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A B S T R A C T   

Camera traps are a powerful, practical, and non-invasive method used widely to monitor animal communities 
and evaluate management actions. However, camera trap arrays can generate thousands to millions of images 
that require significant time and effort to review. Computer vision has emerged as a tool to accelerate this image 
review process. We propose a multi-step, semi-automated workflow which takes advantage of site-specific and 
generalizable models to improve detections and consists of (1) automatically identifying and removing low- 
quality images in parallel with classification into animals, humans, vehicles, and empty, (2) automatically 
cropping objects from images and classifying them (rock, bait, empty, and species), and (3) manually inspecting a 
subset of images. We trained and evaluated this approach using 548,627 images from 46 cameras in two regions 
of the Arctic: “Finnmark” (Finnmark County, Norway) and “Yamal” (Yamalo-Nenets Autonomous District, 
Russia). The automated steps yield image classification accuracies of 92% and 90% for the Finnmark and Yamal 
sets, respectively, reducing the number of images that required manual inspection to 9.2% of the Finnmark set 
and 3.9% of the Yamal set. The amount of time invested in developing models would be offset by the time saved 
from automation after 960 thousand images have been processed. Researchers can modify this multi-step process 
to develop their own site-specific models and meet other needs for monitoring and surveying wildlife, balancing 
the acceptable levels of false negatives and positives.   

1. Introduction 

Digital camera traps have become widely used for surveying and 
monitoring wildlife (Burton et al., 2015; Wearn and Glover-Kapfer, 
2019). Camera traps are a non-invasive and relatively cost-effective 
method with many applications in ecology such as monitoring biodi-
versity (Oliver et al., 2023), investigating site occupancy (Hamel et al., 
2013), estimating abundance (Stien et al., 2022), or studying species 
interactions (Rød-Eriksen et al., 2023). They make it realistic to obtain 
sufficient data to address ecological questions also for species that can be 

difficult to observe (e.g. Perera et al., 2022). However, trap arrays often 
generate thousands to millions of images requiring substantial effort to 
review manually. Computer vision offers the potential to significantly 
accelerate this image review process and is a rapidly developing field (e. 
g. Vélez et al., 2022, Morris, 2024). 

Computer vision tools have been developed to facilitate different 
steps of image classification. A first step is often to remove empty im-
ages, here MegaDetector (Beery et al., 2019) or Machine Learning for 
Wildlife Image Classification 2 (MLWIC2, Tabak et al., 2020) are 
frequently used platforms. The next step is to classify and count animal 
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species. A whole row of ready-made classifiers exist (Morris, 2024), 
however, existing classifiers focus in general on the fauna of a specific 
region, thus for example, MLWIC2 (Tabak et al., 2020) and Camera-
TrapDetectoR (Tabak et al., 2022) have been developed to classify North 
American species, the DeepFaune initiative aims at identifying the 
french fauna, WildID detects South African wildlife and the workflow 
developed by Böhner et al., 2023 aims specifically at registering Fen-
noscandian small rodents. Other workflows or platforms have been 
developed to allow users to train their own model (Mega Efficient 
Wildlife Classifier, Aandahl and Brook, 2024; Wildlife ML, Bothmann 
et al., 2023). This usually requires a large amount of images for training 
and often rather advanced computer skills. For a comprehensive list of 
available tools and options, see Morris (2024). However, the accuracy of 
computer vision still lags that of human annotators, particularly when 
images are derived from locations outside of a model’s training domain, 
and several authors have emphasized the need for human review of 
computer vision results (Fennell et al., 2022; Schneider et al., 2020; 
Vélez et al., 2023). 

The vast majority of camera traps are configured to use a motion 
sensor to trigger image capture when an animal is present in the cam-
era’s field of view (Böhner et al., 2023). However, in some cases, ani-
mals of interest may be too distant to trigger a motion sensor, or 
environmental conditions may result in an impractical number of false 
triggers, for instance during heavy snowfall; in these cases, a time-lapse 
protocol may be more appropriate (Hamel et al., 2013). Time-lapse 
camera trap datasets contain many more empty pictures than motion- 
triggered datasets; but they produce data in a more standardized form 
as the trigger behavior of motion sensors may vary quite substantially 
depending on species and other factors (Findlay et al., 2020). Moreover, 
time lapse protocols have the advantage of capturing small or distant 
animals in the camera’s field of view that can be missed by motion 
sensors. This allows time-lapse cameras to capture as many as six times 
the number of animals recorded in motion trigger setups, but distant 
animals can be difficult for computer vision systems to detect (Leorna 
and Brinkman, 2022). A reliable method of identifying empty pictures is 
especially important for a workflow aimed at minimizing hands-on time 
required for analyzing time-lapse camera trap datasets. At the same 
time, to maintain data quality and maximize detection probabilities for 
animals that do not remain long at camera stations, it is important to 
minimize false negatives. Moreover, empty pictures should be distin-
guished from pictures with bad visibility or obstructed lenses to relate 
detections to observation effort (i.e., number of pictures per day) for 
downstream statistical analyses (Burton et al., 2015). 

This paper presents a multi-tool solution that is specifically tailored 
to analyzing time-lapse camera trap datasets using site-specific models 
in conjunction with generalized models. It provides a guided example of 
a multi-step workflow for semi-automated classification of images from 
camera traps using a personal computer. 

Our approach combines training custom site-specific models that can 
be adapted to a new context in a flexible way with a highly performant 
openly available model, MegaDetector (Beery et al., 2019). Specifically, 
our approach consists of (1) identifying high-quality images, for which 
there is no model we are aware of currently available, (2) separating 
empty images from images with animals, humans, or vehicles, (3) 
cropping out detected objects from images and classifying them by ob-
ject type (rock, bait, empty and species), and (4) manually inspecting a 
selection of images. We investigate trade-offs between false negatives 
and manual reviewing time, and we evaluate the benefit of several en-
hancements to the typical MegaDetector workflow. 

Because arctic ecosystems are at present rapidly changing under the 
impact of climate change and increasing human activity (e.g., Ims et al., 
2013), there is an urgent need for thorough monitoring of important 
arctic wildlife species such as carnivores. Camera traps are a well-suited 
non-invasive method that can be deployed relatively easily in remote 
areas (Hamel et al., 2013). Consequently, we demonstrate the proposed 
workflow by applying it to two long-term programs from the Arctic 

monitoring changes in the predator/scavenger community in the 
Yamalo-Nenets Autonomous District, Russia, and Finnmark County, 
Norway. Our datasets consist of time-lapse images taken at bait stations 
in the late winter, a time at which frequent snowfalls make the use of 
motion sensors difficult. 

2. Workflow 

The multi-step, semi-automated workflow proposed here (Fig. 1) is 
adapted from Böhner et al., 2023, including pre-processing of images, 
model training, classification, manual quality checks, and final data 
formatting. Specifically, we build on the results of Rigoudy et al. (2022) 
and Fennell et al. (2022), who combined MegaDetector with manual 
classification and custom-trained models. The workflow consists of the 
following two classification steps in addition to pre-processing of images 
and final manual inspection, quality control, and data formatting 
(Fig. 1). 

2.1. Classification 1 – Image quality and animal presence/absence 

As an initial classification step, we categorized images by quality and 
Animal presence/absence in parallel using two models. Separating 
empty images from low-quality images is important to quantify the 
observation effort (i.e., the number of high-quality images per day) for 
downstream modeling of detections. We trained a custom model that 
could classify images as Bad (low quality) or Good (high quality). 

For animal detection on all images, we used MegaDetector v5.01 

(Beery et al., 2019), which detects animals, humans, and vehicles in 
each image. In our case, MegaDetector was more accurate than other 
products considered for detecting animals and minimizing the number 
of false negatives. It further allows cropping individual detection from 
images, thus facilitating counting and species identification. Combining 
the results from both models, images were separated low quality images, 
high quality empty images and images potentially containing an animal. 

2.2. Classification 2 – Reducing false positives 

We used the bounding boxes of each object detected in the images 
potenitally containing an animal to crop parts with pixels that contain 
an object (Fig. S1). We cropped only those classified by the model as 
animals and applied a custom model to identify each crop into different 
categories. This step greatly reduced the number of false positives, as 
crops containing stones or other artifacts could be sorted out by the 
custom model. 

2.3. Final step – data formatting and quality check 

Quality control is an important part of every automated image 
classification workflow (Böhner et al., 2023), and applying an automatic 
classification workflow to a new dataset requires particular care. Opti-
mally, in the case of a multi-annual monitoring program, a workflow 
should be validated by applying it to a year or season of data that has not 
been used for its development. As species identification depends in large 
part on the number of images available for training and the complexity 
of the community in a specific study, it may be necessary to manually 
check all images with animals. 

3. Materials and methods 

3.1. Camera trap setup and data collection 

Images were obtained from monitoring programs of the tundra 
carnivore scavenger guild in two low Arctic regions: “Yamal” (the 

1 https://github.com/agentmorris/MegaDetector 
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Yamalo-Nenets Autonomous District, Russia) and “Finnmark” (Finn-
mark County, Norway). In Yamal, ten cameras were deployed at one 
site, Erkuta (68.2◦ N, 69.1◦ E), and in Finnmark, 36 cameras were spread 
across five sites (70–71◦ N, 25–30◦ E; Table 1; Killengreen et al., 2012). 
Cameras were activated from the end of February to early April. Data 
used in this study were collected from 2016 to 2022. 

We used RECONYX® cameras (RapidFire, HyperFire and HyperFire 
2, Holmen, WI, USA) placed on a permanently fixed metal pole at 30–50 
cm above the snow surface. Cameras were painted in white and equip-
ped with external batteries. In Finnmark, each camera station was baited 
with a ca 15 kg block of frozen slaughterhouse remains of reindeer 
(tendons, entrails, small meat fragments). In Yamal, frozen pelvis bones 
of reindeer with 1–2 kg of meat were mounted on a metal pole placed 
2–5 m north of the camera. Cameras were programmed to take a picture 
every 5 min (no motion sensor). After 2–3 weeks of deployment, baits 
were replaced if needed, and memory cards were collected and replaced 
until the end of the observation period. 

Initially, all images were reviewed manually by trained observers 
using the software MapView Professional (RECONYX ®) and separated 
into low-quality images (Bad) that were out of focus or obstructed 
(snow/ice in front of the lens or snowstorms), and high-quality images 
(Good) where an animal could have been detected. Good images were 

classified by animal presence/absence (Animal), and species and number 
of animal(s), when present. A total of 2,288,351 images were annotated 
in Finnmark (2016–2021) and 656,750 images in Yamal (2017–2022; 
Table 1). Most images from both locations were classified as Good 
(>83%). In Finnmark, Bad images represented 18.1% and in Yamal Bad 
images represented 8.7% (Table 2). At least one animal was detected in 
6.9% of all images from Finnmark and in 2% of the images in Yamal. 
Twelve species of mammals and birds were documented in both loca-
tions, although community structure differed (Table 3). In Finnmark, the 
most common species was the raven (Corvus corax), appearing in 
121,409 images, followed by the red fox (Vulpes vulpes) in 14,903 im-
ages. In Yamal, the most common species was the Arctic fox (Vulpes 
lagopus), appearing in 5017 images, followed by the magpie (Pica pica) 
in 4269 images. 

3.2. Image quality classification: Training dataset and model training 

Using the manual classifications, we randomly selected images from 
each site, camera, and year, to obtain ~15,000 images of Bad quality 
and ~ 57,000 images of Good quality for each location (Finnmark 
2016–2018 and 2020–2021 and Yamal 2017–2021). These images were 
then reexamined by GC and DE, and any misclassified images were 
removed or reclassified. We also excluded marginal images (e.g., partly 
blurred images, images where an animal is only visible with a tail in a 

Fig. 1. Time-lapse camera trap workflow. Data preparation and model steps are adapted from Böhner et al., 2023.  

Table 1 
The number of cameras deployed in the field for each site and the total number 
of images available for workflow development (model training, validation, and 
testing; see supporting information for details) from Finnmark, Norway 
(2016–2018, 2020–2021) and Yamal, Russia (2017–2021), and an independent 
test set from years not used in training (Finnmark 2019, and Yamal 2022).  

Region Site Number of 
cameras 

Training/ 
validation images 

Test 
images 

Finnmark Komagdalen 8 461,407 75,824  
Vestre 
Jakobselv 

7 367,483 79,807  

Stjernevann 5 284,994 53,555  
Ifjordfjellet 8 401,039 58,652  
Gaissene 8 426,970 78,620 

Yamal Erkuta 10 535,910 120,840  

Table 2 
Total number of images per classification group as assessed manually in Finn-
mark and Yamal (N), together with median and mean (standard deviation) 
percentage of images for each individual camera trap per year. The total dataset 
(workflow development and independent validation) comprised 36 cameras at 5 
sites for 6 years in Finnmark and 9 or 10 cameras for 6 years in Yamal.  

Location Class ID N Median [%] Mean (SD) [%] 

Finnmark Bad 402,409 14.5 18.1 (14.5)  
Good Animal 150,532 6.5 6.9 (3.5)  
Good Empty 1,735,410 78.5 75.7 (13.5) 

Yamal Bad 55,420 5.4 8.7 (9.4)  
Good Animal 14,133 1.3 2.0 (1.7)  
Good Empty 587,197 93.4 90.1 (9.3)  

G. Celis et al.                                                                                                                                                                                                                                    
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corner etc.), as high-quality training data are important for model 
training (Böhner et al., 2023). In particular, images of animals at large 
distances (e.g., appearing as points on the horizon) that could be iden-
tified by humans only because they moved in and out of frame were 
excluded from model training. The resultant data subsets (46,491 im-
ages for Finnmark and 33,889 for Yamal; Table S1) were randomly 
divided into 92% to be used for model training, 8% for validation of the 
trained model. 

Separate two-class models were trained for Finnmark and Yamal 
using the keras package in R (Allaire and Chollet, 2023) with a Ten-
sorFlow backend (Allaire and Tang, 2023). Preliminary trials showed 
that region-specific models performed better. The ResNet-50 architec-
ture, a convolutional neural network that is 50 layers deep (He et al., 
2015), was used to train the models with 55 epochs (number of times the 
algorithm goes through the entire training data set) and a batch size of 
64 (number of samples to work through before updating model pa-
rameters) with a one-cycle learning rate (hyperparameter controlling 
model response to estimated error each time the model weights are 
updated) policy with a minimum of 0.000001 and a maximum of 0.001 
(Smith, 2018). 

We used the keras image_data_generator function for image 
augmentation, which included random assignment of the following: 
rotation 0–40◦, width and height shift range of 20%, shear range 0–0.2 
rad, zoom range 0–0.2 scalar range, a horizontal flip and a fill mode with 
the nearest pixel. 

We trained and validated the image quality classifier on a laptop 
(MacBook Pro, M1 Pro 8-core central processing unit (CPU), 14-core 
graphics processing unit (GPU), 16GB RAM), using the GPU rather 
than CPU for data processing. GPUs are optimized for complex imaging 
tasks and, in our case, outperform CPUs by ~7×. 

After evaluating a range of confidence thresholds for each of the two 
classes, we found that the best results were obtained by using a 0.95 
threshold for the Bad class in the image quality model. Images that are 
below this threshold are considered to be of adequate quality for further 
review. Furthermore, any image that contains an animal detection ac-
cording to MegaDetector is considered for further review, regardless of 
the output of the image quality model. 

3.3. Animal detection with MegaDetector 

Two versions of MegaDetector are available, trained on slightly 

different datasets: MegaDetector v5.0a (MDv5a) and v5.0b (MDv5b). 
Both versions of MegaDetector were applied to all images. MegaDetector 
also provides two optional enhancements that can be combined with 
either model version:  

1. MegaDetector normally resizes each image to be 1280 pixels wide 
prior to detecting objects. The tiling feature instead breaks each 
image into overlapping 1280-pixel by 1280-pixel “tiles”, runs Meg-
aDetector independently on each tile, and combines the results.  

2. The test-time augmentation (TTA) feature makes several copies of each 
image and applies a different transformation to each copy prior to 
detecting objects, then combines the results. 

To our knowledge, this is the first evaluation of the impact of tiling 
and TTA on MegaDetector’s accuracy. 

We found that detection of animals was slightly better using MDv5a 
than MDv5b, and that tiling and TTA with MDv5a further enhanced 
detection (Fig. S3) (see Table S2 for settings). Tiling helped detect ani-
mals at a distance and also those less conspicuous in the snow (white 
hares and arctic foxes). Test-time augmentation was also helpful for 
detection of less conspicuous animals, and especially for those under low 
light or night conditions (Fig. S4). We merged all detections from the 
MDv5a results with tiling and the MDv5a results with TTA which pro-
vided the lowest number of false negatives (Table S3); all subsequent 
analysis of MegaDetector results is based on this merged set of de-
tections. We used a confidence threshold of 0.1 for all three Mega-
Detector categories (animal, person, vehicle). 

To reduce the number of false-positive detections, MegaDetector has 
a post-processing tool for identifying detections that occur in the same 
location in many images from the same camera, which are often rocks or 
sticks, but may also be sleeping or stationary animals. Consequently, this 
tool is semi-automated: a human reviewer examines one example of 
each detection, along with a grid showing each instance of that detection 
(Fig. S5). The repeat detection elimination (RDE) tool was applied to the 
merged output (see Table S2 for settings). We found that ~8 k tiled 
images take about 1.5 h to review, which reduced 99,509 animal de-
tections to 36,886 from our merged output (Table S4, Figs. S3 & S6). 

MegaDetector was run on a Windows PC with two Nvidia RTX 4090 
GPUs. 

3.4. False-positive classification: Training dataset and model training 

In the previous sections, we primarily referred to MegaDetector as a 
tool for categorizing images. MegaDetector also predicts the location of 
each object within the image, in the form of a bounding box around each 
object. For each image that MegaDetector identified as containing one or 
more animals, objects were cropped from the images using Mega-
Detector’s predicted bounding boxes, and those crops were used to train 
a model for false positive classification. We include all classes that had 
>50 images from the combined sites (Finnmark and Yamal). For the 12 
species classes and 4 non-animal classes (baits, rocks and empty) we 
retained (Table 3), we obtained 42,591 image crops to train the model, 
and 3746 for validation at each object detection class (Table S5). The 
classes used for training included empty, rock, and bait in addition to 
animal species, as one of the aims of this classification step was to 
further reduce the number of false positive detections. The animal false 
positive classification model was trained using the ResNet-50 architec-
ture with the same approach as the image quality model described 
above. Each crop was assigned to a class, obtaining the maximum con-
fidence value from the model without any threshold. The results from 
this model were combined with the detection confidence obtained from 
MegaDetector. For images classified as containing an animal with a 
confidence ≥0.35, the maximum confidence value from the animal false 
positive model was chosen only among species predictions. This allowed 
us to reduce the number of false positives without a large impact on false 
negatives. 

Table 3 
The total number of individuals or crops for each species assessed manually in 
Finnmark (2016–2021) and Yamal (2017–2022).  

Class ID Finnmark Yamal Included in model 

Moose - Alces alces 66 0 Yes 
Golden eagle - Aquila chrysaetos 5168 0 Yes 
Snowy owl - Bubo scandiacus 69* 2 No 
Dog – Canis familiaris 0 19 No 
Raven - Corvus corax 121,409 246 Yes 
Hooded crow - Corvus cornix 1011 38 Yes 
Wolverine Gulo gulo 1103 171 Yes 
White-tailed eagle - Haliaeetus albicilla 1474 0 Yes 
Human – Homo sapiens 152 1044 No 
Ptarmigan – Lagopus spp.** 0 131 Yes 
Mountain hare – Lepus timidus 0 1677 Yes 
Magpie - Pica pica 1 4269 Yes 
Reindeer - Rangifer tarandus 3143 679 Yes 
Arctic fox - Vulpes lagopus 2341 5017 Yes 
Red fox - Vulpes vulpes 14,903 1037 Yes  

* All snowy owl images were from the test set (2019), this species was thus not 
used to train the model. 

** Most ptarmigan observed in Erkuta are willow ptarmigan (Lagopus lagopus), 
but rock ptarmigan (Lagopus muta) occur as well. It is difficult to identify the 
species reliably on camera trap pictures. Both species are also present in Finn-
mark, but they were not recorded systematically in that data set because the 
focus was on predator monitoring. 
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3.5. Workflow performance 

Workflow performance was assessed using data sets representing a 
separate year of data from each site (2019 for Finnmark and 2022 for 
Yamal, Table 1; hereafter ‘test data sets’). Although cameras were placed 
at the same location every year, the background within the site varied 
both within and between years (e.g., snow cover, lighting, exact camera 
positioning), creating distinct image sets (Fig. S2). This added 
complexity to the images allowed us to test our workflow (Fig. 1) under 
“real-world” conditions. This approach corresponds to the situation of 
long-term monitoring programs, where new image datasets are obtained 
annually and should be classified with a procedure developed based on 
available data from previous years (Böhner et al., 2023). 

Performance was measured in terms of accuracy, precision, recall, 
and F1 metrics as defined in Table 4 using the caret R package (Kuhn, 
2008). For the test data, we also compared the number of days and time 
of day with detection of each species between the workflow results and 
the manual scoring, in addition to the picture-by-picture performance 
evaluation. Indeed, daily or time of day detections are often used in 
downstream analyses of camera trap data for ecological analyses (Hamel 
et al., 2013; Rød-Eriksen et al., 2023). 

4. Results 

4.1. Model performance on test data 

4.1.1. Image quality models 
The image quality models had high accuracy for the test data sets 

both in Finnmark (0.977) and Yamal (0.959), with higher precision 
(0.920) and recall (0.910) for low-quality class in Finnmark and Yamal 
(0.764 and 0.779, respectively) (Table 5, Fig. S7). 

4.1.2. MegaDetector 
All results presented in this subsection refer to the merged detections 

from the MDv5a results with tiling and the MDv5a results with TTA, 
with a confidence threshold of 0.1. 

There were 123 images classified as Bad that included animals, but 
this was reduced to 31 after including animal detection using Mega-
Detector. After eliminating all Bad images and excluding images in 
which MegaDetector predicted an animal and a human in the same 
image (1165 images Finnmark, 434 Yamal; Fig. S8), because these did 
not occur in the manual classification. For Finnmark, MegaDetector had 
an overall accuracy of 0.890. For animals, MegaDetector had a precision 
of 0.514 and recall of 0.992 (Table 6). The empty class had a precision of 
0.999 and 0.880 recall. A total of 48,704 (14.0%) images were classified 
as having animals present, but approximately half of those were empty 
(Fig. S8). Excluding false positives (assuming that animal images would 
be reviewed manually), the total number of days with detection of an 
animal per camera station was similar to that of manual classification, 
with 12 individual camera station of the 138 underestimating by one 

camera day in most cases for arctic fox, red fox, wolverine, raven, and 
reindeer (Fig. S9). The detection frequency for each hour of the day was 
also very similar between manual review and MegaDetector predictions, 
with no directional bias by time of day (Fig. S11). The model thus results 
in an acceptably low level of false negatives randomly distributed in 
time. 

For Yamal, MegaDetector had an accuracy of 0.906. The animal class 
had a low precision of 0.206, but a relatively high recall of 0.862 
(Table 6, Fig. S8), whereas the empty class had a precision of 0.996 and a 
recall of 0.908. Excluding the false positive animal images, 6 of the 32 
individual species camera detections for all camera stations were 
underestimated (mostly by one day) for willow ptarmigan, mountain 
hare, and magpie (Fig. S10). The detection frequency for each hour of 
the day was also very similar between manual review and MegaDetector 
predictions, with no particular bias to any specific time of day, for all 
species except willow ptarmigan and mountain hare (Fig. S12). For 
willow ptarmigans, MegaDetector predicted more detections between 5 
and 10 h and very few detections during evenings than human re-
viewers. MegaDetector predicted fewer mountain hare detections dur-
ing mid-day than human reviewers. 

4.1.3. False positive model 
A total of 83,941 image crops were created from MegaDetector re-

sults for Finnmark. Forty-nine images were of new classes that were not 
included in the model (human, snowy owl, black-backed gull). After 
excluding these, the accuracy for the false positive model in Finnmark 
was 0.919. The model was very precise at classifying cropped images as 
“No animal” (>0.985; Table 7), with only one animal image mis-
classified as empty (Fig. S13) and there were 408 false positives. 

For Yamal, a total of 15,276 image crops were created. Nine images 
were of animals not included in the trained model (snowy owl and 
ptarmigan). After excluding these, the overall accuracy for the false 
positive model in Yamal was 0.898. The model was precise at classifying 
image crops that did not contain an animal (0.985 precision for the “no 
animal” class; Table 7) with 128 false positives. 

4.1.4. All automated steps combined 
After combining all model predictions (image quality, MegaDetector, 

and false positive) and manual inspections we obtain an overall classi-
fication accuracy of 0.942 for Finnmark and 0.926 for Yamal. Including 
the false positive classification model reduced the animal false positives 
created by MegaDetector from 23,593 to 6242 images for the Finnmark 
data set and from 6990 to 2534 images for the Yamal data set (Figs. S8 & 
S14), but at a cost of 132 and 45 false negatives, respectively. This 

Table 4 
Definitions of model performance metrics based on “caret” R package, based on 
true positives (TP), true negatives (TN), false positives (FP), and false negatives 
(FN).  

Metric Equation Definition 

Accuracy TP + TN
TP + FP + TN + FN 

Proportion of correct predictions in the whole 
data set. 

Precision TP
TP + FP 

The proportion of images that a model classified 
as a specific category C that are actually category 
C. 

Recall TP
TP + FN 

The proportion of images that are actually a 
specific category C that the a model classified as 
C. 

F1 2*precision*recall
precision + recall  

Weighted average of precision and recall.  

Table 5 
Performance of the image quality model on the test data.  

Location Id Precision Recall F1 

Finnmark Bad 0.920 0.910 0.915  
Good 0.986 0.988 0.987 

Yamal Bad 0.764 0.779 0.771  
Good 0.979 0.977 0.978  

Table 6 
MegaDetector performance on the test data. Excludes Bad images with no 
MegaDetetor confidence below 0.35 and images in which MegaDetector pre-
dicted animals and humans, because these did not occur in the manual 
classification.  

Location Class id Precision Recall F1 

Finnmark Animal 0.514 0.992 0.677  
Empty 0.999 0.880 0.936  
Human 0.0009 0.381 0.018 

Yamal Animal 0.206 0.862 0.332  
Empty 0.996 0.908 0.950  
Human 0.046 0.426 0.084  
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equates to animal detection of 4806 images or 3.9% of the total images 
from camera traps in Yamal, and 32,208 or 9.2% in Finnmark (Fig. 2). 
These results are higher than the mean animal detection rates obtained 
by manual inspection – 2.0% for Yamal and 6.9% for Finnmark (Table 2) 
due to the remaining false positives. 

5. Discussion 

Our workflow correctly classified, on average, 91% of images into 
Bad. While it may at first seem to be an easy task to exclude bad-quality 
images from the data set, the number of Bad images can be large (on 
average 18% in Finnmark and 8.7% in Yamal, Table 2), vary by site, and 
change quickly depending on environmental conditions. Nevertheless, 
separating good images from bad images is particularly important for 
analyses that consider sampling effort, such as relative abundance 
indices (Burton et al., 2015) and exclusion of periods when the camera 
cannot determine the presence or absence of an animal. We are unaware 
of any other available models that are better able to parse good from bad 
images. 

The detection of images with and without animals was 91% for our 
time-lapse cameras, similar to what other researchers have reported 
using MegaDetector for cameras using motion sensor triggers. We found 
that MegaDetector’s test-time augmentation, tiling, and repeat detection 
elimination tools improved detection for animals with time-lapse trig-
gers. It could detect smaller objects in images than previously reported 
resolution (60px for Reindeer; Leorna and Brinkman, 2022). For 
example, the smallest reindeer detected in our images was 18px, and the 
cropped image was correctly classified by our false positive model. This 
enhanced detection is attributable to the tiling of images, which im-
proves identification of small objects, but some detections can be du-
plicates (Ünel et al., 2019) when an animal spans two or more tiles. 
Therefore, downstream use, such as counting the number of individuals 
from MegaDetector crops (Mitterwallner et al., 2023; Wang et al., 2022), 
must be considered cautiously, as it may overestimate the number of 
individuals. 

Fals positive classification of all images with animals was 77% ac-
curate when compared with a manually derived classification. These 
results are promising, though further work is needed to improve accu-
racy. Although MegaDetector’s repeat detection elimination tool (RDE) 
helped reduce the number of false positives, using our false positive 
model, which included classes of species, baits, rocks or empty, we could 
reduce the number of images with false positives even further. 

We obtained for the final portion of the workflow an animal recall 
accuracy of 0.985 for Finnmark and 0.843 for Yamal, with false-negative 
rates for animals of 1.4% and 15%, respectively within the range of what 
other studies have found (Clarfeld et al., 2023) but are dependent on the 
confidence threshold used (Bothmann et al., 2023). Assuming that all 
pictures where animals were detected by our workflow would be 
reviewed manually, something we would recommend given the per-
formance of the present false positive classification model for other 
classes, this would reduce the number of images that require manual 
inspection to 9.2% of the total number of images to review in Finnmark 
and 3.9% in Yamal. Implementing this procedure could, therefore, save 
a great deal of time and effort associated with manual inspection/clas-
sification of imagery. Other computer-assisted workflows have have 
shown to reduce the processing time of image classification load by as 
much as 5× to 13× depending on the tasks (Fennell et al., 2022; Henrich 

Table 7 
False positive model performance on the test data. To estimate model perfor-
mance metrics, classes that were exclusively in the manual assessment or model 
output were not included. The “No animal” class combines the Empty, Bait, 
Bait_yamal, and Rock model classes.    

Finnmark   Yamal  

Class ID Precision Recall F1 Precision Recall F1 

No animal 0.985 0.860 0.919 0.985 0.834 0.904 
Golden eagle 0675 0.899 0.771 – – – 
White-tailed 

eagle 0.623 0.812 0.706 – – – 
Raven 0.921 0.985 0.952 0.04 1.00 0.079 
Hooded crow 0.941 0.888 0.914 – – – 
Magpie – – – 0.964 0.908 0.936 
Mountain hare – – – 0.684 0.181 0.286 
Reindeer 0.084 0.375 0.138 – – – 
Wolverine 0.612 0.719 0.661 0.013 0.600 0.027 
Arctic fox 0.310 0.781 0.444 0.683 0.693 0.688 
Red fox 0.557 0.944 0.701 0.012 0.833 0.025  

Fig. 2. Confusion matrix for the results of the complete workflow applied to the test data, which represents a full season of data not used in model development at (a) 
Finnmark and (b) Yamal. False positive model results were aggregated in the “Animal” class. The percentage and number of images with correct (diagonal, green) and 
incorrectly predicted classes (off-diagonal) are displayed. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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et al., 2023). Our workflow reduces the load by ~62 h, however the 
amount of time required to develop the site-specific models and work-
flow took ~160 h. It would take approximately 960 k processed images 
to recover the time invested in developing the workflow, which makes 
sense for long-term projects where the initial investment of time is 
recouped over the life of the project. 

6. Conclusion 

The proposed semi-automatic workflow for classifying camera trap 
images is a robust method for identifying high-quality images, identi-
fying images that contain animals, and reducing the number of false 
positives. Our workflow detected low-quality images and those with 
animals within the ranges of those detected by manual classification. 
The false positive classification step reduced the number of false positive 
animal detections generated by MegaDetector. Although the false posi-
tive model reduced the number of false positives, we recommend that 
users manually review images with animals because the model was not 
sufficiently accurate to rely solely on computer vision for species clas-
sification (hence our description of our workflow as “semi-automated”). 

We provide code ((https://github.com/gerlis22/CameraTrap.git) for 
this multi-step process so that researchers can create their own site- 
specific models and modify it to meet their needs for monitoring and 
surveying wildlife. Because our workflow is subdivided into several 
steps, it is flexible and can be adapted to various situations. The initial 
classification step could, for instance, be modified to include a classifi-
cation into pictures with and without bait in addition to quality, or with 
and without snow, depending on the study’s aims. 
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Ecol. Solut. Évid. 3 https://doi.org/10.1002/2688-8319.12170. 

Tabak, M.A., Norouzzadeh, M.S., Wolfson, D.W., Newton, E.J., Boughton, R.K., Ivan, J.S., 
Odell, E.A., Newkirk, E.S., Conrey, R.Y., Stenglein, J., Iannarilli, F., Erb, J., Brook, R. 
K., Davis, A.J., Lewis, J., Walsh, D.P., Beasley, J.C., VerCauteren, K.C., Clune, J., 
Miller, R.S., 2020. Improving the accessibility and transferability of machine 
learning algorithms for identification of animals in camera trap images: MLWIC2. 
Ecol. Evol. 10, 10374–10383. https://doi.org/10.1002/ece3.6692. 

Tabak, M.A., Falbel, D., Hamzeh, T., Brook, R.K., Goolsby, J.A., Zoromski, L.D., 
Boughton, R.K., Snow, N.P., VerCauteren, K.C., Miller, R.S., 2022. 
CameraTrapDetectoR: automatically detect, classify, and count animals in camera 
trap images using artificial intelligence. Biorxiv. https://doi.org/10.1101/ 
2022.02.07.479461, 2022.02.07.479461.  
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Vélez, J., McShea, W., Shamon, H., Castiblanco-Camacho, P.J., Tabak, M.A., 
Chalmers, C., Fergus, P., Fieberg, J., 2023. An evaluation of platforms for processing 
camera-trap data using artificial intelligence. Methods Ecol. Evol. 14, 459–477. 
https://doi.org/10.1111/2041-210x.14044. 

Wang, Y., Zhang, Y., Feng, Y., Shang, Y., 2022. Deep learning methods for animal 
counting in camera trap images. In: 2022 IEEE 34th Int. Conf. Tools Artif. Intell. 
(ICTAI), pp. 939–943. https://doi.org/10.1109/ictai56018.2022.00143. 

Wearn, O.R., Glover-Kapfer, P., 2019. Snap happy: camera traps are an effective 
sampling tool when compared with alternative methods. R. Soc. Open Sci. 6, 181748 
https://doi.org/10.1098/rsos.181748. 

G. Celis et al.                                                                                                                                                                                                                                    

https://doi.org/10.1002/rse2.362
http://refhub.elsevier.com/S1574-9541(24)00120-1/rf0055
http://refhub.elsevier.com/S1574-9541(24)00120-1/rf0055
http://refhub.elsevier.com/S1574-9541(24)00120-1/rf0055
http://refhub.elsevier.com/S1574-9541(24)00120-1/rf0055
http://refhub.elsevier.com/S1574-9541(24)00120-1/rf0055
http://refhub.elsevier.com/S1574-9541(24)00120-1/rf0055
http://refhub.elsevier.com/S1574-9541(24)00120-1/rf0055
https://doi.org/10.1111/j.1472-4642.2011.00861.x
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.1016/j.ecoinf.2022.101876
https://doi.org/10.1002/rse2.367
https://doi.org/10.1002/rse2.367
https://agentmorris.github.io/camera-trap-ml-survey
https://doi.org/10.1098/rstb.2022.0232
https://doi.org/10.1016/j.gecco.2022.e02046
https://doi.org/10.1101/2022.03.15.484324
https://doi.org/10.1101/2022.03.15.484324
https://doi.org/10.1111/1365-2656.13875
https://doi.org/10.1111/1365-2656.13875
https://doi.org/10.1002/ece3.6147
https://doi.org/10.48550/arxiv.1803.09820
https://doi.org/10.48550/arxiv.1803.09820
https://doi.org/10.1002/2688-8319.12170
https://doi.org/10.1002/ece3.6692
https://doi.org/10.1101/2022.02.07.479461
https://doi.org/10.1101/2022.02.07.479461
https://doi.org/10.1109/cvprw.2019.00084
https://doi.org/10.48550/arxiv.2202.02283
https://doi.org/10.48550/arxiv.2202.02283
https://doi.org/10.1111/2041-210x.14044
https://doi.org/10.1109/ictai56018.2022.00143
https://doi.org/10.1098/rsos.181748

	A versatile, semi-automated image analysis workflow for time-lapse camera trap image classification
	1 Introduction
	2 Workflow
	2.1 Classification 1 – Image quality and animal presence/absence
	2.2 Classification 2 – Reducing false positives
	2.3 Final step – data formatting and quality check

	3 Materials and methods
	3.1 Camera trap setup and data collection
	3.2 Image quality classification: Training dataset and model training
	3.3 Animal detection with MegaDetector
	3.4 False-positive classification: Training dataset and model training
	3.5 Workflow performance

	4 Results
	4.1 Model performance on test data
	4.1.1 Image quality models
	4.1.2 MegaDetector
	4.1.3 False positive model
	4.1.4 All automated steps combined


	5 Discussion
	6 Conclusion
	Author contributions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A Supplementary data
	References


