f), so the f-vector depends only on the isomorphism type of
Ls(f). And as we are looking at the dual poset of Ls(f), generically
αi is the number of (d − i − 1)-dimensional simplices in L∆

s (f).
Thus (αd, . . . , α0) is the f-vector of the simplicial complex ∂(L∆

s (f))
(see Definition 8.16 in [37]). Although the f-vector has an easy
interpretation, it is often more convenient to work with the h-vector,
(β0, . . . , βd), of ∂(L∆

s (f)), where

βi =
i∑

j=0
(−1)i−j

d− j

i− j

αd−j.
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Conversely, we can pass from the h-vector to the f-vector by using
the following relations (see page 249 in [37]):

αd−i =
i∑

j=0

d− j

i− j

βj.

For generic hyperbolic slices the h-vector has another interpretation:
Lemma 3.2.12. Let Hs(f) be generic and (β0, . . . , βd) be the h-
vector of ∂(L∆

s (f)). Then βi is the number of polynomials in Hs(f)
that are maximal in exactly i one-dimensional strata. Also, βi is
the number of polynomials in Hs(f) that are minimal in exactly i
one-dimensional strata.

Proof. Let again ≤ be a total order on the zero-dimensional strata
{V1, . . . , Vk} that is finer than ≤p and assume that V1 < · · · < Vk,
then by Theorem 3.2.6, V1, . . . , Vk is a shelling of ∂(L∆

s (F )). We
will denote by Uj the set of vertices of the facet Vj of the simplicial
complex ∂(L∆

s (F )). Also we denote by Rj ⊆ Uj the restriction of
Vj, which is defined as the subset of vertices of Vj, such that for every
v ∈ Rj the set Uj \ {v} lies in Vm for some m < j. Then from the
first part of section 8.3 in [37] we have that βi is equal to

|{j : |Rj| = i}|.

Let v ∈ Rj and let m < j, such that Uj \ {v} ⊂ Vm. Then Vm and
Vj lie in a one-dimensional stratum E of Hs(f) and since Vm < Vj,
then h ∈ Vj is maximal in E. Conversely, for any one-dimensional
stratum E ′ of Hs(f) such that the polynomial in Vj is maximal and
the polynomial in Vr is minimal in E ′, we have that Vr < Vj and
Uj\{v} ⊂ Vr for some v ∈ Uj.

Thus |Rj| counts the number of one-dimensional strata of Hs(f)
for which h ∈ Vj is maximal. And so βi counts the number of zero-
dimensional strata that are maximal in exactly i one-dimensional
strata. If we now take the reverse order (which by Theorem 3.2.6
is also a shelling), then by an analogous argument, βi is equal to
the number of zero-dimensional strata that are minimal in exactly i
one-dimensional strata.

If a polynomial is maximal for i one-dimensional strata, it must be
minimal for the other n− s− i one-dimensional strata that contain
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3.2. Sphericity of the dual

it. Thus Lemma 3.2.12 implies that the h-vector of ∂(L∆
s (F )) is

palindromic, that is, it satisfies the Dehn-Sommerville equations:

βi = βn−s−i for all i ∈ ⌊(n− s)/2⌋.

Moreover, since ∂(L∆
s (f)) is a combinatorial sphere, we can obtain

further properties of its h-vector from the g-conjecture for simplicial
spheres that was recently proven in [2]. In order to state those results,
we have to introduce some notation.

Firstly, for k, i ∈ N there are unique integers ai ≥ · · · ≥ a1 ≥ 0
such that

k =
ai

i

 +
 ai−1

i− 1

 + · · · +
a1

1

 (see page 265 in [37]).

Definition 3.2.13. We say that g = (g0, . . . , gr) ∈ Nr
0 is a

Macaulay (or M-) vector, if g0 = 1 and for any i ∈ [r − 1]

gi+1 ≤
ai + 1
i+ 1

 +
ai−1 + 1

i

 + · · · +
a1 + 1

1 + 1

,
where

gi =
ai

i

 +
 ai−1

i− 1

 + · · · +
a1

1


is the unique representation of gi introduced above.
Corollary 3.2.14 (“g-theorem”). Let Hs(f) be generic, then the h-
vector (β0, . . . , βn−s) of ∂(L∆

s (f)) satisfies
1. βi = βn−s−i for all i ≤ ⌊(n− s)/2⌋ (Dehn-Sommerville),
2. βi ≥ βi−1 for all i ≤ ⌊(n− s)/2⌋ (lower bound) and
3. (β0, β1 − β0, . . . , β⌊(n−s)/2⌋ − β⌊(n−s)/2⌋−1) is a Macaulay vector.
Since we have situations where L∆

s (f) is isomorphic to non-
simplicial polytopes where the g-theorem does not hold, we cannot
extend the theorem in its entirety to the general setting. See for
instance the pyramid in Example 3.3.5, where the h-vector is not
palindromic. However, the third condition in Corollary 3.2.14 can
be used to deduce the Upper Bound Theorem for (see Section 3 in
[22]) and this is a bound that we can extend to the general case. To
state the bound for the general case we need one more definition:
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Definition 3.2.15. We call the map ϕd : R → Rd given by

x 7→ (x, x2, . . . , xd)

the dth moment curve. If x1, . . . , xm ∈ R are distinct, we say
that the convex hull of ϕd(x1), . . . , ϕd(xm) is the d-dimensional cyclic
polytope on m vertices.
Corollary 3.2.16 (Upper Bound Theorem). Let (α0, . . . , αn−s) be
the f -vector of Ls(f). If ci is the number of i-dimensional faces of
the (n− s)-dimensional cyclic polytope with αn−s−1 vertices then

αn−s−i ≤ ci−1 ∀ i ∈ [n− s].

Proof. By Theorem 2.1.10, we may assume Hs(f) is (n − s)-
dimensional where n− s > 0 and we may assume f has no repeated
roots. Then, by Proposition 3.2.8, there is an ϵ > 0 such that
Hs(f + ϵtn−s) is generic and whose f-vector is component-wise an
upper bound on the f-vector of Hs(f). Thus we can reduce to the
case when Hs(f) is generic.

When Hs(f) is generic we know that the h-vector of ∂(L∆
s (f))

is palindromic. From this, it can be shown that the upper bound
on the f-vector of ∂(L∆

s (f)) is obtained by establishing the following
upper bound on the h-vector of ∂(L∆

s (f)) (see chapter 8.4 in [37]):

βi ≤
αn−s−1 − n+ s− 1 + i

i

.
The claim now follows directly from the Upper Bound Theorem

for simplicial spheres (Corollary 5.3 in [33]) since ∂(L∆
s (f)) is a

simplicial complex and a combinatorial sphere for generic Hs(f) by
Lemma 3.2.1 and Corollary 3.2.7.

Remark 3.2.17. In [27] (Theorem 4.2) it was shown that the
extremal points of the convex hull of Hs(F ) are contained in the set
of polynomials in Hs(f) with at most s distinct roots. Thus an upper
bound on the number of zero-dimensional strata is also an upper
bound on the number of extremal points. Corollary 3.2.16 together
with Exercise 0.9 in [37] gives us an upper bound which improves the
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3.2. Sphericity of the dual

bound in [28] (Theorem 2.14 and Remark 2.15) to the following:

α0 ≤


(

n−1−(n−s)/2
(n−s)/2

)
+

(
n−2−(n−s)/2

(n−s)/2−1
)

if n− s is even and
2

(
n−2−(n−s−1)/2

(n−s−1)/2
)

if n− s is odd.

=


((n+s)/2−1
s−1

)
+

((n+s)/2−2
s−1

)
if n− s is even and

2
((n+s−3)/2

s−1
)

if n− s is odd.

We have computationally verified that the bound in Remark
3.2.17 can be attained when n ≤ 8 and s ≤ n and one can also
use Theorem 2.1.10 to argue that the bound is attained when s ≤ 2
and when s ≥ n− 1. Therefore we have the following conjecture:
Conjecture 3.2.18. The bound stated in Remark 3.2.17 is sharp.

If one were to show that for any degree n and for s = n− 2 there
is a slice Hs(f) where all compositions of the form (1, ..., 1, 2, 1, ..., 1)
occurs then one would have maximised the number of vertices of
the dual lattice L∆

s (f) for all s ≤ n − 2. Thus to prove the above
conjecture it might be a good idea to focus on the case when s = n−2.
Remark 3.2.19. As in [3], [13] and [18] we could have studied the
intersection of the Weyl chamber W and Vandermonde varieties with
positive real weights. That is, we could consider the set

M = {x ∈ Rn|w1x
i
1 + w2x

i
2 + ...+ wnx

i
n = ci ∀ i ∈ [s]} ∩ W

were w1, ..., wn ∈ R are positive and c1, ..., cs ∈ R. If x ∈ M is of the
form x1 = ... = xv1 < xν1+1 = ... = xν1+ν2 < ... < xn−νl+1 = ... = xn,
we associate to it the composition c(x) = (ν1, ν2, ..., νl) and for
a composition µ we may define a stratum of M as Mµ = {y ∈
M |c(y) ≤ µ}.

When the weights w1, ..., wn are integers (and by extension
rational numbers) then Mµ is equal to ιµ(Vµ

s (f) ∩ Wl) (see the proof
of Lemma 2.1.4) for some monic hyperbolic polynomial f of degree n.
However, if the weighs are irrational we do not see how to interpret
the set M and so we did not consider such cases. But it can be shown
that for any positive real weights Theorem 2.1.9, Theorem 2.1.10 and
Theorem 2.2.3 also hold for Mµ. Thus the arguments for Theorem
3.1.7 and Corollary 3.2.7 should follow through the same way on thus
hold for the poset of strata of M .
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3.3 Polytopality of the hyperbolic lattice

We have seen quite a few properties of hyperbolic lattices so
far and we have seen examples where hyperbolic slices looks like
polytopes, except with a kind of “concave” faces. And although
we do not know if hyperbolic lattices are always polytopal, we will
discuss the instances when we can answer this question.

We saw just before Proposition 3.1.3 that H0(f) and H1(f) has
a polynomial with composition µ, for any composition, µ, of n.
Similarly, either H2(f) contains just a polynomial with composition
(n) or all other compositions occur. Thus by Lemma 3.1.1, L0(f)
and L1(f) are are (n−2)-dimensional simplices and L2(f) is either a
point or an (n− 2)-dimensional simplex. Thus we will assume s > 2
and dim(Hs(f)) = n− s > 0 for this subchapter.

We can push this a little bit further and consider the case when
s = 3. Then L2(f) is a simplex and by the following lemma L3(f) is
polytopal:
Lemma 3.3.1. When Ls−1(f) is simplex Ls(f) is polytopal.

Proof. Since Ls−1(f) is a simplex then by Theorem 3.1.7, it is a
(n−s+1)-dimensional simplex. Thus there are n−s+2 polynomials
in Hs−1(f) with at most s− 1 distinct roots.

Let Afs
⊂ Rn−s+1 be the hyperplane such that Hs(f) = Hs−1(f)∩

Afs
. If h, g ∈ Hs−1(f) have at most s− 1 distinct roots then there is

a one-dimensional stratum, Hµ
s−1(f), containing both of them since

Ls−1(f) is a simplex. By Theorem 2.1.10 Hµ
s (f) contains at most one

polynomial, thus h and g cannot both lie in Hs(f) so Hs(f) contains
at most one of the polynomials of Hs−1(f) with at most s−1 distinct
roots.

Next, note that by Theorem 2.2.3, Proposition 2.1.5 and Theorem
2.1.9 Afs

meets the relative interior of a stratum, Hν
s(f), of Hs−1(f)

if and only if one of the open halfspaces given by Afs
contains

the minimal polynomial of Hν
s−1(f) and the other one contains the

maximal polynomial of Hν
s−1(f). Thus Ls(f) is determined by how

Afs
separates the polynomials of Hs−1(f) with at most s− 1 distinct

roots.
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3.3. Polytopality of the hyperbolic lattice

Let P ⊂ Rn−s+1 be a simplex whose face lattice is isomorphic to
Ls−1(f). Since P is a simplex, for any partition of the vertices into
two nonempty disjoint sets, there is a hyperplane strictly separating
them. Similarly, there is a hyperplane containing any one of the
vertices and strictly separating the rest. So if we choose a hyperplane
A ⊂ Rn−s+1 that separates (or strictly separates) the same number
of vertices as Afs

separates polynomials with at most s − 1 distinct
roots, then the face lattice of P ∩ A is isomorphic to Ls(f).

The Lemma above is also useful when s ̸= 3 as there are cases
other than s = 3 when Ls−1(f) is a simplex. To see this suppose
Hs−1(f) is generic and contains the minimal polynomial h with
composition ν. Then we know from Theorem 2.2.3, that Hs(h) is
a point and from Theorem 2.1.10 we know that each composition
strictly greater than ν occurs in Hs(f). By Proposition 2.1.5 and
Corollary 2.1.11, the strata are contractible and the closure of their
relative interior. Thus if ϵ > 0 is smaller than the distance between
h and any other polynomial with s − 1 distinct roots in Hs−1(f),
there is a monic polynomial p of degree n − s such that Hs(h + ϵp)
is generic and all compositions strictly greater than ν are all the
compositions occurring in Hs(h + ϵp). Since by Lemma 3.1.1 the
lattice of compositions is a simplex, we have by Lemma 3.2.1 that
Ls(h+ ϵp) is a simplex. So by slicing a generic slice Hs−1(f) close to
the minimal polynomial we obtain a slice Hs(h+ ϵp) whose poset of
strata is a simplex. We can also slice Hs−1(f) close to the maximal
polynomial and obtain an analogous result. Thus we have:
Lemma 3.3.2. If Hs−1(f) is generic and g ∈ Hs−1(f) is “sufficiently
close” (see above) to the minimal or maximal polynomial of Hs−1(f),
then Ls(g) is a simplex.

We have seen that hyperbolic lattices are polytopal when s is
small, so let us see what happens when s is large. We know that
Ln(f) is a point and that Ln−1(f) is either a point or the one-
dimensional polytope. Also, if Ln−2(f) is not a point, then due
to Theorem 2.1.10 and Theorem 3.1.7, it is a graded, atomic and
coatomic lattice of rank 3. Therefore Ln−2(f) is a two-dimensional
ball and thus a polytope. All told we therefore have the following
cases of polytopality:
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Theorem 3.3.3. The lattice Ls(f) is polytopal when
1. either s ≤ 3 or s ≥ n− 2,
2. Hs(f) is generic and either s ≤ 4 or s ≥ n− 3,
3. Ls−1(f) is a simplex and
4. Hs−1(f) is generic and f is “sufficiently close” to the minimal

or maximal polynomial of Hs−1(f).

Proof. Item 1 was shown for s ≤ 3 in the beginning of this subchapter
and for s ≥ n−2 in the preceding paragraph. The last two items was
already shown in Lemma 3.3.1 and Lemma 3.3.2 so let us consider
item 2.

For item 2 then due to item 1 we need to consider the cases when
s = 4 and when s = n − 3. For s = 4 note that since the atoms of
L∆

s (f) are labeled by compositions of length n − 1, there can be at
most n− 1 of them. So by Corollary 3.2.7 ∂(L∆

s (f)) is a (n− s− 1)-
sphere with at most n − 1 vertices. By Theorem 4.12 in Chapter
18 in [15], a d-sphere with at most d + 4 vertices is the boundary
complex of a polytope. So when s ≤ 4, L∆

s (f) and its dual Ls(f) is
polytopal.

Secondly, for s = n − 3 then due to the formulation of Steinitz
Theorem in Chapter 18 in [15] (Theorem 4.3), a two-dimensional
polytope complex is isomorphic to the boundary complex of a
polytope if and only if it is a sphere. By Corollary 3.2.7, ∂(L∆

s (f)) is
generically a sphere and thus L∆

s (f) and its dual Ls(f) is generically
polytopal when s = n− 3.

Based on the results of this chapter we have the following natural
conjecture:
Conjecture 3.3.4. The hyperbolic lattices are polytopal.

To prove the conjecture above it would be helpful to have a good
guess as to what polytope to identify a given hyperbolic lattice with
and a natural guess would perhaps be the convex hull of Hs(f).
However, as the following example shows, this will not always work:
Example 3.3.5. Let n = 6, s = 3 and let g = t6 − 21/4t4 + t3 +
21/4t2 − 1, then the slice Hs(g) is generic and Ls(g) is isomorphic
to the face lattice of a triangular prism (a toblerone):
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3.3. Polytopality of the hyperbolic lattice

We can also perturb the polynomial g slightly to get a non-generic
slice. So if we let h = t6 − 21/4t4 + 21/4t2 − 1, then Hs(h) is
non-generic but full-dimensional and Ls(h) is isomorphic to the face
lattice of a pyramid.

The convex hull of Hs(g) and Hs(h) are not a triangular prism or
a pyramid respectively. For instance the polynomials in Hs(h) with
compositions (1, 4, 1), (1, 3, 2), (2, 2, 2) and (2, 3, 1) does not lie in one
hyperplane and therefore are not the vertices of a square but rather
the vertices of two triangles in the boundary of conv(Hs(h)) and so
conv(Hs(h)) is a triangular bipyramid (two tetrahedra glued together
along a facet) instead of a pyramid.
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On the other hand, if one wants to look for counterexamples of
polytopality then due to the previous corollary, the first non-generic
case where we may find non-polytopal hyperbolic lattices is when
n = 7 and s = 4 and the first generic case is when n = 9 and
s = 5. Thus we could in theory go through all the possible subsets of
compositions that may arise from a slice in degree 7 with s = 4 or go
through all the possible subsets of compositions that may arise from a
generic slice in degree 9 with s = 5 and check if these are polytopal.
However computing all the possible hyperbolic lattices is already
getting quite time consuming for the generic case when the degree is
7, so we have not done this. But the topic of “potential hyperbolic
lattices” in the following chapter could be helpful to anyone wishing
to give it a try.
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Chapter 4

The degree principle

Having established quite a few geometric properties of hyperbolic
slices and combinatorial properties of hyperbolic lattices we return
to our original motivation for studying hyperbolic slices. So in
this chapter we will return to Timofte’s degree principle and use
our results to see how much we can improve upon this principle.
However, as symmetric algebraic sets are usually not lying in a single
Weyl chamber, this will implicitly involve passing from strata defined
by compositions to strata defined by partitions. And as partitions
can be viewed as equivalence classes of compositions some of the
properties of hyperbolic lattices follows.

Since the degree principle is a reduction of dimension for showing
nonemptyness of real symmetric algebraic sets, we improve on this
by additionally reducing the number of orbit types needed to check.
The orbit types of the points in Rn are characterised by partitions, so
we improve the degree principle by considering test sets of partitions
of a given length instead of having to go through all the partitions
of a given length. In the first subchapter we give a lower and an
upper bound on the size of optimal test sets and in the second we
outline a computational approach on how to get better test sets for
real algebraic set given by symmetric polynomials in few variables
and low degrees.

We start by establishing a variation of the degree principle and
as we will be working a lot with partitions we start with some useful
notation. We will denote by P(n) the set of all partitions of n and
we partially order P(n) by the induced partial order on C(n):

65



Chapter 4. The degree principle

Definition 4.0.1. For λ, γ ∈ P(n), λ ≤ γ if there are permutations
σ ∈ S(ℓ(λ)) and τ ∈ S(ℓ(γ)), such that σ(λ) ≤ τ(γ) as compositions.

In other words, λ ≤ γ if λ can be obtained from γ by summing
up some of the parts in γ and then ordering the parts decreasingly.

Similarly to the composition of a hyperbolic polynomial, we will
denote by p(f) the partition of f and we define it as the partition
p(f) := (λ1, ..., λk), where c(f) = (λi1, ..., λik

) and λ1 ≥ ... ≥ λk.
Definition 4.0.2. Let C(n, s) and P(n, s) denote the set of all
compositions and partitions, respectively, of n into s parts and let

1. Cmin(n, s) := {µ ∈ C(n, s)|µ is alternate odd},
2. Cmax(n, s) := {µ ∈ C(n, s)|µ is alternate even},
3. Pmin(n, s) := {λ ∈ P(n, s)|λ⌊ s

2⌋+1 = ... = λs = 1} and

4. Pmax(n, s) := {λ ∈ P(n, s)|λ⌈ s
2⌉+1 = ... = λs = 1}.

Note that if h is the minimal polynomial in a generic slice Hs(f)
for some f ∈ H, then by Theorem 2.2.3 for the generic case (see the
end of page 24), c(h) ∈ Cmin(n, s) and p(h) ∈ Pmin(n, s). Similarly,
Cmax(n, s) and Pmax(n, s) contain c(h) and p(h), respectively, if
h is instead the maximal polynomial in the generic slice Hs(f).
Additionally, if g ∈ H has composition µ ∈ Cmin(n, s) (resp. µ ∈
Cmax(n, s)), then by Theorem 2.2.3, g is the minimal (resp. maximal)
polynomial of Hs(g).

Timofte introduced the degree principle in [35], namely that
symmetric polynomials of degree at most s have a common real root
if and only if they have a common real root with at most s distinct
coordinates. We will improve on this result by considering subsets
of the set of points with at most s distinct coordinates. To this end,
we introduce some new terminology:
Definition 4.0.3. Let P ⊆ P(n, s). We say that P is a (n, s)-
Vandermonde covering, if for every hyperbolic slice Hs(f) there
is a partition λ ∈ P and a polynomial h ∈ Hs(f) with λ ≥ p(h).

Instead of considering all points in a symmetric real algebraic set
with at most s distinct coordinates in the degree principle, we want
to consider only some of the points with orbit types corresponding to
a partition in a Vandermonde covering. Thus we define the subsets:

66



Definition 4.0.4. If P ⊆ P(n, s) then we let

OP :=

(x1, . . . , x1︸ ︷︷ ︸
λ1−times

, x2, . . . , x2︸ ︷︷ ︸
λ2−times

, . . . , xs, . . . , xs︸ ︷︷ ︸
λs−times

) ∈ Rn

∣∣∣∣∣∣∣∣ λ ∈ P

 .

The following theorem motivates the name “Vandermonde
covering” and can also be seen as a first step in strengthening the
degree principle that we saw in Theorem 1.1.4.
Theorem 4.0.5. Let P ⊆ P(n, s), then the following are equivalent:

1. P ⊆ P(n, s) is a (n, s)-Vandermonde covering.
2. For any F1, . . . , Fk ∈ R[x]S(n) of degree at most s we have

VR(F1, . . . , Fk) ̸= ∅ ⇔ VR(F1, . . . , Fk) ∩OP ̸= ∅.

3. For all c ∈ Rs and with Hi = Ei + ci ∀ i ∈ [s] we have

VR(H1, . . . , Hs) ̸= ∅ ⇔ VR(H1, . . . , Hs) ∩OP ̸= ∅.

Proof. (1)⇒(2): Let P ⊆ P(n, s) be a (n, s)-Vandermonde covering
and let a = (a1, ..., an) ∈ VR(F1, . . . , Fk). Consider the univariate
polynomial

f := tn − E1(a)tn−1 + · · · + (−1)nEn(a)

with roots a1, . . . , an. Then there is a partition λ ∈ P and a
polynomial g ∈ Hs(f) with corresponding partition p(g) ≤ λ and
roots

b = (b1, . . . , bn) ∈ OP ,

because P is a (n, s)-Vandermonde covering. Since F1, . . . , Fk are
polynomials of degree at most s, we can write

F1 = G1(E1, . . . , Es), . . . , Fk = Gk(E1, . . . , Es)

for some G1, . . . , Gk ∈ R[y1, . . . , ys] by Theorem 1.1.3. We have

0 = Fi(a) = Gi(E1(a), . . . , Es(a)) = Gi(E1(b), . . . , Es(b)) = Fi(b)

and therefore b ∈ VR(F1, . . . , Fk).
(2)⇒(3): Is clear since Ei + ci is symmetric of degree i ≤ s.
(3)⇒(1): Assume (3) holds. Let f = tn + f1t

n−1 + · · · + fn be a
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hyperbolic polynomial with roots a = (a1, . . . , an) ∈ Rn. Then the
Vandermonde variety VR(E1(x) + f1, ..., Es(x) + (−1)s−1fs) contains
a by construction and is therefore nonempty. By (3) there is a
b ∈ VR(E1(x) + f1, ..., Es(x) + (−1)s−1fs) ∩OP , that is

−E1(b) = f1, . . . , (−1)sEs(b) = fs.

Thus
g := tn − E1(b)tn−1 + · · · + (−1)nEn(b)

is a polynomial in Hs(f) with corresponding partition p(g) ≤ λ for
some λ ∈ P .

4.1 Bounds for the degree principle

Since every generic hyperbolic slice has a unique minimal
polynomial with a corresponding alternate odd composition, we have
the following Vandermonde covering:
Theorem 4.1.1. The set Pmin(n, s) is an (n, s)-Vandermonde
covering of size

∣∣∣P (
n−

⌈
s
2

⌉
,

⌊
s
2

⌋)∣∣∣.
Proof. Follows directly from Theorem 2.2.3 or from the less general
version presented in [23].

We will see in Proposition 4.2.7 that Pmin(n, s) is not generally
the smallest Vandermonde covering. In order to estimate how good
this Vandermonde covering is, we will construct lower bounds on the
size of Vandermonde coverings. To this end, we need some properties
of the set of minimal and maximal partitions.
Lemma 4.1.2.

1. Pmin(n, s) ⊆ Pmax(n, s).
2. |Pmin(n, s)| = |Pmax(n− 1, s− 1)|.
3. Let P ⊆ P(n, s) be a (n, s)-Vandermonde covering, then for any
λ ∈ Pmax(n, s− 1) there must be a γ ∈ P with γ > λ.

4. Every partition in P(n, s) covers at most⌈
s−1

2
⌉2 +

⌈
s−1

2
⌉

2 =
⌈

s−1
2 ⌉⌈s+1

2
⌉

2
partitions in Pmax(n, s− 1).

68



4.1. Bounds for the degree principle

Proof. 1. This is clear from the definition.
2. Follows from the bijection

ϕ : Cmax(n− 1, s− 1) −→ Cmin(n, s)
(ν1, . . . , νs−1) 7−→ (ν1, . . . , νs−1, 1)

.

3. Let ν ∈ Cmax(n, s − 1) and let f be a polynomial whose
composition is ν. By the argument preceding Lemma 3.3.2 there
is an ϵ > 0 and a monic polynomial, p, of degree n − s, such
that the zero-dimensional strata of Hs(f − ϵp) corresponds to
all compositions that cover ν. Since P is a (n, s)-Vandermonde
covering, there has to be a γ ∈ P such that γ ≥ p(g) for some
g ∈ Hs(f − ϵp) and so we have γ ≥ p(g) > p(f).

4. In order for λ ∈ P(n, s) to cover a partition in Pmax(n, s − 1)
there can be at most

⌈
s−1

2
⌉

+ 1 entries different from 1 in λ.
Additionally, all partitions in Pmax(n, s− 1) that are covered by
λ can be obtained by adding two of the first

⌈
s−1

2
⌉
+ 1 entries in

λ and reordering. So λ covers at most


⌈
s−1

2
⌉

+ 1
2

 =
⌈

s−1
2

⌉2 +
⌈

s−1
2

⌉
2 =

⌈
s−1

2 ⌉⌈s+1
2

⌉
2

partitions in Pmax(n, s− 1).

Note that the inclusion in item 1 above is an equality when s is
even. From this lemma, we get the following lower bound on the size
of any Vandermonde covering:
Proposition 4.1.3. Let P ⊆ P(n, s) be a (n, s)-Vandermonde
covering, then

|P | ≥

2

∣∣∣P (
n+ 1 −

⌈
s
2

⌉
,

⌊
s
2

⌋)∣∣∣⌈
s−1

2
⌉⌈

s+1
2

⌉
.

Proof. By Lemma 4.1.2 (3), every partition in Pmax(n, s − 1) is
covered by a partition in P . Any partition in P(n, s) covers at most⌈

s−1
2 ⌉⌈s+1

2
⌉

2
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partitions in Pmax(n, s−1) by Lemma 4.1.2 (4). To have at least one
partition from every generic slice, then by the pigeonhole principle
we need at least 2|Pmax(n, s− 1)|⌈

s−1
2

⌉⌈
s+1

2
⌉


partitions in P . By Lemma 4.1.2 (2) and Theorem 4.1.1 this equals2|Pmin(n+ 1, s)|⌈

s−1
2

⌉⌈
s+1

2
⌉

 =

2

∣∣∣P (
n+ 1 −

⌈
s
2

⌉
,

⌊
s
2

⌋)∣∣∣⌈
s−1

2
⌉⌈

s+1
2

⌉
.

We can improve this lower bound by using a more detailed
recursive argument.
Theorem 4.1.4. Let P ⊆ P(n, s) be a (n, s)-Vandermonde covering.
Then

|P | ≥
⌊ s

2⌋∑
i=0

Bi,

where B0 := 0, B1 := 1 and

Bi :=
2 |P(n− s+ 1, i)| − iBi−1 −Bi−2

i2 + i


for all i ∈

{
2, . . . ,

⌊
s
2

⌋}
.

Proof. Denote by

Pi :=
{
λ ∈ Pmax(n, s− 1)

∣∣∣ |{j ∈ [n] | λj ̸= 1}| = i
}

the partitions in Pmax(n, s − 1) that have exactly i entries different
from 1. Note the following:

1. |Pi| = |P(n− s+ 1, i)|.
2. Every partition in P(n, s) covers at most

(
i+1

2
)

= i2+i
2 partitions

in Pi by a similar argument as in the proof of Lemma 4.1.2 (4).
3. Any partition in P(n, s) that covers a partition in Pi, covers at

most i+ 1 partitions in Pi+1 and at most one partition in Pi+2.
In order to cover all partitions in Pmax(n, s − 1), we have to cover
all partitions in Pi for all i ∈ {1, 2, ...,

⌈
s−1

2
⌉

=
⌊

s
2

⌋
}. Combining (1),

(2) and (3) we get recursively: We need B1 = 1 partition in P(n, s)
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to cover the partition in P1. It covers at most (1 + 1)B1 partitions
in P2 and at most B1 partitions in P3 by (3). To cover the at least
P2 −2B1 remaining many partitions in P2 we need by the pigeonhole
principle and (1) at least

B2 =
|P2| − 2B1 −B0

(22 + 2)/2

 =
2|P(n− s+ 1, 2)| − 2B1 −B0

22 + 2


additional partitions in P(n, s). Those partitions cover again at most
(2 + 1)B2 partitions in P3 and at most B2 partitions in P4. To cover
at least the P3 −3B2 −B1 remaining partitions in P3 we need at least

B3 =
|P3| − 3B2 −B1

(32 + 3)/2

 =
2|P(n− s+ 1, 3)| − 3B2 −B1

32 + 3


additional partitions in P(n, s). In general, if Bi denotes the number
of additional partitions needed to cover the remaining partitions in
Pi, then

Bi :=
2|P(n− s+ 1, i)| − iBi−1 −Bi−2

i2 + i

.
In total, we need at least ∑⌊ s

2⌋
i=0 Bi partitions in P(n, s) to cover all

partitions in Pmax(n, s− 1).

We will see in Example 4.2.8, that this lower bound is also not
generally attainable.

4.2 Algorithmic improvements

In the following we present an algorithmic approach on how to
obtain smaller and possibly optimal Vandermonde coverings for small
s and n. To this end, we try to characterise if a set of compositions
S ⊂ C(n, s) corresponds to the set of zero-dimensional strata of some
hyperbolic slice.
Definition 4.2.1. Let S ⊆ C(n, s) let

L(S) := {ν | there is a µ ∈ S with µ ≤ ν}

denote the upward closure of S. We say that L(S) is a potential
hyperbolic poset, if for every ν ∈ L(S) there are unique
µmin, µmax ∈ S, such that
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1. µmin/ν is alternate odd and
2. µmax/ν is alternate even.

Furthermore, we say that L(S) is a realisable hyperbolic poset,
if there is a hyperbolic slice Hs(f) where exactly the compositions in
L(S) occurs.

Note that Theorem 2.2.3, for the generic case (see the end of
page 24), states that every realisable hyperbolic poset is a potential
hyperbolic poset.
Remark 4.2.2. We can also consider more general potential
hyperbolic posets, where S is a set of compositions of n with at most
s parts. For this we construct L(S) analogous to Algorithm 3.1.8,
but for simplicity we will focus on the generic cases.

Since the poset of compositions is a simplex, the upward closure
of a composition ν in some potential hyperbolic poset L(S) is also a
simplex. Thus, by the argument in Proposition 2.2.15, analogously
to Lemma 2.2.12 potential hyperbolic posets have the following
property:
Lemma 4.2.3. Let L(S) be a potential hyperbolic poset and let ν ∈ S
and ν < µ for some µ ∈ L(S) with ℓ(µ) ≥ s + 2. Then ν/µ is
alternate odd (resp. even) if and only if ν/λ is alternate odd (resp.
even) for all λ ∈ L(S) with ν ≤ λ < µ.

One can see that the arguments in the proof of shellability in
subchapter 3.2 only uses the fact that the boundary complex of the
dual poset is a pure simplicial complex along with Theorem 2.2.3 and
Lemma 2.2.12. By the argument in the proof of Lemma 3.2.1, the
dual L∆(S) of a potential hyperbolic poset L(S) is a pure simplicial
complex of dimension n − s − 1. So by the defining property of
potential hyperbolic posets and Lemma 4.2.3, we get the following:
Theorem 4.2.4. Let L(S) be a potential hyperbolic poset, then

1. L∆(S) is a shellable simplicial complex and therefore a
combinatorial sphere.

2. the h-vector of L∆(S) satisfies the “g-theorem”, that is, the
inequalities stated in Corollary 3.2.14, in particular

|S| ≤


((n+s)/2−1

s−1
)

+
((n+s)/2−2

s−1
)
, if n− s is even

2
((n+s−3)/2

s−1
)
, if n− s is odd.
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Since all the known combinatorial properties of generic Ls(f)\{∅}
hold for all potential hyperbolic posets, we do not know any
combinatorial way to distinguish potential from realisable hyperbolic
posets. Moreover, after computationally realising all potential
hyperbolic posets for s ≤ n ≤ 6, we state the following conjecture:
Conjecture 4.2.5. Every potential hyperbolic poset is realisable.

Since it is easy to check if the upward closure of a set of
compositions in C(n, s) is a potential hyperbolic poset, one can
compute better Vandermonde coverings for small n and s. We
illustrate this with an example:
Example 4.2.6. For n = 6 and s = 4 there are 10 compositions
of 6 into 4 parts. One can check that out of the 210 subsets only in
17 cases are the upward closures potential hyperbolic posets. Up to
symmetry (we identify S with S̃ := {(µ4, . . . , µ1) | µ ∈ S}) we get
the 11 subsets

{(1, 1, 1, 3), (1, 1, 2, 2), (1, 1, 3, 1)},
{(1, 1, 3, 1), (1, 2, 2, 1), (1, 3, 1, 1)},
{(1, 1, 1, 3), (2, 1, 1, 2), (2, 1, 2, 1)},

{(1, 1, 2, 2), (1, 1, 3, 1), (1, 2, 1, 2), (1, 2, 2, 1)},
{(1, 2, 1, 2), (1, 2, 2, 1), (2, 1, 1, 2), (2, 1, 2, 1)},
{(1, 1, 1, 3), (1, 2, 2, 1), (2, 1, 1, 2), (3, 1, 1, 1)},
{(1, 1, 1, 3), (1, 1, 2, 2), (2, 1, 2, 1), (2, 2, 1, 1)},
{(1, 1, 1, 3), (1, 1, 3, 1), (2, 1, 1, 2), (2, 2, 1, 1)},

{(1, 1, 2, 2), (1, 2, 1, 2), (1, 2, 2, 1), (2, 1, 2, 1), (2, 2, 1, 1)},
{(1, 1, 1, 3), (1, 1, 2, 2), (1, 2, 2, 1), (2, 2, 1, 1), (3, 1, 1, 1)} and

{(1, 1, 3, 1), (1, 2, 1, 2), (1, 2, 2, 1), (2, 1, 1, 2), (2, 2, 1, 1)}.

From this we see that {(2, 2, 1, 1)} is a (6, 4)-Vandermonde covering,
which naturally is optimal in this case.

Example 4.2.6 generalises in the following way:
Proposition 4.2.7. {(2, 2, 1, . . . , 1)} is a (n, n − 2)-Vandermonde
covering.

Proof. Suppose it is not a Vandermonde covering. Then there is a
hyperbolic slice Hs(f) where all the compositions of length at most s
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are smaller than or equal to compositions of length s with one entry
equal to 3 and the other entries equal to 1. By Theorem 2.2.3 all of
these compositions correspond to minimal or maximal polynomials
in Hs(f) and therefore Hs(f) contains at most two zero-dimensional
strata. But by Theorem 2.1.10, Hs(f) is two-dimensional and thus
have at least three extremal points. But by Theorem 2.8 in [28],
the extremal points of Hs(f) have at most s distinct roots. This is
a contradiction to Hs(f) containing at most two zero-dimensional
strata.

Since there are k =
(

n−1
s−1

)
compositions of n into s parts, the

procedure in Example 4.2.6 becomes too computationally expensive
to apply directly when n and s are large since it involves considering
2k subsets. However, we can use some weaker conditions to cut down
this big set into a more manageable set and that makes it easier to
apply our previous method.

Firstly, by the argument in the proof of Theorem 4.2.7 we need
at least n − s + 1 compositions of length s to construct a potential
hyperbolic poset. Secondly, by Theorem 4.2.4 we can have at most
m compositions of length s, where

m ≤


((n+s)/2−1

s−1
)

+
((n+s)/2−2

s−1
)
, if n− s is even

2
((n+s−3)/2

s−1
)
, if n− s is odd.

Thus we (only) need to check ∑m
i=n−s+1

(
k
i

)
subsets of C(n, s).

Additionally we can cut down this set further since we know that a
potential hyperbolic has exactly one alternate even and one alternate
odd composition. This can be taken further as for every ν ∈ L(S) we
have exactly one composition in S with µ/ν alternate odd and exactly
one composition in S with µ/ν alternate even. However by just using
the aforementioned reductions we can compute a set containing all
potential hyperbolic posets up to s, n ≤ 8 on a standard computer
with no more than a few hours running time.
Example 4.2.8. For n = 8 and s = 4, we get from Theorem
4.1.1 that there is a Vandermonde covering with 3 partitions and
from Theorem 4.1.4 we know that we need at least 1 partition.
By computing all the potential hyperbolic posets we get several
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Vandermonde coverings with two elements, for instance the covering

{(3, 2, 2, 1), (4, 2, 1, 1)}.

Additionally one can show that there is no Vandermonde covering
with only one partition by realizing appropriate potential hyperbolic
posets.
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Chapter 5

Even-hyperbolic slices

In this chapter we look at the subset of hyperbolic slices consisting
of even-hyperbolic polynomials. We will see that many of the
properties of the strata of hyperbolic slices transfer to the strata
of even-hyperbolic slices when we consider even-hyperbolic strata as
subsets of hyperbolic strata. Firstly we characterise the polynomials
in a hyperbolic stratum with a minimal or maximal smallest root
which gives us a way to determine which hyperbolic strata contain
even-hyperbolic polynomials.

In particular we can use this to show that also in the even-
hyperbolic case, any stratum has a unique polynomial with a
maximal first free coefficient and a unique polynomial with a minimal
first free coefficient. We will also see that just as with hyperbolic
strata, the even-hyperbolic strata are connected and either empty, a
single polynomial or of maximal possible dimension. These results
allow us to show that the poset of even-hyperbolic strata is a lattice
that can be computed combinatorially from its atoms. We also
show that the boundary complex of the dual lattice is generically
shellable and thus a combinatorial sphere. Lastly, we provide some
improvements on the degree principle for the hyperoctahedral group.

We start by defining our stratification of even-hyperbolic slices
and look at an example of a stratified even-hyperbolic slice. So for
the remainder of the thesis we will let h := tn+h1t

n−1+· · ·+hn ∈ R[t]
be a monic even-hyperbolic polynomial. That is, h is a monic
polynomial of degree n with only real nonnegative roots. Then we
will study the following sets of even-hyperbolic polynomials:
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Definition 5.0.1. Let N denote the set of all monic even-hyperbolic
polynomials of degree n. Then for s ∈ [n], we call the subset

Ns(h) := {tn + g1t
n−1 + ...+ gn ∈ N | gi = hi ∀ i ∈ [s]}

a (canonical) even-hyperbolic slice.
To stratify this set we will extend the notion of compositions and

their partial order.
Definition 5.0.2. A signed composition, ν, is a composition
multiplied with plus or minus one. We call |ν| = (ν1, ..., νl) its
composition and sgn(ν) ∈ {−1, 1}, given by ν = sgn(ν)|ν|, its
signature. The parts and length of a signed composition are the
parts and length of its corresponding composition.

We will let ν be a signed composition of n of length l for
the remainder of the thesis. If g ∈ N has the distinct roots
b1 < ... < bl and respective multiplicities m1, ...,ml, then the signed
composition of g is

sc(g) :=
(m1, ...,ml) if b1 > 0 and

−(m1, ...,ml) if b1 = 0.

Definition 5.0.3. If ν and λ are two signed compositions of n we
let ν ≤ λ if sgn(ν) ≤ sgn(λ) and |ν| ≤ |λ| with respect to the partial
order on compositions.

Thus we define

N ν
s (h) := {g ∈ Ns(h) | sc(g) ≤ ν}

to be a stratum of Ns(h) and we see that N ν
s (h) ⊆ H|ν|

s (h) ∩ N with
equality if sgn(ν) = 1.
Example 5.0.4. Let h = t(t−2)2(t−4) = t4 −8t3 +20t2 −16t, then
N2(h) is a strict subset of H2(h) as we can see from the following
picture:
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.

5.1 Geometry...

Before we study the strata of even-hyperbolic slices we will explore
one final topic for hyperbolic strata. Namely we characterise the
polynomials g ∈ Hµ

s (f) with the property that the smallest root
of g is greater than the smallest root of any other polynomial
in Hµ

s (f). Since an even-hyperbolic stratum N ν
s (h) contain at

most the polynomials from H|ν|
s (h) whose smallest root is at least

zero, this allows us to quickly test if H|ν|
s (h) contain any even-

hyperbolic polynomials or not by checking if the smallest root of
g is nonnegative.

5.1.1 Extremal roots of hyperbolic strata

For a polynomial g ∈ Hµ
s (f), whose roots of multiplicities µ1, ..., µl

are b1 ≤ ... ≤ bl respectively, we call bk, where k ∈ [l], the kth root
of g in the stratum Hµ

s (f). Then a natural question to ask is which
polynomials in Hµ

s (f) have the minimal or maximal kth root? We will
first see that polynomials with a minimal or maximal kth root have
at most s distinct roots and then we characterise the polynomials
with a minimal and maximal first root.
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Lemma 5.1.1. Let s ≥ 2 and let µ be a composition of length s+ 1.
Then if k ∈ [s+ 1], the projection ϕk : Vµ

s (f) ∩ Ws+1 → R given by

a = (a1, ..., as+1) 7→ ak

is a homeomorphism onto its image.

Proof. If g, p ∈ Hµ
s (f) has the same kth root b ∈ R, then

g = (t − b)µkg∗ and p = (t − b)µkp∗, where g∗ ∈ Hµ∗

s (p∗) for
µ∗ = (µ1, ..., µk−1, µk+1, ..., , µl). But Hµ∗

s (p∗) is at most a point by
Theorem 2.1.10 and thus g = p and ϕk is injective.

The projection is surjective onto its image and continuous since
the topology on Vµ

s (f)∩Ws+1 is the subspace topology of the product
topology on Rs+1. Since s ≥ 2, Vµ

s (f)∩Ws+1 is compact so any closed
subset S ⊆ Vµ

s (f)∩Ws+1 is a compact subset of Rs+1 and thus ϕk(S)
is a compact subset of R. Thus ϕk maps closed sets to closed sets
and its inverse is therefore continuous. Thus ϕk is a homeomorphism
onto its image.

Proposition 5.1.2. Suppose g ∈ Hµ
s (f) has a minimal or maximal

kth root for some k ∈ [l], then g has at most s distinct roots.

Proof. When s = 0 there are clearly no polynomials in Hµ
s (f) with

a minimal or maximal kth root. When s = 1, (t + f1/n)n ∈ Hµ
s (f)

has the maximal kth root for k ∈ [µ1] and the minimal kth root for
k ∈ {n−µl + 1 ..., n}. Also, for k ∈ [n−µl] we see that there cannot
be any polynomial with a minimal kth root and for k ∈ {µ1 + 1 ..., n}
there cannot be any polynomial with a maximal kth root. So let us
consider the case when s ≥ 2 and since the statement is clear when
l = ℓ(µ) ≤ s, let l > s.

Suppose µ is a composition of length s+1, then by Lemma 5.1.1,
g lies in the relative boundary of Hµ

s (f) and thus by Theorem 2.1.9
g has at most s distinct roots. So let ℓ(µ) > s+ 1 and suppose g has
more than s distinct roots. Then g has a minimal or maximal kth root
in Hµ

s+1(g). By Theorem 2.1.10 Hµ
s+1(g) is of dimension l− s− 1 > 0

so by induction g has s+ 1 distinct roots and Hc(g)
s (f) must be one-

dimensional. But then g cannot have a minimal or maximal kth root
in Hc(g)

s (f) by the induction start. This is a contradiction since g has
a minimal or maximal kth root in Hµ

s (f) ⊃ Hc(g)
s (f).
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We will proceed to characterise the polynomials in Hµ
s (f) with a

minimal or maximal first root.
Theorem 5.1.3.

• If s is odd, h ∈ Hµ
s (f) is the maximal polynomial if and only if

it has the maximal first root and the minimal polynomial if and
only if it has the minimal first root.

• If s is even, h ∈ Hµ
s (f) is the minimal polynomial if and only if

it has the maximal first root and the maximal polynomial if and
only if it has the minimal first root.

For the proof of Theorem 5.1.3 we follow the same inductive
approach as for Theorem 2.2.3, but as we have already set up quite
a few of the tools needed for the inductive step we mostly just have
to start the induction. Thus we will do the inductive step first
and afterwards cover the start of the induction, which is the one-
dimensional strata. Note that we covered the cases s = 0 and s = 1
in the proof of Proposition 5.1.2 so we will let s ≥ 2 for the remainder
of this subchapter. Since Vµ

s (f) ∩ Wl is compact when s ≥ 2, the
existence of polynomials with minimal and maximal first roots is
guaranteed.

Proof. For the inductive step, let s be odd, let Hµ
s (f) be at least two-

dimensional and assume the theorem is true for all proper substrata
of Hµ

s (f). Suppose g ∈ Hµ
s (f) is a polynomial with a minimal first

root, then for any nonempty stratum Hγ
s (f) ⊂ Hµ

s (f), g has the
minimal first root in Hγ

s (f). Thus by the induction hypothesis, g is
the minimal polynomial of Hγ

s (f). By Lemma 2.2.12, g is therefore
the minimal polynomial of Hµ

s (f). The argument for a polynomial
with a maximal first root or when s is even is analogous.

Next we let Hµ
s (f) be one-dimensional and generic. Then as with

Theorem 2.2.3 we use a Lagrange-based argument. We know from
Lemma 5.1.1, that one of the two polynomials in the boundary of
Hµ

s (f) has the minimal first root and the other one has the maximal
first root so we need to determine which is which. So let x ∈ Vµ

s (f)
have s distinct coordinates, then as we saw before Proposition 2.2.9
the Jacobian of (P µ

1 (x), ..., P µ
s (x)) is invertible and so the vectors

∇P µ
1 (x), ...,∇P µ

s (x) are linearly independent.
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On the other hand, the Jacobian of (P µ
1 (x), ..., P µ

s (x), x1) equals

J(x) :=



µ1 µ2 · · · µs+1
2µ1x1 2µ2x2 · · · 2µs+1xs+1

... ... ... ...
sµ1x

s−1
1 sµ2x

s−1
2 · · · sµs+1x

s−1
s+1

1 0 · · · 0


and by using cofactor expansion we see that the determinant of J(x)
equals the determinant of the upper right s× s matrix which is

c
∏

2≤i<j≤s+1
(xi − xj),

for some positive constant c ∈ R (see the discussion before Propos-
ition 2.2.9). Thus det(J(x)) = 0 if and only if |{x2, ..., xs+1}| < s,
that is, when x1 is a unique coordinate of x.

Let p = ∏s+1
i=1 (t−ai)µi and q = ∏s+1

i=1 (t−bi)µi, where a1 ≤ ... ≤ as+1
and b1 ≤ ... ≤ bs+1, be the two polynomials in the relative boundary
of Hµ

s (f). Since p and q does not have the same composition, either
a1 ̸= a2 or b1 ̸= b2 or both. So without loss of generality we can
assume a1 < a2 ≤ ... ≤ as+1. Thus the determinant of J(a) is zero
and there are therefore scalars c1, ..., cs such that ∇L(a) = 0, where

L = x1 −
s∑

i=1
ciP

µ
i (x).

We have that

∇L(a) = (1 + µ1Q(a1), µ2Q(a2), ..., µs+1Q(as+1)) = 0,

so the univariate polynomial Q(t) := − ∑s
j=1 cjjt

j−1 has the roots
a2, ..., as+1. Also, only s − 1 of these roots are distinct since a1 is
not the repeated coordinate of a, thus Q(t) is of degree s− 1 and so
cs ̸= 0. For later use we will need to determine the sign of cs.
Lemma 5.1.4. The sign of cs is (−1)s−1.

Proof. Since 1 + µ1Q(a1) = 0 we have Q(a1) = − 1
µ1

. Since a1 is
strictly smaller than all the roots of Q, we have limz→−∞ sgn(Q(z)) =
sgn(Q(a1)) = −1. So since the polynomial Q has degree s − 1 we
have sgn(cs) = (−1)s−1.
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We can now prove Theorem 5.1.3 for one-dimensional generic
strata:

Proof. As before we let p = ∏s+1
i=1 (t − ai)µi be a polynomial in the

relative boundary of Hµ
s (f) with a1 < a2 ≤ ... ≤ as+1. Then by

Theorem 5.4 in [34], a is a local maximiser of the polynomial x1
(resp. minimiser) if for all nonzero vectors v ∈ Rs+1 in the kernel of
J(a) we have vtH(a)v < 0 (resp. vtH(a)v > 0), where

H(a) := ∇2L(a) =



µ1Q
′(a1) 0 · · · 0
0 . . . . . . ...
... . . . . . . 0
0 · · · 0 µs+1Q

′(as+1)

 .

Just as in the proof of Proposition 2.2.9, v ∈ Rs+1 lies in the
kernel of J(a) if and only if vk + vk+1 = 0, where k is the repeated
coordinate of a, and if all other coordinates of v are zero. So we have
that

vtH(a)v =
∑
j

µjQ
′(aj)v2

j = Q′(ak)(µkv
2
k + µk+1v

2
k+1)

is negative (resp. positive) for all v ̸= (0, ...0) in the kernel of J(a)
if and only if Q′(ak) is positive (resp. negative). The polynomial Q
has no repeated roots and by Lemma 5.1.4, the sign of the leading
coefficient of Q is (−1)s−1. So by Rolle’s Theorem, Q(ak) is positive
(resp. negative) if k = s + 1 − 2m (resp. k = s − 2m) for some
nonnegative integer m and if s is odd. The opposite is true if s is
even as in that case the sign of cs is negative.

Thus if s is odd, then a1 is the maximal first root in Hµ
s (f) if

c(p)/µ is alternate even and a1 is the minimal first root in Hµ
s (f) if

c(p)/µ is alternate odd. Again, we get the opposite statement if s
is even. If p has the maximal first root, then by Proposition 5.1.2,
the other polynomial in the relative boundary of Hµ

s (f) must have
the minimal first root and vice versa. Lastly, by Theorem 2.2.3,
a polynomial g ∈ Hµ

s (f) is the maximal polynomial if c(g)/µ is
alternate even and the minimal polynomial if c(g)/µ is alternate
odd.

We finish with a perturbation argument to deal with the non-
generic one-dimensional strata:
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Proof. As in the proof of Lemma 2.2.18 we can let s ≥ 3 as there are
no non-generic strata when s = 2. Let Hµ

s (f) be a one-dimensional
non-generic strata and let s be odd as the argument is analogous
when s is even. And by Lemma 2.2.16, we can perturb the last
n − s + 1 coefficients of f slightly and get a monic hyperbolic
polynomial g such that Hµ

s (g) is generic and nonempty. If qmin

is the minimal polynomial of Hµ
s (f) and pmin, the is the minimal

polynomial of Hµ
s (g), then as in the proof of Lemma 2.2.18, by

minimising dist(f, g) we can make the distance between the minimal
polynomial Hµ

s (f) and the minimal polynomial of Hµ
s (g) is smaller

than δ, for any δ > 0.
By Lemma 2.1.4 that means that we can make sure the distance

between the first root of qmin and the first root of pmin is smaller than
ϵ for any ϵ > 0. Similarly, we can make sure the distance between the
maximal polynomial, qmax, of Hµ

s (f) and the maximal polynomial,
pmax, of Hµ

s (g) and the distance between their first roots are smaller
than δ and ϵ respectively. Thus by choosing small enough δ and ϵ

we have that the first root of qmin is smaller than the first root of
qmax. By Proposition 5.1.2 we then have that qmin has the minimal
first root and qmax has the maximal first root.

Remark 5.1.5. Note that the same argument works to classify the
polynomials in Hµ

s (f) with a minimal and maximal kth root. All
that needs to change is that the sign of cs is (−1)s−k and thus the
classification depends on whether or not s− k is even or odd.

5.1.2 Dimension, connectedness and escaping strata

In this subchapter we show that even-hyperbolic strata have many
properties similar to hyperbolic strata. We determine what possible
dimensions the strata may have and we see that even-hyperbolic
strata are also connected. Lastly, we use the Theorem 5.1.3 to
characterise the “escapes” from even-hyperbolic strata.

Firstly, note that if sgn(ν) = 1, then the largest possible
dimension of N ν

s (h) is l − s since that is the maximal dimension
of Hν

s(h) and N ν
s (h) ⊆ Hν

s(h). Similarly, if sgn(ν) = −1, then the
largest possible dimension of N ν

s (h) is l − s − 1 since that is the
maximal dimension of H(ν2,...,νl)

s (g/tν1), where g ∈ N ν
s (h), and we

have N ν
s (h) = tν1N (ν2,...,νl)

s (g/tν1) ⊆ tν1H(ν2,...,νl)
s (g/tν1).
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Definition 5.1.6. We say that the maximal dimension of N ν
s (h)

is max{ℓ(ν) − s, 0} if sgn(ν) = 1 and max{ℓ(ν) − s − 1, 0} if
sgn(ν) = −1.
Theorem 5.1.7. If N ν

s (h) contains a polynomial with at least s
distinct positive roots, then it is maximal dimensional. Otherwise
N ν

s (h) is either empty or a single polynomial.

Proof. If l ≤ s, then H|ν|
s (h) is either empty or a point by Theorem

2.1.10, thus we will let l > s and we assume N ν
s (h) ̸= ∅.

Suppose sgn(ν) = 1 and let g ∈ Hν
s(h) be the polynomial with

the maximal first root. By Theorem 2.1.10, Hν
s(h) is maximal

dimensional and by Theorem 2.1.9 and Corollary 2.1.11, any open
ball around g contains a polynomial with composition ν. If g(0) ̸= 0,
then by Lemma 2.1.4 we can make the ball small enough so that all
its polynomials have only positive roots. Thus if g(0) ̸= 0, N ν

s (h)
contains a polynomial with l > s distinct positive roots and there is
an ϵ > 0 such that

Bϵ(g) ∩ N ν
s (h) = Bϵ(g) ∩ Hν

s(h)

and thus dim(N ν
s (h)) = dim(Hν

s(h)) = l − s. If g(0) = 0, then
by Theorem 5.1.3, g is the only polynomial in Hν

s(h) with all
nonnegative roots and so N ν

s (h) = {g}. Also, since g has at most s
distinct roots by Proposition 5.1.2, then it has at most s− 1 distinct
positive roots.

Secondly, if sgn(ν) = −1 then N ν
s (h) = tν1N ν′

s (p/tν1) for any
p ∈ N ν

s (h). If N ν
s (h) contains a polynomial with at least s distinct

positive roots, then so does N ν′

s (p/tν1) and we can argue as above
that N ν′

s (p/tν1) is maximal dimensional. If N ν
s (h) does not contain a

polynomial with at least s distinct positive roots, then neither does
N ν′

s (p/tν1) and again we can argue as above that N ν′

s (g/tν1) contains
a single polynomial.

Next we show how the connectedness of the even-hyperbolic strata
follows quite easily from our knowledge of hyperbolic strata and we
start by looking at the one-dimensional strata. Note however that in
[13] they proved that the strata are generically contractible so this
is not really a new result, just a different approach.
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Lemma 5.1.8. If N ν
s (h) is one-dimensional it is contractible.

Proof. Similarly to the proof of Theorem 5.1.7 we may assume
sgn(ν) = 1. Thus by Theorem 5.1.7, l = s + 1 since N ν

s (h) is one-
dimensional. If s = 0, N ν

0 (h) is homeomorphic to R≥0 by Lemma
2.1.4 and thus the statement is true, so let s ≥ 1. Note that when
s ≥ 1, then N ν

s (h) is compact since P ν
2 (x) = −h1 defines a sphere

and the semialgebraic set

{x ∈ Rs+1| − Eν
1 (x) = h1 and 0 ≤ x1} ∩ Ws+1

equals
{(x2

1, ..., x
2
s+1) ∈ Rs+1| − P ν

2 (x) = h1} ∩ Ws+1.

Since N ν
s (h) is compact it can be argued as in Lemma 5.1.1 that

it is homeomorphic to the set of the polynomials’ first roots, R ⊂ R.
Since Vν

s (h) ∩ Ws+1 is contractible by Proposition 2.1.5, then the set
of first roots, M , of the polynomials in Hν

s(h) is contractible. Thus
the set M ∩R≥0 = R is contractible and thus so must N ν

s (h) be.

Theorem 5.1.9. If N ν
s (h) is nonempty, then it is connected.

Proof. If s = 0 the statement follows from Lemma 2.1.4, so let s ≥ 1.
We will do an induction on the dimension of N ν

s (h). By Theorem
5.1.7, the zero-dimensional strata are connected and by Lemma 5.1.8
the one-dimensional strata are connected.

As in the proof of Theorem 5.1.7 we may assume sgn(ν) = 1. So
let N ν

s (h) be at least two-dimensional, then by Theorem 5.1.7 N ν
s (h)

is (l− s)-dimensional and N −ν
s (h) is at most (l− s− 1)-dimensional.

So let {Ci}i be the nonempty connected components of N ν
s (h), then

by the induction hypothesis if N −ν
s (h) is nonempty it is connected.

So at most one of the components have a nonempty intersection with
N −ν

s (h).
By the argument Lemma 5.1.8, N ν

s (h) is compact and thus so are
its connected components. If Ci is a component that does not contain
a minimal polynomial of N ν

s (h) then let g ∈ Ci be a polynomial
with minimal (s + 1)th coefficient in Ci. If g has strictly positive
roots, then by Lemma 2.1.4, there is an open ball about g containing
only polynomials with strictly positive roots. So by Lemma 2.2.7,
g cannot be locally minimal in Ci without being minimal in Hν

s(h).
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Therefore g cannot be globally minimal in Ci which is a contradiction
and so g must have a zero root. Similarly, a polynomial in Ci with
a maximal (s + 1)th coefficient in Ci must either be the maximal
polynomial of Hν

s(h) or have zero as a root.
Thus there are at most two connected components C1 and C2

of N ν
s (h), one with a nonempty intersection with N −ν

s (h) and one
containing both the minimal and maximal polynomial of Hν

s(h). But
by Theorem 5.1.3, if both the minimal and maximal polynomial
of Hν

s(h) lies in N ν
s (h), then N ν

s (h) = Hν
s(h) and is connected by

Proposition 2.1.5.

We will now use Theorem 5.1.3 to classify the polynomials in even-
hyperbolic strata with a minimal or maximal first free coefficient.
Definition 5.1.10. We say that g ∈ N ν

s (h) is a minimal (resp.
maximal) polynomial of N ν

s (h) if gs+1 ≤ ps+1 (resp. gs+1 ≥ ps+1)
for all p ∈ N ν

s (h).
Note that the following theorem can be more compactly written

and we will do so in the following subchapter (Lemma 5.2.4)
Theorem 5.1.11 (Escaping even-hyperbolic strata). Let sgn(ν) = 1,
s ≥ 1 and N ν

s (h) ̸= ∅, then there is a unique minimal and maximal
polynomial in N ν

s (f). They are determined by the following: Let λ be
the signed composition of g ∈ N ν

s (h) and let γ = (γ1, ..., γk) = |λ|/ν,
then

1. if s is odd
• g is minimal if and only if sgn(λ) = 1 (resp. sgn(λ) = −1)

and γ (resp. (γ2, ..., γk)) is less than or equal to an alternate
odd composition of length s and

• g is maximal if and only if γ is less than or equal to an
alternate even composition of length s.

2. if s is even
• g is minimal if and only if γ is less than or equal to an

alternate odd composition of length s and
• g is maximal if and only if sgn(λ) = 1 (resp. sgn(λ) = −1)

and γ (resp. (γ2, ..., γk)) is less than or equal to an alternate
even composition of length s
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Proof. We will assume s is odd as the proof is analogous when s is
even. Note that by the argument in the proof of Lemma 5.1.8 N ν

s (h)
is compact and thus it has a minimal and a maximal polynomial.
Also, since N ν

s (h) is nonempty and a subset of Hν
s(h) it follows

from Theorem 5.1.3 that the maximal polynomial Hν
s(h) also lies

in N ν
s (h). Thus it follows from Theorem 2.2.3 (if s ≥ 2) and the

main theorem of [23] (if s = 1) that the maximal polynomial of
N ν

s (h) is unique and that g ∈ N ν
s (h) is maximal if and only if γ is

less than or equal to an alternate even composition of length s. The
statement for the minimal polynomial also follows from Theorem
2.2.3 if N ν

s (h) = Hν
s(h), so suppose N ν

s (h) ⊂ Hν
s(h). Then for the

minimal polynomial we will do an induction on the dimension of
N ν

s (h) starting with the one-dimensional strata.
If N ν

s (h) is one-dimensional then by Theorem 5.1.7, N ν
s (h) is

maximal dimensional. Since N ν
s (h) ⊂ Hν

s(h), by Theorem 5.1.3,
a minimal polynomial of N ν

s (h) is not the minimal polynomial of
Hν

s(h). A minimal polynomial of N ν
s (h) is of course also not the

maximal polynomial of Hν
s(h) so it lies in the relative interior of

Hν
s(h) and by Theorem 2.1.9 it has the composition ν. And similarly

to the proof of Theorem 5.1.9, a minimal polynomial of N ν
s (h) has

a zero root when it is not the minimal polynomial of Hν
s(h). Thus if

g is a minimal polynomial, sgn(λ) = −1 and (γ2, ..., γs+1) = (1, ..., 1)
is of length s. By the argument in Lemma 5.1.8 there is at most
one polynomial in N ν

s (h) with a zero root, so a minimal polynomial
is unique. If g is not the minimal polynomial, then as we just saw
sgn(λ) = 1 and by Theorem 2.2.3, γ is not less than or equal to an
alternate odd composition of length s, thus the equivalence follows.

Next let dim(N ν
s (h)) ≥ 2. If g has only positive roots then

by Theorem 2.2.3, γ is not less than or equal to an alternate odd
composition of length s. By Theorem 5.1.3, the minimal polynomial
of Hν

s(h) is not in N ν
s (h) when N ν

s (h) ⊂ Hν
s(h). Thus, similarly to

the proof of Theorem 5.1.9, a minimal polynomial of N ν
s (h) must lie

in N −ν
s (h). So suppose g(0) = 0, then g = tν1g∗ has the same (s+1)th

coefficient as g∗ and is therefore minimal in N ν
s (h) if and only if g∗

is minimal in N (ν2,...,νl)
s (g∗). So by induction the minimal polynomial

of N ν
s (h) is unique and g is minimal if and only if (γ2, ..., γk) is less

than or equal to an alternate odd composition of length s.
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Note that Theorem 5.1.11 also applies for the stratum N ν
s (h)

when sgn(ν) = −1. We can simply rewrite N ν
s (h) as in the proof of

Theorem 5.1.7 and instead work with the stratum N (ν2,...,νl)
s (g/tν1),

where g ∈ N ν
s (h).

Remark 5.1.12. It is worth noting that by using Theorem 2.1.9, it is
not too much work to show that the relative interior of N ν

s (h) consists
of the polynomials with signed compositions equal to ν. Similarly,
by using Corollary 2.1.11, one can conclude that the even-hyperbolic
strata equals the closure of their relative interior. We also have all the
tools we need to show that the relative interior of an even-hyperbolic
stratum is connected and we could follow the method in [18] and in
subchapter 2.3 to show that the strata and their relative interior are
contractible. But we have focused on the most central properties as
we will not be needing the others.

5.2 ... and combinatorics

In this subchapter we delve into the main combinatorial
properties of the poset of even-hyperbolic strata. We will see that
it is a lattice which can be computed from the signed compositions
of the polynomials in N ν

s (h) with at most s distinct positive roots.
We will also show that the boundary complex of the dual lattice
is generically a dual potential hyperbolic poset and thus shellable
simplicial complex and a combinatorial sphere. Then we show we
therefore get an improvement of the degree principle for polynomials
invariant under the natural action of the hyperoctahedral group.

We start by introducing a map that will let us avoid having to
establish everything from scratch and instead take advantage of the
work on hyperbolic lattices. So for the remainder of the thesis let
ψ : SC(n) → C(n+ 1) denote the map from the signed compositions
of n, SC(n), to the compositions of n+ 1 given by

ψ(ν) =
(1, ν1, ..., νl), if sgn(ν) = 1,

(ν1 + 1, ν2, ..., νl), if sgn(ν) = −1.

Lemma 5.2.1. The mapping ψ is a poset isomorphism.
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Proof. It is easy to see that ψ is a bijection whose inverse is given by

µ 7→

(µ2, ..., µl), if µ1 = 1,
(µ1 − 1, µ2, ..., µl), if µ1 > 1.

To see that it is an order-preserving map let γ and ν be two signed
compositions with ν < γ. Then sgn(ν) ≤ sgn(γ) and there is a
composition, λ, of ℓ(γ) with ℓ(λ) = l such that

|ν| = (γ1 + ...+ γλ1, ..., γℓ(γ)−λl+1 + ...+ γℓ(γ)).

Thus either

ψ(ν) = (1, γ1 + ...+ γλ1, ..., γℓ(γ)−λl+1 + ...+ γℓ(γ)) <

(1, γ1, ..., γℓ(γ)) = ψ(γ),

if sgn(ν) = sgn(γ) = 1, or

ψ(ν) = (1 + γ1 + ...+ γλ1, ..., γℓ(γ)−λl+1 + ...+ γℓ(γ))

is smaller than both the options for ψ(γ):

(1 + γ1, ..., γℓ(γ)) < (1, γ1, ..., γℓ(γ)).

Similarly it is straightforward to check that the inverse is order-
preserving thus ψ is a poset isomorphism.

An immediate consequence of Lemma 5.2.1 and Lemma 3.1.1 is
that the poset of signed compositions of n is isomorphic to the face
lattice of an (n − 1)-dimensional simplex. And as with the poset
of hyperbolic strata this means that the set of hyperbolic strata,
partially ordered by inclusion, is a lattice. We also see that the meet
of two even-hyperbolic strata is given by

N ν
s (h) ∧ N γ

s (h) = N ν∧γ
s (h),

where γ is another signed composition and ν∧γ is the meet of ν and
γ in the lattice of signed compositions.
Definition 5.2.2. We let Ks(h) denote the lattice of strata of Ns(h)
and we call Ks(h) an even-hyperbolic lattice.
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Note that by Theorem 5.1.7, if the stratum N ν
s (h) is at least one-

dimensional, it is maximal dimensional and for any γ < ν, N γ
s (h) is

at most (dim(N ν
s (h))−1)-dimensional. Since there are finitely many

signed compositions smaller than ν we have

dim(∪γ<νN γ
s (h)) ≤ (dim(N ν

s (h)) − 1).

Thus there must be a polynomial in N ν
s (h) with composition ν. Also,

if N ν
s (h) is zero-dimensional then it contains only one polynomial.

Thus we may abuse notation and identify the lattice Ks(h) with the
union of the signed compositions that occur in Ns(h) and −(n):

Ks(h) = {sc(g)|g ∈ Ns(h)} ∪ {−(n)}.

Let us have a look at what kind of even-hyperbolic lattices we
can have. Firstly, when s = 0 then all signed compositions occur
and thus K0(h) is an (n − 1)-dimensional simplex. Thus we will
focus on the case when s ≥ 1. Secondly, note that if h1 = 0, then
since the roots of any polynomial in N1(h) must satisfy ∑n

i=1 xi = 0,
we have that N1(h) = {h} = {tn}. Also if h1 < 0 we see that
the signed composition −(n) cannot occur in Ns(h) and thus Ks(h)
contains the empty set. However, it is clear that any other signed
composition occurs and thus K1(h) is an (n−1)-dimensional simplex
which by Theorem 5.1.7 is ranked by the dimension of the strata.

For larger s things get more complicated, however we can compute
an even-hyperbolic lattice from its zero-dimensional strata:
Algorithm 5.2.3. Let s ≥ 1, Ns(h) be (n − s)-dimensional and let
U contain the signed compositions, γ, occurring in Ns(h) with either
ℓ(γ) ≤ s or ℓ(γ) = s+ 1 and sgn(γ) = −1.

Step 1: Compute the join of every pair in U :

V := {γ ∨ λ|γ, λ ∈ U & γ ̸= λ}.

Step 2: Compute the upward closure of V :

V := {λ|∃ γ ∈ V with γ ≤ λ}.

Then U ∪ V is the set of all signed compositions occurring in the
slice Ns(h).
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Proof. Let ν ∈ V , then N ν
s (h) contains at least two polynomials so by

Theorem 5.1.7 and the discussion after Definition 5.2.2, it is maximal
dimensional and contains a polynomial with signed composition ν.
Thus all the signed compositions computed by the algorithm occurs
in Ns(h).

For the reverse statement note that if ν occurs in Ns(h) and
either l > s + 1 or sgn(ν) = 1 and l = s + 1, then N ν

s (h) is at
least one-dimensional by Theorem 5.1.7. By Theorem 5.1.11 there
are two distinct polynomials g, p ∈ N ν

s (h) (the minimal and maximal
polynomial), whose signed compositions lie in U . By Theorem 5.1.7
we have sc(g) ̸= sc(p), thus ν ≥ sc(g) ∨ sc(p) ∈ V and ν ∈ V and so
all the signed compositions that occur in Ns(h) is computed by the
algorithm.

To show that ∂(K∆
s (h)) is generically a shellable simplicial

complex we first use the isomorphism ψ to rephrase the classification
in Theorem 5.1.11.
Lemma 5.2.4. Let s ≥ 1 and N ν

s (h) ̸= ∅, then g ∈ N ν
s (h) is the

minimal (resp. maximal) polynomial if and only if ψ(sc(g))/ψ(ν) is
less than or equal to an alternate odd (resp. even) composition of
length s+ 1.

Proof. Let λ = sc(g) and γ = |λ|/|ν| and suppose s is odd as the
argument is analogous when s is even. Also, let N ν

s (h) be generic as
the general statement follows from the generic case by Lemma 5.2.1.

If sgn(ν) = 1, then by Theorem 5.1.11, g is the minimal
polynomial if and only if sgn(λ) = 1 (resp. sgn(λ) = −1) and γ
(resp. (γ2, ..., γℓ(γ))) is an alternate odd composition of length s.
We have that sgn(λ) = 1 and γ is an alternate odd composition of
length s if and only if ψ(λ)/ψ(ν) = (1, γ1, ...., γℓ(γ)) is an alternate
odd composition of length s+1. Also we have that sgn(λ) = −1 and
(γ2, ..., γℓ(γ)) is an alternate odd composition of length s if and only
if ψ(λ)/ψ(ν) = (1 + γ1, γ2, ...., γℓ(γ)) is an alternate odd composition
of length s + 1. This is because when s is odd then ℓ(γ) = s + 1 is
even and thus γ2 = γ4 = ... = γs+1 = 1.

For the maximal polynomial, suppose N ν
s (h) is zero dimensional

then by Theorem 5.1.7 it contains only g. Then sc(g) = ν and
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thus ψ(λ)/ψ(ν) = (1s+1) = γ and so the statement follows. Next
suppose N ν

s (h) is at least one-dimensional, then by Theorem 5.1.3
the maximal polynomial does not have a zero root. Thus by Theorem
5.1.11, g is the maximal polynomial if and only if sgn(λ) = 1 and
γ = λ/ν is an alternate even composition of length s. This is
equivalent to ψ(λ)/ψ(ν) = (1, γ1, ...., γℓ(γ)) being an alternate even
composition of length s+ 1.

Lastly, if sgn(ν) = −1, then g is the minimal polynomial if and
only if g∗, where g = tν1g∗, is the minimal polynomial in N ν∗

s (g∗),
where ν∗ = (ν2, ..., νl). Since sgn(ν∗) = 1, the statement follows from
the argument above if ψ(sc(g∗))/ψ(ν∗) = ψ(sc(g))/ψ(ν), so let us
show this. We have ψ(ν∗) = (1, ν2, ..., νl) and

ψ(sc(g∗)) =
(1, λ2, ..., λℓ(λ)) if λ1 = ν1

(1 + λ1 − ν1, λ2, ..., λℓ(λ)) if λ1 > ν1
,

thus ψ(sc(g∗))/ψ(ν∗) = γ. We also have ψ(λ) = (1 + λ1, λ2, ..., λℓ(λ))
thus ψ(λ)/ψ(ν) = γ and so ψ(λ)/ψ(ν) = ψ(sc(g∗))/ψ(ν∗).

Theorem 5.2.5. The poset ψ(Ks(h)\∅) is generically a potential
hyperbolic poset. Thus ∂(K∆

s (h)) is an (n − s − 1)-dimensional
shellable simplicial complex and a combinatorial (n− s− 1)-sphere.

Proof. Since Ns(h) is generic the atoms of Ks(h) correspond to the
positive compositions of length s and the negative compositions of
length s + 1. If g ∈ Ns(h) is a polynomial with such a signed
composition, then by Theorem 5.1.7, N ν

s (h) is maximal dimensional
for any ν ≥ sc(g). And as in the discussion after Definition 5.2.2, we
see that the signed composition ν occurs in Ns(h). Thus a maximal
element of ∂(K∆

s (h)) is the dual of the upward closure of sc(g) in the
poset of signed compositions.

By Lemma 5.2.1, a maximal element of ∂(K∆
s (h)) is therefore

isomorphic to the dual of the upward closure of ψ(sc(g)) in the
poset of compositions of n + 1. Since the length of ψ(sc(g)) is
s+1 then due to Lemma 5.2.4, ψ(∂(Ks(h))) is a potential hyperbolic
poset. Thus by Lemma 5.2.1 and Theorem 4.2.4, ∂(K∆

s (h)) is an
(n−s−1)-dimensional shellable simplicial complex and in particular
a combinatorial (n− s− 1)-sphere.
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5.2.1 Improving the hyperoctahedral degree principle

In this subchapter we look at what kind of improvements we can
make on the degree principle for the hyperoctahedral group. We
see that the possible improvements cannot be better than for the
symmetric group S(n), but on the other hand we can do at least as
well as for the symmetric group S(n+ 1). Furthermore, it looks like
any improvements for S(n + 1) can be applied to B(n) and so one
might as well focus on the symmetric group and hyperbolic slices.

To see that we cannot in general get anything better than for
S(n), consider the following example:
Example 5.2.6. We will revisit the example from the introduction
of this chapter. So let h = t(t − 2)2(t − 4) = t4 − 8t3 + 20t2 − 16t,
then recall that N2(h) is the following set:

.
The polynomial from N2(h) with composition (2, 2) is g = (t+

√
2 −

2)2(t −
√

2 − 2)2 = t4 − 8t3 + 20t2 − 16t + 4 and so its first root
is −

√
2 + 2. By Theorem 5.1.3 we can translate all the roots of

all the polynomials in Hs(h) by
√

2 − 2 − ϵ, for some ϵ > 0 and
thus get rid of the signed compositions (2, 2), (1, 1, 2) and −(1, 1, 2)
from the even-hyperbolic lattice. Just consider the following picture
of N2(h(t−

√
2 + 2 + 1/10)):
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.
In general we see that if p = h(t + a), for some a ∈ R, then

Ls(p) = Ls(h) but the following are the possibilities for Ks(p)\∅:
{−(3, 1)},

{(14),−(14), (2, 12), (1, 2, 1),−(2, 12),−(1, 2, 1), (3, 1)},
{(14),−(14), (2, 12), (1, 2, 1),−(22),−(1, 2, 1), (3, 1)},

{(14),−(14), (2, 12), (1, 2, 1), (12, 2),−(1, 2, 1),−(12, 2), (22), (3, 1)},
{(14), (2, 1, 1), (1, 2, 1), (1, 1, 2), (2, 2), (3, 1),−(1, 3)},

Ls(h)\∅.

As in the example above, it is clear that when s ≥ 2, then
since both Ns(h) and Hs(h) are compact, then we can translate the
roots of Hs(h) such that Ks(h) = Ls(h). Thus we cannot make
better improvements for the group B(n) compared to S(n). However
due to Theorem 5.1.3 or Theorem 5.2.5 we can make improvements
comparable to S(n+ 1). So let us look at how this works.

Similarly to signed compositions of even-hyperbolic polynomials
we let sp(h) := m × λ, where m is the multiplicity of zero as a root
of h and λ = p(h/tm). We denote by SP(n) the set

∪n
i=0(n− i) × P(i)
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and by SP(n, s) the set

{m× λ ∈ SP(n)|ℓ(λ) = s}.

Furthermore we say that m× λ ≤ k × γ if there are permutations σ
and τ such that (m,σ(λ)) ≤ (k, τ(γ)) as compositions. Then as in
the symmetric group we define an even Vandermonde covering as:
Definition 5.2.7. Let P ⊆ SP(n, s). We say that P is an even
(n, s)-Vandermonde covering, if for every even-hyperbolic slice
Ns(h) there is a m × λ ∈ P and a polynomial g ∈ Ns(h) with
sp(g) ≤ m× λ.

Just as with the symmetric group, SP(n) correspond to the
possible stabilizer subgroups of B(n) of points in Rn.
Definition 5.2.8. If P ⊆ SP(n, s) then we let OP :=(0, . . . , 0︸ ︷︷ ︸

m−times

, x1, . . . , x1︸ ︷︷ ︸
λ1−times

, . . . , xs, . . . , xs︸ ︷︷ ︸
λs−times

) ∈ Rn

∣∣∣∣∣∣∣∣ m× λ ∈ P

 .

Theorem 5.2.9. Let P ⊆ P(n, s), then the following are equivalent:
1. P ⊆ SP(n, s) is an even (n, s)-Vandermonde covering.
2. For any F1, ..., Fk ∈ R[x]B(n) with degree at most 2s we have

VR(F1, ..., Fk) ̸= ∅ ⇔ VR(F1, ..., Fk) ∩OP ̸= ∅.

3. For all c ∈ Rs we have

VR(E1(x2) + c1, ..., Es(x2) + (−1)s−1cs) ̸= ∅ ⇔

VR(E1(x2) + c1, ..., Es(x2) + (−1)s−1cs) ∩OP ̸= ∅.

Proof. By Theorem 1.1.5, we have Fi = Gi(E1(x2), ..., Es(x2)) for
some Gi ∈ R[y1, ..., ys] and if a ∈ VR(F1, ..., Fk) we associate it to
the even-hyperbolic polynomial tn − E1(a2)tn−1 + ...+ (−1)nEn(a2).
Other than those adjustments the proof is analogous to the proof of
Theorem 4.0.5.

Theorem 5.2.10. The set 0 × Pmax(n, s) is an even (n, s)-
Vandermonde covering of size

∣∣∣P (
n+ 1 −

⌈
s+1

2
⌉
,

⌊
s+1

2
⌋)∣∣∣.
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Proof. If s is odd then Theorem 5.1.3 and Theorem 2.2.3 says that for
any nonempty even-hyperbolic slice Ns(h) the maximal polynomial,
g, of the hyperbolic slice Hs(h) is such that p(g) ≤ λ for some
λ ∈ Pmax(n, s) and g has the maximal first root in Hs(h). Thus
sp(g) ≤ 0 × λ and g ∈ Ns(h) ⊆ Hs(h). By Lemma 4.1.2 the size
of 0 × Pmax(n, s) is the same as the size of Pmin(n + 1, s + 1) which
by Theorem 4.1.1 is

∣∣∣P (
n+ 1 −

⌈
s+1

2
⌉
,

⌊
s+1

2
⌋)∣∣∣. When s is even it

is easy to see that Pmin(n, s) = Pmax(n, s) so the argument works
similarly.

For further improvements and bounds on the size of even
Vandermonde coverings we can, by Theorem 5.2.5, translate
the results from potential hyperbolic posets via the mapping ψ
introduced on page 89. Thus if we assume Conjecture 4.2.5 is correct
then we may just focus on the symmetric case if we want to improve
on the degree principle further for the hyperoctahedral case.
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