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Abstract
Acoustic microscopy is a cutting-edge label-free imaging technology that allows us to see the
surface and interior structure of industrial and biological materials. The acoustic image is created
by focusing high-frequency acoustic waves on the object and then detecting reflected signals. On
the other hand, the quality of the acoustic image’s resolution is influenced by the signal-to-noise
ratio, the scanning step size, and the frequency of the transducer. Deep learning-based
high-resolution imaging in acoustic microscopy is proposed in this paper. To illustrate four times
resolution improvement in acoustic images, five distinct models are used: SRGAN, ESRGAN,
IMDN, DBPN-RES-MR64-3, and SwinIR. The trained model’s performance is assessed by
calculating the PSNR (Peak Signal to Noise Ratio) and SSIM (Structural Similarity Index) between
the network-predicted and ground truth images. To avoid the model from over-fitting, transfer
learning was incorporated during the procedure. SwinIR had average SSIM and PSNR values of
0.95 and 35, respectively. The model was also evaluated using a biological sample from Reindeer
Antler, yielding an SSIM score of 0.88 and a PSNR score of 32.93. Our framework is relevant to a
wide range of industrial applications, including electronic production, material micro-structure
analysis, and other biological applications in general.

1. Introduction

High-resolution (HR) acoustic images can be used to facilitate biomedical or materials research, to
investigate, measure, or determine the mechanical or bio-mechanical properties of the samples. Scanning
acoustic microscope (SAM) also provides abundant and quantitative information about the objects under
inspection. The capabilities of SAM include noninvasive micro-structural characterization of materials,
characterization of surface and subsurface mechanical properties of piezoelectric materials, structural health
monitoring of composite structures, surface defects on polymer circuits, and studies of anisotropic phonon
propagations [1–7]. In HR SAM, 200 nm has been achieved by using a 4.4GHz acoustic transducer [8]. The
application of Acoustic Microscopy prevails in many areas, such as medical imaging (inspection of bones or
internal structures like articular cartilage) and inspection of manufactured products like electronic chips and
circuits [4, 9, 10]. Mainly, SAM utilizes a wide range of frequencies (10MHz to 1.2GHz) to produce visible
images of the surface or sub-surfaces of an object without damaging the samples. Furthermore, by
thoroughly studying the internal layers and the structures of these objects, we can analyze and detect defects
efficiently. Microelectronics and semiconductor industries are a demanding and highly competitive market.
SAM plays a vital role in the development of the improved molded for the flip chip packages. It is also capable
of dealing with the complexity of miniaturized assemblies such as chip-scale packages and 3D IC stacks.
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However, because acoustic microscopes scan things point-by-point (pixel-by-pixel), it takes a long time
to conduct a thorough scan of even a tiny sample. A HR image needs a high-frequency transducer and a
smaller step size during data acquisition. Because low-resolution (LR) ultrasound data needs scanning fewer
spots on the object, the time required to execute such a scan will be dramatically reduced. Thus, we can
obtain high-resolution (HR) ultrasound images with minimal effort by employing the super-resolution
model. The patterns in naturally occurring images are quite perceptible to deep learning-based algorithms.
Hence, using deep neural networks in computer vision is common and is also found to produce better results
than shallow networks. However, when it comes to ultrasound imaging, there are not quite obvious patterns
in the data. Hence, we believe very deep neural networks would not help us in our purpose.

With the rise of new technologies and the ability to generate high-quality images, old methods of
generating images are becoming obsolete. Hence a large amount of research is being carried out on HR
imaging in multiple domains [11–15]. In each of these works, authors tried to apply super-resolution
techniques in solving real-world problems, specially in the bio-medical field. Another such example is brain
magnetic resonance images (MRI) [16]. Because of restrictions such as patient comfort and extensive sample
period, a typical MRI picture lacks appropriate resolution. As a result, a few researchers suggested
super-resolution of brain magnetic resonance imaging using autoencoders, an unsupervised neural network
that involves scanning fewer points on the object, substantially reducing the time required to execute such a
scan [17, 18]. Another research in MRI proposed edge-enhanced super-resolution generative adversarial
networks (EE-SRGAN) for MRI super-resolution in slice-select direction [19] because a LR MRI in slice
direction leads to information loss and hence improper diagnosis.

This work aims to demonstrate HR imaging from LR acoustic images using deep learning. There has
been a previous work on high resolution in SAM imaging using deep learning [20]. Its authors used a
four-layered U-NET-inspired architecture. The authors were able to achieve a peak signal to noise ratio
(PSNR) score of 28.4 and an NRMSE score of 0.05. On the other hand, our work achieves better results in the
PSNR score, and we did not use NRMSE since it does not incorporate structural fidelity which structural
similarity index (SSIM) incorporates. Also, instead of using smooth L1 loss, a combination of pixel loss, GAN
loss, and perceptual loss was used to improve the quality of the output images. Also, in the work [21], the
authors used the SR-net architecture to achieve a two-fold image super-resolution. Their architecture, on the
other hand, is primarily made up of CNN layers. Some of the models we investigated used CNNs, but it is
clear that transformer-based approaches have recently outperformed CNNs in many cases. Our article
explores the use of the recently popular transformer [22] networks that have the ability to learn to focus on
important image regions by exploring the global interactions between different regions. Due to their better
performance [23, 24], it can also be used for image restoration. Swin transformers [24], have the advantage
of CNN in processing images of large size, because of the local attention mechanism. It also has the benefit of
the transformer model’s long-term dependency on the shifted window scheme. Figure 1 demonstrates the
overall strategy applied in this paper.

The remainder of the article is organized as follows: the deep learning approach has been mentioned in
section 2. Section 3 contains a brief description of the material and methods used in the experiments. The
results of the approaches can be found in section 4. Section 5 concludes the article and section 6 provides a
brief future direction of the presented work.

2. Deep learning approach

2.1. Original data-set and curation for supervised learning
The ultrasound images of 17 different coins were included in the data sets. Because a small data set with
many similarities is unsuitable for training the DNN, coins from different countries were used to introduce
variation into the data set, as coins from the same country have similar patterns. The dimension of each
image is 400× 400 pixel and the pixel size (50µm) is kept constant for both transducers (20 and 50MHz).
All coins have a circular shape. Each image is cropped into multiple images to create diversity and hence
more robust training of the network. Cropping is done by starting from the top-left corner of the image and
striding by 48 pixels in the x-direction and y-direction. The resulting cropped image is of the dimension
120× 120. After cropping, the final coin data set is made of 850 images, where 800 images are used for the
training of the network and 50 are reserved for validation.

2.2. Architecture and training parameters
SRGAN [25], ESRGAN [26], IMDN [27, 28], DBPN-RES-MR64-3 [29] and SwinIR [30] models are used for
both training and testing. The following section contains information on the training hyperparameters.
SwinIR outperforms the others when it comes to generating HR images and comparing them to the ground
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Figure 1. This figure depicts the overall strategy used in this paper. First, acoustic data is acquired for both high (50MHz) and low
resolution (20MHz). This is followed by deep learning-based high-resolution imaging. High-resolution ground truth and
corresponding low-resolution input images are fed into the network used to train. The network output is further used as error
backpropagation to train the network.

truth. SwinIR consists of shallow feature extraction, deep feature extraction, and high-quality image
reconstruction modules.

Shallow feature extraction
For a low quality input ILQ, a 3× 3 convolution layer HSF(.) is used for shallow feature extraction, F0. This
produces stable optimization and maps the input image space to a higher dimensional feature space [30].

Deep feature extraction
Followed by the shallow feature extraction, we have the deep feature extraction, FDF , using K residual Swin
transformer blocks (RSTB) and 3× 3 convolutional layer. Here, intermediate features F1, F2, . . . , Fk and
output deep feature FDK are extracted block by block, given by;

Fi =HRSTBi (Fi−1) , i = 1,2, . . .,K (1)

FDF =HCONV (FK) (2)

where the ith RSTB and last convolutional layer are denoted by HRSTBi(.) and HCONV() respectively.
Each RSTB involves dividing images into patches, applying self-attention and feedforward layers, and

adhering to core deep learning principles.
Each layer combines self-attention and feedforward neural networks. It starts with patch

processing, resulting in Xi, representing patch embeddings at each layer. Multi-head self-attention (MSA),
followed by residual connections and layer normalization, produces Attentioni(Xi). Additionally,
feedforward neural networks further process the output to capture intricate image features, yielding
FFNi(LayerNormi(Attentioni(Xi)+Xi)). Thus, we have,

HRSTBi (Xi) = FFNi (LayerNormi (Attentioni (Xi)+Xi)). (3)

By stacking multiple Swin Transformer blocks, deeper and more complex features are extracted from
images. The convolutional layer at the end of feature extraction brings the inductive bias of the convolution
operation into the network.

Image reconstruction
The high-quality image IRHQ is reconstructed by aggregating shallow and deep features as,

IRHQ =HREC (F0 + FDF) (4)

where HREC(.) is the function of the high-quality image reconstruction module. While shallow features
mainly focus on low frequencies, deep features recover lost high-frequencies. Due to the long skip
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connection, the model can transmit low-frequency information directly to the high-quality image
reconstruction module. To implement the reconstruction module, the sub-pixel convolutional layer is used
to upsample the feature. Also, residual learning is used to reconstruct the residual between the low-quality
and high-quality image instead of the high-quality image, given by;

IRHQ =HSwinIR (ILQ)+ ILQ (5)

where HSwinIR(.) is the SwinIR function. The parameters of SwinIR are optimized by minimizing the L1 pixel
loss,

L= ||IRHQ − IHQ||1 (6)

where IRHQ is obtained by taking ILQ as an input of SwinIR, and IHQ is the corresponding ground truth high
quality image. The RSTB is a residual block with Swin transformer layers (STL) and convolutional layers. For
input feature Fi,0 of the ith RSTB, the intermediate features Fi,1, Fi,2, . . . , Fi,L are extracted as,

Fi,j =HSTLi,j

(
Fi,j−1

)
, j = 1,2, . . .,L (7)

where HSTLi,j(.) is the jth STL in ith RSTB. STL is based on the standard MSA of the original transformer
layer. Local attention and shifted window mechanism are the main differences. For a local window feature X,
the query, key, and valuematrices Q, K, and V are computed as,

Q= XPQ (8)

K= XPK (9)

V= XPV (10)

where PQ, PK , and PV are projection matrices which are shared across windows. Using the self-attention
mechanism, the attention matrix is thus computed as,

Attention(Q,K,V) = SoftMax
(
QKT/√d+B

)
V (11)

where B is the learnable relative positional encoding. The attention function is performed h times in parallel
and the results are concatenated for MSA. Also, a multi-layer perception (MLP) having two fully connected
layers with GELU non-linearity between them is used for further feature transformations. Before MSA and
MLP, the LayerNorm (LN) layer is added and the residual connection is employed for both modules. Hence,

X=MSA(LN(X))+X (12)

X=MLP(LN(X))+X. (13)

There is no connection across local windows when different layers have fixed partitions. Regular and
shifted window partitioning are used alternatively for enabling cross-window connections. Here, shifted
window partitioning refers to shifting the features by (⌊M/2⌋, ⌊M/2⌋) pixels before partitioning.

The model architecture is given in figure 2.

2.3. Training strategy
The transfer learning approach is adopted to generate HR images in acoustic microscopy. For SRGAN model
[25], 2500 epochs are used for training purposes. The Adam optimizer [31] is used with the
learningrate= 10−4, β1 = 0.9, and, β2 = 0.999. For the ESRGAN model [26], 3000 epochs, Adam optimizer
[31], learningrate= 10−4, and β2 = 0.99 is used. For IMDN, DBPN-RES-MR64-3, and SwinIR models,
Adam optimizer [31], 3500 epochs, learningrate= 10−4, batchsize= 8, and β2 = 0.99 is used for the training
purpose. However, a steep decline in SSIM and PSNR values on the validation set can be seen after the 420
epoch. The decline was more evident in SSIM than PSNR. These can be seen in figure 3. PSNR vs epoch is in
figure 3, SSIM vs epoch is in figure 3.

A similar strategy was followed for the DBPN-RES-MR64-3 model, where the model was trained with
learningrate= 10−4, and Adam optimizer [31] with batchsize= 16, β1 = 0.9, and β2 = 0.999; and the IMDN
model, where the model was trained with learningrate= 10−4, and Adam optimizer [31] with batchsize= 16,
β1 = 0.9, and β2 = 0.999.

Finally, the SwinIR model displayed the best results regarding both PSNR and SSIM scores. The G_loss of
the SwinIR training has been displayed in figure 4.
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Figure 2. Diagram depicting the network architecture. This entire architecture represents the ‘Network Under Training’ in
figure 1. The network consists of shallow feature extraction, deep feature extraction, and high-quality (HQ) image reconstruction
modules. While the shallow feature extraction produces stable optimization and maps the input image space to a higher
dimensional feature space, the model also has the deep feature extraction, consisting of K residual Swin transformer blocks
(RSTB) and a 3× 3 convolutional layer.

Figure 3. The effect of PSNR and SSIM in increasing the number of epochs can be seen through these figures for the SwinIR
model. Both the SSIM and PSNR are seen to attain maxima at 420 epochs, after which they start to decrease. The SSIM is seen to
decline more rapidly than the PSRN.

3. Materials andmethods

3.1. Experimental setup
There are two operational modes in SAM namely; reflection and transmission mode. A detailed description
of the working principles of both modes can be found elsewhere [32]. In this manuscript we consider
reflection mode to scan the samples. To focus acoustic energy via a coupling medium (in this case, water), a
concave spherical sapphire lens rod is generally utilized. Later on, ultrasound signals are generated from the
signal generator and transmitted toward the sample and the reflected waves were recorded. The digitized
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Figure 4. Loss vs epoch for SwinIR model is depicted here. As the training progresses with more and more epochs, the loss
gradually decreases.

Figure 5. Figure depicts a labeled image of SAM used for image acquisition as discussed in this paper. The experimental setup
demonstrates all the fundamental components that constitute a SAM.

signal from the samples is called an A-scan or amplitude scan. In order to acquire a C-scan of the sample,
repeat this procedure at various points in the XY plane. In another way, a C-scan can be referred to as the
summation of A-scans in two dimensions.

For this experiment the data acquisitions were performed on a custom-built SAM (figure 5), integrated
with a Standa (8MTF-200-Motorized XY Microscope Stage) high-precision scanning stage controlled by
LabVIEW [33] program. A similar experimental setup was employed earlier by our group to determine and
correct the inclined sample [34, 35]. The acoustic microscopic features were implemented employing
National Instruments’ PXIe FPGA modules and FlexRIO hardware. It was enclosed in a PXIe chassis
(PXIe-1082) which consists of an arbitrary waveform generator (AT-1212). For acoustic imaging, the
transducer was excited with signals (Mexican hat) and delivered into an RF amplifier (AMP018032-T) for
further amplification of the ultrasonic signals [36]. The acoustical reflections caused by the transmitted
signal on the surface of the sample were picked up and fed into a custom-designed amplifier. The role of such
an amplifier is to amplify the currents into an output potential. These signals were then amplified with a
custom-designed pre-amplifier and digitized with a 12-bit high-speed (1.6GS s−1) digitizer (NI-5772).

For ground truth, an Olympus 50MHz focused transducer having an aperture of 6.35mm and a focal
length of 12mm was used to scan all the coins and also the biological specimen. By focusing the acoustic
energy on the coin’s top surface, the sample was scanned in the x and y directions with 50 µm steps. On the
other-hand low resolution images were acquired with a 20MHz transducer (focal length 50mm). All
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experiments were performed in distilled water and the room temperature was kept constant at around 22 ◦C
during the experiments. For testing the models a biological sample was employed in SAM for imaging. The
sample used for this experiment was a discarded reindeer antler that was collected from the jungle of Tromsø
(Norway). The moss on the antler was first removed by cleaning it with lukewarm water and 96% ethanol.
After cleaning, the sample was diced and boiled in distilled water at 100 ◦C in order to remove any unwanted
biological substance from the antler. The sample was thereafter put on the sample holder and allowed to dry
before being scanned.

UiT The Arctic University of Norway has a focus on research on topics and concerns related to Arctic life
such as reindeer. The local Arctic tribes consider that Reindeer’s antlers indicate the health and well-being of
reindeer. Therefore, investigating them is a long-term interest for us. Now, to study such biological samples,
above mentioned preparation step is generally required which includes slicing the antler to view it under the
microscope. Potentially, in the long term, our method can provide a more scientifically rooted study of this
conjecture.

4. Results and discussion

The models correctly identified numerals, alphabets, and patterns in the coins. The SwinIR model produced
the best results when compared to SRGAN, ESRGAN, DBPN-RES-MR64-3, and IMDN. The SwinIR model
identified alphabets, digits, and patterns more effectively than the other models. The SwinIR model also has
the data set’s highest PSNR and SSIM scores. The SwinIR model has an average SSIM of 0.92 and a PSNR of
35.13. Figure 6 displays the outputs of the various models and the corresponding ground truth images.

The PSNR and SSIM scores of the pictures across multiple models are presented in the tables 1 and 2 for
the 10 sample inputs displayed in figure 6. The SwinIR model has the highest PSNR and SSIM scores (in bold
letters) for all ten inputs. Although the DBPN-RES-MR64-3 model comes in second place, the SwinIR
model’s SSIM and PSNR scores are superior in all circumstances. We can observe from figure 6 that the
SwinIR model output is the most accurate and closest to the ground truth when compared to the other
models.

4.1. Effect of transfer learning strategy
Initially, 17 coins from different countries and with different dimensions were scanned for 20MHz (low
resolution) and 50MHz (ground truth). Later on, they were cropped and several images were created, and
eventually, a training data set of 800 images were generated, the models were prone to overfitting and low
PSNR and SSIM scores (7.92 and 0.064 respectively). Hence, transfer learning was used in training the
models. This significantly increased the PSNR and SSIM scores and the overall results of the models. Hence,
pre-trained models trained using data sets like celebA data-set [37] and DIV2K data-set [38–41] were used
and they were fine-tuned using the coin data set, which improved the model performance to a large extend.

Figure 7 shows some more examples of outputs we got across models without using the transfer learning
approach.

4.2. Comparison with conventional digital resolution enhancement techniques
Popular digital resolution enhancement techniques include the nearest neighbor interpolation algorithm,
bi-linear interpolation, and cubic convolution interpolation. However, when applied to images, all of these
algorithms have some drawbacks. Errors occur when the picture is overly expanded. The nearest neighbor
interpolation algorithm results in significant image quality loss, as well as visible mosaic and jagged
phenomena. Because of the poor design of the interpolation function, the output image of the bi-linear
interpolation algorithm suffers from quality damage and low calculation accuracy. The cubic convolution
interpolation algorithm requires a significant amount of calculation and is also complicated and
time-consuming. Interpolation-based algorithms also have issues with computational complexity, noise
amplification, and blurry images. Deep learning methods and techniques, on the other hand, have advanced
in recent years, and thus deep learning-based SR models are used. These methods frequently achieve
cutting-edge performance on various resolution enhancement benchmarks.

4.3. Testing on the unknown biological sample (Reindeer Antler)
A biological sample (Reindeer Antler) of unknown size, shape, and surface morphology was employed to
validate the reproducibility of the suggested model. This experiment was conducted with a discarded
reindeer antler gathered from the local jungle. To remove the moss, the antler was cleaned with lukewarm
water and ethanol. Following cleaning, the antler was diced and boiled at 100 ◦C in distilled water for 30
minutes to eliminate any undesired biological substances. The sample was then dried and mounted on the
sample holder in preparation for scanning.
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Figure 6. The figure depicts the results obtained after training different models for ten example input images. Visually, SwinIR
(marked with a blue box) seems to provide the best results, they also have the best SSIM and PSNR scores. The input images have
been chosen such that they contain text, digits, or patterns. All the images are 6.4mm× 6.4mm.

The figure 8 shows the result obtained after testing the unknown biological sample (Reindeer Antler).
The original image was taken to be the ground truth and a LR image was generated from the original image
(figure 8). The low-resolution image was given as input to the final model to get the generated output image
using the SwinIR model. The result showed a PSNR value of 31.88 and an SSIM value of 0.8406. Although
the PSNR and SSIM values are comparatively less than the average SSIM and PSNR scores obtained in the
test data set, it is because a data set consisting of only coin images was used to train the model. Also, it is to be
noted that the image is evaluated only quantitatively.
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Table 1. The table contain the PSNR scores of the images across various models for the ten example inputs shown in figure 6. The
SwinIR model has the best PSNR scores (written in bold letters) for all 10 inputs.

Image # SRGAN ESRGAN IMDN DBPN-RES-MR64-3 SwinIR

1 25.43 28.88 31.83 34.79 35.23
2 21.68 24.98 27.16 32.12 32.56
3 21.84 24.77 26.62 31.69 32.20
4 21.81 25.51 27.76 33.25 33.35
5 23.15 28.22 31.52 35.49 36.04
6 21.69 24.77 26.79 32.59 32.79
7 21.51 24.79 26.06 31.17 31.69
8 23.37 28.94 32.51 34.71 34.86
9 23.64 29.37 32.88 34.90 35.19
10 23.67 29.13 32.82 35.36 35.86

Table 2. The table represents the SSIM scores of the images across different models for the ten examples shown in figure 6. The SwinIR
model has demonstrated the best SSIM scores (written in bold letters) for all ten inputs.

Image # SRGAN ESRGAN IMDN DBPN-RES-MR64-3 SwinIR

1 0.76 0.79 0.87 0.90 0.91
2 0.67 0.77 0.85 0.94 0.96
3 0.69 0.80 0.85 0.95 0.96
4 0.67 0.78 0.85 0.95 0.95
5 0.66 0.80 0.88 0.93 0.94
6 0.66 0.77 0.85 0.96 0.96
7 0.64 0.75 0.80 0.95 0.95
8 0.76 0.86 0.93 0.95 0.95
9 0.79 0.87 0.93 0.95 0.95
10 0.79 0.88 0.94 0.97 0.97

Figure 7. The figure depicts the results obtained after training SRGAN model without using transfer learning. The approach
showed extremely poor results. The images had PSNR scores in the range of 7–8 and SSIM scores in the range of 0.03–0.07. All the
individual images are 6.4mm× 6.4mm.
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Figure 8. The figure depicts the results obtained after testing the unknown biological sample on SwinIR model. A PSNR score of
31.88 and SSIM score of 0.8406 was obtained on this sample. The comparatively low scores are due to the fact that the data set used
consisted of only coin images which are different than this input image. All three images have the dimension of 12mm× 12mm.

5. Conclusion

In this paper, we developed an acoustic microscopy system that uses deep learning to improve the image
resolution of industrial and biological samples by four times. Acoustic image acquisition was carried out on a
custom-developed SAM, equipped with a high-precision scanning stage. Deep learning was used to improve
the lateral resolution of the SAM images. SRGAN, ESRGAN, IMDN, SwinIR, and DBPN-RES-MR64-3 were
the models compared in this study. All five models were trained and tested on 17 different coin images, and
the results were reported in terms of PSNR and SSIM scores. The SwinIR model is made up of modules for
shallow feature extraction, deep feature extraction, and high-quality image reconstruction. The model’s long
skip connections allow it to send low-frequency data directly to the high-quality image reconstruction
module. The process took into account transfer learning. Because only 800 images were used for training,
this was done to prevent the model from overfitting. Methods that did not use transfer learning were also
implemented, but the results were demonstrated poor in terms of PSNR and SSIM. SwinIR model presented
an average SSIM of 0.92 and a PSNR of 35.13. The SwinIR model was also used to test an unknown biological
sample. The SSIM score was 0.8406 and the PSNR score was 31.88. Deep learning methods for resolution
enhancement have many advantages over traditional digital resolution enhancement techniques, and the
SwinIR model performed the best of the five deep learning techniques investigated in this paper. Deep
learning-based models, specifically SwinIR, are found to closely approximate the ground truth image even
with extremely limited training data.

6. Future directions

This work has established that the resolution enhancement can be used to improve the digital resolution of
scanning acoustic microscopy, more work is needed in the future to further mature our technique. According
to the usual signal processing theory, Nyquist sampling is mandatory in digitization, and on the other hand,
the acoustic resolution sets the bandwidth of the measurement. While digital oversampling is routine for
high-quality and high-definition imaging, it is reasonable to expect that performing barely Nyquist sampling
and applying our technique should be able to support high-quality high-definition imaging according to the
signal processing theory. However, the improvement in perceptive quality must be saturated, and performing
digital resolution enhancement using Nyquist sampled images may present an optimum between the
learnability of our approach and the extent of resolution enhancement sought. It is also likely that beyond a
certain point, the learning becomes imprecise and the model introduces artifacts in the HR images. So, this
aspect needs to be studied in an extensive manner and benchmarked. It is further interesting to consider that
deep learning can learn features from the large data priors during training, which may not all be available in
the testing when we actually present the data for resolution enhancement. This provides an opportunity to
consider if we can perform sampling at a rate poorer than the Nyquist criterion and use the pre-learned data
priors in the deep-learned model to compensate for the deficiency in measurement. This possibility however
requires careful assessment and benchmarking and constitutes a future direction. We would also like to
consider the effect of the sample material and inhomogeneity on the achievable resolution enhancement and
the value of transfer learning our models on different types of samples or different scanning acoustic
microscopy instruments.
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It is interesting that the proposed method does not ask for any modification in the instrument, sample, or
measurement protocol. Therefore, on the one hand, our technique can be directly applied to existing systems,
on the other hand, it implies that the cost of a new instrument remains unchanged. Therefore, it is of interest
to evaluate the value of using our technique in practical terms. Our technique can be of prime importance
where time is critical and any advantage in scanning time translates to monetary or non-monetary value.
Examples of such situations include material integrity or failure analysis during the process of implanting or
checking medical implants or at a site of infrastructural failure for tactical decision-making. Moreover, our
technique improves the throughput of existing scanning acoustical microscopes by orders of magnitude,
which in commercial settings translates to more volume or lower operating costs of commerce.
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