
 

   

Using real world data for 
pharmacoeconomic assessments - 
a case study 
Jeroen Martin van Zuiden Haukaas 

May, 2024 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 

Table of Contents 

Preliminary Content................................................................................................................ I 

Acknowledgements ............................................................................................................ I 

Preface ............................................................................................................................... I 

Abstract ............................................................................................................................. II 

1 Background ................................................................................................................... 1 

1.1 Healthcare priorities ................................................................................................ 1 

1.2 Nye metoder (New methods) ................................................................................... 1 

1.2.1 The reimbursment system for pharmaceuticals ................................................. 2 

1.2.2 Current challenges with HTAs in Norway ........................................................ 2 

1.2.3 Temporary implementations ............................................................................. 3 

1.2.4 Alternative price agreements ............................................................................ 3 

1.3 Advances in lung cancer treatment in Norway ......................................................... 4 

1.4 Findings in HTA of pembrolizumab for metastatic NSCLC ..................................... 4 

1.5 Immature data ......................................................................................................... 5 

1.6 Cancer registry of Norway ....................................................................................... 6 

1.7 Types of NSCLC ..................................................................................................... 7 

1.8 Treatment regimens ................................................................................................. 8 

1.8.1 Pembrolizumab ................................................................................................ 8 

1.8.2 Previous standard of care .................................................................................. 9 

1.9 Changes in treatment guidelines for NSCLC during the study period ..................... 10 

1.10 Pharmacoeconomic assessments abroad ............................................................. 11 

1.11 Ethical considerations ........................................................................................ 11 

2 Research question ........................................................................................................ 13 

2.1 Aims ..................................................................................................................... 13 

2.2 Objectives ............................................................................................................. 13 

3 Methodology ............................................................................................................... 14 



3 

3.1 Kaplan-Meier ........................................................................................................ 14 

3.2 Cox regression ....................................................................................................... 15 

3.3 Treatment of raw data ............................................................................................ 16 

3.4 Survival time ......................................................................................................... 16 

3.5 Types of missingness ............................................................................................. 17 

3.6 Imputation ............................................................................................................. 17 

3.7 Extrapolation ......................................................................................................... 17 

3.8 Digitizer ................................................................................................................ 17 

3.9 Inclusion criteria .................................................................................................... 18 

3.9.1 Patient groups in our analysis ......................................................................... 18 

3.10 Pharmaeconomic assessments ............................................................................ 19 

4 Results ......................................................................................................................... 20 

4.1 Groups .................................................................................................................. 21 

4.2 Overall survival in real world patients ................................................................... 23 

4.2.1 Real world overall survival compared to KEYNOTE-024 .............................. 24 

4.2.2 Emulating the inclusion criteria ...................................................................... 25 

4.2.3 Patients with poor ECOG status...................................................................... 27 

4.3 Pharmacoeconomic analysis .................................................................................. 27 

4.4 Cox regression ....................................................................................................... 29 

4.5 Sensitivity analysis ................................................................................................ 30 

5 Discussion ................................................................................................................... 31 

5.1 Overall survival in the real world and study population ......................................... 31 

5.1.1 Extrapolations of overall survival ................................................................... 33 

5.2 Cox regression ....................................................................................................... 33 

5.3 ICER ..................................................................................................................... 34 

5.4 Utility and limitations of real world data ................................................................ 35 

5.5 Benefits for HTAs ................................................................................................. 35 



4 

5.6 Arguments for the temporary approval framework................................................. 36 

5.6.1 Point 1 - Uncertainty ...................................................................................... 36 

5.6.2 Point 2 - Approval after sufficient data collection ........................................... 37 

5.6.3 Point 3 - standardization ................................................................................. 37 

5.6.4 Point 4 - life years gained ............................................................................... 38 

5.6.5 Point 5 - Threshold for re-evaluation .............................................................. 39 

5.6.6 Adverse events ............................................................................................... 39 

5.6.7 Automatization and AI ................................................................................... 39 

6 Methodological rationale and limitations ..................................................................... 41 

6.1 EGFR and ALK mutations .................................................................................... 41 

6.2 Missing regions ..................................................................................................... 41 

6.3 Deaths and 2023 .................................................................................................... 41 

6.4 Dates ..................................................................................................................... 42 

6.4.1 Cost model ..................................................................................................... 42 

6.4.2 Combination therapy ...................................................................................... 42 

6.4.3 Switch in treatment regimen ........................................................................... 43 

6.5 Imputation ............................................................................................................. 43 

6.6 PD-L1 expression .................................................................................................. 43 

6.7 Time origin............................................................................................................ 44 

6.8 Lack of real-world data on chemotherapy .............................................................. 45 

6.9 Disease progression ............................................................................................... 46 

6.10 Measurement of variables .................................................................................. 46 

6.11 Adverse events ................................................................................................... 46 

6.12 QALYs .............................................................................................................. 47 

6.13 Current limitations of CRN ................................................................................ 47 

Conclusion .......................................................................................................................... 48 

References ........................................................................................................................... 49 



5 

Appendix ............................................................................................................................. 59 



 

I 

Preliminary Content 

Acknowledgements 

I want to thank a few people that have contributed to this thesis. 

I extend my gratitude to my advisors for their invaluable contributions to this thesis. My 

sincere thanks to Lars Småbrekke for his crucial guidance and insightful discussions on 

statistical methods. I appreciate Gro Live Fagereng for her clinical expertise in reimbursement 

systems. Lastly, I’m grateful to Helle Nærsnes Endersen for her counsel in 

pharmacoeconomic methods and innovative approaches. I also want to thank Yngvar Nilssen 

for providing insights regarding the cancer registry. I am also grateful to my advisors for 

enduring the initial drafts of this thesis, a task arguably as challenging as the research itself.  

I want to thank Erik Sagdahl for not only suggesting the topic of this thesis but also for 

enabling me to stay at Sykehusinnkjøp HF during its development. 

I am also thankful for Sykehusinnkjøp HF generously covering the expenses for the 

procurement of the registry data. 

I want to thank my family and Modesta for support and motivation while working on the 

thesis. 

Preface 

This master thesis was composed using the R bookdown package, specifically the 

“thesisdown” package by GitHub user ismayc, which I have adjusted to align with the 

University of Tromsø’s format requirements. 

The work presented here aims to explore the real-world cost-effectiveness of pembrolizumab 
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Abstract 

Pembrolizumab monotherapy for non-small cell lung cancer (NSCLC) was deemed not cost-

effective due to limited data, high uncertainty regarding long term results and a considerable 

budget impact. However, due to confidential price agreements it was approved in 2017, as 

first-line treatment for metastatic NSCLC that expresses PD-L1 ≥ 50 %. 

Given potential discrepancies between clinical efficacy and real-world effectiveness due to 

differing treatment guidelines and inclusion criteria, it’s uncertain whether the treatment is 

truly cost-effective, especially since projections are based on immature data. 

Our objectives are to (1) re-evaluate the economic feasibility of pembrolizumab in treating 

lung cancer within the Norwegian healthcare framework with real world data; (2) to identify 

the possible variables contributing to the gap between its efficacy in controlled studies and its 

effectiveness in a clinical setting and (3) to provide a framework for assessing the cost-

effectiveness of treatments with immature data. 

We included real-world data from 2016-2022 in the Cancer Registry of Norway (CRN).The 

clinical data includes 3592 patients, with 3642 cases of lung cancer, and we estimated mean 

and median progression free and overall survival using Cox regression and Kaplan-Meier. 

These results will be compared to a digitized version of the KEYNOTE-024 study. A new 

pharmacoeconomic assessment was conducted, similar to the original assessment. 

There was a significant difference between real world data and clinical studies (p = 0.001). 

Median survival for the real world participants was 13 months ( 95% CI 12-15) and 26.3 

months (95% CI 19.4-41.4) for patients in the KEYNOTE-024 study. However, when 

adjusted for ECOG status there was no significant difference in OS (p = 0.07). The treatment 

had an ICER range of 474 621 - 689 641 NOK depending on disease progression. 

Although there are several limitations to real-world data, it can be a useful tool in assessing 

real world effectiveness when treatment guidelines will differ from clinical trials. 

Pembrolizumab had a significant efficacy-effectiveness gap mostly due to differences in 

ECOG status, given the limitation of the results the treatment could still be considered cost-

effective.
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1 Background 

1.1 Healthcare priorities 

The Norwegian parliament has defined three main criteria for prioritizing treatments in 

healthcare. The criteria are utility, resource cost, and severity of the disease. These criteria are 

assessed as a whole and balanced against one another. Judgement calls are to be included in a 

comprehensive consideration of the measures. This especially pertains to considerations of 

uncertainty in the evidence and the cumulative impact on the budget. (1). 

The criteria for utility dictate that the priority of an intervention increases with its anticipated 

health benefit. The anticipated utility of an intervention is assessed based on clinical evidence 

of increased life expectancy, quality of life, reduced function loss, physical or mental 

improvement, and reduction of mental or physical pain or discomfort (1). 

The resource criterion stipulates that the priority of an intervention increases as it consumes 

less resources (1). 

The severity criteria dictate that the priority of an intervention increases with increased 

disease severity. The severity of a condition is based on risk of death or function loss, the 

degree of function loss, pain, and mental and/or physical discomfort. The severity is based on 

the current condition, and on the prognosis (1). 

The treatment of NSCLC is classified as a condition of high severity, and treatment with 

pembrolizumab has a significant financial impact on the budget. In the initial health 

technology assessment (HTA) MSD the estimated cost is 133.3 million NOK yearly with 

maximum price but according to the Norwegian medical products agency (NOMA) the cost is 

closer to 550 million NOK, but the estimates are uncertain. The large budget impact 

combined with uncertain estimates for utility further complicates the pharmacoeconomic 

assessment (2). 

1.2 Nye metoder (New methods) 

The Norwegian national system for prioritizing medical methods or interventions to be 

funded by the regional healthcare providers (RHF) is called Nye Metoder. It was established 

in 2013 with several key objectives: 

1. To assure patients that the new method has been assessed for effectiveness and safety. 
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2. To support equal and swift access to new and innovative treatments. 

3. To demonstrate the added benefits of new treatments compared to existing treatments. 

4. To ensure that treatments no longer considered satisfactory are phased out. 

5. To generate a quality-controlled framework for decision-making, prioritizations, and 

resource management. 

6. To offer transparent decisions (3). 

1.2.1 The reimbursment system for pharmaceuticals 

The Norwegian reimbursement system has four main phases. The first phase is the proposal 

phase, where anyone can submit a proposal for a new treatment method. The proposal will be 

considered by the Ordering Forum if it is a pharmaceutical treatment, and they will prioritize 

which pharmaceuticals will undergo a health technology assessment (HTA) (4,5). 

The second phase is assessment of the method ordered by the Ordering Forum. There are 

multiple types of assessment methods within the new methods system based on the 

intervention and use-case. In this thesis the assessment is a rapid HTA for a drug. It focuses 

on efficacy, safety, and cost-effectiveness. A rapid HTA is mainly based on documentation 

sent in from the drug producer or supplier. After receiving the documentation NOMA has 180 

days to perform necessary analyses and deliver their assessment (6). 

The third step involves reviewing the provided assessment, and the Decision Forum then 

decides whether the method can be implemented in the specialist health service (hospitals). 

The final step is implementation, which involves adjusting current treatment guidelines (7). 

1.2.2 Current challenges with HTAs in Norway 

Although NOMA has a 180-day deadline for evaluating new treatments, the average 

processing time extends to 374 days in 2022. However, when accounting for the waiting 

period for receiving documentation from pharmaceutical companies and the capacity of case 

handlers, the effective processing time averages 228 days (8). 

This is cause for concern, since delayed implementation of treatments will negatively affect 

patients in Norway, who may have to resort to inferior treatments due to the prolonged 

processing time. The reimbursement system aims to reduce processing time and has created a 
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fast-track system for PD1/ PD-L1, which will expediate the processing time significantly for 

these treatments. In turn it will also reduce the waiting time for other pharmaceuticals (9). 

HTAs implemented temporarily or with alternative price agreements tend to have a long 

processing time; usually around 250 days (10,11). It is worth noting that processing time 

might reduce when issues with the system are resolved and case handlers are more 

experienced with the system. 

1.2.3 Temporary implementations 

There are multiple treatments with temporary implementation in Norway, but the exact 

number is unclear due to varying terminology. For example, Rozyltrek was temporarily 

approved with an alternative price agreement (10). In other cases the temporary 

implementation is called conditional implementation, which often include a required re-

evaluation with updated data after a certain time (11,12). 

The distinction between these types of approvals remains unclear, potentially due to 

inconsistent use of terminology. This inconsistent use of terms is possibly due to the fact that 

only three treatments have been through the conditional/temporary approval (13). 

1.2.4 Alternative price agreements 

A framework for alternative price agreements allows a unique agreement for a specific 

treatment without creating precedence for other cases. These agreements should be as simple 

as possible, and not contribute to a considerable increase in administrative workload. The 

stipulations in the agreement will also be public, and the uncertainty regarding price and 

budgetary impact shall be limited. Follow-up, data sources and other practical issues must be 

clarified, and all terms of the agreement must also be in accordance with the prioritization 

criteria (14). 

Alternative price agreements aim to enhance patient access to innovative and effective 

treatments where the usual flat price reductions are unsuitable. This scenario frequently 

applies to newly introduced, costly treatments with immature data. There are less than 20 

treatments approved with this method since the framework was developed in 2020 (13,14). 
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Figure 1.2.1: A overview of the types of alternative price agreements which are possible. The simplest 

agreement would be a confidential discount (15). 

7 out of the 14 treatments implemented with alternative agreements seem to be linked to a 

confidential discount, three are linked to volume, and two to performance (13). 

1.3 Advances in lung cancer treatment in Norway 

Recent advancements in immunotherapies have reduced morbidity and mortality for lung 

cancer patients. The 5-year survival rate has nearly doubled during the last 20 years, reaching 

26.5% for men and 33.7% for women. In 2022 there was 3524 incident cases of lung cancer 

in Norway, which is estimated to increase to 4000 cases in 2030 (16). 

1.4 Findings in HTA of pembrolizumab for metastatic NSCLC 

Pembrolizumab monotherapy was approved as first line treatment in Norway in 2017 for 

metastatic NSCLC expressing PD-L1 ≥50 %. The Norwegian medical products agency 

(NOMA) estimated that on average the new therapy would increase quality adjusted life years 

(QALYs) by 0.98 and increase life expectancy by 1.19 years. The basis for these estimates is 

data from the KEYNOTE-024 study. These estimates were more conservative compared to 

the manufacturer’s projections, which were 1.01 and 1.26, respectively. These estimates were 

based on the KEYNOTE-024 trial, where median follow-up was 11.2 months. NOMA noted 

that there are high levels of uncertainty around long term effects due to the short follow-up 

and this complicates the pharmacoeconomic assessment (2,17). 
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Metastatic NSLC was recognized as a serious disease, with an estimated loss of 11.5 QALYs. 

Therefore, the disease has high severity, which increases the priority of the treatment. The 

utility and resource criteria were challenging to estimate due to the dataset, which was of high 

quality but short follow-up (1,2). 

The budget impacts of implementing the treatment were substantial and estimated to cost 500 

million NOK, which de-prioritizes the treatment regarding the resource criterion. However, 

NOMA did consider the treatment cost-effective, but not for the public price (1,2). 

Recently an update of the KEYNOTE-024 was published with a follow-up of 5 years. Median 

overall survival (OS) was 26 months in the pembrolizumab group, compared to 13.4 months 

for the chemotherapy group. After 5 years of follow-up, 31.9% in the pembrolizumab group 

survived compared to 16,3% in the chemotherapy group (17). 

It is important to note that KEYNOTE-024 excluded patients with Eastern Cooperative 

Oncology Group performance status (ECOG) higher than 1. The scale of ECOG status ranges 

from 0 to 5 and describes a patients functional status (18). 

At grade 0 the patient can be fully active and carry out all tasks which they could perform 

prior to the disease, without restrictions (19). 

At grade 1 the patient is restricted in carrying out physically strenuous activity, but can at 

times carry out light work such as cleaning or office work (19). 

At grade 2 the patient is capable of self-care, but cannot work. The patient is active >50% of 

waking hours (19). 

At grade 3 the patient is able to carry out limited self-care, and is confined to a bed or chair 

>50% of waking hours (19). 

At grade 4 the patient is completely disabled, unable to carry out any self-care and bedridden 

(19). 

At grade 5 the patient is dead (18). 

1.5 Immature data 

Pembrolizumab was approved based on immature data, which poses risks regarding the 

effectiveness of the drug, and the pharmacoeconomic assessment (2). 
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Immature data is quite prevalent and was used in 41% of oncology HTAs in the UK (20). In 

the UK managed access agreements (MAAs) are utilized when a drug is not recommended for 

routine use due to clinical uncertainty. Among the HTAs with MAAs, 87.5% were routinely 

commissioned after a median time of 36 months (21). 

In Norway 35% of total reimbursement decisions were based on data with uncertainty 

regarding relative efficacy. Among the drugs with limited data, 47% were approved for 

reimbursement. Of the treatments approved despite uncertainty it was not advised by NOMA 

to calculate ICER for nearly half of them. In the context of oncology, 39% of therapies are 

uncertain, and 49% of drugs with uncertainty are approved versus 73% of drugs with more 

complete data |(22). 

In the period after implementing the MAA approval of oncology HTAs increased from 59 to 

72% and currently it is 78% (23). MAA may have contributed to increased access to new and 

innovative oncology treatments, but there may be other contributing factors. Compared to 

Norway around 66% of oncology HTAs are approved (22). 

To increase access to cost-effective treatments implementing a system like the MAA may be 

beneficial for patients and the Norwegian healthcare system. 

The publication of a five-year update on the KEYNOTE-024 provided us with the chance to 

compare initial data to long term findings in both real world patient and from the pivotal 

study. 

1.6 Cancer registry of Norway 

The dataset forming the foundation of this analysis is provided by CRN. Some of the data is 

manually reported with electronic forms, such as patient characteristics, but CRN utilizes 

multiple sources and methods of data capture for their registry. One of the most important 

sources of data for this thesis are IT- systems which are designed for drug-based cancer 

treatments. CRN also uses data retrieved from the Norwegian patient registry (NPR) to 

validate their own data. NPR collects data on treatments received in the specialist healthcare 

branch. The treatments are categorized by procedure codes and type of drug administered 

(24). 

Unfortunately, these systems are not utilized in all healthcare regions, were implemented at 

different times, and we therefore lack data from multiple healthcare regions before 2019. Data 
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on adjuvant treatment received on H-prescriptions is also unavailable until 2019. H-

prescriptions are prescriptions financed by hospitals but dispensed at community pharmacies 

as a part of the treatment patients receive in the specialist healthcare (24). 

Given the unavailability of H-prescription data prior to 2019, it’s challenging to determine 

whether a patient has ALK or EGFR positive mutations, as this information is not included in 

the provided data. Post-2019, however, adjuvant treatments for patients with anaplastic 

lymphoma kinase (ALK) or epidermal growth factor receptor (EGFR) positive mutations are 

documented in H-prescriptions. The information on H-prescriptions is limited, and only 

provides information regarding dispensing date and type of drug. However the drugs used for 

adjuvant treatment of NSCLC has a limited number of approved indications. 

 

Figure 1.6.1: Overview of implementation and data capture from the regional health trusts (24). 

1.7 Types of NSCLC 

NSCLC accounts for 85% of all lung cancer and has three subtypes where adenocarcinoma is 

the most common. Adenocarcinoma accounts for about 40% of all lung cancer cases and is 

notably the predominant form of lung cancer among both non-smokers and smokers. It 
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originates in the glandular epithelial cells and is commonly found in the outer regions of the 

lung. Adenocarcinomas tend to grow more slowly compared to other NSCLC types, which 

may allow for more effective treatment options if detected early. Smoking is the leading risk 

factor for lung cancer, accounting for at least 80% of lung cancer deaths. Other causes include 

radon exposure and air pollution (25). 

Squamous-cell carcinoma constitutes 25-30% of all lung cancer diagnoses and predominantly 

originates from squamous cells in the epithelium of the bronchial tubes, situated centrally in 

the lungs. Large cell (undifferentiated) carcinoma, on the other hand, accounts for 

approximately 5-10% of lung cancer cases. This carcinoma is characterized by an absence of 

distinguishable squamous or glandular differentiation, frequently leading to its diagnosis via 

exclusionary criteria. The neoplasm commonly manifests in the central lung regions and has 

the propensity to metastasize to adjacent lymph nodes, the chest wall, and distant organs (25). 

1.8 Treatment regimens 

1.8.1 Pembrolizumab 

Pembrolizumab is a monoclonal antibody that functions as an immune checkpoint inhibitor. It 

selectively targets the programmed cell death protein 1 (PD-1) receptor on T-cells. By binding 

to this receptor, pembrolizumab disrupts the interaction between PD-1 and its ligands, PD-L1 

and PD-L2. This interaction is a key mechanism exploited by cancer cells to evade immune 

responses. Pembrolizumab is devoid of cytotoxicity (26). 

Common adverse events include anemia (4.5%), pneumonia (1.9%), and pneumonitis (2.6%) 

based on the data from the KEYNOTE-024 study. Long-term side effects are immune-related 

illnesses such as diabetes and thyroiditis, although they were rare and inconsequential for the 

pharmacoeconomic model (2). 
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Figure 1.8.1:  Mechanism of action for pembrolizumab at the receptor site. 

Due to the high cost of pembrolizumab, the margins for cost-effectiveness are small. Minor 

differences between efficacy and effectiveness can render the drug not cost-effective. 

Therefore the drug was first approved as a monotherapy for patients expressing PD-L1 over 

50%. The estimated increased budget cost per patient is 48000 euro in 2017.According to a 

study conducted in northern Norway each patient should gain a mean life expectancy of nine 

months to make the treatment cost-effective as a second line therapy for NSCLC (27). 

1.8.2 Previous standard of care 

National guidelines in Norway recommend the use of carboplatin in combination with 

vinorelbine for the treatment of inoperable NSCLC in patients lacking ALK or EGFR 

mutations. This deviates from the comparator in the KEYNOTE studies, as pemetrexed is 

rarely used in clinical practice in Norway. According to NOMA’s assessment, the efficacy of 

different platinum-based chemotherapy regimens is comparable. Consequently, their 

pharmacoeconomic analysis is founded on the outcomes observed in the comparator arm of 
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the KEYNOTE study, utilizing the medication costs associated with carboplatin and 

vinorelbine (2). 

Carboplatin is one of the main platinum-based drugs. The target of carboplatin is DNA, and to 

interact with DNA, it must first cross the cell membrane and undergo hydrolysis, allowing it 

to form a covalent bond with the N7 position of purine bases. This inhibits transcription and 

replication and causes cell death. The mechanism of action is also responsible for the drug’s 

cytotoxic effects (28). 

Vinorelbine belongs to the class of vinca alkaloids. Its primary mechanism of action is to 

inhibit cell division by disrupting the assembly of microtubules. Disruption of the assembly of 

microtubules inhibits the mitotic spindle, which is essential for separating chromosomes 

during cell division. As a result, the cancer cells are unable to complete cell division, leading 

to cell cycle arrest and eventually cell death (29). 

In the pharmacoeconomic assessment common side effects from platinum-based 

chemotherapy include anemia (23%), neutropenia (18%), pneumonia (7%) and 

thrombocytopenia (12%).Patients undergoing platinum-based chemotherapy exhibit a higher 

incidence of adverse reactions compared to those receiving pembrolizumab (2). 

1.9 Changes in treatment guidelines for NSCLC during the 
study period 

Decision Forum approved pembrolizumab as first-line treatment of locally advanced or 

metastatic PD-L1 positive NSCLC in patients without EGFR or ALK positive mutations and 

PD-L1 expression of at least 50% in May 2017. 

During our follow-up period there were major changes in treatment guidelines regarding 

pembrolizumab and other immunotherapies for NSCLC. In April 2019, Decision Forum 

approved treatment with pembrolizumab combined with pemetrexed and platinum based 

chemotherapy in patients with adenocarcinoma histology without ALK,EGFR or proto-

oncogene tyrosine-protein kinase-1 (ROS1) mutations and PD-L1 under 50%. Combination 

treatment is also approved for patients with PD-L1 above 50%, but according to current 

guidelines there is a high degree of uncertainty if there is an additive effect from 

chemotherapy above PD-L1 75% (30). 
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Combination therapy with pembrolizumab, paclitaxel and carboplatin for squamous cell 

carcinoma was approved in October 2020 in patients with PD-L1 expression lower than 50%. 

The current guidelines also recommend combination therapy for patients with PD-L1 

expression under 50% unless chemotherapy is not tolerated, and there is also a high degree of 

uncertainty regarding additive effect with expression above 75%. 

The alterations in these guidelines may lead to a decrease in the cohort of pembrolizumab 

monotherapy patients within our study period. Additionally, this might result in monotherapy 

patients showing an elevated frequency of PD-L1 expression beyond 75%, possibly causing 

the effect of the drug to be overestimated. The patients enrolled after these guidelines changes 

also have a shorter follow-up. 

1.10 Pharmacoeconomic assessments abroad 

Studies conducted in other countries have shown that the treatment of NSCLC with 

pembrolizumab is not cost-effective, but the economic threshold for implementation was 

lower than the Norwegian threshold. In addition, the main unit for evaluating effectiveness 

were life years gained rather than QALYs gained (31). A systematic review has shown that 

the current cost-effectiveness studies are of moderate quality, and the decision analytic 

modeling methods have potential for improvement. The methodology for pharmacoeconomic 

research varies between countries, and studies concluded pembrolizumab was cost-effective 

in the United States and Switzerland, but not China, France, the UK or Singapore (32). 

Varying effectiveness, willingness to pay, pharmacoeconomic methods, medical guidelines 

and treatment expenses across nations contribute to a limited alignment between study 

outcomes. The study outcomes are neither easily transferable to a cost-effectiveness analysis 

done by the Norwegian government, since the willingness to pay varies based on the severity 

of the disease (1). Therefore, a study on a Norwegian population is beneficial, with the same 

expenses and pharmacoeconomic considerations. 

1.11 Ethical considerations 

In this thesis, we will handle large amounts of patient data. The risk of sensitive data leakage 

is significant and could affect thousands. Therefore, all patient data are anonymized, ensuring 

stringent adherence to data protection requirements from the Directorate of e-health. 

Furthermore, the research aligns with the University of Tromsø’s ethical guidelines. 
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Since there is a large amount of data and variables, it might be possible to link anonymous 

data to individuals based on the rarity of combining variables such as height, sex, diagnosis, 

and age. 

The data that’s not stored locally is encrypted with Azure Information Protection. This 

ensures that in the event of a security breach, the data at risk remains secure and inaccessible 

to unauthorized individuals. 

  



13 

2 Research question 

Can real world data be effectively utilized for pharmacoeconomic assessments in addition to 

pivotal controlled trials? 

2.1 Aims 

This thesis aims to re-evaluate the cost-effectiveness of pembrolizumab in treating NSCLC 

within the Norwegian healthcare system with real world data. 

2.2 Objectives 

1. To re-evaluate the economic feasibility of pembrolizumab in treating lung cancer 

within the Norwegian healthcare framework. 

2. To identify the possible variables contributing to the gap between its efficacy in 

controlled environments and its effectiveness in a clinical setting. 

3. Provide a framework for assessing treatments with immature data. 
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3 Methodology 

The clinical data spans between 2016-2022 and there are 3592 patients included in the initial 

dataset. We will use publicly available pricing data for pembrolizumab, due to the 

confidential nature of pricing agreements in Norway. 

Analytical techniques include Cox regression and Kaplan Meier survival analysis. Cox 

regression will be used to estimate which variables are associated with changes in our 

outcomes such as QALYs, overall survival, and progression-free survival. Kaplan-Meier will 

be used to compare overall survival between our data and KEYNOTE-024. Level of 

significance for all relevant methods is p <0.05. 

The data includes diagnosis, time of diagnosis, start and end dates for radiation treatment, 

and, if applicable, status date (emigrated/deceased). The data also encompasses treatment 

information, including medications, functional level, and individual characteristics such as 

age and sex. For more information see table 2. 

Sensitivity analysis will be conducted to examine factors that may influence on our results. 

We will investigate differences in survival between patient pre and post 2019 due to missing 

information regarding adjuvant treatment and due to a higher degree of uncertainty regarding 

the validity of patient characteristic variables. We will also conduct a sensitivity analysis pre 

and post implementation of pembrolizumab as first line treatment, since the treatment 

guidelines are updated during our follow-up. 

Portions of the text and code in this thesis were refined and debugged with the aid of 

ChatGPT-4, aiming to enhance the readability and quality of the text, as well as the 

functionality of the code. Recommendations from ChatGPT were adopted and adjusted based 

on the clarity of the text or the robustness of the code. 

More specifically ChatGPT-4 was fed code chunks with errors or lines of text, prompted with 

sentences such as “suggest a more concise text” or “what is the source of this error”. 

3.1 Kaplan-Meier 

The Kaplan-Meier method is a statistical technique used to estimate the survival function 

from lifetime data. It is used to measure the fraction of patients living for a certain amount of 

time after treatment or diagnosis. The Kaplan-Meier curve is a graphical representation of this 

survival function, offering visualization of the probability of survival over time. 
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This curve allows assessment of the survival rates between groups of patients, such as those 

receiving pembrolizumab compared to standard treatment. It is a useful tool for understanding 

overall treatment effectiveness, and how it varies over time, since it provides a 

straightforward graphical representation. 

While using the Kaplan-Meier method, several analytical considerations are vital to ensure 

valid and reliable results. Censoring should be non-informative, meaning that the reasons for 

censoring should be independent of the probability of the event of interest. Log-rank test will 

be used to determine if the difference between the groups is significant. Survival time will 

also be reported with confidence intervals. 

We will compare our Kaplan-Meier curves with clinical studies to visually highlight 

differences in overall survival. 

3.2 Cox regression 

Cox regression, also known as the Cox Proportional-Hazards model, is a statistical method 

used in the analysis of survival data. It is an extension of the Kaplan-Meier method and 

allows for the inclusion of additional variables that might affect the outcome, instead of only 

a single categorical variable. The Cox model estimates the impact of multiple variables and 

how they influence the probability of an event happening, such as death, over time. 

This may help to identify which variables are associated with the efficacy – effectiveness gap. 

While using the Cox regression, several analytical considerations are vital to ensure valid and 

reliable results. Linearity, interaction, confounding and multicollinearity between variables 

must be considered. The proportional hazards assumption should be evaluated with methods 

such as the Schoenfield residual test. The observations should also be independent. 

If the necessary conditions are met, a model is chosen based on the Akaike information 

criterion (AIC). The AIC helps to choose the best model by balancing how well the model fits 

the data against the complexity of the model. 

The data on covariates are limited and only measured at time of diagnosis, and are likely to 

vary at various times due to disease progression, mutations and patient health. Consequently, 

it is probable that the assumption of proportional hazards may be compromised. Nevertheless, 

these covariates can still serve as valuable indicators of survival at the time of diagnosis. 
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However, their applicability in predicting future outcomes diminishes in cases of patients with 

extensive follow-up. 

3.3 Treatment of raw data 

Our data was delivered in 4 separate datasets from CRN. Some of the variables in the dataset 

often overlap and provide the same information, such as different codes for the same 

diagnosis. Each patient was identified with a unique patient ID (PID), and a unique illness ID 

(SID) in all the datasets. All dates in the datasets were set to the 15th every month by CRN, to 

avoid identifying patients based on date diagnosis or treatments. 

The first dataset contained patient variables such as ECOG status, age, sex and multiple 

variables describing the tumor location and morphology. This dataset had missing data, some 

of which were critical for our analysis such as ECOG status, cancer stage and PD-L1 levels. 

The second dataset contained information about prescribed treatments received from the 

hospital. Variables such as active ingredient, ATC-code and treatment regimen, and type of 

treatment. Treatment date is also included, but since the time variable is the 15th every month 

they are sometimes registered as a single administration. 

The treatment regimen is determined by the cancer drugs administered to the patient. E.g. 

using carboplatin and vinorelbine constitutes the treatment regimen, and the treatment type is 

chemotherapy. Use of antiemetics falls under the carboplatin and vinorelbine regimen, but the 

treatment type is supportive care. 

The third dataset contains data from H-prescriptions, capturing information on the drug and 

the dispensing date. 

The final dataset contains information regarding radiation therapy with variables such as 

intention for radiation, dosage and date. 

3.4 Survival time 

The duration of survival in our study is measured from the initial administration of 

pembrolizumab monotherapy until death or censoring. Therefore, in cases where a patient 

undergoes combination therapy up to three months before transitioning to monotherapy, the 

survival period starts with the first administration of pembrolizumab monotherapy, instead of 

the onset of combination therapy. 
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We will use restricted mean survival time (RMST) as a measure of overall survival. The 

restricted mean survival time will be calculated based on follow-up period, and a separate 

RMST will be extrapolated to 20 years follow-up using the survextrap package (33). 

Certain cases of NSCLC were excluded due to patients having multiple cases of NSCLC. 

These patients had cases several years prior to the introduction of pembrolizumab, some of 

which were before 2010. The exclusion of these cases are anticipated to have no impact on 

survival analysis, as survival duration is calculated from the initiation of pembrolizumab 

monotherapy treatment. 

3.5 Types of missingness 

In our dataset, a sizable portion of data is missing, predominantly in the areas of ECOG-

status, cancer stage, and PD-L1 values. This issue predominantly stems from the transition to 

a new reporting system, though it’s important to note that missing values are probably not 

related to clinical outcomes. The term ‘not reported’ is used when specific values are left  

blank in submissions, while ‘missing’ refers to instances where the entire form was not 

submitted. In several cases, values were either unknown or not explicitly specified. 

Given the crucial nature of these variables in relation to our study’s endpoint, we will impute 

these missing values. Afterwards we will conduct a comparative analysis between this 

imputed dataset and a dataset where the missing values are left blank. 

3.6 Imputation 

Missing data was imputed with the R-package Mice. The imputation was stepwise in the 

following order: cancer stage, ECOG score, morphology group, and PDL1 results. Ten 

imputations were conducted with ten iterations, and with 123456 as a seed code for the 

imputation. 

3.7 Extrapolation 

Extrapolations were conducted with spline models using the survextrap package (33). We 

calculated RMST with the same 20-year timeframe used in the assessment by NOMA (2). 

3.8 Digitizer 

We approached MSD to inquire if access to their survival data from the KEYNOTE studies 

was possible. Due to time constraints, our only alternative was to digitize the published 
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Kaplan-Meier curves of KEYNOTE-024. We did receive the data provided to NOMA during 

the assessment, but not long-term data from the study. 

The digitization process involved NOMA’s estimation of Overall Survival (OS) and the 5-

year update from KEYNOTE-024. (2, 34). 

The digitization of the figures was conducted by saving them using a snipping tool, followed 

by uploading to WebPlotDigitizer. In this tool, the X and Y axes were defined, and the curve 

was carefully annotated with points to ensure accuracy. The data points acquired were then 

uploaded to the Enhanced Kaplan-Meier Curves shiny app, including intervals for the number 

of patients at risk. Finally, the individual patient data downloaded from this process was used 

for survival analysis in R 

(35,36). 

3.9 Inclusion criteria 

We created two patient groups. 

Group 1 are patients that received pembrolizumab monotherapy, regardless of clinical status 

at the time of diagnosis. Since the measurement of ECOG status and other clinical markers 

are only recorded once, we assumed that patients would receive monotherapy if they fulfilled 

the requirements. This group will represent real world data. Please see the consort diagram for 

information regarding selection criteria. 

Group 2 has been designed with selection criteria to closely mirror the conditions of a clinical 

trial. This cohort includes only those patients who were diagnosed in stage IV, exhibited a 

PD-L1 level ≥ 50%, having an ECOG performance status ≤ 1 or lower, and had not received 

any adjuvant treatments. Given the prevalence of incomplete data for these variables among 

our patient population, we have imputed missing values. 

We also conducted a sensitivity analysis by removing patients that died within 1 months of 

pembrolizumab initiation, to simulate exclusion of patients that were excluded due to survival 

prognosis under 3 months. 

3.9.1 Patient groups in our analysis 

If the patient groups show no significant differences with a Kaplan-Meier curve and Log-

Rank test, Group 1 will serve as the reference for conducting pharmacoeconomic analyses and 
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to compare with clinical studies. The rationale for choosing Group 1 stems from a closer 

representation of real world clinical practice, and the dataset contains more observations, 

reducing the uncertainty in our estimations. 

3.10 Pharmaeconomic assessments 

Unfortunately due to data limitations we can not use QALYs in our pharmacoeconomic 

assessment. We have no data on adverse events or disease progression, so we can only use 

lifespan. NOMAs analysis is heavily influenced by changes regarding disease progression, 

since it both affects QALYs, and treatment cost. 

To calculate total cost we used the estimated treatment costs mentioned in the 

pharmacoeconomic assessment, combined with real world data regarding doses administered. 

We calculated the average doses received and multiplied dosages received with 

administration and drug cost. 

We will also multiply average survival time with either the weekly cost of progression free 

survival or survival with progression, which amounts to 657 and 1824 NOK respectively. 

This will provide a range of the possible ICER value. Finally we will estimate the cost of 

death, which is 50382 NOK. This cost will be calculated by number of events divided by total 

patients (2). 

Due to the uncertainty of rounded dates, we will also estimate a worst-case scenario with one 

month reduced survival and with disease progression for the entire follow-up duration. 

This method differs from the method utilized by NOMA. Due to several limitations which 

makes it impossible to accurately calculate ICER according to NOMAs methods, we opted to 

utilize a simplified cost calculation in our analysis.  



20 

4 Results 

The dataset contain 3642 cases of lung cancer and 3593 patients. After data cleaning and 

inclusion criteria 1347 cases and patients remain. For an overview of patient characteristics 

see table 1 and 2. Our median follow-up duration was 8 months due to the continuous 

inclusion period, maximum follow-up was 67 months until the cut-off after 31th December 

2022. 

It is important to be aware of different characteristics in the real world group compared to 

KEYNOTE-024 before interpreting the results. Unlike KEYNOTE-024, 29% of our patients 

has a ECOG score of 2 or higher while KEYNOTE-024 excluded patients with ECOG status 

≥ 2. 30% of the cases in the real world group were squamous cell carcinomas, compared to 

19% in KEYNOTE-024. Median age was also higher, 71 years in the real world group 

compared to 65 in KEYNOTE-024 (34). 

A higher proportion of squamous cell carcinomas may contribute to increased mortality, both 

due to comorbidities associated with the histology, and the histology itself (37,38). 



21 

4.1 Groups 

 

Table 1: Patient characteristics in the real world group categorized by gender. 
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Table 2: Lung cancer cases in the dataset, categorized by cancer stage. Note that some patients have 

had more than one instance of cancer. This dataset includes all patients diagnosed with NSCLC that 

have received immunotherapy treatment. 

The term “unknown” is used when CRN receives an electronic form where the clinician has 

marked the status as unknown. “Not specified” is indicated when CRN receives a form with 

no information filled in. 

There was no significant difference in survival between the non-imputed real-world group 

(Group 1) and the imputed more selective group emulating the clinical trial (Group 2). 

Therefore, all the results presented are based on Group 1. 

4.2 Overall survival in real world patients 

Figure 4.2.1 displays the Kaplan-Meier curve of group 1. The median OS was 13 months 

(95% CI 12 - 15), with a mean OS of 25.6 months. Some of these patients did not remain on 

monotherapy and switched to chemotherapy or combination therapy. Overall survival after 5 

years was 22.45%. 

 

Figure 4.2.1: Kaplan-Meier survival curve of our real world patients in Group 1. 
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4.2.1 Real world overall survival compared to KEYNOTE-024 

  

Figure 4.2.2: Kaplan-Meier survival curve of our real world patients in Group 1 compared to NOMAs 

Weibull extrapolation and KEYNOTE-024 patients. 

Figure 4.2.2 displays the real world Kaplan-Meier compared to the 5-year update of the 

KEYNOTE-024 study and NOMAs Weibull distribution based on preliminary data from 

KEYNOTE-024. There is a significant gap in survival between real-world data and the the 

digitized survival data from KEYNOTE-024 (p= 0.001). Extrapolated survival based on the 

Weibull yielded an average life years gained of 2.72 according to NOMA (2). 

Our digitized version of the 5-year update on KEYNOTE-024 seems to match the values in 

the original paper, see table 3. The mean OS was 33.6 months in the digitized KEYNOTE-

024 group. 
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Table 3: This table displays the median survival and survival after 48 months in the KEYNOTE-024 

pembrolizumab group, compared to our digitized version. 

4.2.2 Emulating the inclusion criteria 

 

Figure 4.2.3: This Kaplan-Meier curve illustrates the overall survival of patients who had an ECOG 

level of ≤ 1 at diagnosis. Patients with unknown ECOG level were excluded. 

To examine factors that may be associated with the efficacy - effectiveness gap we created a 

subgroup of patients with an ECOG status of <=1 within the real world group. A Log-Rank 

test was conducted, and the subgroup is not significantly different (p = 0.07) from the 

KEYNOTE-024 patients, and long-term survival seems to converge. 

This exclusion of patients with an ECOG status higher than 1 ensures a cohort more closely 

aligned with the population of KEYNOTE-024, although it does not represent real world 

patients. 

KEYNOTE-024 Digitized version

Median OS in months (95% CI) 26.3 (18.3 - 40.4) 26.3 (19.4 - 41.4)

OS after 48 months (%) 38.8 38.9
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It’s crucial to re-emphasize that ECOG status is only recorded at time of diagnosis, 66% of 

patients are diagnosed at stage IV. 

 

Figure 4.2.4: This Kaplan-Meier curve is based on our real-world data, with the exclusion of patients 

who passed away within the first 30 days and had a ECOG level of 0 or 1. 

The method utilized in figure 4.2.4 is not methodologically sound, as it incorporates immortal 

time bias. Our intention was to emulate the KEYNOTE study’s criteria, which requires a 

minimum prognosis of three months and ECOG 0 or 1, by excluding patients who succumbed 

within 30 days of commencing treatment. For mean survival see table 7. 
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4.2.3 Patients with poor ECOG status 

 

Figure 4.2.5: This Kaplan-Meier curve illustrates the overall survival of patients who had an ECOG 

level of ≥ 2 at the time of diagnosis. Patients with unknown ECOG level were excluded. 

The median survival for real world patients that have an ECOG of ≥ 2 is 7 months as shown 

in figure 4.2.5. The mean age of this subgroup was 71.9 years, and 33.5% of the patients were 

diagnosed with squamous cell carcinoma. 17.5% had a ECOG status of three, and a single 

patient with ECOG status of four. This subgroup were most the patients removed from figure 

4.2.3 and 4.2.4. 

4.3 Pharmacoeconomic analysis 

It is important to note that the analysis is based on average survival in the real world 

population, with no extrapolations. Prices or survival has also not been discounted and are 

based on unit prices from the HTA (2). 

Unfortunately, due to the lack of a real world chemotherapy group we used NOMAs 

estimations for chemotherapy costs, which were based on the KEYNOTE-024 chemotherapy 

group (2,17). These groups have different characteristics, so they are not truly comparable. 
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Table 4: Example of the basis for cost calculations. The unit prices are constant, while mean doses 

and mean overall survival are calculated for every group. These results are then further multiplied 

with the unit prices above. 

 

Table 5: ICER of real world patients. The first two rows displays NOMAs estimates. 

Table 5 displays the ICER for pembrolizumab compared to SoC. The values of the SoC are 

directly based off NOMAs main analysis. The next two rows contain separate calculations, 

with either progression during the entire follow-up period, or no progression at all as two 

extreme cases which gives a range estimate for ICER. The longest duration of follow-up for a 

patient was 67 months, until the cut-off point of 2023. 

The final row depicting progression and decreased survival serves as a sensitivity analysis 

concerning the temporal variable. Recognizing that survival time may vary by approximately 

±30 days, we decided to reduce the mean survival time to estimate a worst-case scenario, 

accounting for progression throughout the entire follow-up period. 

 

Table 6: ICER of patients with ECOG status ≤ 1 

Averages in real world data Currency = NOK

Total drug administered (mg) 3511445

Average dose (mg) 197.3

total doses administered 17557

Mean doses per patient 13.0

Cost per dose ( Ex. VAT) 65 100                                                                                              

Total cost dosages 1 142 975 339                                                                                 

Drug administration cost 1 312                                                                                                 

Overall survival (months) 25.6                                                                                                   

Cost of death 50 382                                                                                              

Weekly cost no progression 657                                                                                                    

Weekly cost progression 1 824                                                                                                 

Results main group Total cost (NOK) Life years gained ICER (NOK)

Pembrolizumab (NOMA estimate) 1 611 073                               2.72 783 296                        

Carboplatin/vinorelbin (NOMA estimate) 678 951                                   1.53

Pembrolizumab progression RWD 1 084 191                               2.13 670 328                        

Pembrolizumab no progression RWD 954 203                                   2.13 455 308                        

Pembrolizumab progression reduced survival 1 076 259                               2.05 762 286                        

Results ECOG group Total cost (NOK) Life years gained ICER (NOK)

Pembrolizumab progression RWD 1 222 194                   2.40 624 458                        

Pembrolizumab no progression RWD 1 076 043                   2.40 456 458                        
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Table 7: ICER of patients with ECOG status ≤ 1 and at least 1 month survival 

Table 6 and 7 shows how emulating the KEYNOTE-024 may affect the ICER. It is also worth 

noting that these subgroups are more like the chemotherapy group, but the populations are 

still not comparable. 

 

Table 8: Extrapolated RMST of the different datasets. It’s important to note that NOMAs extrapolation 

utilized Weibull, while we utilized a spline model from the survextrap package. The number in 

parentheses is the range of values, with median as the result. 

4.4 Cox regression 

 

Figure 4.4.1: Summary of Cox regression model. One patient was removed due to being the only 

patient with an ECOG level of 4. Baselines are female, ECOG 0 (funksjonstatusUtr1) and PD-L1 1 

(PdL1 resultat). Patients with PD-L1 with levels under <1 were combined into a single group to 

increase statistical power. 

Results ECOG - death group Total cost (NOK) Life years gained ICER (NOK)

Pembrolizumab progression RWD 1 213 611                 2.45                                           578 589                        

Pembrolizumab no progression RWD 1 064 165                 2.45                                           416 863                        

Extrapolation after 20 years Total life years (RMST)

NOMAs weibull* 2.72

KEYNOTE-024 3.96 (3.03 -5.35) 

RWD from the cancer registry 3.24 (2.61 - 4.24)
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While our analysis reveals a statistically significant association between higher ECOG level 

and mortality, it is crucial to note that the proportional hazards assumption is not fulfilled. 

This violation, as shown by the p-value of less than 0.05 in the Schoenfeld residuals test, 

suggests that the impact of ECOG level on survival is inconsistent over time. 

4.5 Sensitivity analysis 

We preformed multiple sensitivity analyses. Due to some patients being diagnosed several 

months prior to treatment with pembrolizumab we opted to stratify survival time based on 

time until initiation of monotherapy after diagnosis, and there was no statistically significant 

difference. 

We also did a sensitivity analysis on patients and date of diagnosis. The patients diagnosed 

before June 2017 had a significantly shorter survival (p << 0.01). 

We also compared survival time pre- and post-2019 based on initiation due to the missing 

data on adjuvant treatment and new treatment guidelines recommending combination therapy 

as first line treatment. There was no significant difference, but the post-2019 group had a 

trend of increased survival.  
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5 Discussion 

The HTA conducted by NOMA encountered challenges primarily due to the immature data 

concerning long-term efficacy. In particular, the extrapolation of survival entailed substantial 

uncertainty, which was explicitly highlighted by NOMA in their report. Due to the 

uncertainty combined with the high cost they could not recommend the therapy for the public 

price (2). 

Given our results in chapter 4.2 and 4.3, this section will explore the potential benefits of 

incorporating real-world data to yield a more precise estimation of long-term survival 

benefits. Additionally, it will discuss a possible framework for using real world data for 

temporary approvals. 

5.1 Overall survival in the real world and study population 

Our median real world OS was 13 (12 - 15). A comparative real world study conducted in the 

Netherlands (n=83) reported a median OS of 15.8 months (9.4-22.1). One potential 

explanation for the discrepancy median survival could be attributed to the ECOG status, since 

23.6% of our patients had ECOG level 2, and 5% had a ECOG score of 3. In contrast, their 

population had 3 patients with ECOG level 2 (4%), and no patients with higher ECOG status. 

Therefore our population is not fully comparable. (39). 

Other investigations have also documented higher median OS, although with few or no 

participants presenting ECOG statuses above 1. We conducted a sensitivity analysis, and by 

excluding patients with ECOG status above 1 our median OS increased to 17 months (95% CI 

15-21), and survival at 36, 48 and 60 months was 34.6%,30.5% and 26.3% respectively. The 

OS then approach the level found in real world studies on similar patients in USA, which had 

a median survival of 19.6 months (95% CI 16.6–24.3) (40). Although the median is slightly 

higher, it is important to note that the other study excluded patients with squamous cell 

carcinoma, which may explain a higher median OS (38). 

Our results are similar to other real-world studies, and especially the subgroup with non-

significant difference to KEYNOTE-024 when adjusting for ECOG indicates that the use of 

real world data may be a valid strategy for evaluating survival. 

Table 5,6 and 7 display how changes in selection criteria may have affected the overall 

survival and cost of treatment. Although the rudimentary adjustment for the prognosis criteria 
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is not fully sound and probably increases overall survival more than the prognosis criteria, it 

still illustrates the possible effect of adjusting treatment guidelines. 

Limiting the real world group to ECOG status ≤ 1 was enough to render the difference 

between the group and KEYNOTE-024 insignificant, though only barely above the 

significance level. Longer follow-up is likely to increase the p-value even further and reduce 

the differences between the groups, based on the tails of the Kaplan-Meier curves. 

Survival seems to stabilize after 54 months and the survival curves seem to converge between 

real world and RCT, but few patients have achieved 54 months of follow-up. We were unable 

to find any real world data with follow-up beyond 52 months, and unfortunately these studies 

exclude patients with ECOG status above 1 (41). 

Our mean survival is also artificially low due to continuous enrolling of patients. 

This is observational data and there are confounding variables that will have an effect on 

survival. However for pharmacoeconomic assessments also have to consider external validity. 

Factors such as time on treatment might differ in the real world, which would both affect cost 

and effectiveness for example (42,43). 

We also tried to estimate progression free survival, but had to resort to a proxy, which was 

switching to a new treatment regimen. Roughly a quarter of patients switched treatment 

within 24 months, which does not reflect progression free survival in real world data (41). 

The subgroup with ECOG status ≥ 2 had a lower median survival that those with ECOG ≤ 1 

as shown in fgure 4.2.3 and 4.2.5 (7 vs 17 months). Our results have a higher median survival 

compared to other real world studies, which report a median survival of 3-4 months (44,45). 

These studies however have a lower proportion of patients with ECOG status ≥ 2, and some 

of the studies did not include patients with ECOG status ≥ 2 (44,45). For example our 

subgroup had 68 patients (17.5%) with ECOG status of 3, compared to 4 patients (13.8%) 

(45). Our results also has a larger sample size with longer follow-up. After 24 months our 

subgroup had roughly three times the overall survival compared to one of the studies, but they 

only had 2 patients with 24 months of follow-up (44). We could not find any studies on 

similar subgroups which had more than a handful of patients after 12-24 months, so these 

results may bring insight on long term overall survival for patients with poor ECOG status. 
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5.1.1 Extrapolations of overall survival 

To extrapolate survival we opted to utilize spline models instead of a parametric Weibull 

distribution is because they tend to generate the more accurate predictions than other models 

(46). 

We have not evaluated other models, since the extrapolations are not used for further analysis, 

and it is essential to carefully consider long term extrapolations. When extrapolating immuno-

oncology treatments they seem to be more accurate (47,48). 

The extrapolated restricted mean OS after 20 years for NOMAs analysis and KEYNOTE-024 

was 2.72 vs. 3.96 (3.03 -5.35) years. Real world survival restricted mean OS was 3.96 (3.03 -

5.35) years. 

The KEYNOTE-024 spline extrapolation is based on the 5-year update. This illustrates how 

uncertain extrapolations are based on immature data, and spline models would also likely be 

inaccurate with immature data (46). 

The extrapolations were not used in the pharmacoeconomic assessment but are included to 

highlight the uncertainty of long-term extrapolations based on immature data. A study which 

examined extrapolations conducted the French Health Authority, specifically regarding 

immunotherapy. The study revealed that extrapolations in the HTAs underestimated RMST in 

73% of the HTAs, with a mean difference of 13%. One of the extrapolations underestimated 

the RMST by 43%, or 17 months. It is also worth noting that a ten-year period was 

extrapolated, instead of 20 years (49). 

5.2 Cox regression 

The proportional hazard assumption is not met, most likely due to variations in ECOG status 

over the course of the disease. These changes are not captured in our dataset. Some patients 

also recorded ECOG status several months before initiating treatment, so it is uncertain if 

ECOG status unchanged. Changes in ECOG status could significantly affect the prognosis, 

yet these alterations remain unmeasured and are not accounted for in the analysis. 

Consequently, while it is valid to assert a statistically significant relationship between higher 

ECOG status and increased mortality, this association should be interpreted with the 

understanding that the effect of ECOG status on survival is dynamic and may fluctuate at 

different stages of the treatment, especially due to disease progression and treatment with 

chemotherapy (50). 
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5.3 ICER 

Our ICER is quite simplified since we used average dosing and survival. In NOMAs analysis 

they extrapolated survival, so comparing our results with chemotherapy is not ideal (2). If we 

extrapolated life years gained would increase, but then we would also have to make 

assumptions regarding time on treatment. By using averages we yield a conservative results, 

where we have a lower survival compared to the extrapolated standard of care. Since patients 

are included continuously, we also have a inflated cost of treatment, since few patients in our 

receive more than 35 doses, therefore patients with more than 105 weeks of survival have a 

reduced cost of treatment while contributing to increased survival. This period of reduced cost 

is often not reached or reduced for our patients due to censoring. 

The analysis shows a lower ICER for patients with an ECOG performance status of ≤1, 

suggesting that treatment restriction based on ECOG may be useful for ensuring the treatment 

is offered at a cost-effective price point based on local guidelines. Including a requirement of 

survival prognosis may also further increase the cost-effectiveness of the treatment. 

Our findings show a similar ICER within the real would groups even with additional 

exclusion criteria such as ECOG status ≤ 1, as seen in table 5, 6 and 7. It also shows the 

possible effect of changing treatment guidelines based on ECOG status. 

Imposing restrictions based on ECOG status raises ethical concerns and may inadvertently 

pressure clinicians to assign lower scores to borderline patients, challenging the balance 

between cost-effectiveness and equitable care. 

The decrease in the ICER is marginal, yet the implications of withholding treatment from 

approximately one-third of stage IV lung cancer patients are significant. Within our dataset, 

there is a woman in her early thirties with an ECOG performance level > 1. She was 

diagnosed early in our follow-up period and is still alive, possibly due to receiving treatment 

with pembrolizumab. 

It raises a critical question: Is it justifiable to exclude her from receiving treatment in favor of 

patients with an ECOG level ≤ 1, particularly when her potential for a longer life span could 

surpass that of patients in their 90s with a lower ECOG status? This scenario underscores the 

ethical and practical challenges of rigidly applying ICER-based restrictions. 
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Our reasoning for not using extrapolated survival and discounting rates for overall survival is 

that our simplified and conservative estimations are well within the range of cost-

effectiveness, and utilizing extrapolated survival would lower ICER even further. We also 

aimed to reduce the complexity of our analysis due to the lack of a robust variable describing 

disease progression. 

5.4 Utility and limitations of real world data 

Although real-world data serve a purpose when evaluating effectiveness, randomized 

controlled trials (RCT) remain the gold standard for evaluating efficacy under controlled 

conditions (51). 

However, there are limitations for this study design aswell. The main issue is cost and 

primary endpoints may develop after decades of follow-up, and a low incidence rate would 

require a larger study population. This may make it difficult to secure funding, especially for 

off-patented drugs (52). 

The real world is all but controlled and in our thesis we see patients with PD-L1 levels <1% 

and with ECOG status ≥ 2 receiving monotherapy.  Data from KEYNOTE-024 provide no 

information on treatment effect in these patient groups, and to our knowledge no controlled 

trials have been conducted on the topic. External validity and information regarding 

effectiveness for these subgroups would provide crucial insights for physicians, which can be 

gained by evaluating both real-world data (53). 

The benefit-risk may be less favorable outside a clinical trial, when patients deviate from the 

inclusion criteria in RCTs due to comorbidities or other clinical variables. As shown in our 

results, real-world effectiveness significantly differ from the clinical trial (figure 4.2.2). 

Comorbidity in a real-world population may contribute to increased frequency or severity of 

side effects, further reducing the benefit-risk ratio. Unfortunately, we cannot investigate this 

due to lack of data on adverse events (54). 

5.5 Benefits for HTAs 

Our findings suggest that the CRN can effectively be used to estimate survival rates in 

patients undergoing pembrolizumab monotherapy. By using registry data, we can emulate 

clinical trials, gauge external validity, and estimate costs based on actual dosing regimens. 

Although the data may introduce bias in the analysis due to confounding, it may still 

contribute to pharmacoeconomic assessments. This approach may be a valuable alternative or 
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supplement while waiting for updates from clinical studies, instead of relying on 

extrapolations from preliminary data. 

The use of CRN data could significantly speed up the HTA process by facilitating the use of a 

revised temporary approval framework, which would still maintain the requirement for 

plausible cost-effectiveness (55). I will elaborate on my recommendations, which are 

designed to enhance the efficacy of this approach. 

1. Oncology treatments surrounded by uncertainty about their cost-effectiveness should 

be granted temporary implementation only until definitive evaluations can be 

conducted. 

2. All temporary treatments shall undergo quarterly monitoring through the CRN until 

sufficient data is amassed to make a conclusive decision regarding their 

implementation. 

3. The variables used for analysis should be standardized, with additional of case-

specific variables such as PD-L1 expression. 

4. The primary metric for assessing treatment impact should be the years of life gained, 

with QALYs as a supporting metric. 

5. Before the data collection phase, predefined upper/lower thresholds for cost-

effectiveness should be set for preliminary analyses. 

5.6 Arguments for the temporary approval framework 

5.6.1 Point 1 - Uncertainty 

All oncology treatments with uncertainty on if it is cost-effective should be temporarily 

approved. As mentioned, 39% of oncology HTAs have uncertain data, of which 49% are later 

approved. In general it is only possible to calculate ICER in 58% of HTAs with uncertain data 

(22). 

Considering that 42% of uncertain HTAs have not calculated an ICER, and extrapolations are 

based on immature data, it is uncertain whether all of these treatments are cost-effective. By 

ignoring these uncertain implementations, we run the risk of using treatments for years that 

are cost ineffective. At first, this system should be limited to the treatments with the highest 
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degree of uncertainty regarding cost-effectiveness as a proof of concept, similar to the few 

temporary approvals already implemented (13,22). 

By following up real world data and re-evaluating when data is more certain you can also 

argue that the initial pharmacoeconomic evaluation should be simplified. Cost estimations 

with immature data are uncertain due to inaccurate extrapolations (46,56). 

One might argue that we should wait until updates from the clinical trial are published, but 

then we cannot evaluate external validity or treatment effectiveness in subgroups that were 

excluded, such as patients with ECOG status above 1. 

5.6.2 Point 2 - Approval after sufficient data collection 

If enough data is collected for an evaluation, a treatment should be approved or denied 

regardless of a predefined temporary approval period. The rationale for this point hinges on 

the advantage of formally adopting treatments at once when a comprehensive CEA has been 

carried out, aiming to diminish the ongoing administrative burden. Swift approval or 

disapproval of treatments is also advantageous, which may minimize the impact of loss 

aversion among patients and reducing the duration of uncertainty regarding the potential 

revocation of access to treatments. This approach can facilitate a more efficient healthcare 

administration process and may enhance patient well-being by determining treatment 

availability as soon as possible. 

5.6.3 Point 3 - standardization 

To streamline the process of data collection, cleaning, and analysis, i suggest that data 

variables should have the same format across all treatments monitored using CRN data. While 

recognizing the existence of disease-specific variables, a universal set of variables for all 

patients, such as ECOG status, smoking history, and level of physical activity—should be 

incorporated consistently. This standardization provides an opportunity for covariate 

adjustment, enabling more accurate emulation of target trials (57). 

With a standardized dataset, it is possible to apply a uniform analytical template to estimate 

real-world OS, adjust for common covariates, and perform extrapolation and cost-

effectiveness analyses for any treatment. A limitation of utilizing a standardized dataset and 

values is that the dataset may not capture all relevant details for every case. To avoid this 

issue additional variables may be necessary to accommodate evaluations with unique 

considerations. 
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For instance, transitioning the analysis from pembrolizumab to atezolizumab monotherapy 

could be done by simply replacing all text with “pembrolizumab” with “atezolizumab” with a 

search-and-replace function. 

Using the same format could enable quarterly analyses, enhancing the number of treatment 

evaluations possible under temporary approval, which may be useful in certain cases. This 

would not only shorten the duration for which treatments remain under temporary approval 

compared to annual reviews and minimize the efforts required for data preparation and code 

modification. 

5.6.4 Point 4 - life years gained 

Unfortunately, we could not find literature that examines whether life years gained or QALYs 

are more appropriate for pharmacoeconomic evaluations when employing real-world data. 

These opinions are simply based on the issues we faced when trying to estimate QALYs 

while using a proxy for disease progression. 

Life years gained should serve as the primary metric for CEA due to current limitations in the 

registry. This indicator is less susceptible to confounding variables that may influence 

QALYs, and it is a hard endpoint. Unlike the complex calculations required for quality-

adjusted life QALYs, such as adjustments based on changes in ECOG performance status, life 

years gained offers a more simplified approach to outcome measurement. 

While QALYs remain a valuable supporting metric, it is potentially more prone to variability 

and inaccuracies due to measurement discrepancies or incomplete data. In our analysis, for 

instance, using changes in treatment as an indicator of disease progression resulted in only 

half the percentage of changes compared to those reported in clinical studies. Such 

discrepancies could significantly affect the estimation of QALYs gained. 

A potential solution to these challenges involves the direct incorporation of health-related 

quality of life metrics into real-world data analysis. However, this approach might be too 

time-intensive (58). 

Quality of life is a part of a ongoing patient population study from 2022, but the response rate 

is low, which may introduce bias (59). 
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5.6.5 Point 5 - Threshold for re-evaluation 

Implementing automatic regular analyses could benefit from the establishment of threshold 

values for cost-effectiveness, necessitating data re-evaluation as needed. For instance, should 

a treatment demonstrate an Incremental Cost-Effectiveness Ratio (ICER) of 1.5 million NOK 

at the 1-year evaluation point, it would prompt a closer inspection. If the unusual ICER results 

from data anomalies or errors, the provisional status of the treatment would remain 

unchanged. Conversely, if initial findings indicate the treatment is indeed cost-effective, a 

detailed re-assessment would be justified. 

Put simply, the predefined upper and lower cost-effectiveness limits act as alerts to re-

examine the data. A more thorough examination would be initiated if preliminary results 

suggest the treatment’s cost-effectiveness is significantly lower than initially estimated or 

surpasses the threshold for cost-effectiveness. 

5.6.6 Adverse events 

Currently data on adverse events are not available in the CRN registry, but NOMA maintains 

a registry for side effects. Merging these registries could prove beneficial, potentially 

providing insight to certain variables that increases the likelihood of adverse events. The 

advantage of real world data is also the additional benefit of increased participants, which 

increases the chance for accurately estimating the likelihood of rare adverse events. 

Additionally, it opens the possibility of uncovering rare adverse events. 

The number of adverse effects that remain unreported is unclear. Typically, around five 

thousand adverse events are reported yearly, of which a thousand are considered severe. In 

2021 a total of 523 adverse events were attributed to the ATC group L: antineoplastic and 

immunomodulating agents (60). Incorporating adverse event reporting into the cancer registry 

could potentially enhance reporting rates, lead to more precise estimates of their frequency, 

and possibly aid in developing strategies for prevention. 

5.6.7 Automatization and AI 

Since variable names and values are usually standardized for the cancer registry, it may be 

possible to create a semi-finished template for analysis of the real-world data. These templates 

might be rudimentary and not be fully methodically sound across all diagnoses, but can 

reduce the workload for statisticians significantly and output a rough first draft that can be 

utilized to consider a more rigorous analysis. 
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An even more technologically advanced method may be to utilize AI for these tasks, 

especially if there already have been several rigorous analyses within the same medical 

condition. Previous analyses can be utilized as a reference, and methodology can be evaluated 

afterwards by skilled statisticians and further refined, thus also improving the AI with 

machine learning (61).  
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6 Methodological rationale and limitations 

6.1 EGFR and ALK mutations 

These variables, although most likely measured, were not included in our dataset. Fortunately, 

we can use H-prescriptions as a proxy, given that the treatments were generally prescribed for 

these specific mutations. 

6.2 Missing regions 

Our study population did not include patients treated in Northern Norway (Helse Nord RHF), 

and some hospitals in the other regions were not included until late 2018. This is may lead to 

bias, since survival of lung cancer differs between the healthcare regions. According to a 

recent report, median survival in Norway for all stages of lung cancer was 16.2 months. 

Patients receiving treatment in northern Norway had a median survival of 14.5 months (62). 

There was also a large discrepancy between hospitals within the same healthcare region. Oslo 

university hospital HF (OUS HF) had a median survival of 22.5 months. Vestre Viken HF 

was not included in our dataset until 2018, and had a median survival of 16.5 months (62). 

The cause of the discrepancy may be due to delayed diagnosis and initiation of treatment (63) 

Our dataset has no information regarding where patients were treated, so we are unable to 

investigate if there was an association between overall survival and treatment location. 

6.3 Deaths and 2023 

We lack data on survival for the year 2023. While we have records of pembrolizumab 

administration, it’s unclear whether patients passed away or discontinued their treatments 

after 2022. This gap in data is significant, especially considering 40% of patients were 

censored. It’s probable that including survival data from 2023 would elevate the average life 

years gained. This is because pembrolizumab monotherapy ceased being the primary 

treatment option since October 2020, and there are fewer incident monotherapy patients. 

Consequently, the patients censored after 2022 are likely high responders with a lower 

mortality rate. Moreover, patients no longer on treatment may be experiencing complete 

remission. Such scenarios contribute to an increase in life years gained, achieved at a minimal 

cost. 
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6.4 Dates 

In our study all dates are set to the 15th of each month for patient anonymity. This adjustment 

complicates the analysis of treatment initiation. For instance, patients diagnosed on the last 

day of a month who initiated the treatment the next day are recorded as starting treatment 

after 30 days. While this tends to balance out over a large group of patients, it nevertheless 

restricts the precision of our findings and leads to broader confidence intervals in our results. 

6.4.1 Cost model 

Our cost model is simple compared to NOMAs models since we only used average survival 

instead of extrapolations. However, the basis for our data is uncertain in respects to disease 

progression, adverse events, and different patient characteristics between the real world group 

and chemotherapy study group. Our results are within the limits of cost-effectiveness, we 

consider the estimate to be satisfactory. 

ICER will also likely decrease due to the tail of the Kaplan-Meier survival curve, which will 

further increase average survival time, but with few or no additional doses of pembrolizumab. 

Ideally, we would have a real world chemotherapy as a comparator, and extrapolated both 

groups with the same model. Comparing matured extrapolated survival with immature 

extrapolated data is misleading since the immature extrapolation tends to underestimate OS 

(49). 

6.4.2 Combination therapy 

We did not construct a separate cost model for patients undergoing combination therapy. We 

neither attempted to estimate the additional cost of chemotherapy medication, or other costs 

related to the chemotherapy treatment. 

This is due to the results found during our sensitivity analysis regarding time origin. These 

results indicated that an insignificant number of patients had a history of combination therapy 

before initiation of monotherapy, and the duration of treatment with combination therapy was 

short. 

The total effect on ICER by calculating additional costs of 1-4 cycles of combination therapy 

would be insignificant, and highly complicated due to our lack of data regarding adverse 

events. The cost of pembrolizumab is however included, but not the cost of chemotherapy. 
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It is also uncertain whether the overall costs of chemotherapy also apply for patients only 

receiving a couple cycles, such as side effects or supportive treatment. The cost of drug 

acquisition for chemotherapy is also difficult to calculate due to varying dosages and 

confidential pricing. This is a minor part of the cost of chemotherapy treatment in total (2). 

6.4.3 Switch in treatment regimen 

Initially our study design excluded patients who transitioned from pembrolizumab 

monotherapy to alternative regimens within the first 24 months. However, it became apparent 

that a significant portion of these patients likely switched therapies due to either disease 

progression or adverse events. Therefore, we decided to include non-adherent patients in our 

study group. 

This complicates the estimation of cost significantly, since we have no information regarding 

patient health, degree of progression or adverse events. We have no new information 

regarding patient characteristics when treatment regimens are modified. 

Roughly a quarter of patients switched therapy within 24 months, and approximately half 

received combination therapy, or chemotherapy alone. Of the patients who switched to 

combination therapy, some also went on to switch to chemotherapy alone eventually. These 

switches are in accordance with current guideline recommendations (30). 

Due to the diverse treatment regimens and the complex pricing for combination therapies for 

patients deviating from monotherapy we chose not to calculate the associated costs. This will 

lower the ICER artificially, but the sensitivity analysis on progression and reducing survival 

time indicate ICER is within cost-effectiveness. 

6.5 Imputation 

We did not impute our real world group, since the missing variables frequently overlap, and 

we were uncertain to the cause of the missingness, since they seemed to be tied to patients 

with an earlier diagnosis.  

6.6 PD-L1 expression 

We included patients regardless of PD-L1 expression. The rationale for this choice is that PD-

L1 expression was only measured once, and both increases and decreases in expression is 

common (64). This is especially relevant with patients that were diagnosed with stage I-III 

cancer, with no information about when they reached stage IV. Pembrolizumab monotherapy 
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is not indicated for patients with PD-L1 expression under 50% as a first line treatment, so we 

assume treatment regimens were according to guidelines during our follow up period (30). 

In patients that were diagnosed with stage IV cancer the proportion of patients that had a PD-

L1 expression under 50% was 19.2%. These patients likely started treatment within a couple 

months despite being registered with a value below the threshold for initiation of 

monotherapy. It is uncertain whether a new test was conducted, but according to an expert it 

is unlikely unless there was an overweighing medical need, due to the invasive nature of the 

required biopsy according to Fagereng, Gro L. (Oncology researcher, meeting 31th January 

2024). 

The predictive utility of PD-L1 values in our dataset is also dubious, especially considering 

PD-L1 levels may change in a substantial portion of patients. A study investigating changes in 

PD-L1 after NSCLC progression reported that approximately 33% of the patients had changes 

in PD-L1, and 17% had potentially clinically relevant changes. Treatment with chemotherapy 

significantly increased the likelihood of changes in PD-L1. Changes in expression did not 

seem to be caused by changes in biopsy location (64). 

The patients that had changes in PD-L1 level, 33% encountered changes that pushed their 

measurements beyond or below the critical threshold of 50%. The study had a follow-up from 

June 2018 to December 2019, so it might be likely to observe a higher degree of changes in 

PD-L1 during a longer follow-up period (64). 

While PD-L1 serves as a key biomarker to predict response to treatment with immunotherapy, 

it is not entirely accurate. Other models using additional variables such as ECOG and 

neutrophil to lymphocyte ratio can be more effective in predicting treatment response (65). 

Basing treatment decisions solely on PD-L1 levels represents an oversimplification and is not 

the most effective method in predicting response on an individual level. 

6.7 Time origin 

We believe that using the first administration of pembrolizumab monotherapy is a valid 

method. This approach is used in other studies, and for patients who were initially diagnosed 

at stage III we have no information on when they progressed to stage IV. Consequently, 

diagnosis date cannot serve as the basis for overall survival (66,67). 
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It is doubtful whether patients receiving 1-4 cycles of combination therapy will have 

clinically relevant different survival compared to patients receiving monotherapy (68). 

However, by including combination therapy into the survival time we introduce immortal 

time bias, since the combination therapy patients must survive until they receive monotherapy 

to be included. 

We also conducted a sensitivity analysis, and the effect was insignificant when comparing 

first dose of monotherapy to first dose of pembrolizumab as time origin. At 3,4 and 5 years, 

OS increased by less than 0.5%, and median survival did not differ. 

we opted not to incorporate the combination therapy into the survival time analysis to 

mitigate bias and yield more conservative outcomes. 

6.8 Lack of real-world data on chemotherapy 

Unfortunately, we do not have real world data on chemotherapy alone. This may cause the 

ICER to increase, since the survival data used by NOMA might benefit from efficacy - 

effectiveness gap due to selection mechanisms in the clinical study. This may cause the 

overall survival to be higher in the clinical study than one might expect in a real world setting. 

We considered using real world data, but utilizing data before implementation of 

immunotherapy poses certain risks. Changes in chemotherapy regimens, radiation treatment, 

and time until diagnosis might differ pre- and post- 2016. There is also risk of cohort effects 

and period effects. 

If we had real world data on chemotherapy from CRN during our follow up period, it is 

unsure whether the data is useful even when adjusting for cohort and period effects. Since 

immunotherapy is first line treatment, we would have few remaining patients utilizing 

chemotherapy, and their characteristics may differ from the pembrolizumab patients. 

Using real-world data from countries where chemotherapy remain the primary treatment can 

be challenging because these countries may rely on chemotherapy due to financial constraints. 

Real-world data from Norway might not align with data from a developing country, given the 

potential disparities in healthcare infrastructure, time until diagnosis and socioeconomic 

factors. 
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6.9 Disease progression 

We have no data on cancer progression. We considered using switch to new treatment 

regimens as a proxy for progression, but we had significantly lower proportion of patients 

with disease progression than KEYNOTE-024. At 24 months, we had roughly 25% of 

patients classified as having disease progression, compared to nearly 50% in KEYNOTE-024 

(34). 

However clinical disease progression differs from study disease progression, due to increased 

monitoring and documentation in clinical studies, according to G.L Fagereng, PhD (OUS, 

29.01.24). 

Due to the major discrepancy, especially also considering the clinical-efficacy gap, we cannot 

utilize this method as a proxy. It is also not especially useful to utilize in a ICER analysis 

since the basis of the cost is highly uncertain. we opted to use both the weekly cost of 

progression and no progression for the whole period to gain a upper and lower limit of cost 

instead of giving a single value that can be misleading. 

6.10 Measurement of variables 

All patient characteristics are measured at diagnosis. This complicated the choice of inclusion 

criteria in our real world group, since patients who might not matching the KEYNOTE-024 

inclusion criteria at diagnosis might have been a candidate at a later point. 

For the ECOG subgroups nearly a third of the patients may have a higher ECOG status when 

initiating treatment with pembrolizumab, since they are diagnosed at an earlier cancer stage. 

They did not initiate treatment until they presumably progressed to stage IV, but we cannot 

know for certain. 

There’s a noticeable overlap between cases with missing ECOG status and those with 

unspecified cancer, which may be due to the reporting system.  

All temporal variables are also rounded to the 15th of every month, which introduces 

uncertainty. 

6.11 Adverse events 

There was no information regarding adverse events, this is a limitation in the CRN data. 
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The most common side effect for pembrolizumab is anemia, which NOMA estimates affects 

4.5% of patients. The cost of this adverse event is estimated to be 3114 NOK. NOMA only 

included costs for adverse events if the adverse event was grade 3 or higher, and with a 

frequency of at least 5%. Therefore, it is unlikely that lack of data on adverse events for 

pembrolizumab monotherapy would affect the cost of treatment (2). 

6.12 QALYs 

Precisely calculating QALYs is hindered by data constraints. This is a setback given the 

importance of QALYs in pharmacoeconomic evaluations. Although we contemplated 

employing a proxy for disease progression to approximate QALYs, the inferior quality of this 

proxy makes it unreliable as a foundation for such estimations. Leveraging inaccurate QALY 

figures in an ICER which is the basis for pharmacoeconomic assessments, poses considerable 

risks to financial expenditures and patient well-being. 

NOMA also met a variation of this issue in the original assessment, where the reliability of 

the survival data was questionable due to the short follow-up. Consequently, the drug was 

deemed not cost-effective under public pricing, largely due to the significant uncertainty 

surrounding its efficacy and an ICER figure that hovered at the threshold of the pricing limit. 

6.13 Current limitations of CRN 

Currently, there are limited variables available to adjust for confounding variables or emulate 

clinical trials. 

Details on changes in ECOG status or other factors like cancer stage would increase the 

precision of pharmacoeconomic evaluations using registry data. However, these variables are 

only recorded at the time of diagnosis and any additional recording would increase the manual 

input from physician which could potentially result in lower coverage. 

CRN does collect data on additional patient variables as part of a population study. The data 

may be useful in an pharmacoeconomic assessment; however, the current response rate is low 

(69).  
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Conclusion 

This investigation serves as a pilot study for integrating real-world data into 

pharmacoeconomic assessments of treatments with immature data within the New methods 

system. 

Currently real world data from CRN can be used for pharmacoeconomic assessments based 

on life years gained. Our estimations indicate an ICER of 474 621 - 689 641 NOK, compared 

to 784 851 NOK in NOMAs assessment. 

Unfortunately, the real world data currently lacks robust variables for calculating an ICER, 

and further development and additional variables would be beneficial to improve accuracy of 

cost-effectiveness estimates, and estimating cost-effectiveness based on QALYs. 

We have suggested a framework that can be used for validating long term extrapolations 

based on immature data, and we have identified that ECOG status is the main variable 

associated with the efficacy-effectiveness gap in overall survival. 
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Appendix 

This first appendix includes the chunks of  R-code that were used while working on this 

project, including my notes. 
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D:/masteroppgaven backup/raw data/0 inputtering/Med avvik.Rmd C:/masteroppgaven 

lokal/raw data/0 inputtering/ 

r ref.label=‘blabla2’, results=‘hide’, echo = TRUE} 

 

 

--- title: “rens data 1” author: “jeroen” date: “2023-11-15” output: html_document --- 

knitr::opts_chunk$set(echo = TRUE) 

# Detect the computer's name 

computer_name <- Sys.info()["nodename"] 

 

# Set the working directory based on the computer's name 

if (computer_name == "JEROEN-LAPTOP") { 

  setwd("C:\\masteroppgaven lokal\\raw data\\0 inputtering") 

} else if (computer_name == "JEROENHAUKAAS") { 

  setwd("D:/Masteroppgaven backup/raw data/0 inputtering") 

} else { 

  stop("Unknown computer: unable to set the working directory") 

} 

 

# Load data  

pasientdata <- read.csv( "realworldadherentmedavvik.csv", header = TRUE, sep = ",") 

sykehusdata <- read.csv("sykehusadherentmedavvik.csv", header = TRUE, sep = ",") 

straaledata <- read.csv("Utlevert_straaledata_4082.csv", header = TRUE, sep = ";") 

exclusion_log <- read.csv("exclusion_log2.csv") 

 

 

library(tidyverse) 

library(ggplot2) 

library(janitor) 

library(mice) 

library(dplyr) 
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library(DataExplorer) 

library(webshot2) 

library(tidyverse) 

library(tidyr) 

library(janitor) 

library(rstatix) 

library(remotes) 

library(kableExtra) 

library(devtools) 

library(report) 

library(sjPlot) 

#library(ggstatsplot)  

library(survival) 

library(survminer) 

library(biostat3) 

library(tidyverse) 

library(ggsurvfit) 

library(dplyr) 

library(gtsummary) 

library(gridExtra) 

library(scales) 

#Oversetter variabler ## Legger inn sykehusdata 

sykehusdata_unique <- sykehusdata %>% 

                      arrange(first_dose) %>% 

                      group_by(PID) %>% 

                      slice(1) 

 

 

 

# Merge the datasets 

pasientdata <- merge(pasientdata, sykehusdata_unique[, c("PID", "first_dose")], by = "PID", 

all.x = FALSE) 
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7.1 legger inn survivaltime 

censoring_date <- as.Date("2023-01-01") 

pasientdata <- pasientdata %>% 

  mutate( 

    DIAGNOSEDATO = as.Date(DIAGNOSEDATO, format = "%d%b%Y"), 

    STATUSDATO = as.Date(STATUSDATO, format = "%d%b%Y"), 

    first_dose = as.Date(first_dose), 

    # Calculate survival time, using censoring_date for those still alive 

    SurvivalTime = if_else(is.na(STATUSDATO),  

                           as.numeric(censoring_date - DIAGNOSEDATO),  

                           as.numeric(STATUSDATO - DIAGNOSEDATO))) 

7.2 legger inn tid til første dose 

pasientdata <- pasientdata %>% 

               mutate(time_until_first_dose = first_dose - DIAGNOSEDATO) 

7.3 undersøker de som har flere sykdommstilfeller 

patients_with_multiple_SIDs <- pasientdata %>% 

                               group_by(PID) %>% 

                               summarise(distinct_SIDs = n_distinct(SID)) %>% 

                               filter(distinct_SIDs > 1) 

#Fjerning av pasienter mange urelaterte sykdommer, fjerner SID som er lengst unna SID. 

Fjerner også pasienter som begynner veldig sent pga at legemiddelet ikke har blitt innført 

enda. 

##stratifisering pre, post beslutningsforum vedtak 

censoring_date <- as.Date("2022-12-31") 

 

# Calculate Survival Time 

pasientdata$survival_time <- ifelse(is.na(pasientdata$STATUSDATO), 

                                    as.numeric(difftime(censoring_date, pasientdata$first_dose, units = "d

ays")), 

                                    as.numeric(difftime(pasientdata$STATUSDATO, pasientdata$first_d
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ose, units = "days"))) 

 

# Convert Survival Time to months and round to nearest month 

pasientdata$survival_time_months <- round(pasientdata$survival_time / 30.44) 

 

# Censoring status: 0 if alive (censored), 1 if dead (event occurred) 

pasientdata$censoring_status <- ifelse(is.na(pasientdata$STATUSDATO), 0, 1) 

# Create a new column for stratification based on June 2017 

pasientdata$pre_post_June_2017 <- ifelse(pasientdata$DIAGNOSEDATO < as.Date("2017-

06-01"), "Pre-June 2017", "Post-June 2017") 

 

# Create the survival object using months with stratification 

surv_obj_stratified <- Surv(time = pasientdata$survival_time_months, event = pasientdata$ce

nsoring_status) 

 

# Fit the Kaplan-Meier survival curve with stratification 

km_fit_stratified <- survfit(surv_obj_stratified ~ pre_post_June_2017, data = pasientdata) 

 

# Generate the survival plot with stratification 

survival_plot_stratified <- ggsurvplot( 

  km_fit_stratified, data = pasientdata, conf.int = TRUE, 

  risk.table = TRUE, 

  xlab = "Months since first dose", ylab = "Survival probability", 

  title = "Kaplan-Meier Survival Curve by Pre and Post June 2017", 

  ggtheme = theme_minimal(), 

  break.x.by = 3  # Set x-axis breaks every 3 months 

) 

median_survival_times <- surv_median(km_fit_stratified) 

print(median_survival_times) 

 

# Perform the log-rank test 

log_rank_test <- survdiff(surv_obj_stratified ~ pre_post_June_2017, data = pasientdata) 

 

# Extract the p-value from the log-rank test result (keep in scientific notation) 
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log_rank_p_value <- 1 - pchisq(log_rank_test$chisq, length(log_rank_test$n) - 1) 

 

# Print the results of the log-rank test 

print(log_rank_test) 

 

# Extract median survival times 

median_survival_times <- surv_median(km_fit_stratified) 

print(median_survival_times) 

 

# Check if median survival times were extracted correctly 

if (length(median_survival_times$surv.median) == 0) { 

  # Create a placeholder for median survival times if not extracted 

  median_survival_times$surv.median <- rep(NA, length(median_survival_times$strata)) 

} 

 

# Combine median survival times and log-rank p-value into one data frame 

combined_results <- data.frame( 

  Strata = median_survival_times$strata, 

  MedianSurvival = median_survival_times$surv.median, 

  LogRankPValue = rep(format(log_rank_p_value, scientific = TRUE), length(median_survi

val_times$strata)) 

) 

 

# Print and save the combined results 

print(combined_results) 

 

# Save the combined results as a CSV file (or any other format you prefer) 

write.csv(combined_results, "CombinedSurvivalAndLogRankResults.csv", row.names = FA

LSE) 

 

# Print and save the stratified plot 

print(survival_plot_stratified) 
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ggsave("KMStratifiedPrePostJune2017.png", survival_plot_stratified$plot, width = 15, height

 = 11, bg = "#FFFDFB", dpi = 300) 

before_exclusion_count <- length(unique(pasientdata$PID)) 

# List of SIDs to remove 

sids_to_remove <- c(958, 875, 2295, 1066, 1739, 2420, 1535, 1493, 3374, 2681, 3081, 526, 2

96,1387,3446,3237,1563,3125,3136) 

 

# Remove records with the specified SIDs 

pasientdata <- pasientdata %>% 

                       filter(!SID %in% sids_to_remove) 

 

 

after_exclusion_count <- length(unique(pasientdata$PID)) 

 

# Update log 

exclusion_log <- rbind(exclusion_log, data.frame( 

  Step = 6, 

  Reason = "No outliers", 

  ExcludedCount = before_exclusion_count - after_exclusion_count, 

  RemainingCount = after_exclusion_count 

)) 

##fjerner alle som fikk diagnosen før juni 2017 (super signifikant forskjell med pverdi på 

0,006) 

Levetid Median Øvre/nedre KI pre_post_June_2017=Post-June 2017 12 10 15 

pre_post_June_2017=Pre-June 2017 5 3 8 

before_exclusion_count <- length(unique(pasientdata$PID)) 

pasientdata <- pasientdata %>% 

  filter(DIAGNOSEDATO >= as.Date("2017-06-01") & DIAGNOSEDATO <= as.Date("20

22-12-31")) 

after_exclusion_count <- length(unique(pasientdata$PID)) 

sids_to_remove <- c(43,456,778,993,2174,2175,2218,2851,3261) 
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# Remove records with the specified SIDs 

pasientdata <- pasientdata %>% 

                       filter(!PID %in% sids_to_remove) 

 

after_exclusion_count <- length(unique(pasientdata$PID)) 

# Update log 

exclusion_log <- rbind(exclusion_log, data.frame( 

  Step = 7, 

  Reason = "Diagnosed before approval or after follow-up", 

  ExcludedCount = before_exclusion_count - after_exclusion_count, 

  RemainingCount = after_exclusion_count 

)) 

7.4 Fjerner de med feil morfologi 

before_exclusion_count <- length(unique(pasientdata$PID)) 

sids_to_remove <- c(1483,50,594) 

 

# Remove records with the specified SIDs 

pasientdata <- pasientdata %>% 

                       filter(!PID %in% sids_to_remove) 

 

 

after_exclusion_count <- length(unique(pasientdata$PID)) 

# Update log 

exclusion_log <- rbind(exclusion_log, data.frame( 

  Step = 8, 

  Reason = "Correct morphology", 

  ExcludedCount = before_exclusion_count - after_exclusion_count, 

  RemainingCount = after_exclusion_count 

)) 
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7.5 Endrer verdinavn 

table(pasientdata$cTnmGruppe) 

pasientdata <- pasientdata %>% 

  mutate(cTnmGruppe = recode(cTnmGruppe,  

                             "Ukjent" = "unknown",  

                             ".m" = "missing")) 

 

pasientdata <- pasientdata %>% 

  mutate(funksjonsstatusUtr = recode(funksjonsstatusUtr,  

                                     ".m" = "missing",  

                                     "Ukjent" = "unknown", 

                                     ".v" = "Not reported")) 

 

pasientdata <- pasientdata %>% 

  mutate(pdL1Resultat = recode(pdL1Resultat, 

                               "0% eller negativ" = "0 or negative", 

                               "Kan ikke vurderes" = "Cannot be assessed", 

                               "Ikke angitt" = "Not specified", 

                               .default = pdL1Resultat)) %>% 

  mutate(pdL1Resultat = ifelse(pdL1Resultat == "" | pdL1Resultat == ".m", "Missing", pdL1

Resultat)) 

 

 

pasientdata <- pasientdata %>% 

  mutate(SEER_STADIUM = recode(SEER_STADIUM, 

                               `1` = "Localized", 

                               `2` = "Regional Metastasis", 

                               `3` = "Distant Metastasis", 

                               `9` = "Unknown"), 

         SEER_STADIUM = factor(SEER_STADIUM, levels = c("Localized", "Regional Meta

stasis", "Distant Metastasis", "Unknown"))) 
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# Assuming pasientdata is your dataframe 

pasientdata <- pasientdata %>% 

  mutate(PERSONSTATUS = case_when( 

        PERSONSTATUS == 2 ~ "Dead", 

        PERSONSTATUS == 1 ~ "Alive", 

        PERSONSTATUS == 3 ~ "Lost to follow-Up" 

  )) 

 

pasientdata <- pasientdata %>% 

  mutate(KJOENN = recode(KJOENN,  

                                     "M" = "Male",  

                                     "K" = "Female")) 

 

 

 

table(pasientdata$morfologigruppeLunge) 

#sjekker orginale navn 

original_unique_values <- unique(pasientdata$morfologigruppeLunge) 

 

 

# Original unique values 

original_unique_values <- c("Adenokarsinom", "IkkesmåcelletkarsinomUNS", "Plateepitelkar

sinom") 

 

# Name mapping including all original unique values 

name_map <- setNames( 

  c("Adenocarcinoma", "Non-small cell carcinoma NOS", "Squamous cell carcinoma"), 

  original_unique_values 

) 

 

# Apply the name mapping to the 'morfologigruppeLunge' column in pasientdata 

pasientdata$morfologigruppeLunge <- name_map[pasientdata$morfologigruppeLunge] 
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# Replace NA values in 'morfologigruppeLunge' with "Non-small cell carcinoma NOS" 

pasientdata$morfologigruppeLunge[is.na(pasientdata$morfologigruppeLunge)] <- "Non-smal

l cell carcinoma NOS" 

 

# Check the updated table 

table(pasientdata$morfologigruppeLunge) 

 

 

 

 

 

 

 

table(pasientdata$funksjonsstatusUtr) 

 

unique_values<- unique(pasientdata$SEER_STADIUM) 

print(unique_values) 

str(pasientdata) 

7.6 legger inn straalebehandling 

# Creating a simplified version of straaledata with just the PIDs 

straaledata_simplified <- straaledata %>% 

  select(PID) %>% 

  distinct() %>% 

  mutate(receivedRadiation = "Yes") 

 

# Joining the data 

pasientdata <- pasientdata %>% 

  left_join(straaledata_simplified, by = "PID") %>% 

  mutate(receivedRadiation = if_else(is.na(receivedRadiation), "No", receivedRadiation)) 

table(pasientdata$receivedRadiation) 
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8 eksporterer 

write.csv(pasientdata, "noinputadherent.csv", row.names = FALSE) 

table(pasientdata$cTnmGruppe) 

8.1 histogram 

# Aggregate data to count diagnoses per month 

diagnosis_counts_per_month <- pasientdata %>% 

  mutate(Month = floor_date(DIAGNOSEDATO, "month")) %>% 

  group_by(Month) %>% 

  summarize(Count = n()) 

 

# Create a histogram with a non-linear regression curve 

histogram_with_curve <- ggplot(diagnosis_counts_per_month, aes(x = Month, y = Count)) + 

  geom_col(fill = "blue") +  # Create histogram bars 

  geom_smooth(method = "loess", se = FALSE, color = "red", span = 0.5) +  # Non-linear re

gression 

  labs(x = "Month of Diagnosis",  

       y = "Number of diagnosis in group 1",  

       title = "Histogram of Diagnoses Per Month with LOESS trendline in group 1") + 

  theme_minimal() + 

  theme(panel.background = element_rect(fill = "white"), 

        plot.background = element_rect(fill = "white", color = "white"))  # Set entire plot backg

round to white 

 

# Save the plot 

ggsave("diagnosis_histogram_with_curve.png", plot = histogram_with_curve, width = 10, hei

ght = 6, dpi = 300) 

8.2 Kakediagram 

# Categorize the time until first dose 

pasientdata <- pasientdata %>% 

               mutate(time_category = case_when( 

                 time_until_first_dose >= 0 & time_until_first_dose <= 92 ~ "within 1-3 months", 

                 time_until_first_dose >= 93 & time_until_first_dose <= 156 ~ "within 3-5 months"
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, 

                 time_until_first_dose >= 157 & time_until_first_dose <= 366 ~ "5+ months", 

                 time_until_first_dose > 367 ~ "Over 12 months",  # Modified condition 

                 TRUE ~ "Unknown" # for any missing or out-of-range values 

               )) 

 

# Calculate count and percentage 

time_summary <- pasientdata %>% 

                group_by(cTnmGruppe, time_category) %>% 

                summarise(count = n(), .groups = 'drop') %>% 

                mutate(total = sum(count), 

                       percent = count / total) 

 

# List of unique cTnmGruppe values 

ctnm_values <- unique(time_summary$cTnmGruppe) 

 

# Create a list to store plots 

plots <- list() 

 

# Define a softer color palette for the time categories 

time_colors <- c("within 1-3 months" = "#add8e6",  # Light blue 

                 "within 3-5 months" = "#90ee90",  # Light green 

                 "5+ months" = "#ffcccb",       # Light red 

                 "Over 12 months" = "#ffd700",    # Gold 

                 "Unknown" = "#d3d3d3")           # Light grey 

 

# The rest of your code remains the same until the plotting loop 

 

for(ctnm in ctnm_values) { 

  data_subset <- time_summary[time_summary$cTnmGruppe == ctnm,] 

  p <- ggplot(data_subset, aes(x = "", y = percent, fill = time_category)) + 

       geom_bar(stat = "identity", width = 1) + 

       coord_polar("y", start = 0) + 

       scale_fill_manual(values = time_colors) + 
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       theme_void() + 

       labs(fill = "Time Category", title = paste("Cancer Stage:", ctnm)) + 

       geom_text(aes(label = ifelse(percent > 0.001, scales::percent(percent), "")),  

                 position = position_stack(vjust = 0.5), 

                 size = 1.7, 

                 color = "black") 

  plots[[ctnm]] <- p 

} 

 

# Combine your plots 

combined_plot <- do.call(grid.arrange, c(plots, ncol = 2)) 

# Add an overall title 

combined_plot_with_title <- arrangeGrob(combined_plot, top = "Time from diagnosis Until

 First Dose in group 1") 

 

# Save the plot with the title 

ggsave("diagnosis_firstdose_pie.png", combined_plot_with_title, width = 20, height = 20, uni

ts = "cm", dpi = 500) 

8.3 Lager dag/mnd variabel 

8.4 ny summary 

#table3 <- pasientdata %>% 

#  dplyr::select( 

 #   funksjonsstatusUtr, morfologigruppeLunge, SEER_STADIUM, 

#    pdL1Resultat, cTnmGruppe, ALDER, PERSONSTATUS, SurvivalTime, KJOENN, receive

dRadiation 

#  ) %>% 

#  rename( 

 #   "ECOG status" = funksjonsstatusUtr, 

  ## "SEER Stage" = SEER_STADIUM, 

   # "PD-L1 precentage" = pdL1Resultat, 

  #  "TNM Group" = cTnmGruppe, 

  #  "Age (years)" = ALDER, 
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   # "Person Status" = PERSONSTATUS, 

  #  "Gender" = KJOENN, 

   # "Radiation therapy recieved" = receivedRadiation, 

#    "Survival since diagnosis (days)" = SurvivalTime  ) %>% 

#  tbl_summary( 

 #   by = "TNM Group", # Stratify by TNM group 

#    missing = "ifany" # Exclude missing data from the summary 

 # ) %>% 

#  add_overall() %>% 

#  add_n() %>% 

 # modify_header(label ~ "**Overview of all cases by cancer type**") %>% 

 # bold_labels() %>% 

 # modify_footnote( 

  #  all_stat_cols() ~ "Values: n (%); Median (IQR). Note: Survival time is calculated up to O

ctober 2023. Data beyond this date are not available, which may limit the interpretation of lo

ng-term survival trends." 

#  ) %>% 

   

#  modify_caption("Table 2: Summary of Key Variables in the Whole Group") 

##eksporterer 

#gt_table <- as_gt(table3) 

#gt::gtsave(gt_table, filename = "table3.png") 

##kaplan meier uten 90 dagers filter 

censoring_date <- as.Date("2022-12-31") 

 

# Calculate Survival Time 

pasientdata$survival_time <- ifelse(is.na(pasientdata$STATUSDATO), 

                                    as.numeric(difftime(censoring_date, pasientdata$first_dose, units = "d

ays")), 

                                    as.numeric(difftime(pasientdata$STATUSDATO, pasientdata$first_d

ose, units = "days"))) 
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# Convert Survival Time to months and round to nearest month 

pasientdata$survival_time_months <- round(pasientdata$survival_time / 30.44) 

 

# Censoring status: 0 if alive (censored), 1 if dead (event occurred) 

pasientdata$censoring_status <- ifelse(is.na(pasientdata$STATUSDATO), 0, 1) 

 

# Create the survival object using months 

surv_obj <- Surv(time = pasientdata$survival_time_months, event = pasientdata$censoring_s

tatus) 

 

# Fit the Kaplan-Meier survival curve 

km_fit <- survfit(surv_obj ~ 1, data = pasientdata) 

 

# Calculate survival probabilities at specific time points (36, 48, and 60 months) 

time_points_months <- c(36, 48, 60)  # 3, 4, and 5 years in months 

survival_probabilities <- summary(km_fit, times = time_points_months)$surv 

 

# Extract survival probabilities 

survival_at_3_years <- survival_probabilities[1] 

survival_at_4_years <- survival_probabilities[2] 

survival_at_5_years <- survival_probabilities[3] 

 

# Find the median survival time in months 

median_survival_months <- summary(km_fit)$table['median'] 

 

# Extract the survival curve data 

surv_data <- broom::tidy(km_fit, conf.int = TRUE) 

 

# Calculate differences in months from the median to the lower and upper CI bounds 

lower_ci_diff <- surv_data$time[which.max(surv_data$conf.low <= 0.5)]  

upper_ci_diff <- surv_data$time[which.max(surv_data$conf.high <= 0.5)]  

 

# Calculate the CI for the median survival time 
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lower_ci_median <- lower_ci_diff 

upper_ci_median <- upper_ci_diff 

 

survival_plot <- ggsurvplot( 

  km_fit, data = pasientdata, conf.int = TRUE, 

  risk.table = TRUE, 

  xlab = "Months since first dose", ylab = "Survival probability", 

  title = "Kaplan-Meier Survival Curve of group 1", 

  ggtheme = theme_minimal(), 

  break.x.by = 3,  # Set x-axis breaks every 10 months 

   xlim = c(0, 70),  # Extend x-axis to 60 months 

  risk.table.fontsize = 6  # Adjust the font size of the numbers at risk (12 in this example) 

) 

 

survival_plot$plot <- survival_plot$plot +  

  theme( 

    plot.title = element_text(size = 19),  # Adjust the size of the title 

    axis.title = element_text(size = 15), 

    axis.text = element_text(size = 15))  # Adjust the size of the numbers at risk 

 

# Add median survival line and year markers 

year_markers <- c(36, 48, 60)  # 3, 4, and 5 years in months 

survival_plot$plot <- survival_plot$plot +  

  geom_vline(xintercept = year_markers, linetype = "dotted", color = "black") + 

  geom_vline(xintercept = median_survival_months, linetype = "dashed", color = "black") 

 

# Offset for annotations 

offset <- -5.7 

offset2 <- -9.7 

# Annotate the median survival time and its CI 

median_annotation <- paste("Median:", round(median_survival_months, 1), "months\nCI:", 

                           round(lower_ci_median, 1), "-", round(upper_ci_median, 1), "months") 

survival_plot$plot <- survival_plot$plot +  

  annotate("text", x = median_survival_months - offset2, y = 0.8, label = median_annotation, 
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size = 6, vjust = -0.5, color = "black") + 

  annotate("text", x = 36 - offset, size = 6, y = 0.7, label = paste(round(survival_at_3_years 

* 100, 1), "% at 3 yrs"), color = "black") + 

  annotate("text", x = 48 - offset, size = 6, y = 0.6, label = paste(round(survival_at_4_years 

* 100, 1), "% at 4 yrs"), color = "black") + 

  annotate("text", x = 60 - offset, size = 6, y = 0.5, label = paste(round(survival_at_5_years 

* 100, 1), "% at 5 yrs"), color = "black") 

 

# Print and save the plot 

print(survival_plot) 

# Combine the plot and risk table into a single grid object 

km_combined_grid <- arrangeGrob(survival_plot$plot, survival_plot$table, ncol = 1, height

s = c(5, 1)) 

 

 

# Save the combined plot as an image 

ggsave("avvikKMgruppe1included.png", km_combined_grid, width = 15, height = 11, bg = "

#FFFDFB", dpi = 300) 

##kaplan meier ecog 2+ 

pasientdata2 <- pasientdata[pasientdata$funksjonsstatusUtr >= 2, ]  

 

pasientdata2 <- pasientdata2 %>%  

  filter(pasientdata2$funksjonsstatusUtr != "missing") 

pasientdata2 <- pasientdata2 %>%  

  filter(pasientdata2$funksjonsstatusUtr != "unknown") 

pasientdata2 <- pasientdata2 %>%  

  filter(pasientdata2$funksjonsstatusUtr != "Not reported") 

pasientdata2 <- pasientdata2  

 

table (pasientdata2$funksjonsstatusUtr) 

table (pasientdata2$morfologigruppeLunge) 

mean(pasientdata2$ALDER) 
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# Create the survival object using months 

surv_obj <- Surv(time = pasientdata2$survival_time_months, event = pasientdata2$censoring

_status) 

 

# Fit the Kaplan-Meier survival curve 

km_fit <- survfit(surv_obj ~ 1, data = pasientdata2) 

 

# Calculate survival probabilities at specific time points (36, 48, and 60 months) 

time_points_months <- c(36, 48, 60)  # 3, 4, and 5 years in months 

survival_probabilities <- summary(km_fit, times = time_points_months)$surv 

 

# Extract survival probabilities 

survival_at_3_years <- survival_probabilities[1] 

survival_at_4_years <- survival_probabilities[2] 

survival_at_5_years <- survival_probabilities[3] 

 

# Find the median survival time in months 

median_survival_months <- summary(km_fit)$table['median'] 

 

# Extract the survival curve data 

surv_data <- broom::tidy(km_fit, conf.int = TRUE) 

 

# Calculate differences in months from the median to the lower and upper CI bounds 

lower_ci_diff <- surv_data$time[which.max(surv_data$conf.low <= 0.5)]  

upper_ci_diff <- surv_data$time[which.max(surv_data$conf.high <= 0.5)]  

 

# Calculate the CI for the median survival time 

lower_ci_median <- lower_ci_diff 

upper_ci_median <- upper_ci_diff 

 

survival_plot <- ggsurvplot( 

  km_fit, data = pasientdata2, conf.int = TRUE, 

  risk.table = TRUE, 
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  xlab = "Months since first dose", ylab = "Survival probability", 

  title = "Kaplan-Meier Survival Curve of patients with ECOG status >1", 

  ggtheme = theme_minimal(), 

  break.x.by = 3,  # Set x-axis breaks every 10 months 

  xlim = c(0, 70),  # Extend x-axis to 60 months 

  risk.table.fontsize = 6  # Adjust the font size of the numbers at risk (12 in this example) 

) 

 

survival_plot$plot <- survival_plot$plot +  

  theme( 

    plot.title = element_text(size = 19),  # Adjust the size of the title 

    axis.title = element_text(size = 15), 

    axis.text = element_text(size = 15))  # Adjust the size of the numbers at risk 

 

# Add median survival line and year markers 

year_markers <- c(36, 48, 60)  # 3, 4, and 5 years in months 

survival_plot$plot <- survival_plot$plot +  

  geom_vline(xintercept = year_markers, linetype = "dotted", color = "black") + 

  geom_vline(xintercept = median_survival_months, linetype = "dashed", color = "black") 

 

# Offset for annotations 

offset <- -5.7 

offset2 <- -9.7 

# Annotate the median survival time and its CI 

median_annotation <- paste("Median:", round(median_survival_months, 1), "months\nCI:", 

                           round(lower_ci_median, 1), "-", round(upper_ci_median, 1), "months") 

survival_plot$plot <- survival_plot$plot +  

  annotate("text", x = median_survival_months - offset2, y = 0.8, label = median_annotation, 

size = 6, vjust = -0.5, color = "black") + 

  annotate("text", x = 36 - offset, size = 6, y = 0.7, label = paste(round(survival_at_3_years 

* 100, 1), "% at 3 yrs"), color = "black") + 

  annotate("text", x = 48 - offset, size = 6, y = 0.6, label = paste(round(survival_at_4_years 

* 100, 1), "% at 4 yrs"), color = "black") + 

  annotate("text", x = 60 - offset, size = 6, y = 0.5, label = paste(round(survival_at_5_years 
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* 100, 1), "% at 5 yrs"), color = "black") 

 

# Print and save the plot 

 

 

print(survival_plot) 

# Combine the plot and risk table into a single grid object 

km_combined_grid <- arrangeGrob(survival_plot$plot, survival_plot$table, ncol = 1, height

s = c(5, 1)) 

 

 

# Save the combined plot as an image 

ggsave("avvikKMgruppe1included222.png", km_combined_grid, width = 15, height = 11, bg

 = "#FFFDFB", dpi = 300) 

#lagrer csv fil 

write.csv(pasientdata, file = "rwdpasientdatamedavvik.csv", row.names = FALSE) 

9 cox regresjon 

pasientdatacox<- pasientdata 

table(pasientdata$funksjonsstatusUtr) 

table(pasientdatacox$cTnmGruppe) 

 

## Filtrerer ut alle som ikke er stadie 4. mistenker at gamle tall på variabler som pdl1 kan p

åvirke koeffisienter 

 

 

##sjekk med funksjonstatus 

table(pasientdatacox$funksjonsstatusUtr) 

 

#fjerner han med ecog 4 pga lav sample size 

pasientdatacox <- pasientdatacox %>%  

  filter(PID != 1951) 
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pasientdatacox <- pasientdatacox %>% 

  mutate(funksjonsstatusUtr = factor(case_when( 

    funksjonsstatusUtr %in% c("Not reported", "unknown", "missing") ~ NA_character_, 

    TRUE ~ funksjonsstatusUtr 

  ))) 

 

 

pasientdatacox$pdL1Resultat <- as.character(pasientdatacox$pdL1Resultat) 

pasientdatacox$pdL1Resultat[pasientdatacox$pdL1Resultat %in% c("Cannot be assessed", "

Missing", "Not specified")] <- NA 

pasientdatacox$pdL1Resultat[pasientdatacox$pdL1Resultat == "<1"] <- "0 or negative" 

 

 

##SJEKKER ALDER DISTRUBISJON 

pasientdatacox %>%  

  ggplot(aes(x = ALDER)) +  

  geom_histogram() 

pasientdatacox$PdL1Resultat <- factor(pasientdatacox$pdL1Resultat) 

 

 

 

cox_model <- coxph(Surv(survival_time_months, censoring_status) ~ KJOENN + ALDER +

 funksjonsstatusUtr + pdL1Resultat, data = pasientdatacox) 

 

 

test_ph <- cox.zph(cox_model) 

print(test_ph) # Viser testresultatene 

plot(test_ph)  # Plotter Schoenfeld residuals 

# View the summary of the model 

summary(cox_model) 

table(pasientdatacox$funksjonsstatusUtr) 
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9.1 senstest ved og ecog 0-1 

##bruk pasientdata cox dersom du ønsker å filtrere for stadie 4 også 

pasientdata_filtered <- pasientdata[pasientdata$funksjonsstatusUtr <= 1, ] 

table(pasientdata$funksjonsstatusUtr) 

table(pasientdata_filtered$funksjonsstatusUtr) 

table(pasientdata_filtered$cTnmGruppe) 

 

# Assuming you have already created pasientdata_filtered as per previous steps 

 

# Define the censoring date (end of 2022) 

censoring_date <- as.Date("2022-12-31") 

 

# Calculate Survival Time for the filtered data 

pasientdata_filtered$survival_time <- ifelse(is.na(pasientdata_filtered$STATUSDATO), 

                                             as.numeric(difftime(censoring_date, pasientdata_filtered$first_d

ose, units = "days")), 

                                             as.numeric(difftime(pasientdata_filtered$STATUSDATO, pasie

ntdata_filtered$first_dose, units = "days"))) 

 

# Convert Survival Time to months and round to nearest month 

pasientdata_filtered$survival_time_months <- round(pasientdata_filtered$survival_time / 30.

44) 

 

# Censoring status: 0 if alive (censored), 1 if dead (event occurred) 

pasientdata_filtered$censoring_status <- ifelse(is.na(pasientdata_filtered$STATUSDATO), 0

, 1) 

 

# Create the survival object using months for the filtered data 

surv_obj <- Surv(time = pasientdata_filtered$survival_time_months, event = pasientdata_filt

ered$censoring_status) 

 

# Fit the Kaplan-Meier survival curve for the filtered data 

km_fit <- survfit(surv_obj ~ 1, data = pasientdata_filtered) 
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# Calculate survival probabilities at specific time points (36, 48, and 60 months) for the filter

ed data 

time_points_months <- c(36, 48, 60) 

survival_probabilities <- summary(km_fit, times = time_points_months)$surv 

 

# Extract survival probabilities for the filtered data 

survival_at_3_years <- survival_probabilities[1] 

survival_at_4_years <- survival_probabilities[2] 

survival_at_5_years <- survival_probabilities[3] 

 

# Find the median survival time in months for the filtered data 

median_survival_months <- summary(km_fit)$table['median'] 

 

# Extract the survival curve data for the filtered data 

surv_data <- broom::tidy(km_fit, conf.int = TRUE) 

 

# Calculate differences in months from the median to the lower and upper CI bounds for the fi

ltered data 

lower_ci_diff <- surv_data$time[which.max(surv_data$conf.low <= 0.5)] 

upper_ci_diff <- surv_data$time[which.max(surv_data$conf.high <= 0.5)] 

 

# Calculate the CI for the median survival time for the filtered data 

lower_ci_median <- lower_ci_diff 

upper_ci_median <- upper_ci_diff 

 

survival_plot <- ggsurvplot( 

  km_fit, data = pasientdata_filtered, conf.int = TRUE, 

  risk.table = TRUE, 

  xlab = "Months since first dose", ylab = "Survival probability", 

  title = "Kaplan-Meier Survival Curve excluding patients with ECOG status above 1", 

  ggtheme = theme_minimal(), 

 break.x.by = 3,  # Set x-axis breaks every 10 months 

  xlim = c(0, 70)  # Extend x-axis to 60 months 

) 
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# Add median survival line and year markers 

year_markers <- c(36, 48, 60)  # 3, 4, and 5 years in months 

survival_plot$plot <- survival_plot$plot +  

  geom_vline(xintercept = year_markers, linetype = "dotted", color = "black") + 

  geom_vline(xintercept = median_survival_months, linetype = "dashed", color = "black") 

 

# Offset for annotations 

offset <- -5.5 

 

# Annotate the median survival time and its CI 

median_annotation <- paste("Median:", round(median_survival_months, 1), "months\nCI:", 

                           round(lower_ci_median, 1), "-", round(upper_ci_median, 1), "months") 

survival_plot$plot <- survival_plot$plot +  

  annotate("text", x = median_survival_months - offset, y = 0.8, label = median_annotation, v

just = -0.5, color = "black") + 

  annotate("text", x = 36 - offset, y = 0.7, label = paste(round(survival_at_3_years * 100, 1), 

"% at 3 yrs"), color = "black") + 

  annotate("text", x = 48 - offset, y = 0.6, label = paste(round(survival_at_4_years * 100, 1), 

"% at 4 yrs"), color = "black") + 

  annotate("text", x = 60 - offset, y = 0.5, label = paste(round(survival_at_5_years * 100, 1), 

"% at 5 yrs"), color = "black") 

 

 

print(survival_plot) 

# Combine the plot and risk table into a single grid object 

km_combined_grid <- arrangeGrob(survival_plot$plot, survival_plot$table, ncol = 1, height

s = c(5, 1)) 

 

 

# Save the combined plot as an image 

ggsave("avvikKMgruppe1Ecog.png", km_combined_grid, width = 15, height = 11, bg = "#FF

FDFB", dpi = 300) 
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table(pasientdata_filtered$time_category) 

9.2 stratifisering 2019 

censoring_date <- as.Date("2022-12-31") 

 

# Calculate Survival Time 

pasientdata$survival_time <- ifelse(is.na(pasientdata$STATUSDATO), 

                                    as.numeric(difftime(censoring_date, pasientdata$first_dose, units = "d

ays")), 

                                    as.numeric(difftime(pasientdata$STATUSDATO, pasientdata$first_d

ose, units = "days"))) 

 

# Convert Survival Time to months and round to nearest month 

pasientdata$survival_time_months <- round(pasientdata$survival_time / 30.44) 

 

# Censoring status: 0 if alive (censored), 1 if dead (event occurred) 

pasientdata$censoring_status <- ifelse(is.na(pasientdata$STATUSDATO), 0, 1) 

 

# Create the survival object using months 

surv_obj <- Surv(time = pasientdata$survival_time_months, event = pasientdata$censoring_s

tatus) 

# Create a new column for stratification 

pasientdata$pre_post_2019 <- ifelse(year(pasientdata$first_dose) < 2019, "Pre-2019", "Post-

2019") 

# Create the survival object using months with stratification 

surv_obj_stratified <- Surv(time = pasientdata$survival_time_months, event = pasientdata$ce

nsoring_status) 

 

# Fit the Kaplan-Meier survival curve with stratification 

km_fit_stratified <- survfit(surv_obj_stratified ~ pre_post_2019, data = pasientdata) 

 

# Generate the survival plot with stratification 

survival_plot_stratified <- ggsurvplot( 
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  km_fit_stratified, data = pasientdata, conf.int = TRUE, 

  risk.table = TRUE, 

  xlab = "Months since first dose", ylab = "Survival probability", 

  title = "Kaplan-Meier Survival Curve by Pre and Post 2019", 

  ggtheme = theme_minimal(), 

  break.x.by = 3  # Set x-axis breaks every 10 months 

) 

 

# Print and save the stratified plot 

print(survival_plot_stratified) 

# Perform the log-rank test 

log_rank_test <- survdiff(surv_obj_stratified ~ pre_post_2019, data = pasientdata) 

 

# Print the results of the log-rank test 

print(log_rank_test) 

9.3 med filter 

before_exclusion_count <- length(unique(pasientdata$PID)) 

 

 

 

# Define the censoring date (end of 2022) 

censoring_date <- as.Date("2022-12-31") 

 

# Calculate Survival Time 

pasientdata$survival_time <- ifelse(is.na(pasientdata$STATUSDATO), 

                                    as.numeric(difftime(censoring_date, pasientdata$first_dose, units = "d

ays")), 

                                    as.numeric(difftime(pasientdata$STATUSDATO, pasientdata$first_d

ose, units = "days"))) 

 

# Convert Survival Time to months and round to nearest month 

pasientdata$survival_time_months <- round(pasientdata$survival_time / 30.44) 
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# Exclude negative or very short survival times (less than 3 months) 

pasientdata <- pasientdata %>% 

               filter(survival_time_months >= 1) 

 

# Censoring status: 0 if alive (censored), 1 if dead (event occurred) 

pasientdata$censoring_status <- ifelse(is.na(pasientdata$STATUSDATO), 0, 1) 

 

# Create the survival object using months 

surv_obj <- Surv(time = pasientdata$survival_time_months, event = pasientdata$censoring_s

tatus) 

 

# Fit the Kaplan-Meier survival curve 

km_fit <- survfit(surv_obj ~ 1, data = pasientdata) 

 

# Calculate survival probabilities at specific time points (36, 48, and 60 months) 

time_points_months <- c(36, 48, 60)  # 3, 4, and 5 years in months 

survival_probabilities <- summary(km_fit, times = time_points_months)$surv 

 

# Extract survival probabilities 

survival_at_3_years <- survival_probabilities[1] 

survival_at_4_years <- survival_probabilities[2] 

survival_at_5_years <- survival_probabilities[3] 

 

# Find the median survival time in months 

median_survival_months <- summary(km_fit)$table['median'] 

 

# Extract the survival curve data 

surv_data <- broom::tidy(km_fit, conf.int = TRUE) 

 

# Calculate differences in months from the median to the lower and upper CI bounds 

lower_ci_diff <- surv_data$time[which.max(surv_data$conf.low <= 0.5)]  

upper_ci_diff <- surv_data$time[which.max(surv_data$conf.high <= 0.5)]  
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# Calculate the CI for the median survival time 

lower_ci_median <- lower_ci_diff 

upper_ci_median <- upper_ci_diff 

 

survival_plot <- ggsurvplot( 

  km_fit, data = pasientdata, conf.int = TRUE, 

  risk.table = TRUE, 

  xlab = "Months since first dose", ylab = "Survival probability", 

  title = "Kaplan-Meier Survival Curve excluding death within 1 month in group 1", 

  ggtheme = theme_minimal(), 

 break.x.by = 3,  # Set x-axis breaks every 10 months 

  xlim = c(0, 70)  # Extend x-axis to 60 months 

) 

 

# Add median survival line and year markers 

year_markers <- c(36, 48, 60)  # 3, 4, and 5 years in months 

survival_plot$plot <- survival_plot$plot +  

  geom_vline(xintercept = year_markers, linetype = "dotted", color = "black") + 

  geom_vline(xintercept = median_survival_months, linetype = "dashed", color = "black") 

 

# Offset for annotations 

offset <- -5.5 

 

# Annotate the median survival time and its CI 

median_annotation <- paste("Median:", round(median_survival_months, 1), "months\nCI:", 

                           round(lower_ci_median, 1), "-", round(upper_ci_median, 1), "months") 

survival_plot$plot <- survival_plot$plot +  

  annotate("text", x = median_survival_months - offset, y = 0.8, label = median_annotation, v

just = -0.5, color = "black") + 

  annotate("text", x = 36 - offset, y = 0.7, label = paste(round(survival_at_3_years * 100, 1), 

"% at 3 yrs"), color = "black") + 

  annotate("text", x = 48 - offset, y = 0.6, label = paste(round(survival_at_4_years * 100, 1), 

"% at 4 yrs"), color = "black") + 

  annotate("text", x = 60 - offset, y = 0.5, label = paste(round(survival_at_5_years * 100, 1), 
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"% at 5 yrs"), color = "black") 

 

# Print and save the plot 

print(survival_plot) 

# Combine the plot and risk table into a single grid object 

km_combined_grid <- arrangeGrob(survival_plot$plot, survival_plot$table, ncol = 1, height

s = c(5, 1)) 

 

# Save the combined plot as an image 

ggsave("avvikKMGruppe1excluded.png", km_combined_grid, width = 15, height = 11, bg = 

"#FFFDFB", dpi = 300) 

 

 

 

 

after_exclusion_count <- length(unique(pasientdata$PID)) 

 

# Update log 

exclusion_log <- rbind(exclusion_log, data.frame( 

  Step = 9, 

  Reason = "Survival 1 months after treatment initiation", 

  ExcludedCount = before_exclusion_count - after_exclusion_count, 

  RemainingCount = after_exclusion_count 

)) 

9.4 eksporterer exclusion logg 

write.csv(exclusion_log, "exclusion_logGruppe1.csv", row.names = FALSE) 

 

pasientdatacoxdeath <- pasientdata[pasientdata$funksjonsstatusUtr <= 1, ] 

 

write.csv(pasientdata_filtered, file = "rwdecog.csv", row.names = FALSE) 

write.csv(pasientdatacoxdeath, file = "rwdcoxdeath.csv", row.names = FALSE) 
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knitr::opts_chunk$set(echo = TRUE) 

knitr::opts_chunk$set(echo = TRUE) 

# Detect the computer's name 

computer_name <- Sys.info()["nodename"] 

 

# Set the working directory based on the computer's name 

if (computer_name == "JEROEN-LAPTOP") { 

  setwd("C:\\masteroppgaven lokal\\raw data\\0 inputtering") 

} else if (computer_name == "JEROENHAUKAAS") { 

  setwd("D:/Masteroppgaven backup/raw data/0 inputtering") 

} else { 

  stop("Unknown computer: unable to set the working directory") 

} 

 

# Load data  

inputertpdl1 <- read.csv("Utlevert_kreftdata_4082.csv", header = TRUE, sep = ";") 

datasykehus <- read.csv("Utlevert_mkb_sykehus_4082.CSV", header = TRUE, sep = ";") 

 

inputertpdl1$STATUSDATO <- as.Date(inputertpdl1$STATUSDATO, format = '%d%b%Y'

) 

 

exclusion_log <- data.frame( 

  Step = integer(), 

  Reason = character(), 

  ExcludedCount = integer(), 

  RemainingCount = integer(), 

  stringsAsFactors = FALSE 

) 

 

before_exclusion_count <- length(unique(inputertpdl1$PID)) 

after_exclusion_count <- length(unique(inputertpdl1$PID)) 

 

# Update log 

exclusion_log <- rbind(exclusion_log, data.frame( 
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  Step = 1, 

  Reason = "Initial patients", 

  ExcludedCount = before_exclusion_count - after_exclusion_count, 

  RemainingCount = after_exclusion_count 

)) 

 

 

library(tidyverse) 

library(ggplot2) 

library(janitor) 

library(mice) 

library(dplyr) 

library(DataExplorer) 

library(lubridate) 

10 Oversikt variabler 

# lager rapport med alle variablene, sjekk fillokasjonen RMD filen er lagret. Kan også brukes

 på individuelle variabler 

#create_report(datasykehus) 

summary(datasykehus) 

names(datasykehus) 

 

# Assuming your dataframe is datasykehus, and it has columns PID and behregime 

 

# Removing duplicates: Keeping only the first occurrence of each PID within each behregime 

unique_datasykehus <- datasykehus %>% 

  group_by(behregime) %>% 

  distinct(PID, .keep_all = TRUE) 

 

# Now create the frequency table for behregime based on unique PIDs 

table(unique_datasykehus$behregime) 

##Endrer datoformat 
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# endrer datoformat datoAdministrasjonVirkestoff 

datasykehus$datoAdministrasjonVirkestoff <- as.Date(datasykehus$datoAdministrasjonVirk

estoff, format = '%d%b%Y') 

##Legger inn diagnosedato basert på PID 

# Legger inn diagnosedato basert på PID 

datasykehusdiag <- datasykehus %>% 

  left_join(inputertpdl1[, c("PID", "DIAGNOSEDATO")], by = "PID") 

str(datasykehusdiag) 

#diagnosedato er definert som bokstav, må endres 

datasykehusdiag$DIAGNOSEDATO <- as.Date(datasykehusdiag$DIAGNOSEDATO, forma

t = "%d%b%Y") 

#sjekk 

str(datasykehusdiag) 

##Henter ut alle med pembro behandling Hele denne kan hoppes over. 

# Ekstraherer alle pembrolizumab behandlinger 

allekeytruda<- datasykehusdiag[grepl("pembrolizumab", datasykehusdiag$behregime, ignore

.case = TRUE), ] 

 

# sjekk 

table(allekeytruda$behregime) 

antallkeytruda <- length(unique(allekeytruda$PID)) 

 

# Henter ut de som KUN har motatt monoterapi (aldri kombo eller annen behandling) i løpet 

av hele oppfølgingstiden 

pembrolizumab_mono_patients <- datasykehusdiag %>% 

  group_by(PID) %>% 

  filter(all(behregime == "Pembrolizumab")) %>% 

  ungroup() 

#sjekker hvor mange av de som kun har fått monoterapi  

pembrolizumabmono<- pembrolizumab_mono_patients %>% 

  filter(behregime == "Pembrolizumab") 
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# antall personer kun mono 

unique_pids1 <- n_distinct(pembrolizumab_mono_patients$PID) 

cat("Number of unique PIDs: ", unique_pids1, "\n") 

##Fjerner de som ikke mottar pembrolizumab mono i det heletatt. 

Vi går fra 2970 som har motatt noen form for pembro til 1927 som har motatt monoterapi i en 

viss periode. 

#denne koden inkluderer alle som har fått pembrro innen x måneder fra diagnosedatoen, men

 de kan også ha fått andre behandlinger senere 

datasykehus3<- allekeytruda %>% 

  filter(behregime == "Pembrolizumab") 

# Check the resulting data 

unique_pids2 <- n_distinct(datasykehus3$PID) 

cat("Number of unique PIDs: ", unique_pids2, "\n") 

10.1 Henter andre behandlinger tilbake 

before_exclusion_count <- length(unique(inputertpdl1$PID)) 

##henter tilbake annen data på de som har brukt monoterapi innen 1 mnd. 

datasykehus4 <- datasykehus %>% 

  filter(PID %in% datasykehus3$PID) 

 

unique_pids3 <- n_distinct(datasykehus4$PID) 

cat("Number of unique PIDs: ", unique_pids3, "\n") 

table(datasykehus4$behregime) 

 

after_exclusion_count <- length(unique(datasykehus4$PID)) 

 

exclusion_log <- rbind(exclusion_log, data.frame( 

  Step = 2, 

  Reason = "Recieved pembrolizumab monotherapy", 

  ExcludedCount = before_exclusion_count - after_exclusion_count, 
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  RemainingCount = after_exclusion_count 

)) 

##sorterer basert på dato legemiddelbruk 

datasykehus5 <- datasykehus4 %>% 

  arrange(PID, datoAdministrasjonVirkestoff) 

table(datasykehus5$behregime) 

10.2 lager liste for oppstartsdato for pasientene 

datasykehus5$datoAdministrasjonVirkestoff <- as.Date(datasykehus5$datoAdministrasjonVi

rkestoff, format = "%d%b%Y") 

 

# startdato settes som første dose med pembro, så kombo tells også 

 

 

startpembro <- datasykehus5 %>% 

  filter(behregime == "Pembrolizumab") %>% 

  group_by(PID) %>% 

  summarise(first_dose = min(datoAdministrasjonVirkestoff)) %>% 

  ungroup() 

 

# Step 2: Merge this information back into the original dataset. 

datasykehus6 <- datasykehus5 %>% 

  left_join(startpembro, by = "PID") 

10.3 Setter inn sluttdato 

bruker 23 måneder for sikkerhetskyld. behandlingen skal ta 105 uker. 

datasykehus6$first_dose <- as.Date(datasykehus6$first_dose, format = "%d%b%Y") 

 

datasykehus7 <- datasykehus6 %>% 

  mutate( 

    last_dose = first_dose %m+% months(24)) 
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10.4 flagger ned alle som har fått annen behandling før 
behandlingstiden var over 

##Lager en variabel som sier om noe er et avvik fra behandlingsregimet. Definerer avvik so

m behandlingsregime som ikke er pembro innen 2 aar fra forste dose. 

 

#Lager en variabel til som sier om vedkommende avviker i løpet av behandlingen 

datasykehus8 <- datasykehus7 %>% 

  mutate( 

    IsDeviation = ifelse(behregime != "Pembrolizumab" &  

                         datoAdministrasjonVirkestoff <= last_dose &  

                         datoAdministrasjonVirkestoff >= first_dose,  

                         TRUE,  

                         FALSE) 

  ) %>% 

  group_by(PID) %>% 

  # Determine if there was any deviation for each patient 

  mutate( 

    PatientDeviation = any(IsDeviation) 

  ) %>% 

  ungroup() 

pre_pembro_treatments <- datasykehus7 %>% 

  filter(datoAdministrasjonVirkestoff < first_dose) %>% 

  group_by(PID) %>% 

  arrange(PID, datoAdministrasjonVirkestoff) %>% 

  summarize(TreatmentsBeforePembro = list(behregime)) 

print(pre_pembro_treatments) 

 

 

before_exclusion_count <- length(unique(datasykehus7$PID)) 

 

#fjerner de som har motatt monoklonale antistoffer 

datasykehus8 <- datasykehus7 %>% 

  mutate( 
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    IsDeviation = ifelse(behregime != "Pembrolizumab" &  

                         datoAdministrasjonVirkestoff <= last_dose &  

                         datoAdministrasjonVirkestoff >= first_dose,  

                         TRUE,  

                         FALSE), 

    ThreeMonthsBeforeFirstDose = first_dose %m-% months(3), 

    TwelveMonthsBeforeFirstDose = first_dose %m-% months(12) 

  ) %>% 

  group_by(PID) %>% 

  mutate( 

    PatientDeviation = any(IsDeviation), 

    ReceivedAntistoffer = any((typeMkb == "Monoklonale antistoffer") &  

                              (datoAdministrasjonVirkestoff < first_dose) &  

                              (datoAdministrasjonVirkestoff >= TwelveMonthsBeforeFirstDose) &  

                              (datoAdministrasjonVirkestoff < ThreeMonthsBeforeFirstDose)) 

  ) %>% 

  ungroup() %>% 

  # Filter out patients who received Monoklonale antistoffer 3-12 months before first dose 

  filter(!ReceivedAntistoffer) 

 

after_exclusion_count <- length(unique(datasykehus8$PID)) 

exclusion_log <- rbind(exclusion_log, data.frame( 

  Step = 3, 

  Reason = "No recent cancer treatment with immunotherapies", 

  ExcludedCount = before_exclusion_count - after_exclusion_count, 

  RemainingCount = after_exclusion_count 

)) 

10.5 Deler opp pasientene i de som fullfører kuren og de som 
ikke gjør 

# Patients with no deviations 

before_exclusion_count <- length(unique(datasykehus8$PID)) 

 

no_deviation_patients <- datasykehus8 %>% 
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  filter(PatientDeviation == FALSE) 

 

#teller 

unique_pids4 <- n_distinct(no_deviation_patients$PID) 

cat("Number of unique PIDs: ", unique_pids4, "\n") 

 

 

# Patients with deviations 

deviation_patients <- datasykehus8 %>% 

  filter(PatientDeviation == TRUE) 

 

after_exclusion_count <- length(unique(no_deviation_patients$PID)) 

#undersøkelser ## Undersøker totaldosen pembro (mg) til pasientene som fullførte kuren 

# legger inn dødsdato 

fullfort <- no_deviation_patients %>% 

  left_join(inputertpdl1[, c("PID", "STATUSDATO")], by = "PID") 

#STATUSDATO er definert som bokstav, må endres 

 

fullfort$STATUSDATO <- as.Date(fullfort$STATUSDATO, format = "%d%b%Y") 

str(fullfort) 

fullfort <- fullfort %>% 

  mutate( 

    doseVirkestoff = ifelse(typeMkb == "Monoklonale antistoffer", doseVirkestoff, NA) 

  ) 

 

#ser på de som har fullført kuren 

cutoff_date <- as.Date("2023-01-1") 

 

fullfort <- fullfort %>% 

  filter(IsDeviation == FALSE) %>% 

  filter(last_dose < cutoff_date) %>% 

  filter(is.na(STATUSDATO) | STATUSDATO > last_dose) 

#henter ut doser 
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total_dosage_by_patient <- fullfort %>% 

  group_by(PID) %>% 

  summarise(TotalDosage = sum(doseVirkestoff, na.rm = TRUE)) 

 

 

#Plotter det 

ggplot(total_dosage_by_patient, aes(x = TotalDosage)) + 

  geom_histogram(binwidth = 500, fill = "blue", color = "black") + 

  labs(title = "Histogram of Total Pembrolizumab Dosage per Patient Who Survived Until the 

End Date", 

       x = "Total Dosage (mg)", 

       y = "Count of Patients") + 

  theme_minimal() 

10.6 undersøker de med høy og lave dose 

high_dosage_patients <- total_dosage_by_patient %>% 

  filter(TotalDosage > 20000) 

10.7 Forsøk på å telle antall folk og lage graf 

10.8 teller antall som motokk ulike behandlingsregimer blant 
avvikende 

#teller hvor mange som har motatt ulike behandlingsregimer 

# Count unique PIDs for each treatment regimen 

unique_pid_per_regimen <- deviation_patients %>% 

  group_by(behregime) %>% 

  summarise(UniquePIDCount = n_distinct(PID)) %>% 

  arrange(desc(UniquePIDCount)) 

 

# View the result 

print(unique_pid_per_regimen) 

total_unique_pid <- deviation_patients %>% 

  summarise(TotalUniquePIDCount = n_distinct(PID)) 

total_unique_pid2 <- allekeytruda %>% 

  summarise(TotalUniquePIDCount = n_distinct(PID)) 
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boxplot(no_deviation_patients$first_dose) 

#eksporterer datasettene 

# sjekk hvor dataen havner 

getwd() 

# endrer dato for første dose og ser hovordan det påvirker snittdato 

datasykehus8$first_dose <- as.Date(datasykehus8$first_dose) 

 

# Convert dates to numeric (days since a reference date, e.g., 1970-01-01) 

numeric_dates <- as.numeric(datasykehus8$first_dose) 

 

# Calculate average numeric date 

average_numeric_date <- mean(numeric_dates, na.rm = TRUE) 

 

#Justerer startdato til første pembro dose, ikke første datasykehus8dose 

 

no_deviation_patients <- no_deviation_patients %>% 

  filter(virkestoff == "Pembrolizumab") %>% 

  group_by(PID) %>% 

 summarise(first_dose = min(datoAdministrasjonVirkestoff)) %>% 

  ungroup() 

 

datasykehus8 <- datasykehus8 %>% 

  filter(virkestoff == "Pembrolizumab") %>% 

  group_by(PID) %>% 

  summarise(first_dose = min(datoAdministrasjonVirkestoff)) %>% 

  ungroup() 

 

boxplot(no_deviation_patients$first_dose) 

datasykehus8$first_dose <- as.Date(datasykehus8$first_dose) 

 

# Convert dates to numeric (days since a reference date, e.g., 1970-01-01) 

numeric_dates <- as.numeric(datasykehus8$first_dose) 
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average_date <- as.Date(average_numeric_date, origin = "1970-01-01") 

 

# Calculate average numeric date 

average_numeric_date2 <- mean(numeric_dates, na.rm = TRUE) 

average_date2 <- as.Date(average_numeric_date2, origin = "1970-01-01") 

write.csv(datasykehus8, file = "medavvik.csv", row.names = FALSE) 

#skriver ut datasettet uten avvik 

write.csv(no_deviation_patients, file = "monoterapiutenavvik.csv", row.names = FALSE) 

 

#skriver ut datasettet uten avvik 

write.csv(deviation_patients, file = "monoterapimedavvik.csv", row.names = FALSE) 

write.csv(allekeytruda, file = "keytruda.csv", row.names = FALSE) 

 

write.csv(exclusion_log, "exclusion_log.csv", row.names = FALSE) 

``` 

knitr::opts_chunk$set(echo = TRUE) 

# Detect the computer's name 

computer_name <- Sys.info()["nodename"] 

 

# Set the working directory based on the computer's name 

if (computer_name == "JEROEN-LAPTOP") { 

  setwd("C:\\masteroppgaven lokal\\raw data\\0 inputtering") 

} else if (computer_name == "JEROENHAUKAAS") { 

  setwd("D:/Masteroppgaven backup/raw data/0 inputtering") 

} else { 

  stop("Unknown computer: unable to set the working directory") 

} 

 

 

# Load data  

datahresept <- read.csv("Utlevert_mkb_hresept_4082.csv", header = TRUE, sep = ";") 

monoterapi <- read.csv("medavvik.csv", header = TRUE, sep = ",") 
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inputertpdl1 <- read.csv("Utlevert_kreftdata_4082.csv", header = TRUE, sep = ";") 

exclusion_log <- read.csv("exclusion_log.csv") 

 

 

library(tidyverse) 

library(ggplot2) 

library(janitor) 

library(mice) 

library(dplyr) 

library(DataExplorer) 

library(lubridate) 

11 Oversikt variabler utlevert kreftdata kan hoppes 
over til ## rens av variabler 

# lager rapport med alle variablene, sjekk fillokasjonen RMD filen er lagret. Kan også brukes

 på individuelle variabler 

#create_report(datahresept ) 

#summary(datahresept) 

#names(datahresept) 

#Rens ##endrer datoformat 

monoterapi$first_dose <- as.Date(monoterapi$first_dose) 

monoterapi$last_dose <- monoterapi$first_dose + months(24) 

datahresept$datoAdministrasjonVirkestoff <- as.Date(datahresept$datoAdministrasjonVirkes

toff, format = '%d%b%Y') 

##Fjerner de som ikke har samme PID som vår gruppe 

#fjerner de med ikke matchende PID 

datahresept1 <- datahresept %>% 

  filter(PID %in% monoterapi$PID) 

#Sjekker antall 

hresept1 <- n_distinct(datahresept1$PID) 

cat("Number of unique PIDs: ", hresept1, "\n") 
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##Legger inn start og sluttdato for pembro 

#Lager 1 rad med PID basert på første first_dose last_dose slik at det ikke blir mange duplise

rte rader i hresept2. leftjoin funker ikke uten modifisering. 

monoterapi_summary <- monoterapi %>% 

  group_by(PID) %>% 

  summarise( 

    first_dose = min(first_dose, na.rm = TRUE), 

    last_dose = min(last_dose, na.rm = TRUE) 

  ) %>% 

  ungroup() 

 

# Now join this summary with datahresept1 to get first_dose 

datahresept2 <- datahresept1 %>% 

  left_join(monoterapi_summary[, c("PID", "first_dose")], by = "PID") 

datahresept3 <- datahresept2 %>% 

  left_join(monoterapi_summary[, c("PID", "last_dose")], by = "PID") 

 

# Check the number of observations to ensure they haven't inflated 

hresept3 <- n_distinct(datahresept3$PID) 

cat("Number of unique PIDs: ", hresept3, "\n") 

##Fjerner alt før oppstart 

# Filtrerer ut administeringer som er gitt over 1 måned før diagnosedatoen.  

datahresept4 <- datahresept3 %>% 

  filter(datoAdministrasjonVirkestoff >= (first_dose %m-% months(1)) | is.na(first_dose)) 

#sjekker antall pasienter 

antallmatchende3<- length(unique(datahresept4$PID)) 

##markerer de som bruker annen behandling før sluttdato 

Her har vi en del som har fått proteinkinasehemmere. Ser litt nærmere på det. 

Fra metodevurderingen. Pembrolizumab som monoterapi er indisert til førstelinjebehandling 

av metastatisk ikke-småcellet lungekreft (NSCLC) hos voksne med tumor som uttrykker PD-
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L1 med ≥50% «tumour proportion score» (TPS) uten EGFR- eller ALK-positive mutasjoner i 

tumor. 

# Mark patients who receive other treatments before slutt_dato 

datahresept5 <- datahresept4 %>% 

  mutate( 

    OtherBeforeEnd = ifelse(datoAdministrasjonVirkestoff < last_dose , TRUE,FALSE) 

  ) 

 

# Now, you can filter changed treatment 

changed_treatment <- datahresept5 %>% 

  filter(OtherBeforeEnd) 

 

# Check the results 

head(changed_treatment) 

##Teller de som er adherent/nonadherent 

# Count the unique PIDs where OtherBeforeEnd is TRUE (non-adherence) 

non_adherence_count <- datahresept5 %>% 

  filter(OtherBeforeEnd == TRUE) %>% 

  summarise(UniquePIDCount = n_distinct(PID)) 

 

# Count the unique PIDs where OtherBeforeEnd is FALSE (adherence) 

adherence_count <- datahresept5 %>% 

  filter(OtherBeforeEnd == FALSE) %>% 

  summarise(UniquePIDCount = n_distinct(PID)) 

 

# Print the counts 

print(non_adherence_count) 

print(adherence_count) 

##Deler de i 2 datasett 

# Create two separate datasets based on OtherBeforeEnd value 

non_adherence_dataset <- datahresept5 %>% 
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  filter(OtherBeforeEnd == TRUE) 

 

adherence_dataset <- datahresept5 %>% 

  filter(OtherBeforeEnd == FALSE) 

 

# If you want to view or write these datasets to CSV files 

# View the datasets 

head(non_adherence_dataset) 

head(adherence_dataset) 

11.1 Non-adherent info 

Veldig mye alektinib. Disse kan fjernes siden det ikke er samme type pasient som 

metodevurderingen bruker. Samme gjelder krizotinib. Noe av det har ikke indikasjon heller, 

kan være en annen type kreft som behandles også. Uansett må disse fjernes. 

fra FK: alektinib: Monoterapi til førstelinjebehandling av voksne med anaplastisk 

lymfokinase (ALK)-positiv, avansert ikke-småcellet lungekreft (NSCLC). Monoterapi til 

behandling av voksne med ALK-positiv, avansert NSCLC tidligere behandlet med krizotinib. 

osimertinib: til behandling av voksne med lokalavansert eller metastatisk EGFR T790M-

mutasjonspositiv NSCLC. 

metodevurderingen: tumor som uttrykker PD-L1 med ≥50% «tumour proportion score» (TPS) 

uten EGFR- eller ALK-positive mutasjoner i tumor. 

virkestoff_summary <- non_adherence_dataset %>% 

  group_by(virkestoff) %>% 

  summarise(UniquePIDCount = n_distinct(PID)) %>% 

  ungroup() %>% 

  arrange(desc(UniquePIDCount)) 

 

# Print the summary table 

print(virkestoff_summary) 
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11.2 adherent info 

Mye vinorelbin, som er vanlig vedlikeholdsbehandling.Noen av PKA hemmerene har ikke 

indikasjon som vedlikeholdsbehandling, og enkelte ved mutasjon. Velger likevel å beholde 

disse siden de har stått på monoterapi i 2 år. 

Et par PKA hemmere, men de er innenfor indikasjon ved vedlikeholdsbehandling: eksempel 

Tarceva: ikkeke-småcellet lungekreft (NSCLC): Førstelinjebehandling hos pasienter med 

lokalavansert eller metastatisk NSCLC med EGFR-aktiverende mutasjoner. 

Vedlikeholdsbehandling hos pasienter med lokalavansert eller metastatisk NSCLC med 

EGFR-aktiverende mutasjoner og stabil sykdom etter førstelinje kjemoterapi. Behandling av 

pasienter med lokalt fremskreden eller metastatisk NSCLC etter minst ett tidligere mislykket 

kjemoterapiregime. Hos pasienter med tumor uten EGFR-aktiverende mutasjoner er Tarceva 

indisert når andre behandlingsalternativer ikke anses som egnet. 

#teller antall brukere per virkestoff 

virkestoff_summary2 <- adherence_dataset %>% 

  group_by(virkestoff) %>% 

  summarise(UniquePIDCount = n_distinct(PID)) %>% 

  ungroup() %>% 

  arrange(desc(UniquePIDCount)) 

 

# Print the summary table 

print(virkestoff_summary2) 

##Fjerner nonadherents fra sykehusdata 

before_exclusion_count <- length(unique(monoterapi$PID)) 

# Count unique PIDs in monoterapi before the anti-join 

monoterapi_pid_count_before <- n_distinct(monoterapi$PID) 

cat("Number of unique PIDs in monoterapi before removal: ", monoterapi_pid_count_before,

 "\n") 

 

# Count unique PIDs in non_adherence_dataset 

non_adherence_pid_count <- n_distinct(non_adherence_dataset$PID) 

cat("Number of unique PIDs in non_adherence_dataset: ", non_adherence_pid_count, "\n") 
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# Perform the anti-join to remove non-adherent PIDs from monoterapi 

monoterapi_adherent <- anti_join(monoterapi, non_adherence_dataset, by = "PID") 

 

# Count unique PIDs in monoterapi after the anti-join 

monoterapi_pid_count_after <- n_distinct(monoterapi_adherent$PID) 

cat("Number of unique PIDs in monoterapi after removal: ", monoterapi_pid_count_after, "\n

") 

 

after_exclusion_count <- length(unique(monoterapi_adherent$PID)) 

 

# Update log 

exclusion_log <- rbind(exclusion_log, data.frame( 

  Step = 5, 

  Reason = "No aduvant treatment", 

  ExcludedCount = before_exclusion_count - after_exclusion_count, 

  RemainingCount = after_exclusion_count 

)) 

##Fjerner nonadherents fra kreftdata 

# Count unique PIDs in inputertpdl1 before the removal 

 

 

inputertpdl1_pid_count_before <- n_distinct(inputertpdl1$PID) 

cat("Number of unique PIDs in inputertpdl1 before removal: ", inputertpdl1_pid_count_befor

e, "\n") 

 

# Perform the anti-join to remove non-adherent PIDs from inputertpdl1 

realworldpasienter <- semi_join(inputertpdl1, monoterapi_adherent, by = "PID") 

 

# Count unique PIDs in inputertpdl1 after the removal 

inputertpdl1_pid_count_after <- n_distinct(realworldpasienter$PID) 

cat("Number of unique PIDs in inputertpdl1 after removal: ", inputertpdl1_pid_count_after, "\

n") 
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# Now you can compare the before and after counts to ensure that the non-adherent PIDs hav

e been removed 

 

cat("Number of unique PIDs in monoterapi after removal: ", monoterapi_pid_count_after, "\n

") 

#Eksporterer filene 

# Skriver ut Hresept datasett 

write.csv(non_adherence_dataset, "Hreseptnon_adherence.csv", row.names = FALSE) 

write.csv(adherence_dataset, "Hreseptadherence_dataset.csv", row.names = FALSE) 

write.csv(realworldpasienter, "realworldadherentmedavvik.csv", row.names = FALSE) 

write.csv(monoterapi_adherent, "sykehusadherentmedavvik.csv", row.names = FALSE) 

write.csv(exclusion_log, "exclusion_log2.csv", row.names = FALSE) 

# Skriver ut sykehusdata med adherence 

# Detect the computer's name 

computer_name <- Sys.info()["nodename"] 

 

# Set the working directory based on the computer's name 

if (computer_name == "JEROEN-LAPTOP") { 

  setwd("C:\\masteroppgaven lokal\\raw data\\studyvsrwd") 

} else if (computer_name == "JEROENHAUKAAS") { 

  setwd("D:/Masteroppgaven backup/raw data/studyvsrwd") 

} else { 

  stop("Unknown computer: unable to set the working directory") 

} 

 

# Load data  

studypopulation <- read.csv("patientdatareck.csv", header = TRUE, sep = ",") 

realworldpopulation <- read.csv("rwdpasientdatamedavvik.csv", header = TRUE, sep = ",") 

weibull <- read.csv("weibull.csv", header = TRUE, sep = ",") 
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library(tidyverse) 

library(ggplot2) 

library(janitor) 

library(mice) 

library(dplyr) 

library(DataExplorer) 

library(webshot2) 

library(openxlsx) 

library(tidyverse) 

library(tidyr) 

library(janitor) 

library(rstatix) 

library(remotes) 

library(kableExtra) 

library(devtools) 

library(glmulti) 

library(report) 

library(sjPlot) 

#library(ggstatsplot)  

library(survival) 

library(survminer) 

library(biostat3) 

library(tidyverse) 

library(ggsurvfit) 

library(dplyr) 

library(gtsummary) 

library(gridExtra) 

library(scales) 

library(survextrap) 

## Warning: package 'survextrap' was built under R version 4.3.2 

##Reck et al studie 
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km_fit <- survfit(Surv(time = studypopulation$V1, event = studypopulation$V2) ~ 1) 

 

surv_object <- Surv(time = studypopulation$V1, event = studypopulation$V2) 

survival_plot <- ggsurvplot( 

  km_fit, data = studypopulation, conf.int = TRUE, 

  risk.table = TRUE, 

  xlab = "Months since first dose", ylab = "Survival probability", 

  title = "Kaplan-Meier Survival Curve of group 1", 

  ggtheme = theme_minimal(), 

  break.x.by = 3,  # Set x-axis breaks every 10 months 

  xlim = c(0, 70)  # Extend x-axis to 60 months 

) 

print(survival_plot) 

##Vaar data 

# Create the survival object using months 

surv_obj <- Surv(time = realworldpopulation$survival_time_months, event = realworldpopul

ation$censoring_status) 

 

# Fit the Kaplan-Meier survival curve 

km_fit <- survfit(surv_obj ~ 1, data = realworldpopulation) 

 

# Calculate survival probabilities at specific time points (36, 48, and 60 months) 

time_points_months <- c(36, 48, 60)  # 3, 4, and 5 years in months 

survival_probabilities <- summary(km_fit, times = time_points_months)$surv 

 

# Extract survival probabilities 

survival_at_3_years <- survival_probabilities[1] 

survival_at_4_years <- survival_probabilities[2] 

survival_at_5_years <- survival_probabilities[3] 

 

# Find the median survival time in months 

median_survival_months <- summary(km_fit)$table['median'] 
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# Extract the survival curve data 

surv_data <- broom::tidy(km_fit, conf.int = TRUE) 

 

# Calculate differences in months from the median to the lower and upper CI bounds 

lower_ci_diff <- surv_data$time[which.max(surv_data$conf.low <= 0.5)]  

upper_ci_diff <- surv_data$time[which.max(surv_data$conf.high <= 0.5)]  

 

# Calculate the CI for the median survival time 

lower_ci_median <- lower_ci_diff 

upper_ci_median <- upper_ci_diff 

 

survival_plot <- ggsurvplot( 

  km_fit, data = realworldpopulation, conf.int = TRUE, 

  risk.table = TRUE, 

  xlab = "Months since first dose", ylab = "Survival probability", 

  title = "Kaplan-Meier Survival Curve of group 1", 

  ggtheme = theme_minimal(), 

  break.x.by = 3,  # Set x-axis breaks every 10 months 

  xlim = c(0, 70)  # Extend x-axis to 60 months 

) 

 

# Add median survival line and year markers 

year_markers <- c(36, 48, 60)  # 3, 4, and 5 years in months 

survival_plot$plot <- survival_plot$plot +  

  geom_vline(xintercept = year_markers, linetype = "dotted", color = "black") + 

  geom_vline(xintercept = median_survival_months, linetype = "dashed", color = "black") 

 

# Offset for annotations 

offset <- -5.5 

 

# Annotate the median survival time and its CI 

median_annotation <- paste("Median:", round(median_survival_months, 1), "months\nCI:", 

                           round(lower_ci_median, 1), "-", round(upper_ci_median, 1), "months") 

survival_plot$plot <- survival_plot$plot +  
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  annotate("text", x = median_survival_months - offset, y = 0.8, label = median_annotation, v

just = -0.5, color = "black") + 

  annotate("text", x = 36 - offset, y = 0.7, label = paste(round(survival_at_3_years * 100, 1), 

"% at 3 yrs"), color = "black") + 

  annotate("text", x = 48 - offset, y = 0.6, label = paste(round(survival_at_4_years * 100, 1), 

"% at 4 yrs"), color = "black") + 

  annotate("text", x = 60 - offset, y = 0.5, label = paste(round(survival_at_5_years * 100, 1), 

"% at 5 yrs"), color = "black") 

 

# Print and save the plot 

print(survival_plot) 

 

11.3 survextrap 

# Copy the original dataframe to create a new dataset 

realworldpopulation$survival_time_years <- realworldpopulation$survival_time_months / 12 

new_realworldpopulation <- realworldpopulation 

 

# Modify the survival_time_years in the new dataset 

new_realworldpopulation$survival_time_years[new_realworldpopulation$survival_time_year
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s == 0] <- 1/365 

 

 

 

km_fit <- survfit(Surv(survival_time_years, censoring_status) ~ 1, data=new_realworldpopul

ation) 

 

nd_mods <- survextrap(Surv(survival_time_years, censoring_status) ~ 1, chains=1, data=ne

w_realworldpopulation) 

##  

## SAMPLING FOR MODEL 'survextrap' NOW (CHAIN 1). 

## Chain 1:  

## Chain 1: Gradient evaluation took 0.000923 seconds 

## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 9.23 seconds. 

## Chain 1: Adjust your expectations accordingly! 

## Chain 1:  

## Chain 1:  

## Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup) 

## Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup) 

## Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup) 

## Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup) 

## Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup) 

## Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup) 

## Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling) 

## Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling) 

## Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling) 

## Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling) 

## Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling) 

## Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling) 

## Chain 1:  

## Chain 1:  Elapsed Time: 24.425 seconds (Warm-up) 

## Chain 1:                21.249 seconds (Sampling) 
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## Chain 1:                45.674 seconds (Total) 

## Chain 1: 

plot(nd_mods,show_knots=TRUE, tmax=11) 

 

rmst(nd_mods, t = c(10,15,20), niter=100) 

## # A tibble: 3 × 5 

##   variable     t median lower upper 

##   <chr>    <dbl>  <dbl> <dbl> <dbl> 

## 1 rmst        10   2.68  2.41  3.03 

## 2 rmst        15   2.99  2.54  3.69 

## 3 rmst        20   3.13  2.57  4.15 

rxph_mod <- survextrap(Surv(survival_time_years, censoring_status) ~ funksjonsstatusUtr, 

data=new_realworldpopulation, chains=1, refresh=0) 

## Warning: Some Pareto k diagnostic values are too high. See help('pareto-k-diagnostic') for 

details. 
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summary(rxph_mod) |> 

    filter(variable=="loghr") 

## # A tibble: 7 × 9 

##   variable basis_num term    median   lower upper    sd  rhat ess_bulk 

##   <chr>        <dbl> <chr>    <dbl>   <dbl> <dbl> <dbl> <dbl>    <dbl> 

## 1 loghr           NA funksj…  0.352  0.150  0.559 0.102  1.00     523. 

## 2 loghr           NA funksj…  0.779  0.557  1.01  0.113  1.01     480. 

## 3 loghr           NA funksj…  0.891  0.524  1.22  0.176  1.00     671. 

## 4 loghr           NA funksj…  4.17   0.0596 6.73  1.76   1.00     584. 

## 5 loghr           NA funksj…  0.380 -0.240  0.888 0.304  1.00     729. 

## 6 loghr           NA funksj…  0.408  0.0947 0.688 0.153  1.00     633. 

## 7 loghr           NA funksj…  0.822  0.214  1.38  0.299  1.01     775. 

plot(rxph_mod, niter=100) 

 

nd <- data.frame(funksjonsstatusUtr = c("0","1","2","3","missing")) 

rmst(rxph_mod, t=c(15), newdata=nd) 
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## # A tibble: 5 × 6 

##   variable funksjonsstatusUtr     t median lower upper 

##   <chr>    <chr>              <dbl>  <dbl> <dbl> <dbl> 

## 1 rmst     0                     15   4.78 3.68   6.01 

## 2 rmst     1                     15   3.20 2.59   4.11 

## 3 rmst     2                     15   1.79 1.43   2.41 

## 4 rmst     3                     15   1.49 0.945  2.48 

## 5 rmst     missing               15   3.04 2.09   4.41 

table(new_realworldpopulation$funksjonsstatusUtr) 

##  

##            0            1            2            3            4  

##          276          540          319           68            1  

## Not reported      missing      unknown  

##           26          101           16 

##kombinerer til 1 datasett 

names(studypopulation)[1] <- 'survival_time1'  

names(studypopulation)[2] <- 'censoring_status' 

 

# Then use the exact name for renaming 

names(realworldpopulation)[names(realworldpopulation) == 'survival_time'] <- 'survival_ti

medays' 

names(realworldpopulation)[names(realworldpopulation) == 'survival_time_months'] <- 'sur

vival_time1' 

 

studypopulation$V3 <- NULL 

realworldpopulation <- realworldpopulation[, c('survival_time1', 'censoring_status')] 

 

studypopulation$group <- 'study' 

realworldpopulation$group <- 'realworld' 

 

combined_data <- rbind(studypopulation, realworldpopulation) 
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# Assuming combined_data contains the variables 'survival_time', 'censoring_status', and 'gr

oup' 

 

# Create the survival object 

surv_obj_combined <- Surv(time = combined_data$survival_time, event = combined_data$c

ensoring_status) 

 

# Fit the Kaplan-Meier survival curve stratified by group 

km_fit_combined <- survfit(surv_obj_combined ~ group, data = combined_data) 

 

# Calculate survival probabilities at specific time points (36, 48, and 60 months) 

time_points_months <- c(36, 48, 60)  # 3, 4, and 5 years in months 

survival_probabilities <- summary(km_fit_combined, times = time_points_months)$surv 

print(survival_probabilities) 

## [1] 0.3066313 0.2612797 0.2244513 0.4381438 0.3584813 0.3161210 

# Assuming the pattern is Group1 (36 months), Group2 (36 months), Group1 (48 months), Gr

oup2 (48 months), etc. 

survival_at_3_years_group1 <- survival_probabilities[4] 

survival_at_3_years_group2 <- survival_probabilities[1] 

survival_at_4_years_group1 <- survival_probabilities[5] 

survival_at_4_years_group2 <- survival_probabilities[2] 

survival_at_5_years_group1 <- survival_probabilities[6] 

survival_at_5_years_group2 <- survival_probabilities[3] 

 

 

# Find the median survival time in months for each group 

median_survival_months <- summary(km_fit_combined)$table['median'] 

 

# Extract the survival curve data 

surv_data <- broom::tidy(km_fit_combined, conf.int = TRUE) 

 

# Plotting the Kaplan-Meier curve 

survival_plot_combined <- ggsurvplot( 
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  km_fit_combined, data = combined_data, conf.int = TRUE, 

  risk.table = TRUE, 

  xlab = "Months", ylab = "Survival probability", 

  title = "Kaplan-Meier Survival Curve by Group", 

  ggtheme = theme_minimal(), 

  break.x.by = 6,  # Set x-axis breaks every 12 months 

  xlim = c(0, 70),  # Extend x-axis to 70 months 

  surv.median.line = "hv" 

) 

 

# Add median survival line and year markers 

year_markers <- c(36, 48, 60)  # 3, 4, and 5 years in months 

survival_plot_combined$plot <- survival_plot_combined$plot +  

  geom_vline(xintercept = year_markers, linetype = "dotted", color = "black") + 

  geom_vline(xintercept = median_survival_months, linetype = "dashed", color = "black") 

annotations <- data.frame( 

  time = c(36, 48, 60, 36, 48, 60)+3.5, 

  survival = c(survival_at_3_years_group1, survival_at_4_years_group1, survival_at_5_years

_group1, 

               survival_at_3_years_group2, survival_at_4_years_group2, survival_at_5_years_gro

up2), 

  group = rep(c("Group 1", "Group 2"), each = 3), 

  vjust = c(-6, -6, -6, 4, 6.5, 6.5)  # Example adjustments, modify as needed 

) 

 

# Add text annotations with adjusted vertical positions 

survival_plot_combined$plot <- survival_plot_combined$plot + 

  geom_text(data = annotations, aes(x = time, y = survival, label = paste(round(survival * 10

0, 1), "%"), vjust = vjust), 

            color = "black",size = 6.3) 

 

# Print and save the plot 

print(survival_plot_combined) 
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## Warning: Removed 1 rows containing missing values (`geom_vline()`). 

## Removed 1 rows containing missing values (`geom_vline()`). 

 

# Combine the plot and risk table into a single grid object 

km_combined_grid <- arrangeGrob(survival_plot_combined$plot, survival_plot_combined$

table, ncol = 1, heights = c(5, 1)) 

## Warning: Removed 1 rows containing missing values (`geom_vline()`). 

# Save the combined plot as an image 

ggsave("studyvsrwd.png", km_combined_grid, width = 15, height = 11, bg = "#FFFDFB", dp

i = 300) 

##tester 

# Create the survival object 

surv_obj_combined <- Surv(time = combined_data$survival_time, event = combined_data$c

ensoring_status) 

 

# Perform the log-rank test 

log_rank_test <- survdiff(surv_obj_combined ~ group, data = combined_data) 
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# Output the results of the log-rank test 

print(log_rank_test) 

## Call: 

## survdiff(formula = surv_obj_combined ~ group, data = combined_data) 

##  

##                    N Observed Expected (O-E)^2/E (O-E)^2/V 

## group=realworld 1347      799      765      1.47      10.4 

## group=study      154      107      141      8.01      10.4 

##  

##  Chisq= 10.4  on 1 degrees of freedom, p= 0.001 

# Assuming you have the survfit object for each group from previous analysis (km_fit_combin

ed) 

 

# Calculate mean survival times for each group directly from the survfit summary 

mean_survival_times <- summary(km_fit_combined)$table 

 

# Print mean survival times 

print(mean_survival_times) 

##                 records n.max n.start events    rmean se(rmean) 

## group=realworld    1347  1347    1347    799 25.61448 0.8346888 

## group=study         154   154     154    107 33.63960 2.0988709 

##                   median  0.95LCL  0.95UCL 

## group=realworld 13.00000 12.00000 15.00000 

## group=study     26.32988 19.40811 41.39491 

11.4 eksporterer snitt 

# Convert the matrix to a data frame 

mean_survival_times_df <- as.data.frame(mean_survival_times) 

 

# Add the row names as a new column in the data frame 

mean_survival_times_df$group <- rownames(mean_survival_times_df) 
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# Reorder the columns to move the new 'group' column to the front, if desired 

mean_survival_times_df <- mean_survival_times_df[, c('group', names(mean_survival_times

_df)[1:9])] 

 

# Load the openxlsx library 

library(openxlsx) 

 

# Write the data frame to an Excel file 

write.xlsx(mean_survival_times_df, file = "mean_survival_times.xlsx") 

11.5 weibull fremskrivningen 

names(weibull) <- c('Survival_time', 'Percentage_Survivors') 

weibull$Survival_time <- weibull$Survival_time / 4.345 

ggplot(weibull, aes(x = Survival_time, y = Percentage_Survivors)) + 

  geom_line() +  # Draw the line 

  scale_y_continuous(labels = scales::percent) +  # Convert y-axis to percentage 

  labs(title = "Survival Curve", x = "Survival Time", y = "Percentage of Survivors") + 

  theme_minimal() 
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##weibull + noinput 

# Fit the Kaplan-Meier survival curve 

km_fit <- survfit(surv_obj ~ 1, data = realworldpopulation) 

 

# Create the Kaplan-Meier plot 

survival_plot <- ggsurvplot( 

  km_fit, data = realworldpopulation, conf.int = TRUE, 

  risk.table = FALSE,   # Do not show the risk table 

  pval = FALSE,         # Do not show the p-value 

  xlab = "Survival time", ylab = "Survival probability", 

  title = "Kaplan-Meier Survival Curve of real world data", 

  ggtheme = theme_minimal(), 

  break.x.by = 3,      # Set x-axis breaks every 10 months 

  xlim = c(0, 70),     # Extend x-axis to 60 months 

  surv.misc = FALSE    # Remove miscellaneous information including 'Strata = all' 

) 

 

# Assuming your Weibull data is in a dataframe called weibull_data 

# and the time is already converted to months (weibull_data$Survival_Time_Months) 

 

# Overlay the Weibull function line on the Kaplan-Meier plot 

survival_plot$plot <- survival_plot$plot +  

  geom_line(data = weibull, aes(x = Survival_time, y = Percentage_Survivors), color = "blue"

) + 

  geom_rect(aes(xmin = 55, xmax = 56.5, ymin = 0.4, ymax = 0.44), fill = "blue") + 

  annotate("text", x = 57, y = 0.427, label = "SLV's Weibull model", color = "black",size=4, h

just = 0) 

 

 

# Print and save the plot with the Weibull line 

print(survival_plot) 
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ggsave("studywithweibull.png", survival_plot$plot, width = 15, height = 11, bg = "#FFFDFB

", dpi = 300) 

12 weibull, noinput og study 

# Create the survival object 

surv_obj_combined <- Surv(time = combined_data$survival_time, event = combined_data$c

ensoring_status) 

 

# Fit the Kaplan-Meier survival curve stratified by group 

km_fit_combined <- survfit(surv_obj_combined ~ group, data = combined_data) 

 

# Calculate survival probabilities at specific time points (36, 48, and 60 months) 

time_points_months <- c(36, 48, 60)  # 3, 4, and 5 years in months 

survival_probabilities <- summary(km_fit_combined, times = time_points_months)$surv 

print(survival_probabilities) 

## [1] 0.3066313 0.2612797 0.2244513 0.4381438 0.3584813 0.3161210 
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# Assuming the pattern is Group1 (36 months), Group2 (36 months), Group1 (48 months), Gr

oup2 (48 months), etc. 

survival_at_3_years_group1 <- survival_probabilities[4] 

survival_at_3_years_group2 <- survival_probabilities[1] 

survival_at_4_years_group1 <- survival_probabilities[5] 

survival_at_4_years_group2 <- survival_probabilities[2] 

survival_at_5_years_group1 <- survival_probabilities[6] 

survival_at_5_years_group2 <- survival_probabilities[3] 

 

 

# Find the median survival time in months for each group 

median_survival_months <- summary(km_fit_combined)$table['median'] 

 

# Extract the survival curve data 

surv_data <- broom::tidy(km_fit_combined, conf.int = TRUE) 

 

# Plotting the Kaplan-Meier curve 

survival_plot_combined <- ggsurvplot( 

  km_fit_combined, data = combined_data, conf.int = TRUE, 

  risk.table = TRUE, 

  xlab = "Months", ylab = "Survival probability", 

  title = "Kaplan-Meier curve by groups", 

  ggtheme = theme_minimal(), 

  break.x.by = 6,  # Set x-axis breaks every 12 months 

  xlim = c(0, 70),  # Extend x-axis to 70 months 

  surv.median.line = "hv", 

risk.table.fontsize = 6  # Adjust the font size of the numbers at risk (12 in this example) 

) 

 

 

 

# Add median survival line and year markers 

year_markers <- c(36, 48, 60)  # 3, 4, and 5 years in months 

survival_plot_combined$plot <- survival_plot_combined$plot +  
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  geom_vline(xintercept = year_markers, linetype = "dotted", color = "black") + 

  geom_vline(xintercept = median_survival_months, linetype = "dashed", color = "black") 

annotations <- data.frame( 

  time = c(36, 48, 60, 36, 48, 60)+3.5, 

  survival = c(survival_at_3_years_group1, survival_at_4_years_group1, survival_at_5_years

_group1, 

               survival_at_3_years_group2, survival_at_4_years_group2, survival_at_5_years_gro

up2), 

  group = rep(c("Group 1", "Group 2"), each = 3), 

  vjust = c(-6, -6, -6, 4, 6.5, 6.5)  # Example adjustments, modify as needed 

) 

 

# Add text annotations with adjusted vertical positions 

survival_plot_combined$plot <- survival_plot_combined$plot + 

  geom_text(data = annotations, aes(x = time, y = survival, label = paste(round(survival * 10

0, 1), "%"), vjust = vjust), 

            color = "black",size = 7.3) 

 

# Add median survival line and year markers 

year_markers <- c(36, 48, 60)  # 3, 4, and 5 years in months 

survival_plot_combined$plot <- survival_plot_combined$plot +  

  geom_line(data = weibull, aes(x = Survival_time, y = Percentage_Survivors), color = "blue"

) + 

  geom_rect(aes(xmin = 65, xmax = 66.5, ymin = 0.6, ymax = 0.64), fill = "blue") + 

  annotate("text", x = 67, y = 0.625, label = "Weibull model", color = "black", size = 4, hjust 

= 0) 

 

survival_plot_combined$plot <- survival_plot_combined$plot +  

  theme( 

    plot.title = element_text(size = 19),  # Adjust the size of the title 

    axis.title = element_text(size = 15), 

    axis.text = element_text(size = 15))  # Adjust the size of the numbers at risk 
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# Print and save the plot 

print(survival_plot_combined) 

## Warning: Removed 1 rows containing missing values (`geom_vline()`). 

## Removed 1 rows containing missing values (`geom_vline()`). 

 

# Combine the plot and risk table into a single grid object 

km_combined_grid <- arrangeGrob(survival_plot_combined$plot, survival_plot_combined$

table, ncol = 1, heights = c(5, 1)) 

## Warning: Removed 1 rows containing missing values (`geom_vline()`). 

# Save the combined plot as an image 

ggsave("studyvsrwdweibull.png", km_combined_grid, width = 15, height = 11, bg = "#FFFD

FB", dpi = 300) 

##survextrap combo 

# Copy the original dataframe to create a new dataset 

newcombined <- combined_data 

newcombined$survival_time1 <- newcombined$survival_time1 / 12 
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newcombined$survival_time1[newcombined$survival_time1 == 0] <- 1/365 

newcombined$treat <- newcombined$group 

 

 

# Fit separate models for each group if survextrap does not support stratification directly 

nd_mod_study <- survextrap(Surv(survival_time1, censoring_status) ~ 1, data = newcombin

ed[newcombined$treat == 'study', ], chains = 1) 

##  

## SAMPLING FOR MODEL 'survextrap' NOW (CHAIN 1). 

## Chain 1:  

## Chain 1: Gradient evaluation took 0.000177 seconds 

## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 1.77 seconds. 

## Chain 1: Adjust your expectations accordingly! 

## Chain 1:  

## Chain 1:  

## Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup) 

## Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup) 

## Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup) 

## Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup) 

## Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup) 

## Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup) 

## Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling) 

## Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling) 

## Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling) 

## Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling) 

## Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling) 

## Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling) 

## Chain 1:  

## Chain 1:  Elapsed Time: 2.165 seconds (Warm-up) 

## Chain 1:                1.562 seconds (Sampling) 

## Chain 1:                3.727 seconds (Total) 

## Chain 1: 
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## Warning: There were 1 divergent transitions after warmup. See 

## https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup 

## to find out why this is a problem and how to eliminate them. 

## Warning: Examine the pairs() plot to diagnose sampling problems 

nd_mod_rwd <- survextrap(Surv(survival_time1, censoring_status) ~ 1, data = newcombine

d[newcombined$treat == 'realworld', ], chains = 1) 

##  

## SAMPLING FOR MODEL 'survextrap' NOW (CHAIN 1). 

## Chain 1:  

## Chain 1: Gradient evaluation took 0.000783 seconds 

## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 7.83 seconds. 

## Chain 1: Adjust your expectations accordingly! 

## Chain 1:  

## Chain 1:  

## Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup) 

## Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup) 

## Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup) 

## Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup) 

## Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup) 

## Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup) 

## Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling) 

## Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling) 

## Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling) 

## Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling) 

## Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling) 

## Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling) 

## Chain 1:  

## Chain 1:  Elapsed Time: 24.862 seconds (Warm-up) 

## Chain 1:                19.404 seconds (Sampling) 

## Chain 1:                44.266 seconds (Total) 

## Chain 1: 
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## Warning: There were 1 divergent transitions after warmup. See 

## https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup 

## to find out why this is a problem and how to eliminate them. 

 

## Warning: Examine the pairs() plot to diagnose sampling problems 

# Plot the extrapolations for each group 

plot(nd_mod_study, show_knots = TRUE, tmax = 11) 

 

plot(nd_mod_rwd, show_knots = TRUE, tmax = 11) 
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plot_survival(nd_mod_rwd,tmax=12) 

 

plot_survival(nd_mod_study,tmax=12) 
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```r 

# Detect the computer's name 

computer_name <- Sys.info()["nodename"] 

 

# Set the working directory based on the computer's name 

if (computer_name == "JEROEN-LAPTOP") { 

  setwd("C:\\masteroppgaven lokal\\raw data\\studyvsrwd") 

} else if (computer_name == "JEROENHAUKAAS") { 
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  setwd("D:/Masteroppgaven backup/raw data/studyvsrwd") 

} else { 

  stop("Unknown computer: unable to set the working directory") 

} 

 

# Load data  

studypopulation <- read.csv("patientdatareck.csv", header = TRUE, sep = ",") 

realworldpopulation <- read.csv("rwdpasientdatamedavvik.csv", header = TRUE, sep = ",") 

sykehus <- read.csv("Utlevert_mkb_sykehus_4082.csv", header = TRUE, sep = ";") 

 

library(tidyverse) 

library(ggplot2) 

library(janitor) 

library(mice) 

library(dplyr) 

library(DataExplorer) 

library(webshot2) 

library(openxlsx) 

library(tidyverse) 

library(tidyr) 

library(janitor) 

library(rstatix) 

library(remotes) 

library(kableExtra) 

library(devtools) 

library(glmulti) 

library(report) 

library(sjPlot) 

#library(ggstatsplot)  

library(survival) 

library(survminer) 

library(biostat3) 

library(tidyverse) 

library(ggsurvfit) 
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library(dplyr) 

library(gtsummary) 

library(gridExtra) 

library(scales) 

##filtrerer ut 

sykehus_filtered <- sykehus %>% 

  filter(PID %in% realworldpopulation$PID) 

pembrolizumab_data <- sykehus_filtered %>% 

  filter(virkestoff == "Pembrolizumab") 

 

# Counting unique PIDs 

unique_pids_count <- sykehus_filtered %>%  

                     summarise(count = n_distinct(PID)) %>% 

                     pull(count) 

 

# Display the count 

unique_pids_count 

# Calculate average dosage for Pembrolizumab 

pembrolizumab_data_adjusted <- pembrolizumab_data %>% 

  mutate(doseVirkestoff = ifelse(doseVirkestoff == 0, 200, doseVirkestoff)) 

 

totaldosage <- pembrolizumab_data_adjusted %>% 

  summarise(TotalDose = sum(doseVirkestoff, na.rm = TRUE)) 

 

pembrolizumab_data_adjusted <- pembrolizumab_data %>% 

  mutate(doseVirkestoff = ifelse(doseVirkestoff > 399, doseVirkestoff / 2, doseVirkestoff))    

averagedosage <- pembrolizumab_data_adjusted %>% 

  summarise(AverageDose = mean(doseVirkestoff, na.rm = TRUE)) 

library(openxlsx) 
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# Combine the data frames 

combined_dosage <- bind_rows(totaldosage, averagedosage) 

write.xlsx(combined_dosage, file = "Combined_Dosage_Pembrolizumab.xlsx") 

child=‘D:/masteroppgaven backup/raw data/0 inputtering/Med avvik.Rmd’} 

child=‘D:/masteroppgaven backup/raw data/0 inputtering/datarenssykehus.Rmd’} 

child=‘D:/masteroppgaven backup/raw data/0 inputtering/datarenshresept med avvik.Rmd’} 

child=‘D:/masteroppgaven backup/raw data/studyvsrwd/noinputvsstudy.Rmd’} 

child=‘D:/masteroppgaven backup/raw data/studyvsrwd/doser gitt.Rmd’}  
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