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Abstract

The inner solar system dust cloud is a dynamic environment, located between
the inner planets and the Sun. Some of the open questions about the dust
cloud are difficult to address with remote sensing instruments, so in-situ de-
tection, that is the local detection from within the dust cloud, is essential.
Two recent and unique missions, Solar Orbiter (SolO) and Parker Solar Probe
(PSP) venture as close to the Sun as 0.28AU and 0.06AU respectively, and
both are suited for the detection of dust impact induced charge cloud with
their electrical antennas.

Since electrical antennas are not purpose-built dust detectors, identifying
dust impacts and interpreting the signals is ambiguous and a great deal of
attention is paid to these tasks. To address the identification issue, we de-
veloped a machine learning, convolutional neural network (CNN) detection
routine, which is superior to the previously used identification algorithms with
its 96% accuracy and 94% precision. This routine is applied on several years
of SolO’s Radio and Plasma Waves (RPW) time domain sampled (TDS) elec-
trical waveforms, providing the highest quality dust data product available
for SolO. To address the signal interpretation issue, we present a study of
thousands of SolO/RPW/TDS waveforms, which were inspected in detail, to
understand the non-conventional double-peaked signature. The signature is
at least partially explained with an interaction between the impact generated
charge and photoelectron sheath of the electrical antennas. This explanation
provides a sharper measure for the total amount of impact generated charge,
and for the post-impact speed of the charge cloud. On top of that, the impact
location on the SolO’s body is studied and the data is consistent with most
impacts happening on the heat shield and on the ram side of the spacecraft.

The dust grain motion depends on the grains’ properties. When the mo-
tion of the grains is understood, properties of the grains are constrained. This
is made more difficult if several dust populations are present simultaneously,
which differ by their size, origin, speed, and lifetime. The modelling approach
must take the populations into account, and we demonstrate a tool suitable
for this task. By assuming a two-component dust cloud observed by SolO
and with Bayesian fitting of the Poisson-distributed detection counts, we con-
firmed that the data is indeed consistent with most of the detections being due
to β-meteoroids with β ≳ 0.5, as the data is only consistent with decelerating
β-meteoroids. Unlike SolO, PSP experiences mostly bound dust impacts in
a portion of its orbit. This allows for a study of a single component dust flux.
We developed a model for bound dust impact counts using the formalism of
the phase space distribution function, known from kinetic theory. The model
considers several important dust cloud parameters which were not used pre-
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viously. Using the model, we found that the observed flux is only compatible
with a differential mass distribution slope δ between 0.14 and 0.49, shallower
than previously reported for bound dust. We therefore question the validity of
the assumption of power-law distributed masses of the µm-sized bound dust
grains near the Sun. We found that the flux minimum observed in each perihe-
lion is too prominent to be explained by the alignment between the velocity of
bound dust and the spacecraft, especially when the eccentricities, inclinations
and other poorly constrained parameters of the dust grains are considered. Al-
though PSP and SolO have different orbits, we were able to see indication that
the PSP’s heat shield is less sensitive to dust impacts, by comparing the PSP
and SolO data close to 1AU. With Bayesian modelling of dust impacts on SolO
and on PSP together, we were able to estimate that the PSP’s heat shield is
by a factor of four less sensitive to the dust impacts, compared to the rest of
PSP and SolO.

The tools presented in this thesis, specifically the CNN dust identification
algorithm, and the phase space distribution function dust model are suitable
for future application with other spacecraft. Together with the Bayesian flux
fitting approach, these tools allow for more precise modelling and therefore
deeper understanding of in-situ dust detection.
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1 | Introduction

Rocky, icy, and metallic objects in space, smaller than asteroids, are called
cosmic dust. Cosmic dust is created as debris of collisions of larger objects,
but also by condensation of gases, or by being expelled from a larger body, such
as a comet or a moon with active volcanism. Cosmic dust which originates in
the solar system is called interplanetary dust, as opposed to cosmic dust which
occupies the interstellar or intergalactic space. The circumsolar interplanetary
dust is responsible for zodiacal light, which is the diffuse glow observed in post-
sunset and pre-sunrise night sky near the ecliptic plane, shown in Fig. 1.1.

The interplanetary dust cloud is an integral part of the solar system, and
its dynamics contains information about the past and the present of other bod-
ies. In the inner solar system, micron-sized dust is a probe into the vicinity
of the Sun. When it gets too close to the Sun, it is destroyed by the extreme
near-solar conditions, which forms a dust-free zone around the Sun. By under-
standing how the circumsolar dust moves, where the collisions happen, where
it is destroyed, and how its characteristics depend on its composition, we find
more about the conditions around the Sun, which influence the rest of the solar
system. For example, when a dust grain is sputtered or evaporated by the Sun,
its material enters the solar wind and is carried out of the inner solar system.
With understanding of the dust dynamics in the solar system, the study of
other stars’ circumstellar dust clouds and planetary disks is also enabled.

The atmosphere of the Earth offers a great target for cosmic dust, and
the cosmic dust of more than 100µm entering the atmosphere is observable in
the form of meteors. The vapors ablated from dust influence the mesosphere
and the troposphere. Most meteors are of interplanetary origin. The amount
of dust entering the atmosphere was estimated decades ago and remains fairly
uncertain. One of the reasons for this is the vast range of the mass of grains
which contribute to the influx.

When spacecraft move through a dusty environment, such as the inner
solar system, they randomly collide with dust grains of the dust cloud. Most
of the collisions in the inner solar system are with sub-micron sized dust. Little

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: A long-exposure photo from the orbit of the Moon, taken shortly
after sunset on July 31st, 1971. By NASA - Magazine 98, Apollo 15, March to
the Moon.

can be told about the dust cloud based on a single collision, but based on many
collisions, generalizations can be made about the size and speed distribution
within the cloud.

This thesis is mostly concerned with measurements done by two spacecraft:
Solar Orbiter (SolO) and Parker Solar Probe (PSP). Both are Sun-orbiting
spacecraft, and are the two human made objects which venture the closest to
the Sun. Using their electrical antennas to register collisions with dust grains,
they provide dust measurements from the region where no other spacecraft
have measured before. This alone makes their measurements valuable, and
the fact that they operate simultaneously and over several years only more so.

To understand the dynamics in the interplanetary dust cloud, we make use
of the similarities and differences between the two spacecraft. Different statis-
tical modeling approaches must be taken to yield the maximum information
in different regions. In the region further away from the Sun, collisions with
dust grains are rare. Here, reliable and consistent detection in combination
with counting statistics reveals the spatial distribution. In the close vicinity of
the Sun, several processes occur at the same time. Here, we identify the most
important dust properties by comparing measurements to models. By apply-
ing the appropriate tools, we extend the current understanding of the dust
grains’ speed, masses, collisions, and location in different regions in the inner
solar system.

The aim of this thesis is to extend the understanding of the interplanetary
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dust inside Earth’s orbit from electrical antenna measurements performed by
two unique spacecraft, SolO and PSP. We achieve this by taking a more math-
ematically precise approach than what was used previously. Single-grain dust
properties, as well as forces acting on individual dust grains are introduced in
Ch. 2. Dust grains in the Solar system compose the interplanetary dust cloud,
in which grains of similar properties follow similar trajectories. These form
individual dust populations, which are introduced in Ch. 3. To yield the most
information possible, sharp statistical tools are needed, some of which are in-
troduced in Ch. 4. The dust detection principles are described in Ch. 5, where
emphasis is put on antenna measurements. The articles, which make up a part
of this thesis, are described in Ch. 6. Finally, Ch. 7 concludes and offers an
outlook.
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2 | Dust grain properties
and interactions

A dust grain in the solar system is subjected to many interactions. Grains of
different sizes and in different locations are naturally susceptible to be influ-
enced by different forces. In this chapter, we describe the dust grains, as well
as the most important forces and interactions, with their causes and effects,
and their relevance for dust grains of different characteristics. We will later
use this to discuss the properties and dynamics of dust populations in the solar
system.

2.1 Characterizing a single grain

Newton’s second law of motion has it, that

a⃗ =
F⃗

m
, (2.1)

where a⃗ is the acceleration of the object with the constant mass m, induced by
the net force F⃗ . Mass of a dust grain is related to its volume V and the mean
density ρ as

m = V ρ. (2.2)

The mean density depends on the composition and the structure of the grain.

Dust composition

There is little direct information on dust composition. Dust grains are rela-
tively hard to collect, and they are mostly collected in the atmosphere of or in
the near vicinity of the Earth. Some collection methods, such as collection in
the Antarctic ice or from the deep see sediments (Brownlee, 1985) and the near
ground collection (Pettersson, 1958) or the collection in the high atmosphere
(Fechtig et al., 1968) provided useful data, but are limited to specific dust

5
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grains, ones which were small and slow enough not to completely ablate in
the atmosphere (Vondrak et al., 2008). These measurements are also challeng-
ing to be performed reliably, as they are very prone to contamination with
terrestrial dust (Taylor et al., 2016).

Among the few data points available to this date are the ones provided
by the Space Shuttles (McDonnell et al., 1984) and the Stardust mission
(Brownlee, 2014), both collected in aerogel (Tsou, 1995). The Stardust sam-
ples returned from the vicinity of the Wild 2 comet were found to contain
mostly silicon (Si), magnesium (Mg), iron (Fe), and sulfur (S) (Keller et al.,
2006). Another proxy for dust composition with much better data availability
is the composition of meteorites. Among minerals typically found in meteorites
are olivine, quartz, and pyroxenes. Therefore, the most abundant elements in
meteorites are again: Si, Mg, Fe, and S, but meteorites also show a vast variety
and richness of composition (Anders, 1964) and there is therefore little doubt,
that so does the interplanetary dust.

The dust grains do not need to be collected intact for the element compo-
sition analysis. A time of flight (ToF) spectroscopy of dust was performed in
the vicinity of the comet Halley several times (Jessberger et al., 1988), which
besides hydrogen (H) and oxygen (O) revealed mostly carbon (C), Si, Mg, and
Fe.

Optical measurements of the elemental abundance in the local interstellar
cloud (LIC) probes the composition of dust outside the solar system. It shows
a relative depletion of Fe, Mg, and Si which implies these are bound in the dust
grains present in the LIC (Sofia et al., 1994).

Based on several pieces of observational evidence, it is reasonable to assume
that among the dominant constituents of the dust are H, O, Si, Mg, Fe, C,
and S. These are elements which form some of the most abundant minerals on
Earth.

Dust shape

The shape of the grains is difficult to establish, since even the grains collected
in aerogel are partially damaged during the collection (Burchell et al., 2006).
The grains collected in the upper atmosphere, on the sea floor and in deep ice
were studied for their shape (Jessberger et al., 2001), but the aforementioned
difficulties with the selection bias prevail. A grain recovered from high atmo-
sphere is shown in Fig. 2.1. Information on the dust shape is also yielded from
the comparison of remote measurement of scattering properties with the mod-
els (Min et al., 2005). A lot was successfully achieved with modelling the dust
grains are spheres or ellipsoids, possibly porous and heterogeneous (Mann,
2010), and for many modelling applications, the shape is not crucial.
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Figure 2.1: A scanning electron microscopy (SEM) image of a porous chon-
drite dust grain recovered from high atmosphere. The authors of this figure
are Donald E. Brownlee, University of Washington, Seattle, and Elmar Jess-
berger, Institut für Planetologie, Münster, Germany. This file is licensed under
CC-BY 2.5 license.

Dust density

Bulk density of the common minerals containing the usual meteorite compo-
nent elements, such as olivine, quartz or pyroxenes is between 2.6 gcm−3 and
3.8 gcm−3 (Duda and Rejl, 1986). A lot of interplanetary dust, especially in
the outer solar system, contains ice. Ice has a bulk density close to 1 gcm−3.

The density is often assumed between 2.5 gcm−3 (Mann et al., 2014) and
3 gcm−3 (McDonnell et al., 1984). Dust grains are often, due to photometric
and historical reasons, described in terms of their linear dimension d = 2r,
which often means the diameter of the sphere with the volume V equivalent
to the dust grain’s, hence

d

2
= r =

(
3V

4π

) 1
3

≈ 0.62
3
√
V . (2.3)

As a general rule, we will use the radius r as the reference to the grain’s size
rather than the diameter d throughout this work. Since we meet both mass-
based notation and size-based notation, it is useful to keep the conversion in
mind, which stands

m = ρ
4π

3
r3 ⇔ r = 3

√
3m

4ρπ
, (2.4)
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and assuming 2.5 gcm−3 gives

m

kg
≈ 10.4 · 103

( r

m

)3
⇔ r

m
= 4.6 · 10−2 3

√
m

kg
, (2.5)

which is shown in Fig. 2.2.
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Figure 2.2: A conversion between the mass and the radius of a spherical dust
grain, assuming the density of 2.5 gcm−3.

2.2 Forces

2.2.1 Gravity

Gravity is an attractive pair force between two massive objects of the magni-
tude

Fg = G
Mm

R2
= µ

m

R2
, (2.6)

where G ≈ 6.67 · 10−11m3kg−1s−2 is the gravitational constant, R is the dis-
tance between the objects’ centers of mass, and masses M and m belong, by
convention, to the more massive object and to the less massive object, respec-
tively. Alternatively, µ = GM is known as the gravitational parameter, which
provides a convenient form for the force, especially if m ≪ M , as is certainly
the case of dust grains, with respect to planets and the Sun. In case of the Sun,
µ ≈ 1.3 · 1020m3s−2.

Due to the steep dependence of the force on the distance Fg ∝ R−2, it is
often the case that a single central body suffices to describe the net gravity
force affecting a smaller body. This concept is known as the Hill sphere, which
is the sphere of influence around every massive body in the solar system, within
which the body’s gravity is the most relevant contributor to the net gravity,
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compared against the gravity of the Sun. The approximate planet’s Hill radius
is equal to the distance to the L1 or the L2 Lagrange point, therefore

RH ≈ a 3

√
m

3M
, (2.7)

where a is the planet’s semimajor axis, m is the mass of the planet, and M is
the mass of the Sun (Sheppard et al., 2023). For example, Saturn’s Hill sphere
with the Hill radius of RH;Saturn ≈ 0.4AU is necessary for Saturn to retain
is 146 confirmed moons (Sheppard et al., 2023), as well as its far-reaching
rings. The rings are an example of a dust system bound to a planet. The Sun
is however by far the dominant object in most of the solar system, especially
within 1AU, and its gravity is usually the only one that is relevant for the dust
grain in question, unless it is within another body’s Hill sphere.

An object orbits the Sun on a circular orbit if the magnitude of centrifu-
gal force Fc is equal to the magnitude of gravity Fg. This condition gives
the circular speed vc needed for the equality:

mv2c
R

= µ
m

R2
⇔ vc =

√
µ

R
⇔ R =

µ

v2c
. (2.8)

The circular speed vc at R = 1AU is v ≈ 29.8 kms−1. Since gravity ceases with
R ! ∞ as Fg ∝ R−2, the amount of work required to escape a gravity well is
finite. The minimum energy sufficient for the escape is provided by the escape
speed ve:

mv2e
2

=
µm

R
⇔ ve =

√
2µ

R
=

√
2vc. (2.9)

2.2.2 Radiation pressure

The power density of solar radiation at 1AU is (Kopp and Lean, 2011)

GSC ≈ 1361Wm−2 (2.10)

and corresponds to the radiative power of the Sun

PSun ≈ 3.9 · 1026W. (2.11)

Dividing GSC by the speed of light

c ≈ 3 · 108m/s (2.12)

gives the radiation pressure

prp(1AU) =
GSC

c
≈ 4.5 · 10−6 Pa, (2.13)
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and the resulting radiation pressure force Frp is readily obtained as

Frp = prpS =
PSun

4cπR2
S =

PSun

cR2
r2, (2.14)

where S is the Sun-facing cross section of the body of interest, r is the body’s
radius, and R is the distance of the body from the Sun, whereas in the second
equation we also assumed the body to be spherical and the Sun to be a point
source: r ≪ R. A dimensionless parameter β is used to describe the relative
importance of the two forces:

β =
Frp

Fg
. (2.15)

Since Frp directly opposes Fg, the net force, denoted effective gravity, or Feg

is obtained as
Feg = Fg − Frp, (2.16)

and using β, we get
Feg = (1− β)Fg. (2.17)

In the case of the Earth, the radiation pressure force is Frp;Earth ≈ 5.8 · 108N,
which might be compared to the gravity between the Earth and the Sun
Fg;Earth ≈ 5.2 · 1033N, resulting in βEarth ≈ 10−25.

Interestingly, both Fg and Frp scale with the distance from the Sun as
F ∝ R−2. Therefore, β is not a function of the distance from the Sun R, and
we are permitted to express the effective gravity as

Feg = (1− β)G
Mm

R2
= (1− β)µ

m

R2
= µe

m

R2
, (2.18)

where µe is the body-specific effective gravitational parameter, taking radiation
pressure into account. We see that the laws of orbital motion (for example
Eqs. 2.8 and 2.9) of radiation pressure affected bodies are going to be the same,
albeit with a different gravitational parameter µe.

We found that β only depends on the properties of the Sun and the body in
question, and is therefore body specific. Let us study the dependence of β on
the size of the body in question r. It follows that as long as the aforementioned
equations for Fg and Frp hold, β depends on r as

β =
PSun
cR2 r2

µ m
R2

=
PSun

µc

r2

ρV
=

PSun

µcρ

3r2

4πr3
=

3PSun

4πµcρ
r−1, (2.19)

therefore β ∝ r−1, which is not surprising, given Fg ∝ m ∝ r3 and Frp ∝ S ∝
r2. Assuming the density of ρ ≈ 2.5 gcm−3 as in Sec. 2.1, we find that

β ≈ 9.6 · 10−7r−1m, (2.20)
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which gives that for β = 1, that is the radiation pressure force offsetting
the gravity fully, the dust grain must have the radius of r ≈ 960 nm. However,
Eq. (2.14) assumes the solar photons are either absorbed or scattered fully as
a spherical wave with their momentum transferred to the body. This holds
for absorbing materials if r ≫ λ, where λ is the wavelength of the radiation.
However, r ≈ 960 nm is comparable to the typical wavelengths of a sunlight
photon and the assumption does not hold fully. A proper calculation of light
scattering is necessary and it depends on the material and shape of the grain.
This was done previously by other authors (Kimura et al., 2003) for reasonable
materials, see Fig. 2.3. It was found that the maximum of β is reached between
10−17−10−16 kg, which corresponds to the radius of 100−200 nm. In any case,
the maximum value of β is on the order of unity and β is lower than unity for
much smaller or larger grains. Radiation pressure is crucial for the dynamics
of the sub-µm grains, which most of this thesis is concerned with.

Figure 2.3: The light scattering calculation result for the β value (y-axis) as
a function of mass of spherical grains of various composition, adapted from
Kimura et al. (2003).

2.2.3 Lorentz force

Grain’s electric potential

The grains in the solar system are immersed in the ambient plasma and
subjected to the solar UV irradiation, both causing charging of the grains.
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Should the ambient conditions remain stable, the grain’s electric charge reaches
equilibrium. The main charging currents are electron collection current and
the photoemission current. They act to charge the grain to a negative and pos-
itive potential, respectively. Should the plasma be dense or should the grain
be in shadow, the former prevails, and the grain’s potential becomes negative.
Should the plasma be sparse and the UV irradiation intense, the latter pre-
vails and the grain becomes positively charged. We will now examine the two
extreme cases.

An object immersed in plasma charges to so-called floating potential ϕf .
This potential is typically negative, which is a result of the electron mobility
being much higher, compared to the ion mobility. The charging current ceases
if the potential of the grain poses a significant barrier to the electrons, therefore
the maximum potential is on the order of electron temperature Te, which is
approximately 8 eVk−1

B near 1AU and 20 eVk−1
B near 0.25AU in the typical

solar wind (Guillemant et al., 2013).
Electrons are released from an illuminated neutral grain, in case the in-

cident photon’s energy hν is above the photoelectric work function Wp of
the grain’s material. This typically requires UV photons and leaves the grain
more positively charged, which adds an additional barrier for the next photo-
electron to surpass. The established positive potential ϕp is such that no more
electrons can escape, therefore it is ϕp ≈ hν −Wp. While Wp for common ma-
terials is between 2− 5 eV, the last strong spectral line of she sunlight is Ly-α
at hν ≈ 10.2 eV, resulting in the maximum potential of ϕp between 5− 8V.

The equilibrium potential ϕ of the grain depends on the ambient plasma
conditions and the properties of the grain, but typically settles on a value
between −20V and +8V. A more comprehensive study is out of scope of this
work, but is found in literature (Meyer-Vernet, 1982; Horányi, 1996; Krivov
et al., 1998; Dzhanoev et al., 2016; Vaverka et al., 2016).

Grain’s charge

An isolated grain’s charge q is related to its potential ϕ as

q = Cϕ, (2.21)

where C is the grain’s capacitance. The capacitance of a solitary sphere in
vacuum with the radius of r is

Csphere = 4πϵ0r, (2.22)

which translates using Eq. 2.21 to
q

rϕ
= 4πϵ0 ≈ 1.1 · 10−10CV−1m−1, (2.23)
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where ϵ0 ≈ 8.9 · 10−12CV−1m−1 is the free space permittivity. This simplistic
model predicts the charge of ±10−15C for a spherical grain with the radius of
r = 1µm at the potential of ϕ = ±9V. We note that this value is order of
magnitude correct for a grain of any common shape with the greatest linear
extent of ≈ 2r (Maxwell, 1877). The ratio of mass m to charge q is relevant
for the dynamics of dust grains. Given the charge as in Eq. 2.23, and the mass
as in Eq. 2.4, we get

q

m
=

3ϵ0ϕ

ρr2
≈ 10−13r−2m2, (2.24)

where we assumed ϕ ≈ 9V and the bulk density ρ ≈ 2.5 gcm−3 as before.
Eq. 2.24 is visualized in Fig. 2.4.
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Figure 2.4: A conversion between the radius r and the charge density q/m
of a dust grain as in Eq. 2.24, assuming the surface potential ϕ ≈ 9V and
the bulk density ρ ≈ 2.5 gcm−3.

Dynamics

A point charge is usually a very suitable model for a charged dust grain.
The Lorentz force acting on a point charge q is

F⃗EM = q
(
E⃗ + v⃗ × B⃗

)
, (2.25)

where E⃗ and B⃗ are the ambient electric and magnetic fields, respectively, and
v⃗ is the velocity of the point charge. If the charge q is sufficiently large, FEM

might be more important than effective gravity:

Feg < FEM ⇒ q

m
>

(1− β)µ

R2
∣∣∣E⃗ + v⃗ × B⃗

∣∣∣ . (2.26)

As an order of magnitude estimate for a grain in the solar wind, assume

FEM ≈ qvswBIMF , (2.27)
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in addition to β = 0 and BIMF = 4nT, which is a reasonable magnetic field
strength near R = 1AU (Mann et al., 2007). Thus, the condition from Eq. 2.26
becomes

q

m
> 5Ckg−1, (2.28)

which is equivalent to r < 0.14µm (Eq. 2.24), and is not very sensitive to R,
provided that B ∝ R−2, which can often be assumed if R ≫ RSun (Parker,
1958).

This condition describes the state in which Lorentz force is grater in ampli-
tude than gravity. If these two forces are comparably strong, the accelerations
they induce are comparable. By extension, the curvature of the trajectory due
to gravity and the curvature of the trajectory due to Lorentz force are com-
parable. The radius of curvature of the trajectory of a grain in orbit due to
gravity is on the order of the heliocentric distance of the grain. We therefore
must consider the temporal aspect: given enough time, that is over many or-
bits, even FEM ≪ Fg might be consequential for the motion of the dust grain.
Vice-versa, FEM ≈ Fg does not imply that the grain does not orbit the Sun.

Eq. 2.26 has many degrees of freedom. In this context, the ratio of q/m is
the most important of the grain’s properties and the grain’s motion is often
studied with respect to its q/m. Czechowski and Mann (2010) studied the mo-
tion of charged grains released in the vicinity of the Sun with the circular
speed and charge density of about 103Ckg−1, which corresponds to the ra-
dius of r ≈ 10 nm. They assumed the magnetic field B⃗IMF as described
by the Parker spiral (Parker, 1958) with a tilted heliospheric current sheet
(HCS). They found that if the grains are produced within 0.15AU, they re-
main trapped near the Sun, on complicated orbits with very low perihelia, and
therefore are likely destroyed. If the grains are produced outside of 0.2AU,
they are expelled outward, and their velocity at 1AU depends on their q/m,
and is close to 200 kms−1 if q/m ≳ 103Ckg−1, and lower for grains with lower
q/m. The motion of dust near the Sun was studied theoretically by other
authors, and many effects were described, such as inclination increase and
ejection (Krivov et al., 1998), and gradual shift of the dust cloud symmetry
plane (Morfill and Grün, 1979).

Poppe and Lee (2020) studied variability of the flux of dynamically charg-
ing nm-sized grains. They made use of electromagnetic field given by a time
variable, semi-empirical, corona-solar wind coupled model and found strong
variability in the distribution of grains arriving at 1AU within one Carrington
rotation. Especially grains with the radius r < 10 nm were found to arrive
at 1AU with the speed well correlated with the local solar wind speed vsw.
The influence of the heliospheric magnetic field orientation and solar cycle on
the presence of nm-sized dust in the inner heliosphere was studied by Poppe
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and Lee (2022). The magnetic field orientation was found to be most conse-
quential for the presence of 10 nm and 20 nm dust at 1AU, with the grains only
reaching 1AU in case of the focusing configuration of the field, which repeats
every other solar cycle and will occur again the late 2020’s.

2.2.4 Poynting-Robertson drag

Since an object orbiting the Sun is moving with respect to the source of radi-
ation, the position of the Sun as seen from the object is apparently different,
aberrated, by an angle of the order of v/c, where v is the orbital speed of
the object, and c is the speed of light. Therefore, the light does not arrive
from purely radial direction, but partially from the ram direction, as observed
from the orbiting object. The scattering and absorption of the light then leads
to a negative change in the momentum, and therefore in the orbital speed
(Poynting, 1903). The magnitude of Poynting-Robertson effect is (Robertson,
1937):

FPR =
v

c2
Pr, (2.29)

where Pr is the power of incoming solar radiation assuming the object’s cross
section S:

Pr =
PSunS

4πR2
. (2.30)

Assuming the object is on a circular orbit, we make use of Eqs. 2.29, 2.8, and
2.30 to get

FPR =

√
µ

R

Pr

c2
=

PSunS

4πc2

√
µ

R5
. (2.31)

As an estimate of magnitude of FPR, we evaluate the effective pressure pPR:

pPR =
FPR

S
=

PSun

4πc2

√
µ

R5
≈ 4.5 · 10−10 Pa, (2.32)

where we assumed R ≈ 1AU, and c, PSun, and µ as before.
As an estimate of relevance of FPR, we may study the dynamic evolution

of the orbital speed, and, by extension, orbital radius. Although FPR acts
against the speed v, the speed will actually be rising, as lower energy implies
higher orbital speed. Eq. 2.29 gives for the acceleration a in time

aPR(t) =
dv

dt
(t) =

Pr(t)v(t)

mc2
=

PSunv(t)

4πR2(t)c2
S

m
, (2.33)

where we use the assumption of circularity (Eq. 2.8) once again to get

aPR(t) =
PSun

4πµ2c2
S

m
v5(t), (2.34)
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which is separable with a single positive real solution for v(t):

v(t) =

(
v(0)−4 − PSun

πµ2c2
S

m
t

)− 1
4

, (2.35)

which translates to R:

R(t) = µ

√(
R0

µ

)2

− PSun

πµ2c2
S

m
t

=

√
R2

0 −
PSun

πc2
S

m
t.

(2.36)

Assuming a spherical dust grain (Eq. 2.4), we get

R(t) =

√
R2

0 −
PSun

πc2
πr2

ρ4π
3 r3

t =

√
R2

0 −
3PSun

4πρc2
t

r
, (2.37)

where the factor of t/r, the time-scale of the orbital evolution, is proportional
to the grain’s linear size. Assuming PSun, ρ as before, r = 1µm grain will
spiral from R0 = 1AU down to R = 0.1AU in t = 1.7 · 103 yr. This time
becomes 106 yr if we assume an object with the radius of r ≈ 0.6m, therefore
FPR is irrelevant for the dynamics of macroscopic objects, but relevant for
the dynamics of the solar system’s dust cloud.

We note that the orbital eccentricity of grains subjected to FPR gradually
decreases. Briefly, and without mathematical rigor, deceleration in the peri-
helion does not change the perihelion distance rperi, but lowers the aphelion
distance raph. This decreases eccentricity e. Correspondingly, deceleration in
the aphelion lowers rperi, doesn’t change raph and therefore increases eccen-
tricity. We note that FPR ∝ vPr, and both these factors reach their maximum
in the perihelion of an eccentric orbit, and their minimum in the aphelion,
therefore eccentricity is gradually reduced and circular orbit’s e = 0 is stable.
Rigorous results for non-circular orbits are available in literature (Wyatt and
Whipple, 1950).

2.2.5 Solar wind pressure

Interplanetary dust grains are in interaction with the solar wind plasma.
The solar wind particles are in predominantly radial motion and they therefore
project radial pressure psw on the dust grains, which is in case of a stationary
dust grain easily estimated (Shue et al., 1998) as

psw = nmpv
2
sw, (2.38)
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where n is the number density of solar wind protons with mass mp, vsw is
the solar wind bulk speed, if only solar wind protons are considered and all
the protons are assumed to fully pass ther momentum to the grain. Assuming
typical 1AU values of vsw ≈ 300 kms−1, n ≈ 107m−3, and mp ≈ 1.67·10−27 kg,
we get psw ≈ 1.5 · 10−9 Pa. We note that psw ≪ prp (see Eq. 2.13). Since both
pressures scale as p ∝ R−2 with the heliocentric distance R, solar wind pressure
in radial direction psw is typically negligible compared to the radiation pressure
prp.

Even though radial effect of solar wind pressure is negligible compared to
the radiation pressure, its azimuthal component is not, since the orbital speed
of a dust grain v is much closer to the solar wind speed vsw than to the speed
of light c. Considering a dust grain with speed v⃗ = e⃗rvr + e⃗ϕvϕ, the force
F⃗sw = e⃗rFsw,r + e⃗ϕFsw,ϕ on the dust grain is (Burns et al., 1979)

Fsw,r = Spsw

(
1− 2vr

vsw

)
,

Fsw,ϕ = Spsw

(
vϕ
vsw

)
.

(2.39)

The force Fsw,ϕ is often called pseudo-Poynting-Robertson drag, since it acts
similarly to FPR discussed in Sec. 2.2.4. Assuming orbital speed of the Earth
vϕ ≈ 30 kms−1 and vsw ≈ 300 kms−1, we find

psw,ϕ =
Fsw,ϕ

S
≈ 1.5 · 10−10 Pa, (2.40)

which is comparable to pPR ≈ 4.5 · 10−10 Pa at the same heliocentric dis-
tance R = 1AU. With more careful treatment, it was estimated that psw,ϕ ≈
0.22 pPR for typical dust grains (Whipple, 1967), and more recently it was
found that psw,ϕ > pPR for certain grains with radii r < 0.1µm, and even
radial psw ≈ prp for silicate grains with radii r < 10 nm, since the cross section
with ions is much better than the cross section with sunlight photons for small
particles (Mukai and Yamamoto, 1982).

2.3 Erosion

The mass of a grain evolves abruptly at collisions and gradually due to the solar
radiation and the ambient plasma. The solar radiation causes heating and
sublimation, while the plasma environment, namely incident solar wind causes
erosion by sputtering.
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2.3.1 Sublimation

To find under what conditions sublimation is important, we will examine
the black body temperature, that is the equilibrium temperature of a fully ab-
sorbing object in sunlight. We note that the temperature of a dust grain may,
depending on the size and composition, differ from the black-body tempera-
ture by a factor of 3, where the deviation is most prominent for grains with
the radius r ≪ 1µm (Myrvang, 2018), where scattering effect must be treated
carefully. However, for larger grains of common material, the black body tem-
perature is a useful approximation.

The black body temperature in the vicinity of a star is obtained by com-
paring the incoming solar radiation Pr (Eq. 2.30) and the output power Pout

of the body:
Pout = StotσT

4, (2.41)

where Stot is the emitting surface of the body, σ is the Stefan-Boltzmann
constant, and T is the temperature of the black body. Eq. 2.41 is the Stefan-
Boltzmann law (Stefan, 1879; Boltzmann, 1884). Comparing this to Eq. 2.30,
we get the condition for the power equality:

PSunS

4πR2
= StotσT

4 ⇔ T =
1

2
4

√
PSun

σπ

1√
R

≈ 279K

(
R

AU

)− 1
2

, (2.42)

where we note S is the cross section of the grain, whereas Stot is the irradiating
surface of the grain, and for a sphere Stot = 4S. For reference, the melting
point of iron is approxiamtely 1800K and the melting point of olivine is be-
tween 1500K and 2200K, depending on the exact composition (L.-G. Liu and
Bassett, 1975; Pinti et al., 2015). The relation as in the equation is shown in
Fig. 2.5, along with the melting point of water and the highest melting point
of olivine.

The rate of sublimation of droplets is described by Langmuir’s evaporation
equation (Langmuir, 1918):

dm

dt
(t) = −pv

√
Me

2πRT
Stot(t) = −2pv

√
2πMe

RT
r2(t), (2.43)

where pv is the vapor pressure of the droplet fumes at the temperature of
the droplets T , Stot is the surface of the droplet, Me is the molar mass of
the fumes, R is the gas constant, and the second equality assumes a spherical
droplet of radius r. This is applicable on dust grains composed of a sublimating
material. The parameters pv and Me are material-dependent, and the former
is also a steeply increasing function of T . We note the proportionality

dm

dt
(t) ∝ Stot(t) ∝ r2(t), (2.44)
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Figure 2.5: The equilibrium black body temperature as a function of heliocen-
tric distance, assuming spherical body. The temperatures of 273K and 2200K
are shown for reference.

which implies that the radius decreases linearly and, therefore, the sublimation
lifetime is proportional to the original radius of the spherical grain. The dif-
ferential equation can be solved for initial dust composition and temperature.

2.3.2 Sputtering

Sputtering is a non-thermal process of erosion of an object due to collisions
between the object and energetic particles. Unlike sublimation, sputtering
depends on the properties of the plasma environment in addition to the prop-
erties of the bombarded object. In the interplanetary space, the energetic
particles are provided by the Sun, in the form of solar wind and occasional
mass ejections. Sputtering mass loss rate is measured in laboratory as

dm

dt
(t) = −MeλiY

NA
S(t), (2.45)

where Me is the molar mass of the grain’s atoms, S is the grain’s cross section,
λi is the flux of incident particles, NA is Avogadro’s constant and finally Y is
the dimensionless sputtering yield, which is modelled as a function of the state
of the grain, and energy and mass of the incident particles (Vyšinka, 2018).
Many assumptions must be done in order to solve Eq. 2.45.

2.3.3 Collisions

High-speed collisions between dust grains are inelastic and the mass distribu-
tion is changed as the parent grains produce smaller offspring grains. Assume
the parent grains have masses M1 and M2, where M1 < M2. Modelling suc-
cess was previously achieved (Gault et al., 1963; Dohnanyi, 1969) by assuming
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so-called crushing law to be of the form

g(m) = C(M1,M2)m
−η, (2.46)

where g(m) is a probability density function for the offspring mass m, η is
the power-law exponent, and the factor C is a function of the parent objects’
masses. Since the power-law distribution is constrained by the total amount
of collisionally ground material MΣ and is right-bound due to the upper limit
of the offspring grain mass Mmax (that is the largest offspring grain), the nor-
malization is

C(M1,M2) = (2− η)MΣM
η−2
max. (2.47)

The parameter of η was experimentally established (Gault et al., 1963) to be
η ≈ 1.8, in case M2 ! ∞ which implies that most of the offspring mass is
retained in the small offspring grains. A related modelling concept is that of
catastrophic collisions (Dohnanyi, 1969; Grün et al., 1985). These are collisions
which completely shatter both parent grains: MΣ = M1+M2. If the smaller of
the grains is too small M1 ≪ M2, the bigger grain is not shattered completely.
Laboratory experiments have repeatedly shown linearity of the process with
mass (Gault et al., 1963; Dietzel et al., 1973; Grün, 1984; McBride and Mc-
Donnell, 1999; Collette et al., 2014; Shen, 2021). In that case, the condition
for a catastrophic collision can be written as

M2 < ΓM1, (2.48)

where the threshold ratio Γ is a theoretical concept only, and is a decreasing
function of the impact speed and a function of the material properties. It
is also difficult to establish experimentally (Grün et al., 1985), and different
values are found in the literature. For the impact speed of 10 km/s, the values
on the order of 5 · 104 were reported (Gault and Wedekind, 1969; Fujiwara
et al., 1977), but they range from 102 to 5 · 105 for broader speed interval
(Whipple, 1967; Zook and Berg, 1975; Dohnanyi, 1978). Collisional lifetime
of a dust grain is the time it takes for the grain to catastrophically collide
with another grain. The other grain is likely to be smaller than the test grain,
since there are many more (by count) small dust grains than large dust grains.
Collisional lifetime greatly depends on the mass and speed distribution and to
some extent also on the material properties of the dust grains, and is therefore
dependent on the heliospheric region.

2.3.4 Lifetimes

All three erosion processes presented in this section (sublimation, sputtering,
and collisions) depend, beyond other assumptions, on the size, the material,
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and on the location in the solar system. All three are major factors in shaping
the solar system dust cloud’s dynamics and are important in different helio-
centric regions.

Since sublimation rate depends on the grain’s temperature, it prevails in
the near vicinity of the Sun. It was evaluated to be dominant within R <
0.1AU, where the sublimation lifetime of ≈ 10−1 yr is implied for r ≈ 1µm
silicate dust (Baumann et al., 2020). Sublimation lifetime for carbon dust at
the same heliocentric distance is however ≈ 104 yr, since carbon has 105-times
lower vapor pressure at 2300K. Silicate and metal oxide grains sublimate
quickly within R < 0.1AU, but for carbon dust grains, sputtering and collisions
are important even at R = 0.1AU. Let us note that these general results do
not cover the instances of high density solar wind, such as during the coronal
mass ejections (CMEs), which might shorten the lifetime of certain dust grains
by a great deal (Baumann et al., 2020). High mass loss due to sublimation is
the most important process behind the formation of the near-solar dust free
zone (H. N. Russell, 1929).

Poynting-Robertson drag is not an erosion process on its own, but since
it acts to decrease the orbital distance of the grains in orbit around the Sun,
it gradually increases the mass loss due to the true erosion processes. As
evaluated in Sec. 2.2.4, the time for 1µm particle to spiral down from R0 =
1AU to R = 0.1AU is on the order of 103 yr. It was in fact concluded that
while collisions limit the lifetime of grains r ≥ 10−4m, Poynting-Robertson
drag limits the lifetime of the smaller ones (Grün et al., 1985).

For the dust of radius r ≈ 1µm, the collisional lifetime at 1AU is on the or-
der of 106 yr, whereas at 0.1AU it is on the order of 103 yr (Grün et al., 1985).
We can compare this to the sputtering lifetime of silicate grains of the same
size, which is ≈ 104 yr at 1AU, and ≈ 102 yr at 0.1AU even in slow solar wind
conditions (Klepper, 2021). It was in fact calculated by Klepper (2021) that
the sputtering lifetime is shorter than the collisional lifetime between 0.1AU
and 1AU for silicate and metal oxide dust grains with r < 20µm. We note
that the orbital period at 0.1AU is 12 days, therefore, the erosion processes
take many orbits to erode a grain, even at 0.1AU.

To sum up, sublimation limits the lifetime of most grains in the near vicin-
ity of the Sun (R < 0.1AU). In most of the inner solar system, Poynting-
Robertson drag limits the life-time of small grains with r < 10−4m, while col-
lisions limit the life time of larger grains with r > 10−4m. Sputtering lifetime
is comparable, but somewhat longer than Poynting-Robertson and collisional
lifetimes, except for extreme plasma environments, such as CMEs. A more nu-
anced discussion is found in literature (Klepper, 2021; Baumann et al., 2020;
Grün et al., 1985; Whipple, 1967; Myrvang, 2018).
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3 | Dust populations

Different sources of dust, along with different forces acting on dust grains as
a result of their location and size, allow us to distinguish populations of dust.
For the context, in which the presented research is set, we are going to introduce
and characterize several important dust populations in the solar system.

3.1 Bound dust

Among the forces discussed in Ch. 2, the force with the steepest proportion
to the grain’s radius r is gravity: Fg ∝ r3. Gravity therefore determines
the motion of large bodies in the solar system. The dust particles that are
dominantly influenced by gravity and are in bound orbits, are denoted bound
dust. The term zodiacal dust is sometimes used since this dust contributes to
the zodiacal light the most. The term F-corona is used for the zodiacal light
observed close to the Sun. We may encounter the term alpha (abv. α) mete-
oroids, sometimes used interchangeably with bound dust, but appropriateness
of the term as a synonym to bound dust was debated (Sommer, 2023), since
the term was originally coined to describe highly eccentric bound grains only
(Zook and Berg, 1975) and, therefore, we will not use the term.

Size range

The lower size threshold for a dust grain to be bound may be estimated by
comparison with the forces dependent ∝ r2, namely radiation pressure force
FRP and Poynting-Robertson drag FPR. If we set the criterion for FRP ≪ Fg

to β < 0.1, then using Eq. 2.20 we find r > 10µm. The Poynting-Robertson
lifetime of r = 10µm dust (Eq. 2.37) is approximately 13 kyr, which allows
for many orbits. For completeness, using Eqs. 2.24 and 2.27 we find that for
r = 10µm dust, the electromagnetic force FEM < 2 · 10−4Fg. Therefore,
the motion of r > 10µm dust is dominated by gravity.

Leinert et al. (1981) found that the range of 10µm < r < 100µm con-
tributes to the intensity of Zodiacal light the most. The reason for this is that

23
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much larger dust has a low ratio of surface to mass, and much smaller dust
neither lasts long in orbit, nor scatters light very effectively.

Dynamics

The number density n of 10 − 100µm dust near the ecliptic plane was estab-
lished based on remote observations of the zodiacal light to follow

n(R) ∝ R−1.3 (3.1)

in the range of 0.3AU < R < 1AU (Leinert et al., 1981), and since the zodiacal
light seems to be constant in time (Buffington et al., 2016), it is believed to be
constantly replenished by fragments of colliding, larger, r ≥ 1mm dust with
the number density n ∝ R−ν , where 1 < ν < 1.1 (Leinert et al., 1983).

Bound dust grains are gradually losing mass due to erosion. The erosion is
faster if the grains are closer to the Sun. This process is therefore accelerated
by shrinking the orbital distance due to Poynting-Robertson drag. The grains
also lose mass abruptly, in collisions, as we discussed in Sec. 2.3.3. It was found
that collisions are the reason for the greatest proportion of the mass loss from
the bound dust population (Grün et al., 1985). On the other hand, the pop-
ulation is refilled by dust newly released from larger bodies. Although debris
of asteroidal collisions contribute to the population of bound dust, the ma-
jority of bound dust is likely created in fragmentation of comets. This is
supported by numerical modelling of the motion and the collisional cascade of
dust grains ejected by different orbital group bodies (Nesvorný et al., 2010),
and by the comparison of the reflective properties of bound dust to those of
comets and various asteroidal groups (Yang and Ishiguro, 2015).

It was found (Dohnanyi, 1969) that erosive and catastrophic collisions be-
tween asteroids (Sec. 2.3.3) lead to a steady-state mass distribution of the as-
teroids in the power-law form:

f(m) ∝ m−δ, (3.2)

where δ = 11/6 ≈ 1.83, provided that the crushing-law (Eq. 2.46) slope η < 2,
that is, there are not too many large objects left after the collision. It is impor-
tant to note that under the assumption that η < 2 and that the catastrophic
collisions dominate the mass loss, the slope δ = 11/6 is not a function of η at
all and is only a very shallow function of η if the erosive collisions are rele-
vant. It was also shown that the solution of δ = 11/6 is stable if perturbed by
an additional inflow of low or high m into the distribution (Dohnanyi, 1969).
This does not hold fully for the dust grains with r < µm, since more loss pro-
cesses are relevant in this region (Grün et al., 1985), most notably, β-meteoroid
production.
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Open questions

Remote observations provide information about the spatial distribution of dust,
while in-situ detections and modelling provide information about its mass dis-
tribution. Both are however fairly insensitive to dust eccentricities and incli-
nations, therefore to the velocity distribution and the spatial distribution out
of the ecliptic plane. Bound dust is an important contributor to the counts
observed by PSP, and the compatibility of the observed counts with eccentric
and inclined dust was studied in Paper IV. While it is clear that the dust
is concentrated around the ecliptic plane, it is not straightforward to deduce
the off-ecliptic density dependence from remote observations and several mod-
els were proposed and debated (Giese et al., 1986). Future measurements of
SolO might shed some light on this, as the orbit of the spacecraft, which per-
forms dust measurements, will get gradually inclined between 2025 and 2029.

Since the lifetime of dust grains in near vicinity of the Sun is short due to
intense erosion processes (Sec. 2.3), a dust-free zone (DFZ) was hypothesized
(H. N. Russell, 1929). DFZ might be enveloped by a transition region, so
called dust-depletion zone (DDZ). Due to the limitations of the experimental
techniques and the difficulties with decomposing the brightness measurements
to dust and other light-producing phenomena, the DFZ was not convincingly
observed to this date, although DDZ was observed remotely from onboard
PSP (Stenborg et al., 2018). It was thus estimated, that the DDZ lies between
5RSun and 19RSun, while the DFZ is expected inward of 5RSun (Stenborg
et al., 2022). This implies that PSP has already travelled well into the DDZ
with its perihelia of ≈ 12RSun. An investigation of the DDZ was one of
the objectives of Paper IV, results of which suggest that the DDZ explains
the observed dust detection counts near the perihelia of PSP.

3.2 Beta meteoroids

Pioneer 8 and 9 spacecraft discovered a previously unobserved population of
dust grains, when it was apparent that most of the grains of the size r < 10−6m
were coming from the direction of the Sun (Berg and Grün, 1973). This phe-
nomenon is explained as a population of dust leaving the Sun’s gravity well on
a hyperbolic trajectory due to the solar radiation pressure successfully com-
peting with solar gravity, and the term beta meteoroids (β-meteoroids) was
coined for the population (Zook and Berg, 1975). Many other space missions
observed the population since, for example Solar Terrestrial Relations Obser-
vatory (STEREO) (Zaslavsky et al., 2012), Wind (Malaspina et al., 2014), and
SolO (Zaslavsky et al., 2021).
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Size range

As we showed previously (Eq. 2.18), the laws of motion do not change even if
the radiation pressure is significant, it is the effective gravitational parameter
µe = (1−β)µ, which changes with β. Since the escape speed ve and the circular
speed vc differ by a factor of

√
2 and both depend on µ (Eqs. 2.8, 2.9), in terms

of effective gravity:
vc(β = 0) = ve(β = 1/2). (3.3)

This implies that if a dust grain on a circular orbit with β = 0 suddenly changes
its β value to β = 1/2, it becomes critically unbound, that is on a parabolic
trajectory. A change to a higher β would then naturally lead to a hyperbolic
trajectory. Since dust grains change their β value suddenly at collisions, and
since the post-collision fragment speed is not going to be very different from
the pre-collision parent object speed, the value of β = 1/2 is often considered
the minimum β required for the dust grain to be on an unbound trajectory
pointed away from the Sun.

Using our estimate with simplistic assumptions (Eq. 2.20), β > 0.5 for
r < 1.9µm. More refined estimates (Kimura et al., 2003) point to the region
of 100 nm < r < 1µm and are material dependent. We note that if the parent
grains are on eccentric orbits, the requirement of β > 0.5 is not exact, but this
does not influence the size estimate greatly. We also note that beta meteoroids
are smaller than bound grains with r > 1µm, which seem to contribute to
the brightness of the Zodiacal light the most (Leinert et al., 1981). This makes
remote observation difficult, and they are therefore, in practice, only reliably
detected in-situ.

Dynamics

The beta meteoroids are believed to be created in collisions between bound
grains, which naturally happens where the bound dust spatial density and
the relative velocities between the grains are high. It was recently reported
that the dust detections of PSP are compatible with the beta meteoroid cre-
ation region at around 10 − 20RSun (Szalay et al., 2021). Since beta me-
teoroids are unbound, they leave the inner solar system shortly after their
creation, and other forces have limited time to act. For example, even rela-
tively short Poynting-Robertson lifetime of ≈ kyr is unimportant compared
to the timescale of < 1 yr, in which a grain created in the vicinity of the Sun
passes beyond 1AU. On their way out, beta meteoroids follow the conservation
of angular momentum and the conservation of energy. The former implies that
sufficiently far from the region of their creation, their velocity is nearly radial.
The latter implies they accelerate if β > 1, since they feel net solar repulsion,
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and they decelerate if β < 1, since they feel net solar attraction. In the special
case of β = 1, the grains neither accelerate nor decelerate, and their number
density sufficiently far from the Sun depends on the heliocentric distance R as

n(R) ∝ R−2. (3.4)

Open questions

One of the open questions related to beta meteoroids is to what extent their
flux is constant in time and rotationally symmetric. Answering this question
is complicated, since beta meteoroids are only detected in-situ, and there is
always a bond between the time and location of the detecting spacecraft. Beta
meteoroids were claimed to be produced in collisions between the main, rota-
tionally symmetric bound dust population and the Geminids meteoric stream
(Szalay et al., 2021), as a means to explain excess detections with PSP. Further
investigation of this phenomenon is desirable.

The dynamics of β-meteoroids is understood theoretically, but there is little
experimental evidence about where they are created, their speed, mass distri-
bution, and other parameters, which influence their dynamics. β-meteoroids
are important for both PSP and SolO observations. In Paper II of this thesis
and using the measurements of SolO, we estimated the speed of β-meteoroids.
We found that they decelerate significantly on their way out of the inner solar
system, which implies effective mean β near the liberation threshold, that is
β ≈ 0.5. We studied the features of individual impacts in Paper III, proposing
a better measure for impact-generated charge, enabling a more precise study
of the mass distribution of the grains.

3.3 Interstellar dust

We know that dust of various sizes is present in the interstellar medium of
our galaxy since it is needed to explain the interstellar extinction measure-
ments (Desert et al., 1990). The heliosphere moves with respect to the local
interstellar medium. The relative speed and the direction are known, since
the velocity distribution of interstellar neutral gas was measured, for example
onboard Ulysses spacecraft (Witte, 2004). It was also with the Ulysses space-
craft, that a population of dust, coming from the direction of the interstellar
neutral gas was detected (Grün et al., 1993). Since then, other spacecraft re-
ported interstellar dust (ISD) detections in-situ, such as Galileo (M. Baguhl
et al., 1995), Cassini (Altobelli et al., 2003), STEREO (Zaslavsky et al., 2012),
and Wind (Malaspina et al., 2014).
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Size range and dynamics

ISD is created by condensation and aggregation, and destroyed by sputtering,
sublimation, and collisions (Mann, 2010). Only the ISD grains with masses
higher than 3 · 10−16 kg (that is r ≈ 0.3µm) are believed to be able to enter
the heliosphere (Kimura and Mann, 1998). Upon entry, the grains move ac-
cording to the laws of gravity and under the influence of Lorentz force. The ef-
fective gravitational parameter µe(β) (see Eq. 2.18) depends on the amount
of radiation pressure compared to gravity. Should β > 1, the grains are de-
flected and do not reach close vicinity of the Sun (Henriksen, 2022). If β ≈ 1,
they do not feel the influence of the Sun and move with nearly constant speed.
The motion of the dust grains is also influenced by the Lorentz force, and this
effect is also size dependent (Morfill and Grün, 1979).

Open questions

The exact dynamics of ISD grains in the solar system is an object of study,
especially the possible effect of dust focusing and defocusing to and from
the plane of ecliptic due to the polarity of the interplanetary magnetic field,
which switches between N-S and S-N configurations with the period of 22 years,
that is two solar cycles (Morfill and Grün, 1979). This long period, longer
than the duration of many experiments, makes the effect difficult to study. It
is however the case that most of the in-situ ISD detections happened around
the year 2009, during the solar minimum between solar cycles 23 and 24, when
the interplanetary magnetic field was in the focusing configuration (Racković
Babić, 2022) and the observed ISD flux decreased significantly, although not
disappear completely, since then. Although instrumental explanations remain
possible, it was hypothesized that the change in observed flux is physical and
that the flux should rise again during the minimum between solar cycles 25
and 26, which is expected in late 2020’s (Mann, 2010).

Gravitational focusing of the ISD grains with β < 1 and an increased spatial
density in the inner heliosphere and especially behind the Sun is a logical
consequence of their trajectories (Mann, 2010), yet experimental evidence of
this is scarce (Altobelli et al., 2006). The low density, the temporal variability,
and the difficulty of distinguishing this population from other dust complicates
the detection. Neither SolO nor PSP observed clear evidence of ISD.

3.4 Nanodust

Small dust grains are produced in collisions of larger dust. If the created
dust grains are so small that β ≪ 1, the radiation pressure does not liberate
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them from the gravity well of the Sun. Small grains have, however, a high
capacitance to mass ratio C/m, and by extension, high charge to mass ratio
q/m. For example, r = 10nm spherical grain at the potential of ϕ = 1V
has the charge density q/m ≈ 71Ckg−1 (Eq. 2.24). The defining feature of
nanodust grains is that they are therefore highly susceptible to be influenced
by Lorentz force (Czechowski and Mann, 2010).

As we discussed in Sec. 2.2.5, solar wind pressure provides an additional
pseudo-Poynting-Robertson drag, which is usually smaller than radiational
Poynting-Robertson drag for larger dust, but is likely very relevant for small
dust with r < 10 nm (Mukai and Yamamoto, 1982), when even radial solar
wind pressure might contest gravity.

Planetary nanodust was also identified in Cassini’s Radio and Plasma
Wave Science (RPWS) spectra at 1AU (Schippers et al., 2014), and between
1AU and 5AU, and it was concluded, that the asteroid belt’s contribution
to the nanodust flux is negligible (Schippers et al., 2015). It was also identi-
fied in the Jovian system (Meyer-Vernet et al., 2009a), and in the Saturnian
system (Kempf et al., 2005). It was in fact concluded that nanodust is so
ubiquitous, that some was detected whenever the RPWS instrument was on
(Schippers et al., 2015). Cometary nanodust was detected by Giotto/PIA and
Vega/PUMA mass spectrometers near the comet Halley, although limited in-
formation about their composition was yielded, due to low signal (Utterback
and J. Kissel, 1990).

Open questions

Since nanodust grains are highly susceptible to the influence of Lorentz force,
a strong temporal variation is naturally expected, as the interplanetary mag-
netic field is not constant (Poppe and Lee, 2020). The complications are that
nanodust is not observed remotely, and observation in-situ is problematic (Pan-
tellini et al., 2012; Kellogg et al., 2016; Kellogg, 2017).

Nanodust was reportedly detected on STEREO spacecraft (Meyer-Vernet
et al., 2009b) and mostly disappeared after solar cycle 24 started after 2010
(Zaslavsky et al., 2012). It was argued that this might be due to an unfavor-
able interplanetary magnetic field orientation during solar cycle 24, and that
the nanodust flux will reappear in the STEREO measurements later during
solar cycle 25, at some time before 2028 (Poppe and Lee, 2022). The pres-
ence of nanodust in the SolO and PSP data remains a possibility. However,
the counts can be explained with models without nanodust, therefore, it is
a minor contributor for now. This might change later during solar cycle 25.
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3.5 Localized dust

Planetary dust

The dust linked to a planet, is called planetary dust. The passage of Pioneers
10 and 11 through the Jovian system discovered flux of dust several orders
of magnitude higher than the flux commonly observed elsewhere at the same
heliocentric distance (Humes et al., 1974). The subsequent study by Ulysses,
which measured intermittent dust streams originating in the Jovian system
(Grün et al., 1993), and Voyager, which revealed the active volcanism at Io
(Krüger et al., 2004), confirmed the Jovian system as a locally important
source of dust. Cassini’s Cosmic Dust Analyzer (CDA) and RPWS detected
nanodust near Jupiter, which was also confirmed to be originating at the moon
Io (Meyer-Vernet et al., 2009a). Similarly, in the Saturnian system, Enceladus
was linked to the tenuous E-ring of Saturn (Baum et al., 1981). Cassini/CDA
data also showed nanodust detections (Kempf et al., 2005) and later confirmed
the volcanic activity on Enceladus (Spahn et al., 2006), which feeds the E-ring
of Saturn (Kempf et al., 2010).

Inhomogeneity

Unlike the omnipresent gradual erosion, the inflow of new dust into the system
is very stochastic and non-constant, as for example comets, which are believed
to be an important source of the dust cloud, are not uniformly distributed in
time and space. More than half of all the catalogued comets are sungrazers,
which are comets which have the perihelion in a close vicinity of the Sun (G. H.
Jones et al., 2018), at the heliocentric distance of a few solar radii RSun. These
are typically small objects (r < 100m) which do not survive the passage but
are destroyed near the perihelion by the combination of heat and tidal stress.
Their material is then partially transferred to the dust cloud. In general, such
highly eccentric comets might arrive from any direction, but a few massive
bodies were identified to have been destroyed in the past, which are responsible
for most of the identified near-sun comets (G. H. Jones et al., 2018). Among
these, the most prominent cometary group is the Kreutz group (Kreutz, 1888),
members of which are believed to be descended from a single body, which got
fractured into thousands of smaller bodies over several perihelia. The evidence
for this is the strong similarity in the orbital elements between the individual
Kreutz group comets (G. H. Jones et al., 2018), but the exact origin story
of the group is not easily established (Kalinicheva, 2017; Fernández et al.,
2021). What is certain is that dust is released from the comets of the group in
a spatially highly non-uniform way.
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Meteor is a visual phenomenon accompanying the entry of a sufficiently
massive dust grain in the Earth’s atmosphere. Over a 100 distinct meteor
showers were identified and confirmed to this day (Jenniskens et al., 2020),
which well document the spatial inhomogeneity of the dust in the solar system.
The number of observed meteors, which belong to shower, is comparable to
the number of meteors which do not (Jenniskens et al., 2016).

Meteors are caused by comparably large grains of r ≳ mm and these are
very rare among in situ detections, which are dominated by r ≲ µm grains.
These massive and sparse grains however produce smaller grains at collisions,
which may be much more frequent where the meteor stream crosses a dense
solar system dust cloud, and this may cause inhomogeneity even in the flux of
smaller dust. This effect was proposed as an explanation for the post-perihelion
enhancement of flux detected by PSP (Szalay et al., 2021).

Open questions

The model, which we used to explain the dust flux measured with SolO (Pa-
per II), assumed a symmetric and homogeneous dust cloud. This assumption
might be checked statistically, for example by looking for unexplained variance
in the dust counts. One uncomplicated way of doing such analysis is comparing
the posterior predictive distribution to the data, as we briefly did in Paper II,
finding that the used model was appropriate, and that no major contributor
to the flux was overlooked.
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4 | Poisson rates

Dust impacts happen randomly, and are uncorrelated with each other, fulfill-
ing the definition of Poisson point process (PPP). Since detections might be
relatively rare, the fitting routine must be chosen and carried out carefully to
yield the available information. Several approaches are commonly taken and
in this chapter, the most important and commonly used ones are introduced,
demonstrated and practically compared. As we will see, not all of the common
algorithms are always appropriate. Notably, the least squares fitting is prob-
lematic for Poisson process, and more appropriate algorithms are introduced
in this chapter.

4.1 Poisson point process

The defining feature of PPP is that it consists of points ω⃗ located randomly
and independently of each other in the mathematical space of interest Ω. This
space might be the physical space Ω3D with the process modelling locations of
events, or Ω might be the timeline Ωtime, and then PPP models when events
happen. In the case of in-situ detection of cosmic dust, the space is the physical
space Ω3D, but since the location of the spacecraft is implicitly bound with
time through its trajectory, the problem is usually solved on the timeline Ωtime.

Let A be a subset of Ω. A feature of PPP is that the number of points
N within A is a random variable, which follows the Poisson distribution with
the probability mass function:

P (N = n) = Pois(n,Λ) ≡ Λne−Λ

n!
, (4.1)

where Λ = E(N) is the expected value of N . In the special case of homogeneous
PPP, Λ is proportional to the measure µ of A in Ω with the scaling factor of
λ:

Λ = λµ(A), (4.2)

33
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where λ is called the rate. In the general case of PPP, λ is a non-negative
function of the location ω in Ω:

λ = λ(ω) ≥ 0; ω ∈ Ω, (4.3)

and then
Λ =

∫
A
λ(ω) dµ. (4.4)

In the special case of Ω being the timeline Ωtime, and A being the interval of
observation between the times tstart and tstop, we have

Λ =

∫ tstop

tstart

λ(t) dt. (4.5)

This is an appropriate model for the number of dust detections N detected
over a temporal interval (tstart, tstop).

4.2 Maximum likelihood estimation

Assume the following experimental scheme: let data x⃗ = (x1, x2, . . . , xk) be
the realizations of a random variable X, and let the parametric probability
density function (also called the family) of the process fX be known, with
the parameters θ⃗ being unknown:

fX = fX(xi|θ⃗). (4.6)

This means that in a repeated experiment, and given the parameters θ⃗, a value
xi is acquired with the frequency proportional to fX(xi|θ⃗). The usual goal is
to find the underlying θ⃗, which is the most compatible with the experiment
results x⃗. Likelihood L = L(θ⃗) is a function of θ⃗ defined as

L(θ⃗|xi) = fX(xi|θ⃗) (4.7)

in the case of a single data point xi, where |xi means the single data point
xi is used to evaluate the likelihood. The intuitive meaning of likelihood is
how well the θ⃗ corresponds to the observed data point xi. Since observing
xi is more probable for θ⃗1 with high L(θ⃗1|xi) than for θ⃗2 with low L(θ⃗2|xi),
one might say that θ⃗1 is more likely than θ⃗2, given xi was observed. We note
that L is not a probability distribution, since it is a function of θ⃗ rather than
x⃗. Furthermore, it is generally not normalized, or even integrable. Should
the random vector x⃗ contain k realizations of an independent random variable,
the likelihood of θ⃗ given x⃗ is

L(θ⃗|x⃗) =
k∏

i=1

fX(xi|θ⃗), (4.8)
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where L retains all the properties discussed earlier. Then maximum likelihood
estimation is the method of finding θ⃗max, which maximizes L in the space Θ of
possible θ⃗. Such a θ⃗max is called the maximum likelihood estimate (MLE). We
note that the same θ⃗max maximizes L(θ⃗|x⃗) and l(θ⃗|x⃗) = log

(
L(θ⃗|x⃗)

)
. Since

l(θ⃗|x⃗) = log
(
L(θ⃗|x⃗)

)
= log

(
k∏

i=1

fX(xi|θ⃗)

)
=

k∑
i=1

log
(
fX(xi|θ⃗)

)
, (4.9)

the MLE is also found by maximizing l, so called log-likelihood, which is often
computationally much cheaper.

In the special case of fX being the Poisson probability mass function
(Eq. 4.1), there is a single parameter Λ to maximize L with. Having ob-
served k realizations (data points) n⃗ = (n1, n2, . . . , nk), the log-likelihood of Λ
is

l(Λ|n⃗) =
k∑

i=1

log

(
Λnke−Λ

nk!

)
= log(Λ)

k∑
i=1

nk − kΛ−
k∑

i=1

log(nk!), (4.10)

where log(n!) is easily evaluated for small n and can be cost-effectively very
closely approximated for large n, using for example Ramanujan’s approxima-
tion (Ramanujan, 1920).

It is also possible that the rate Λ was not constant during the data acqui-
sition, but changed with time t as

Λ = Λ(t, ξ⃗), (4.11)

that is Λ was a parametric function of time t with unknown parameters ξ⃗. If
the family fX is known, as is the parametric function Λ, but not the parameters
ξ⃗, this might be solved the same way, that is with maximizing (now more
complicated) likelihood L, or log-likelihood l = log(L).

4.3 Least squares estimation

Assume experimental data x⃗ and unknown parameters vector θ⃗. In addi-
tion, let us assume that xi of x⃗ are not independently distributed, but each
xi has its own distribution function family fXi , which might for example
represent a time dependent experiment, such as the one in Eq. 4.11. As-
suming a value for the parameters vector θ⃗, a vector of expected values of
⃗̃x(θ⃗) = (E(X1|θ⃗),E(X2|θ⃗), . . . ,E(Xk|θ⃗)) is calculated. We evaluate S:

S(θ⃗) = ||x⃗− ⃗̃x(θ⃗)||2 =
k∑

i=1

(
xi − E(Xi|θ⃗)

)2
. (4.12)
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If the parameter vector θ⃗ minimizes S in the space of possible parameter vec-
tors Θ, then θ⃗ is called the least squares estimate (LSE). Weighted least squares
estimate (WLSE) is a modification of LSE, in which the weights wi are intro-
duced in Eq. 4.12:

Sw(θ⃗) =
k∑

i=1

(
wi

(
xi − E(Xi|θ⃗)

))2
, (4.13)

where the estimate is improved if the weights are the reciprocal standard de-
viations for each of the data points wi = σ−1. Finding the LSE is often
computationally much cheaper than finding the MLE as described in Sec. 4.2,
and in some special cases, they are equivalent. However, LSE is just a mathe-
matical optimization algorithm, which disregards the distribution of the data,
and in general is not equivalent to MLE.

4.3.1 Maximum likelihood equivalence

Assume:

fXi(xi|θ⃗) = N (E(Xi|θ⃗), σ) =
1√
2πσ

e
−
(

xi−E(Xi|θ⃗)√
2σ

)2

, (4.14)

that is, the value observed in a repeated experiment is normally distributed
around its expected value, or in other words, the errors ϵi = xi − E(Xi|θ⃗) are
Gaussian. If independence of ϵi is assumed, then we get for log-likelihood:

l(θ⃗|x⃗) =
k∑

i=1

log
(
fXi(xi|θ⃗)

)

=

k∑
i=1

log

 1√
2πσ

e
−
(

xi−E(Xi|θ⃗)√
2σ

)2


= k log

(
1√
2πσ

)
− 1

2σ2

k∑
i=1

(
xi − E(Xi|θ⃗)

)2
= k log

(
1√
2πσ

)
− S

2σ2
,

(4.15)

therefore by minimizing S, we maximized l (compare Eqs. 4.12 and 4.15). We
note we assumed a single standard deviation σ for all the xi, which might
be generalized to individual σi by weighting in the sum (Eq. 4.13). This can
further be generalized for the case of regular exponential family distributions
(Charnes et al., 1976), therefore also for Poisson distribution. In any case,
we either evaluate or approximate MLE with LSE, which offers no advantages
over the straight evaluation of MLE beyond the computational cost.
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4.3.2 Linear combination fitting

A common experimental task is to explain an observed variable count as an
unknown combination of known effects, which combine into a rate. Let us have
data n⃗ = (n1, n2, . . . , nk), and assume

fNi(ni) = Pois(ni,Λi) = Pois(ni, β1λ1,i + β2λ2,i + · · ·+ βmλm,i), (4.16)

where unknown Λi was not a constant for all i, but was a single unknown
linear combination β⃗ = (β1, β2, . . . , βm); βi ≥ 0 ∀i of known non-constant
effects λ1,i, λ2,i, . . . , λm,i. This task is best approached keeping Poisson family
in mind, which is not the case when a simple LSE of β⃗ is evaluated, which we
show on an example.

Comparing MLE and LSE for real experimental data is not very instruc-
tive, since the true process is never really known. For this reason, we use a toy
model. Let us examine a fit of such a toy model, which retains the most impor-
tant characteristics of dust detection rate fitting. Assume we have observations
n⃗ of a Poisson-distributed random variable defined as

fNi(ni) = Pois(ni,Λi) = Pois(ni, β1yi + β2y
5
i ), (4.17)

where yi are the values of the independent variable, so called covariate, which
produced the actual rates Λi according to

Λi = β1yi + β2y
5
i , (4.18)

which is a linear combination of two polynomial terms. Let’s further assume
the actual values of β⃗ = (β1, β2) are

β1 = 1

β2 = 3,
(4.19)

and that we have a set n⃗ of 150 observations of ni, which were drawn according
to Eq. 4.17 with different covariates yi ∈ (0, 2). One such a draw is shown in
Fig. 4.1.

Having run the experiment, one might attempt to estimate the underlying
parameters β⃗, knowing the model family (Eq. 4.17), but not the true values of
the parameters (Eq. 4.19). In this case, both MLE and LSE estimate the val-
ues reasonably, and both are even (as empirically observed) asymptotically
unbiased, but they are not equivalent and show a very different accuracy, as
a repeated experiment shows. Averaging 500 independent runs, the mean L2

distance between the estimate of β⃗ and the correct β⃗ is ≈ 0.48 in case of
LSE and ≈ 0.22 in case of the proper MLE, which is shown in Fig. 4.2. We
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Figure 4.1: A possible realization of the experiment defined by Eqs. 4.17 - 4.19.

clearly observe a higher negative correlation for LSE (≈ −0.78) than for MLE
(≈ −0.46). A correlated estimates might indicate an inappropriate model, but
in this case rather indicate a difficult model and (in case of LSE) an inappro-
priate fitting procedure.

We note that the presented fitting task is really relatively difficult, since
majority of detections come from high yi, where the component ∝ y5i is very
dominant compared to the component ∝ yi, and it is easily seen in Fig. 4.2
that it is the β1, which is estimated by LSE much more poorly than by MLE.
The information is however still there, since for low yi, it is β1, which is im-
portant. It turns out that LSE is too crude to yield the information fully.
We note that it is often the case in practice, that Poisson distributed data
is fitted WLSE, assuming σi =

√
ni weights. This places more emphasis on

the lower values, but is only appropriate for the values of ni high enough, so
that

√
ni ≪ ni, since σ =

√
µ for Poisson distribution, see Fig. 4.3. This is

quite incorrect for low values, and not viable at all for ni = 0, as such a weight-
ing would incorrectly assume that all zeroes must have come out as a result
of the rate Λ = 0, which is clearly not true, as seen in Fig. 4.3. Sometimes
weighting with

√
ni + 1 is used, in which +1 is a rather arbitrary constant,

and which is still not correct, and in our specific case is not even an unbiased
estimate, as is demonstrated in Fig. 4.4.

Lastly, we note that the presented toy model shares some characteristics
with dust flux fitting. The linear combination of several components as in
Eq. 4.16 is often assumed (Szalay et al., 2021; Zaslavsky et al., 2012), as we
also did in Paper II. The dust detection rate with spacecraft also often changes
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Figure 4.2: A repeated experiment followed by MLE and LSE estimation
of the parameters β1;β2, the experiment as defined by Eqs. 4.17 - 4.19.
The dashed lines show the true value of β⃗. The histograms of estimated β1
and β2 are shown in the x-axis and y-axis histograms respectively.

over several orders of magnitude, and is much lower if certain components are
dominant, which might, similar to the presented example, lead to a bias, if not
treated carefully.

4.4 Bayesian statistics

Probability is a complicated epistemological concept. Intuitively understood,
probability becomes difficult, if confronted with other related concepts, such
as causality, knowledge, or choice. In Bayesian statistics, unknown parameters
are regarded as random variables, with their probability distribution repre-
senting the state of knowledge or belief about them, and with data being used
to improve the level of this knowledge. An event A is regarded as having
high probability, if it is reasonable to expect that the event A happens. This
is put in contrast with so-called frequentist interpretation of probability, in
which probability is regarded as the long-term average frequency of the event
A happening under the same circumstances, as the unknown parameters are
treated as free, but not random variables. This doesn’t make a difference in
many practical applications, but the formulation of statistical task might be
different. A typical frequentist task is to assess the most likely value (MLE)
of an unknown (but certain) parameter, given what evidence was observed.



40 CHAPTER 4. POISSON RATES

0.0

0.5
µ = σ2 = 0.5

0.0

0.5
µ = σ2 = 1

0.0

0.5

P
ro

b
.

d
en

si
ty

µ = σ2 = 2

0.0

0.5
µ = σ2 = 5

0 5 10 15 20 25 30

n

0.0

0.5
µ = σ2 = 10

Figure 4.3: A comparison of Poisson (bars) and normal (solid line) distributions
with identical mean µ and standard deviation σ.

If more data is considered, the most likely value might change. In a typical
Bayesian task, a probability density of the value of the unknown parameter is
inferred, approaching the unknown parameter as a random variable. If more
data is added, knowledge gets better, and the probability distribution becomes
narrower.

4.4.1 Bayes theorem

Bayes theorem stems from the axiom of probability:

P (A ∩B) = P (A|B)P (B) = P (B|A)P (A), (4.20)

which states that the probability of events A and B occurring together is
the same as the product of probabilities of one of them occurring, given
the other one does times the other one occurring.
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Figure 4.4: A repeated experiment followed by MLE and WLSE estima-
tion of the parameters β1;β2, the experiment as defined by Eqs. 4.17 - 4.19.
The weights in WLSE are wi = (1 + n)−0.5, and the WLSE is in this case
not an unbiased estimate, since too much weight is put on the ni = 0 data
points. However, we observe that the estimation of β2 is not burdened by this,
as the WLSE points show even less variance in β2, compared to LSE estimates
in Fig. 4.2.

The Bayes theorem (Bayes, 1763) in its modern form states:

P (A|B) =
P (B|A)P (A)

P (B)
, (4.21)

whenever P (B) ̸= 0. This equation is instrumental to many statistical prob-
lems, such as evaluating blinded experiments, commonly used in medicine and
other sciences. It also builds the basis for Bayesian inference.

4.4.2 Bayesian inference

Assume a model family fX is known, as well as the data x⃗, which are real-
izations of the random variable X. Similarly to Sec. 4.2, we are interested in
the parameters θ⃗. With MLE in Sec. 4.2, the goal was to find the single value
θ⃗, which fits the data best, that is θ⃗ with the highest likelihood. However,
MLE does not by itself provide any measure of uncertainty.

Bayesian estimation needs a prior distribution of θ⃗, denoted π(θ⃗) to be
defined in addition to the model family fX and the data x⃗. This distribution
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represents our prior belief in the value of θ⃗ before the data x⃗ are examined. De-
scribed mathematically, we assume that θ⃗ is a random variable with the value
in the space Θ coming from the prior distribution π(θ⃗); θ⃗ ∈ Θ. Without
the actual realization of θ⃗ being known, this θ⃗ plays the role of a parameter in
fX(x|θ⃗), which generates the sample of data x⃗, which is observed. Based on
the value of x⃗, which was observed, the belief in θ⃗, represented by π, changes.
The goal is to obtain π(θ⃗|x⃗), which not only provides the most compatible
value of θ⃗, but also a measure of uncertainty.

The desired posterior distribution π(θ⃗|x⃗) is evaluated using the Bayes the-
orem (Eq. 4.21):

π(θ⃗|x⃗) = p(x⃗|θ⃗)π(θ⃗)
p(x⃗)

=
L(θ⃗|x⃗)π(θ⃗)

p(x⃗)
∝ L(θ⃗|x⃗)π(θ⃗), (4.22)

where the equality becomes proportionality for practical reasons: it is often dif-
ficult to evaluate the normalization factor p(x⃗), and if, for example, a sampling
procedure is used to evaluate the right hand side, the result is automatically
normalized.

For demonstration purposes, we apply Bayesian inference on the problem
defined by Eqs. 4.17 – 4.19. We use identical and independent priors for β1
and β2:

π(βi) =

√
2

π
e

(
−β2i

2

)
1R+ , (4.23)

that is standard normal distribution for positive numbers, and zero elsewhere.
We draw 150 numbers yi from uniform distribution between zero and two, as
before. For each yi we draw ni according to Eq. 4.17. In Fig. 4.5 we show
the MLE, LSE, and Bayesian results compared. Unlike in Fig. 4.2, the ex-
periment is done only once, therefore yielding only one MLE and one LSE
estimate. In principle, Bayesian inference solves a different task, compared to
MLE. The Bayesian posterior is not a point, but a multivariate distribution
function, which, unlike the other two estimates, shows a measure of uncertainty.
The prior is consequential for Bayesian inference. However, the prior becomes
less important as the number of data points increases. If data is plentiful and
the support of the prior covers the MLE estimate, the maximum of Bayesian
posterior (called maximum a posteriori, or MAP) is in practice equivalent to
the MLE estimate, as is demonstrated in Fig. 4.5, where the relatively broad
prior does not influence the posterior much, compared to the 150 data points.
We showed the result of a repeated experiment in Fig. 4.2. The Bayesian poste-
rior changes in a repeated experiment, with the actual values of (β1, β2) = (1, 3)
likely being covered by the posterior. Increasing the number of data points be-
yond 150 will then make the posterior more localized with the MAP closer to
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the point (1, 3). To demonstrate this, we use the same procedure to obtain
the posterior distribution for β1 and β2, but using a gradually increasing num-
ber of points yi and corresponding ni. We show the maxima of the posterior
marginal distributions and symmetric 90% credible intervals as functions of
the number of drawn data points ni. This is shown in Fig. 4.6.
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Figure 4.5: A comparison of the Bayesian estimate and the points estimates
MLE and LSE, including 150 data points. β1 and β2 marginal posteriors are
shown in the top and in the right panel, with the lines showing the MLE and
LSE estimates.

4.4.3 Computational methods

Conjugate priors In special cases, the task of inferring the posterior dis-
tributions of the unknown parameters might be approachable analytically,
through so-called conjugate priors. The strongest requirement is that the prior
and the likelihood are of certain families, for which analytical solutions were
found. Many useful family combinations were described (Fink, 1997), as before
the boom in computational power, this was the most practical way of doing
Bayesian inference. All other methods described in further paragraphs of this
section are numerical, that is, approximate.

Grid evaluation The most straight-forward way of finding the approximate
posterior π(θ⃗|x⃗) is to define a grid in Θ and to evaluate the product of the like-
lihood and the prior (Eq. 4.22) in all the grid points. To maintain a good reso-
lution, the number of grid points scales with the power equal to the dimension,
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Figure 4.6: A repeated experiment followed by Bayesian inference of the pa-
rameters β1;β2, the experiment as defined by Eqs. 4.17 - 4.19. µ(·) denotes
the posterior mean. The shaded regions show symmetric 90% credible inter-
vals. The priors prefer values lower than the actual β1 = 1; β2 = 3 but are
broad and play a small role once many data points are included. We note that
β2 is much better constrained, compared to β1.

hence, this approach easily becomes memory and time intensive. Furthermore,
normalization might be difficult, and the choice of grid points can be non-
trivial. Many of these disadvantages are abated if a sampling method is used
instead.

Markov chain Monte Carlo The posterior π(θ⃗|x⃗) can be approximately
reconstructed and many of its features are available easily, if a sample of val-
ues θ drawn from π(θ⃗|x⃗) is available. This is the idea of Markov chain Monte
Carlo (MCMC) Bayesian inference. The discrete Markov chain is a stochastic
process, in which the current state is a random value, probability of which
is governed by the preceding value (Markov, 1906), forming a random walk.
If the conditions of the Markov chain central limit theorem are met (G. L.
Jones, 2004), this walk reaches a stationary state, in which the elements
are distributed as if they were coming from a distribution. Using the right
Markov chain, it is possible to draw a sample from any probability density func-
tion. The common methods of constructing the appropriate Markov chain in-
clude Metropolis-Hastings (M-H) algorithm, (Metropolis et al., 1953; Hastings,
1970), Gibbs sampling (S. Geman and D. Geman, 1984), and slice sampling
(Damlen et al., 1999). These all have different strengths, and their computa-
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tional efficiency varies based on the problem at hand, but in higher dimensions,
with a more complicated model, or a big data set, they are computationally ex-
pensive. Their common disadvantage is that, since the samples form a Markov
chain, the subsequent values are correlated. This usually does not pose an
issue but must be kept in mind and handled carefully. MCMC remains pop-
ular, since it is very versatile and allows for evaluating virtually any Bayesian
inference problem. Further introduction into MCMC is available in literature
(Brooks et al., 2011).

Integrated nested Laplace approximation Since MCMC is very versa-
tile, but computationally expensive, and conjugate priors can only be used on
a narrow class of problems, a method is needed which would be fairly generally
useful, but computationally efficient. Integrated nested Laplace approximation
(INLA) is one such method (Rue et al., 2009; Martins et al., 2013), as it avoids
sampling the posterior distribution, and rather approximates the posterior dis-
tributions analytically. It allows for fitting two-level, hierarchical models. On
the lower-level, the parameters for the higher-level distributions are contained.
These lower-level parameters are called hyperparameters, and they are random
variables with priors called hyperpriors, which are defined explicitly. On this
lower-level, the hyperparameters are used to construct the higher-level param-
eters, called latent parameters, which are used in the higher-level distribution
functions of the observed data. This hierarchical setup is very convenient in
spatio-temporal modelling, where the data is often grouped in some way, as
some of the data points are close to each other, either in location or in time.
It poses some limitations:

• hyperparameters are assumed independent,

• the number of hyper-parameters n needs to be relatively low, that is
n ≲ 10,

• due to the use of Laplace approximations, the model must be latent
Gaussian, which means that the latent parameter vector is assumed to
come from a multivariate Gaussian distribution.

Considering the hierarchical form of INLA with observations x⃗, latent effects
z⃗ and hyperparameters θ⃗, and sticking with the notations of probability rather
than likelihood, Eq. 4.22 has the form (Gómez-Rubio, 2020):

π(z⃗, θ⃗|x⃗) ∝ p(x⃗|z⃗, θ⃗)p(z⃗|θ⃗)π(θ⃗). (4.24)



46 CHAPTER 4. POISSON RATES

Assuming the independence of data x⃗ given z⃗ and θ⃗, we get

p(x⃗|z⃗, θ⃗) ∝
k∏

i=1

p(xi|yi, θ⃗), (4.25)

and since the latent parameter vector z⃗ comes from the multivariate Gaussian
distribution, we have

p(z⃗|θ⃗) = |
↔

Q(θ⃗)|
1
2 e−

1
2
z⃗T

↔
Q(θ⃗)z⃗, (4.26)

where
↔

Q(θ⃗) is the precision matrix of the latent multivariate Gaussian distri-
bution. Now by moving the product to the exponent, we get

π(z⃗, θ⃗|x⃗) ∝ |
↔

Q(θ⃗)|
1
2 e

(
− 1

2
z⃗T

↔
Q(θ⃗)z⃗+

∑k
i=1 ln p(xi|yi,θ⃗)

)
π(θ⃗). (4.27)

The goal of INLA is to obtain the posterior marginals of the unknown hyper-
parameters and the latent parameters. For the marginal of each of the hyper-
parameters in θ⃗ we get by definition

π(θj |x⃗) =
∫
Rn−1

π(θ⃗|x⃗) dθ⃗−j , (4.28)

where θ⃗−j stands for the vector of all hyperparameters except for θj . Similarly
for the latent parameters z⃗ we have

π(zi|x⃗) =
∫
Rn

π(zi|θ⃗, x⃗)π(θ⃗|x⃗) dθ⃗. (4.29)

The previous equation is solved approximately on a finite grid of M hyperpa-
rameter values θ⃗m:

π̃(zi|x⃗) =
M∑

m=1

π̃(zi|θ⃗m, x⃗)π̃(θ⃗m|x⃗)∆m, (4.30)

where π̃ is an approximation of the probability function π and π̃(zi|θ⃗m, x⃗) is
approximated, for example with Laplace approximation. To evaluate both
integrals, an approximation π̃(θ⃗|x⃗) is needed. This is done as

π̃(θ⃗|x⃗) ∝ π(x⃗|z⃗, θ⃗)π(z⃗|θ⃗)π(θ⃗)
π̃G(z⃗|θ⃗, x⃗)

|x=x∗ , (4.31)
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where π̃G(z⃗|θ⃗, x⃗) is a Gaussian approximation, which is justified, since the la-
tent effects z⃗ are Gaussian. The INLA toolbox is available as a library R-
INLA (R-INLA, n.d.) and allows for convenient use via a function call, in-
cluding options for many popular hyperpriors, latent random effects, different
approximations of π̃(zi|θ⃗, x⃗), and a lot of freedom for special purposes. Both
the background and a practical user guide for R-INLA is offered in the book
by Gómez-Rubio (2020). To use R-INLA in a simple Poisson case, such as
in the toy model defined by Eqs. 4.17 – 4.19, a vector of measured counts is
needed, in addition to a vector of covariates of the same length, which would
be the yi and y5i values in this specific case. In Paper II. of this thesis, we used
INLA to fit dust rates observed by SolO in a similar setup, where the higher-
level was degenerate, and only the hyperparameters were used in a nonlinear
rate-defining model, making use of INLA’s speed, although not utilizing its
spatial modelling potential.

4.4.4 The importance of prior

The prior distribution π(θ⃗) represents the prior belief about the value of θ⃗
and it might be based for example on previous estimations, personal prefer-
ence, community consensus, or computational convenience, and each of these
choices might lead to a different result and implies a different meaning of
the result. This is why the necessity of prior is often regarded as a disad-
vantage of the Bayesian approach. On the other hand, inclusion of the prior
makes the process more transparent. A non-Bayesian parameter estimation
is often followed by a discussion comparing the result with previous estimates
and discussing the limits of applicability. Alternatively, the result might not
get published, if it doesn’t match the expectations. The expectations and other
constraints could be transparently included in the form of a prior.

Non-informative prior A flat prior (π = const.) is often used and assumed
to be a neutral starting point. In such a case, the likelihood is effectively
treated as being the posterior distribution, except for the normalization pref-
actor. Although the flat prior can be a legitimate choice, it is important to
appreciate that any prior choice is a choice, and there is no prior without
assumptions. Flat prior implies that all the possible values of the inferred pa-
rameter are equally possible and expected, which is untruth more often than
not. Furthermore, depending on the model, domain, data, coordinates, and
the transformation used, flat prior might not be the least informative (Lemoine,
2019).

Another aspect of flat priors is that a flat prior over R is not a valid proba-
bility density function. Therefore, a flat prior over a great finite range is often



48 CHAPTER 4. POISSON RATES

used, with zero probability elsewhere. Depending on the numerical method, an
improper prior might be used, which is a non-integrable prior, provided that
the likelihood factor L(θ⃗|x⃗) ensures the integrability of the results. The in-
terpretation of such a result is complicated, as the assumptions of the Bayes
theorem are not met.

Conversely, the likelihood factor might be non-integrable, which is not an
issue, if both the prior and the posterior are. This is often the case when
a single data point is used to get the posterior. In such a case, the choice
of prior is very consequential. Generally speaking, the importance of prior is
the lower, the more data points are used to construct the likelihood.

Informative prior Using a non-flat, weakly informative prior might be nu-
merically beneficial by ensuring integrability of the posterior. Also, extrema
are relatively rare in higher dimension. For a stationary point to be an ex-
tremum rather than a saddle point, the sign of the second derivative must be
the same in all the dimensions, which is automatically satisfied in one dimen-
sion, but rarely satisfied in high dimensions. Multiplying the likelihood with an
appropriate (weakly informative) prior might make this problem numerically
a lot easier.

Existing knowledge might be leveraged, when constructing a prior. We then
speak of informative prior, as it holds a non-trivial information. Such a prior
must be backed by theory rather than to be constructed based on the inspection
of the available data, otherwise the same information is harnessed twice. These
are especially useful if only a few data points are available. In Paper II, we used
moderately informative priors. We could do so, since the unknown parameters
were constrained by previous results of other authors and by physics, as not
all the values were physically meaningful.



5 | Dust detection

The presence of dust in space was hypothesized long ago by Cassini (1685) as
an explanation for the faint light on the night sky near the plane of ecliptic,
the zodiacal light. Dust was also observed locally, that is in-situ, by its interac-
tion with spacecraft since the dawn of the space age, when the concern about
the risk it posed to the spacecraft was present (Whipple, 1958). This chapter
provides an introduction into dust detection methods in general, and into an-
tenna detected impact ionization in particular, since it is vital for the rest of
the present work.

5.1 Remote observations

Since dust grains in space absorb light, they are observed by extinction of light,
(Desert et al., 1990) allowing for transmission spectroscopy, which is useful on
the galactic scale (Mann, 2010). In terms of the solar system, refraction, re-
flection, and thermal emission by dust is important, since it shows the spatial
distribution and size distribution of dust in the zodiacal cloud (Allen, 1946;
Van de Hulst, 1947; Leinert et al., 1981; Stenborg et al., 2018; Stenborg et al.,
2021). Measurements of luminance in principle integrate the luminosity on
a line of sight (LOS) between the observer and infinity. Most of the lumi-
nosity originates near the Sun, where both the dust density and the sunlight
are the strongest. However, as the existence of Gegenschein shows (Roosen,
1971), scattering is very angle dependent. It favors smaller angles and, there-
fore, the sources closer to the observer, and makes the inversion of LOS lu-
minance into dust density more model dependent and ambiguous (Mann et
al., 2004; Kneißel and Mann, 1991). Observations from 1AU are therefore
limited, especially a few angular degrees from the Sun. The best results are
achieved with measurements closer to the Sun, such as those of the two Helios
spacecraft (Leinert et al., 1981), which, as we mentioned previously (Eq. 3.1),
found the number density of bound dust between 0.3AU and 1AU scaling
as n(R) ∝ R−1.3. More recently, measurements of the Wide-field Imager for
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Solar Probe (WISPR) confirmed this trend (Stenborg et al., 2021), and even
observed a dust depletion zone within 19RSun ≈ 0.09AU (Stenborg et al.,
2022). The measurements are difficult to interpret because the luminance of
dust-caused F-corona and dust-independent K-corona are hard to distinguish.

WISPR observed many phenomena, one of them being the clouds of space-
craft debris liberated by impacts of hypervelocity dust on the insulating carbon
foam (Malaspina et al., 2022). The carbon thermal insulation is fragile, and
the debris moves slowly enough that the light they scatter is captured in indi-
vidual shots, allowing for the estimation of their speed, which was found to be
about of 1m/s. Trajectories of the debris were also found to be curved around
biased electrical antennas, which is a motion similar to the motion of electrons
in Pantellini et al. process (Pantellini et al., 2012), which we hypothesize might
be responsible for the double-peak signals reported on SolO in Paper III.

5.2 Impact ionization

5.2.1 Charge generation process

A very fast impact of a dust grain onto a solid target, such as spacecraft body,
releases free charges. This is because of the great energy density at the impact
site (Shen, 2021). At moderate relative speeds of v ≲ 10 kms−1, the ionization
is mostly due to surface effects on the grain and on the target (J. Kissel and
Krueger, 1987). At much higher speeds v ≳ 20 kms−1, the grain is destroyed
completely, and the ionization is due to the effects in the bulk of the target
(Hornung and J. Kissel, 1994). For this, shock wave formation in the target at
supersonic speed is important (Drapatz and Michel, 1974), which concentrates
the available energy into the shock front, which makes up a small volume of
the target, resulting in high volumetric energy density.

The first reported observation (Friichtenicht, 1964) of impact ionization
followed shortly after the development of the first MV dust accelerator (Fri-
ichtenicht, 1962). The charge leaving the impact site after the impact of carbon
and iron dust grains was measured with a preamplifier connected to a metal-
lic target. The charge was observed to be quasi neutral, and the amount of
generated charge q was found consistent with the relation

q ∝ mv3, (5.1)

for the velocities 2 kms−1 < v < 15 kms−1, where m is the mass of the grain
and v is the impact speed. Later measurements (A. Auer and Sitte, 1968;
McBride and McDonnell, 1999; Grün, 1984; Collette et al., 2014; Shen, 2021)
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worked with a more general empirical equation of

q ∝ mαvγ , (5.2)

and mostly found α ≈ 1 and 3 < γ < 5, depending on the speed interval and
the combination of the grain material and the target material.

We note that the amount of generated charge is random, even if m, v, α, γ
are known, and Eq. 5.2 is the model for the average amount of the generated
charge. The difference between this average and the individual data points is
often significant, with a spread of a factor of two or more (Collette et al., 2014;
Shen, 2021). Due to the randomness involved, and due to the steep dependence
on the impact speed v, little information about mass m is usually recovered
from the measurement of charge q, unless the measurement happened in a well
controlled environment of a laboratory.

5.2.2 Laboratory simulation

The most successful dust accelerators are based on electrostatic acceleration
principle, not dissimilar to the ion gun. The latest such device offers the ac-
celeration voltage of up to 3MV (Shu et al., 2012), allowing for speeds up to
v ≳ 50 kms−1 for r ≲ 1µm grains, measuring both the mass and the charge
state of the grain right before it hits the target. It not only allows for study
of the impact ionization process (Collette et al., 2014; Nouzák et al., 2018;
Kočiščák et al., 2020; Nouzák et al., 2021; Shen et al., 2021a; Shen et al., 2021b;
Shen et al., 2023), but also for the study of atmospheric ablation (Thomas et
al., 2017; DeLuca et al., 2018; DeLuca et al., 2022; Tarnecki et al., 2023).
Many aspects of each impact can be measured at the same time, as there
is no limitation on the payload nor on the transmission capacity, such as in
the case of spacecraft experiments. Although versatile, accelerator measure-
ments bear disadvantages: the experiment happens in a confined chamber in
finite vacuum, the accelerated dust grain is selected randomly from a reser-
voir, and there is an intrinsic correlation between the speed and the mass of
a grain, given the charge and the accelerating voltage are constant (Shelton
et al., 1960). As far as the replication of space environment goes, the plasma
conditions (solar wind, UV illumination) can be partially replicated in labora-
tory (Shu et al., 2012; Horányi et al., 2008), but the noise level in laboratory
is never achieved as low as in space.

5.2.3 Dedicated ionization detectors

The mechanism of impact ionization is used to detect dust impacts on space-
craft. In principle, a surface is in a chamber, where the entry of charged parti-
cles is blocked by a filter, which is however not capable of blocking the entry of
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dust grains. The surface is therefore exposed to potential dust impacts, which
are the only thinkable source of charge in the chamber. Charge is monitored
with a bias collector in the chamber, and whenever it appears, it is due to
a dust impact. The first such detector was used on the Orbiting Geophysical
Observatory (OGO) 3 mission (Alexander and Bohn, 1968), and was used many
times in forms of variable complexity, some of them resolving the charge and
directionality (Grün et al., 1992a; Grün et al., 1992b; Berg and Richardson,
1969) of the incident grains, or even allowing for spectroscopy of the impact
plasma (R. Srama et al., 2004; Sommer et al., 2023). Impact ionization detec-
tors are sensitive and versatile, and they are used not only in orbit, but also on
sounding rockets (Gunnarsdottir, 2019; Trollvik et al., 2019) to study smoke
particles in the mesosphere.

5.2.4 Non-ionization dust detectors

Mechanical methods

A penetration method was employed on Pioneer 10 and 11 (Humes, 1980).
A 25µm and a 50µm pressurized steel cells were mounted on Pioneer 10 and
11 respectively, 234 cells on each, counting the impacts of dust grains fast and
big enough to penetrate them, which showed by the pressure loss in the cell.
Together, these detectors counted 182 dust impacts, showing clearly higher
abundance of dust near Jupiter and Saturn, and concluding that the ≈ 10µm
grains observed between the asteroid belt and Jupiter were not circular and in
the ecliptic plane, but rather eccentric or inclined.

An integration experiment was conducted on the Long Duration Exposure
Facility (LDEF) satellite (Love and Brownlee, 1993), which consisted of a study
of 5.6m2 aluminium plate exposed to the near-Earth environment for nearly
six years. In total 761 craters were found on a microscope scan, allowing
for the estimate of the total meteoric mass accretion rate by the Earth to
40± 20 kgy−1.

Aerogel, an extremely low-density silica material, was shown to provide
gentle enough dissipation of kinetic energy to capture hypervelocity cosmic
dust grains intact (Tsou, 1995). The same material was used to recover a dust
sample from the Wild 2 comet, which was achieved by the Stardust mission
(Brownlee, 2014).

Piezoelectric

At the early age of in-situ dust science, dust was detected with so-called micro-
phone detectors (Alexander et al., 1963). The principle is quite simple, as such
a device consists of a hard target connected to a piezoelectric element, which
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acoustically registers each strong enough impact. The detectors were however
often sensitive to other effects, which led to vastly imprecise expectations of
dust-induced erosion of spacecraft (Whipple, 1958).

PVDF

Polyvinylidene fluoride (PVDF) is a ferroelectric polymer, hence, a polymer
capable of holding a permanent electric dipole. When a thin PVDF foil is per-
turbed by a dust impact, the dipoles are locally perturbed and the material gets
locally depolarized, creating a current spike between the surfaces of the foil.
Such detector is sensitive to r ≲ µm hypervelocity grains and can be made with
a relatively large detection area and a very low dead time (Tuzzolino, 1996).
The latter was used in Vega 1 and Vega 2 missions in the proximity of the comet
Halley (Simpson et al., 1988). If calibrated, such detector provides information
about the magnitude of the impact, as the amount of released charge depends
on the mass and the speed of the incident grain. The Venetia Burney Student
Dust Counter (VBSDC) (James et al., 2010), a device of the New Horizons
mission based on this principle has reported the dust flux between 1AU and
50AU (Bernardoni et al., 2022) and has already been functioning for over 18
years, since 2006.

5.2.5 Antennas

Many spacecraft carry electrical antennas, which are, not necessarily by design,
sensitive to changes in the potential of the spacecraft body (Meyer-Vernet et al.,
2017). The term antenna detection is misleading, since it is the whole space-
craft surface, which acts as a dust detector. It is then the antennas, which
register the free charge created upon impact. The spacecraft body is typi-
cally positively charged whenever the spacecraft is in sunlight, due to the cur-
rent of photoelectrons escaping from the spacecraft body (Guillemant et al.,
2013). Since the resulting electric field around the spacecraft acts to separate
the impact-created charge, attracting negative and repulsing positive charge,
the positive potential of the spacecraft is transiently lowered. If the time before
the equilibrium is restored is long enough, the impact is registered (Mann et
al., 2019). The first spacecraft to measure these transient signals attributable
to dust was Voyager 1 in 1980 (Scarf et al., 1982; Aubier et al., 1983; Gur-
nett et al., 1997), and numerous spacecraft, such as Voyager 2 (Gurnett et
al., 1983), Vega (Laakso et al., 1989), Deep Space (DS) 1 (Tsurutani et al.,
2003), Cassini (Kurth et al., 2006), Wind (Malaspina et al., 2014), Mars Atmo-
sphere and Volatile Evolution (MAVEN) (Andersson et al., 2015), STEREO
(Zaslavsky et al., 2012), Cluster (Vaverka et al., 2017), and Magnetospheric
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multiscale (MMS) mission (Vaverka et al., 2018) were shown to be suitable for
this analysis, adding a new purpose to their electric antenna measurements.

Recently, this method was acknowledged during the design phase of
the electrical antenna suite of PSP’s FIELDS (Bale et al., 2016), and of SolO’s
Radio and Plasma Waves (RPW) (Maksimovic et al., 2020), making the data
a lot more usable for dust identification by design choice (Mann et al., 2019).
Even still, the process is dependent on the impact site, spacecraft’s state,
the ambient conditions, and the parameters of the grain. The time-domain
sampled waveforms carry non-trivial information on these. The interpreta-
tion of the waveforms’ fine structure in terms of the charge generation and
collection process was attempted in Paper III.

Another method of antenna dust detection was proposed, called Radio
Dust Analyzer (RDA) (Lesceux et al., 1989), which is not to be confused with
antenna detection as commonly referred. RDA is based on remote sensing of
the grain’s own electric field, as it (narrowly) misses an electrical antenna, and,
therefore, antennas detect dust more directly than by merely being sensitive
to impacts on the body. The method offers a great detection area, but is
susceptible to noise (Meuris et al., 1996; Meyer-Vernet, 2001).

5.3 Dust detection in antenna measurements

Many electrical phenomena happen in the inner solar system, which can be
found in the electrical antenna data. Some of them are short in time, such as
encounters of electron holes and related solitary waves (Malaspina et al., 2013;
Steinvall et al., 2019). These produce various signals (Pickett et al., 2004), and
are often difficult to distinguish from dust impacts (Malaspina and Wilson,
2016; Vaverka et al., 2018). Besides, reliably identifying a dust impact with
a low signal to noise ratio (SNR) is complicated in itself. In this section, we
first introduce several metrics, which are useful for comparing the performance
of different identification procedures, and then we introduce several detection
approaches.

5.3.1 Performance metrics

For all the detection methods described in this section, time is discretized to
temporal intervals, each of which is studied for the presence of dust indepen-
dently of the other intervals. During each interval, a dust impact either truly
happened, or truly did not. We denote the former case I and the latter case
O. Typically, O intervals are much more numerous than I intervals. Many of
the O intervals are however very easily ruled out as impacts, as for example,
the maximum electrical amplitude within the interval is within the noise level
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(nothing happens). For the performance testing purposes, a balanced test sam-
ple containing ≈ 50% of either of the two categories I/O is commonly used.
Therefore, the performance on the actual experimental data set might differ
from the test performance.

A detection method assigns either a positive — P or a negative — N label
to each of the temporal intervals of the test sample of length Σ. Given two
options for the dust presence, and the two options for the label, four options
are possible for each of the test sample intervals. Ideally, each of the I intervals
is assigned the P label. We call these true positives and the number of these in
the sample is denoted TP. In the ideal case, each of the O intervals is assigned
the N label, becoming true negative, count of which is denoted TN. It is rarely
the case that TP + TN = Σ. A fraction of O intervals will likely be labeled
P, which are called false positive errors or type I errors, number of which
we denote FP. Vice-versa, each of the T intervals labeled N is called a false
negative error or type II error and their number FN. By definition,

Σ = TP + TN + FP + FN. (5.3)

One of the relevant measures is called false positive rate — FPR, and is
evaluated as

FPR =
FP

FP + TN
≈ 2

FP

Σ
, (5.4)

where the denominator is the total number of O intervals in the test sample,
and FP + TN ≈ Σ/2 for a balanced test sample. Similarly to FPR, the false
negative rate — FNR is defined as

FNR =
FN

FN + TP
≈ 2

FN

Σ
, (5.5)

where the denominator is the total number of I intervals in the test set, and
FN + TP ≈ Σ/2 for a balanced test sample. The term accuracy commonly
evaluates the proportion of correctly labeled intervals, therefore

accuracy =
TP + TN

TP + TN + FP + FN
=

TP + TN

Σ
, (5.6)

and precision is defined as

precision =
TP

TP + FP
, (5.7)

so, it evaluates the proportion of correctly labeled intervals among all the in-
tervals labeled as P. Sometimes the term specificity is used, which commonly
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means 1− FPR. Similarly, the terms recall and sensitivity are used and both
commonly mean 1− FNR. In addition, the F1 score is defined as

F1 = 2
precision · recall
precision+ recall

=
2TP

2TP + FP + FN
. (5.8)

In Paper I, we used the metrics: accuracy, precision, recall, and F1, but all
the other metrics may be evaluated easily, since the TP, TN,FP, FN are all
listed in Paper I.

We note that the information whether the impact truly happened or not
(I/O) is usually not available unless the experiment takes place in a controlled
environment. Therefore, this information is substituted with approximate in-
formation, which needs to be provided by a method, which is a lot more reliable
than the tested method. Such a more reliable, yet approximate method then
serves the function of a benchmark.

5.3.2 Power spectra

The typical main purpose of an in-situ electric antenna measurement device
is detection and analysis of plasma waves. Such measurements are typically
shown in frequency space, such as in a spectrogram or a scalogram. This is
often the main, or even the only data product of the measurement, due to
physical limitations of the device or due to a limitation in data transmission
capacity, especially for non-Earth orbiting spacecraft. This is why the first
antenna detection of dust relied on a multi-channel spectrum analyzer (Scarf et
al., 1982). Since dust signatures are very short-lived, they are visible as short-
lasting broad-band signals, and therefore they interfere with measurements in
many frequency bands.

The upper limit of frequency fhi generated by the impact is due to
the fastest process, that is the rise of the signal. The rise-time is very
variable due to several processes responsible, but usually happens in τrise ≈ µs
(Meyer-Vernet et al., 2017; Shen et al., 2023), which implies the frequency of
fhi ≈ MHz. The slope of the high-frequency tail in the power spectrum is
related to the rise-time (Meyer-Vernet et al., 2017).

The lowest frequency flo is limited by the slowest related process, that is
the relaxation to the equilibrium potential (Zaslavsky, 2015). The characteris-
tic time τdecay of the exponentially decaying signal returning to the equilibrium
depends on the spacecraft’s capacitance CSC and the ambient plasma as

τdecay ≈
CSCkBTph

e|Ie|
≈

CsckBTph

e2neveSSC
, (5.9)

where kBTph is the photoelectron temperature, Ie is the ambient electron cur-
rent on the body of the spacecraft, ne is the ambient electron number density,
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ve is the ambient electron mean speed, SSC is the spacecraft’s effective sur-
face, and e is the elementary charge (Henri et al., 2011). The typical 1AU
solar wind conditions yield τdecay ≈ 1ms, which corresponds to flo ≳ 1 kHz,
but can be longer in sparse plasma, and shorter in dense plasma (Zaslavsky,
2015; Vaverka et al., 2017; Meyer-Vernet et al., 2017).

Although useful, spectral signatures of dust are always ambiguous, as
the short and broad band dust impact signal is not very different from other
short signals, such as solitary waves, or even electrical interference. These are
however more confidently distinguished in the time domain signal, which is
the topic of Paper I. In Paper III, we found the rise and decay time theory,
recently developed for the purpose of dust identification in spectra (Meyer-
Vernet et al., 2017), capable of explaining many of the characteristic times
derived from the time domain waveforms.

5.3.3 Time domain identification

If the spacecraft’s electrical measurements are recorded in the time domain with
high enough sampling rate, the dust impacts are more recognizable, compared
to the frequency domain measurements. The typical features were described
previously in laboratory measurements (A. Auer and Sitte, 1968; Nouzák et
al., 2018; Shen et al., 2021b; Shen et al., 2023), in spacecraft data (Zaslavsky
et al., 2012; Kellogg et al., 2016; Vaverka et al., 2021), and explained theoreti-
cally (Zaslavsky, 2015; Meyer-Vernet et al., 2017; Shen et al., 2021a; Racković
Babić et al., 2022). The response depends on the antenna configuration (Shen
et al., 2023; Vaverka et al., 2021), especially on whether the antennas are con-
figured in a dipole, when the voltage between two antennas is measured, or
in a monopole, when the voltage between one of the antennas and the space-
craft body is measured. Since the spacecraft body usually offers a much bigger
target, compared to the antennas, most impacts happen on the body. Al-
though both monopole and dipole measurements were shown to be sensitive to
dust impacts on the spacecraft body, the monopole configuration is favorable
(Meyer-Vernet et al., 2014; Mann et al., 2019), since in this mode, the potential
of the body is directly measured against an antenna.

Visual identification

A simplified signature of an impact on a positively charged spacecraft body in
the case of monopole measurement is shown in Fig. 5.1 and is briefly described
as follows: upon impact, quasi-neutral charge is released near the spacecraft.
Due to their lower mass, the electrons in the cloud have much higher speed
than the ions, and the most energetic of them escape the potential well of
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the spacecraft, leaving the spacecraft more positive than before. Ions follow,
and more of them escape, since they are repulsed by the positive potential of
the spacecraft, leaving the spacecraft less positive than it was before the im-
pact. The net potential has changed, and this change as a function of the equi-
librium spacecraft potential was studied in laboratory (Collette et al., 2016;
Kočiščák et al., 2020). The new potential of the spacecraft exponentially de-
cays to the original equilibrium. A more elaborate description, directly applied
to SolO’s RPW measurements, is offered in Paper III.

Figure 5.1: A simplified dust impact monopole electrical signature after an
impact onto a positively charged spacecraft body.

Therefore, there are several features to look for in the time-domain mea-
surements, such as the quick rise of the signal, and the exponential decay of
the maximum. Visual identification is robust to the extent to which experts’
opinions on the impact shape agree. Such identification is however very time
consuming, and for a big data set, it is clearly not feasible to use this method
alone.

This method is often regarded as the standard (benchmark) for any other
electrical antenna dust identification method since for spacecraft data, the true
information whether an impact happened, is not available. We also used this
approximation in Paper I. The expert visual classification, albeit imperfect, is
by definition the most reliable approximation of the truth.

Hard-coded identification

The features of dust impact signatures can be translated into algorithmic cri-
teria, which are then efficiently applied to a big data set. While these identi-
fication criteria work well for textbook examples of dust impacts, the actual
impacts in space may be quite different from the canonical example, as they
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might contain a lot of noise, saturated data, solitary waves, or a superposition
of a dust impact and a wave, and other non-standard signals (Vaverka et al.,
2018; Ye et al., 2019; Malaspina et al., 2023). One such algorithm is used
for on-board identification of dust impacts on SolO (Maksimovic et al., 2020),
and in Paper I, we found this algorithm to be 85% accurate and 75% precise.
The test was performed on a sample containing 50% dust and 50% non-dust
recordings, as assigned by the tested algorithm. Classification performance
improvement was the main motivation for the development of a more reliable
automatic identification procedure presented in Paper I.

Machine learning

Supervised machine learning has established itself as a method of time-series
classification, particularly in cases, when the exact classification criteria are
hard to formulate, but labelled data are abundant (Wickstrøm et al., 2022).
This makes it suitable for the problem of dust identification. Methods are
available, such as support vector machine (SVM), which evaluates a set of
pre-defined quantitative features on labelled data and creates a decision algo-
rithm based on them (Vapnik, 1997). Convolutional neural network (CNN) is
a type of a neural network particularly useful for the classification of grid-like
objects, such as images or time-series (Gu et al., 2018). Unlike SVMs, CNNs
yield the features vector by convolution operations, and therefore, they do not
require a pre-defined feature extracting routine. One common disadvantage of
neural networks (NNs), including CNNs, is that their decision making might
be difficult to explain, as NNs generally are black boxes, with their internal
working hard to interpret. However, great progress in NN explainability was
achieved, at least for a limited class of CNNs, in the recent past (Samek et
al., 2021). If designed to be so, CNN can be explainable to the extent that
even features with non-linear effects are interpretable. This not only miti-
gates the black box trust issue but provides more insight into the problem.
In Paper I, both an SVM and an explainable CNN were successfully used to
meaningfully improve the performance of the dust identification algorithm,
compared to the on-board hard-coded algorithm. The best performing CNN
model showed 96% accuracy and 94% precision on a balance sample.

5.4 Dust detection flux modelling

With antenna detection of dust impacts, the whole body of the spacecraft acts
as a detection surface for collisions between dust grains and the spacecraft.
Assuming a 6D phase space probability density function f(r⃗, v⃗) for the dust
cloud composed of grains of identical mass, where r⃗ is the location and v⃗ is
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the velocity of the dust, and normalized to dust number density n as

n(r⃗) =

∫∫∫
R3

f(r⃗, v⃗) dvx dvy dvz, (5.10)

and a spherical spacecraft with the cross section of S, the detection rate λ is

λ(r⃗) = S

∫∫∫
R3

|v⃗ − v⃗sc|f(r⃗, v⃗) dvx dvy dvz, (5.11)

assuming the spacecraft speed v⃗sc. If the spacecraft moves through a dust cloud
with a sharp relative speed between the spacecraft and the dust vimp = |v⃗sc−v⃗|,
which is provided by the dust grains having the same velocity v⃗:∫∫∫

R3

f(r⃗, v⃗) dx dy dz = δ(v⃗), (5.12)

the detection rate simplifies to

λ = Snvimp, (5.13)

assuming that the local number density of dust is n and that all the grains
are detected, if collided with. In reality, the dust cloud is not composed of
grains of identical mass. Therefore, all the collisions are never registered, and
the higher relative speed vimp implies a higher charge produced on impact
(Eq. 5.2), and in turn higher probability of detection, therefore the rate is
sometimes modelled as

λ = Snv1+αδ
imp , (5.14)

where α is the parameter in charge generation (Eq. 5.2), and δ is the mass
distribution slope (Eq. 3.2).

Eq. 5.14 can be simplified for different dust populations. For example, for
bound dust, there is a bond between the dust speed v⃗ and the heliocentric
distance r (Szalay et al., 2020). For β-meteoroids sufficiently far from the Sun,
v⃗ can be reasonably assumed radial and with a speed v, which does not depend
on r⃗ (Zaslavsky et al., 2021). For both bound dust and β-meteoroids, n depends
only depends on the heliocentric distance r (Eqs. 3.1 and 3.4). For interstellar
dust, n and v⃗ are sometimes assumed constant and homogeneous, which is
often compatible with the data (Racković Babić, 2022). In principle, the cross
section S in Eq. 5.14 is orientation dependent for non-spherical spacecraft.
The total model rate Λ in a multi-component model is a superposition of
the detection rates λi for each of the modelled populations as

Λ =
∑
∀i

λi, (5.15)
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where each individual λi is reasonably approximated.
In Paper II, we decided to explain the flux observed on SolO with a two-

component, semi-empirical model (as in Eq. 5.15). This way, we were able
to constrain some of the parameters of the β-meteoroids, such as their speed
and acceleration. In Paper IV, we built a physics based model for bound dust
detections on PSP, using the phase space distribution approach (Eq. 5.11) and
we were able to constrain some of the orbital parameters of the near-solar dust.

5.4.1 Orbital parameters and the data set

Depending on the orbit of a spacecraft, the observed dust flux is dependent
on, and therefore holds the information about different dust populations, while
being unable to resolve other populations. We discussed the defining properties
of common dust populations in Ch. 3. The orbits of selected spacecraft are
shown in Fig. 5.2. In this section, we present different spacecraft, and we
explain why their measurements complement each other.
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Figure 5.2: The orbit of SolO and PSP in heliocentric (HAE) coordinates be-
tween their respective launch date and the summer of 2024, shown in XY (top)
and XZ (bottom) planes. The orbit of the Earth is shown for reference, which
is very similar to the orbits of the two STEREO spacecraft. The direction of
ISD flow is shown with an arrow.
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Solar Terrestrial Relations Observatory

The two STEREO spacecraft orbit the Sun on a nearly circular orbits close
to 1AU. Their electrical antenna measurements allow for dust identification
(Meyer-Vernet et al., 2009b). Beyond the intermittent and hard to explain
nanodust (Meyer-Vernet et al., 2009b), the flux was found to be dominated by
β-meteoroids (Zaslavsky et al., 2012). However, distinguishing β-meteoroids
from bound dust is virtually impossible, since, owing to the circular orbit,
the flux of both is expected to be constant throughout the orbit and the years.
This is also an advantage for the detection of interstellar dust (ISD), which is di-
rectional, and even though its flux is relatively low, compared to β-meteoroids,
it causes most of the observed variance (Zaslavsky et al., 2012; Malaspina
et al., 2015; Racković Babić, 2022), with the flux maxima coinciding with
the anti-parallel velocity between STEREO and ISD, and minima coincid-
ing with the parallel configuration. Like STEREO, the spacecraft located in
Earth’s L1 point also exhibit a nearly-constant β-meteoroid and bound dust
fluxes and are in a good position to investigate ISD (Malaspina et al., 2014;
Malaspina and Wilson, 2016).

Solar Orbiter

SolO orbits the Sun on an elliptical orbit between 0.3AU and 1AU (eccentric-
ity e ≈ 0.52 in 2024), which means that neither its exposure to bound dust,
nor β-meteoroids is constant. This makes identification of ISD difficult, as it is
no longer responsible for an important part of the observed variance. However,
the β-meteoroids are clearly apparent, since the spacecraft’s radial speed al-
ternates between negative (pre-perihelia) and positive (post-perihelia), which
changes the incidence between the spacecraft and the outgoing β-meteoroids.
Asymmetry in the flux between the inbound and the outbound leg allowed
for some of the β-meteoroid parameters to be constrained by Zaslavsky et al.
(2021) and in Paper II. The β-meteoroids are dominant in the SolO data to
the extent that it is not even clear from SolO data alone that bound dust is
needed to explain the observed flux.

Parker Solar Probe

The orbit of PSP is even more eccentric (e ≈ 0.86 in 2024), compared to
SolO, but even more importantly, PSP gets as close as 0.052AU from the Sun.
The relative speed between PSP and the dust components was evaluated by
Szalay et al. (2020), and all suggests that unlike for any other spacecraft,
the near-solar dust flux is dominated by bound dust impacts, especially in
the post-perihelia. While ISD is difficult to distinguish in SolO data, it is very
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unlikely to be confidently identified in PSP data, since the variation of the flux
on PSP is even much higher, and the alignment is even more unfortunate,
with the likely peak of ISD impacts being nearly aligned with the perihelia
(see Fig. 5.2). The bound dust component, crucial for the flux modelling on
PSP, was modelled and constrained in Paper IV. In the paper, we also dis-
cuss the different material of the heat shield, and how it likely causes the heat
shield to be less sensitive to the impacts. The great variability of the ambient
conditions poses additional challenges, as the electric potential, and even con-
ductivity of the spacecraft changes throughout each orbit significantly, which
we also investigated and discussed in Paper IV.

5.4.2 Compatibility of Solar Orbiter and Parker Solar Probe
dust data

In Paper II, we presented a Bayesian fit of a semi empirical dust flux model to
the SolO data from between 6/2020 and 12/2021. As a natural continuation
of that effort, in this section we build on that model, and adjust the procedure
from Paper II. We perform a similar fit but done using the aggregated SolO
data from between 6/2020 and 6/2023 and PSP data from between 10/2018
and 7/2023. As we will see, a good fit is possible, but it does not yield much
new information about the dust cloud.

Since the goal of this section is to incorporate measurements from PSP,
the model needs to change with respect to the model used in Paper II, as there
are physical differences between the spacecraft. Having more data, however,
we can afford to fit a somewhat more complicated model, working with six
unknowns (hyperparameters). The changes with respect to Paper II are:

• a two-component model assuming β-meteoroids and bound dust is used,
as opposed to the two-component model assuming β-meteoroids and
a constant background rate used in Paper II,

• a cuboid shape is assumed for both spacecraft with a different cross sec-
tion from the front, from the side, and from the back, assuming a motion
in the plane of ecliptic,

• while in the case of SolO, the cross sections from the front and from
the back are assumed equal, in the case of PSP, the front side is assumed
to have a smaller cross section, due to a different material of the heat
shield, as discussed in Paper IV.

We model the detection count per day in the case of SolO and per eight
hours in the case of PSP. This choice is not very consequential, if it is reasonable
to assume the detection rate constant within one detection interval, and if an
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Table 5.1: The cuboid-approximation cross section for SolO and PSP. Front
side means the sunward side, back is the opposing side. αshield is the PSP heat
shield miss rate parameter.

Sfront [m
2] Sside [m

2] Sback [m
2]

SolO 10.34 8.24 10.34
PSP 6.11 · (1− αshield) 4.62 6.11

appropriate procedure is used. The SolO/RPW data is a product of the CNN
procedure presented in Paper I and the PSP/FIELDS data is the data product
by Malaspina et al. (2023), which is the same data product as used in Paper IV.
The detection count is assumed to come from a Poisson distribution (as in
Eq. 4.1) and the six-parameter model for the rate, with the free parameters
λa, λb, vb,r, ϵv, ϵb,r, αshield is

Λ = E(λbound + λβ), (5.16)

where E is the exposure time, and the components λbound, λβ are

λbound = λaS(sc, ϕa)

(
|v⃗a − v⃗sc|
va,norm

)ϵv ( R

1AU

)−1.3

λβ = λbS(sc, ϕb)

(
|v⃗b − v⃗sc|
vb,norm

)ϵv ( R

1AU

)ϵb,r

,

(5.17)

where R is the heliocentric distance, and S(sc, α) is the effective cross section,
dependent on the spacecraft and the incident angle ϕ, which in turn depends on
the velocity of the dust cloud v⃗a, v⃗b and of the spacecraft v⃗sc. For compactness,
the subscripts a and b correspond to bound dust and β-meteoroids, respectively.
The bound dust velocity v⃗a is assumed to be purely azimuthal with the speed

|v⃗a| =
(

R

1AU

) 1
2

· 29.8 kms−1, (5.18)

while the velocity of β has two components

v⃗b = e⃗radvb,rad + e⃗azimvb,azim

vb,rad =

(
R

1AU

)−2−ϵb,r

vb,r

vb,azim =
R

1AU
· 9 kms−1.

(5.19)
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Finally, the speed normalization is done with respect to a stationary (non-
orbiting) object at 1AU, therefore

va,norm = 29.8 kms−1

vb,norm =
(
v2b,r +

(
9 kms−1

)2) 1
2
,

(5.20)

where the speed of β-meteoroids at 1AU of 9 kms−1 is based on a discussion in
Paper II. In this case, the fit was performed by M-H MCMC sampling. The as-
sumed cross sections are based on the projections of the 3D models (Garcia,
2018; ESA, 2023) of the two spacecraft and are summarized in Tab. 5.1.
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Figure 5.3: The marginals of the prior (gray) and the posterior (black) of
the fit. The posterior is based on a sample of 107 points and the MAP values
are indicated with vertical lines. Neither prior nor the posterior are normalized.
The summary of both is shown in Tab. 5.2.

The main shortcomings of the model are the single dust speed assumed,
the cuboid approximation, and the approximation of λβ ∝ Rϵb,r . The dimen-
sion of the model, six, is quite high. Therefore, we constrained the support of
the hyperparameters wherever reasonable. This is done with the transforma-
tions used for the prior, indicated in Tab. 5.2. This constraint is most apparent
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Table 5.2: The summary of the prior and the posterior marginals, the same as
shown in Fig. 5.3.

prior posterior
distribution support mean st. dev.

λa Γ(k = 5, θ = 2 · 10−5) R+ 6.97 · 10−5 1.4 · 10−6

λb Γ(k = 5, θ = 2 · 10−5) R+ 5.85 · 10−5 8.2 · 10−7

vb,r Norm(µ = 50, σ = 5) R 75.3 2.7
ϵv 1 + Γ(k = 5, θ = 2 · 10−1) (1,∞) 1.63 3.5 · 10−2

ϵb,r −1.5−B(α = 4, β = 4) (−2.5,−1.5) −1.52 9.6 · 10−3

αshield B(α = 4, β = 4) (0, 1) 0.71 1.4 · 10−3

in the value of ϵb,r being close to the support boundary, which indicates a defi-
cient model, perhaps on the assumption of a single β-meteoroid speed at each
heliocentric distance. However, we note that in Paper II, the posterior mean
of the corresponding parameter ϵr was found to be −1.61 with the standard
deviation of 0.16, hence, compatible with the present result, even as the prior
support spanned R.

The priors and posteriors are shown in Fig. 5.3 and summarized in Tab. 5.2.
They are somewhat different from the results of Paper II, but this is to be
expected, since the data is different, as is the model. Therefore, the unknown
parameters do not have the exact same meaning as they had in Paper II.
The conclusions drawn from the fit in Paper II would not be substantially
different if they were to be drawn from this fit. Interestingly, the PSP heat
shield miss rate parameter αshield implies that the sensitivity of the PSP’s front
side is by a factor of nearly four lower than the sensitivity of its other sides, and
that of SolO. Two things are apparent from Fig. 5.4. First, the model predicts
that there is a period present in each post perihelion of PSP, when bound dust
dominates the flux, consistently with the predictions made by (Szalay et al.,
2020; Szalay et al., 2021). This supports the validity of the analysis done in
Paper IV. This is not observed for SolO, for which β-meteoroids are always
dominant. Second, the model is deficient, as it fails to represent the aphelia
fluxes of later PSP orbits, where the model flux is higher than observed. This
might be an instrumental effect, if the change of the spacecraft’s sensitivity
introduces variance beyond what is a part of the model, but it might be a sign
that the model does not sufficiently capture the dynamics of the dust cloud.
We however see that both spacecraft do fit well in the same framework of
a two-component, β and bound dust model.
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Figure 5.4: The measured impact rate for SolO (top) and PSP (bottom),
where the error bars correspond, for visualization purposes, to 90% confidence
intervals, assuming the rate was identical to the observed count per exposure
time. The lines correspond to the MAP result of the two-component fit.
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6 | Summary of Papers

The thesis aims to infer physical properties of the interplanetary dust in terms
of dust populations by analyzing experimental data. We use the electrical
antenna measurements of two spacecraft: SolO and PSP. To yield the most
information, the data had to be treated carefully, keeping the limited confi-
dence of dust identification in mind. The dust cloud analysis is indirect, as
the antenna measurements yield little information about each individual im-
pact. Therefore, the physical properties of the dust populations only emerge
in statistics.

The main body of this work is the four papers presented below. Each of
the papers has several co-authors, and the thesis author’s particular contribu-
tion is explicitly described in the acknowledgments in each of the papers.

Paper I

SolO’s antennas record electrical time-domain waveforms when the electric field
shows signs of potentially interesting activity, not necessarily of dust origin. It
is a long-standing issue to convincingly classify electrical signatures by means
other than visual event-by-event human labelling. In Paper I, we report on
the development of a machine learning tool, which provides this functionality.
We tried two machine learning approaches and improvement was attained with
a purpose-developed convolutional neural network, which achieved 96% clas-
sification accuracy and 94% precision, compared to 85% accuracy and 75%
precision of the previously used algorithm. Developing this tool was instru-
mental for the subsequent work on SolO dust counts, as a solid data product
is key for any more refined analysis, such as that done in Papers II and III.

Paper II

There are many degrees of freedom in dust flux models. To constrain them as
much as possible, we employed a Bayesian approach to analyze the antenna
dust counts for the first time in Paper II. We constructed a semi-empirical two-
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component model, inspired by previous works of other authors, and applied it
to SolO data, specifically the data product of Paper I, from between 07/2020
and 12/2021, all recorded between 0.5AU and 1AU. We estimated the speed
of outgoing β-meteoroids to 63 ± 7 kms−1. We found with confidence that
the β-meteoroid population is decelerating on its way out of the inner solar
system, which clearly implies that the radiation pressure is lower than gravity
for these grains, that is β < 1.

Paper III

In Paper II, we only used the impact counts, that is the binary information,
whether an impact happened, for each of the many temporal intervals. Electri-
cal antenna measurements also provide information about the amplitude and
shape of each of the impacts, which was disregarded in Paper II. This was
the motivation for Paper III, where we report on the finding that the signals
recorded with SolO/RPW are typically double peaked. In fact, we found that
the chronologically first peak, denoted primary, is explainable by the current
theory of the dust impact signal formation. The secondary peak, which was
found to be much more variable, was found to appear on a significantly longer
time scale explained by the ion motion. This is possibly explained by the escap-
ing ions having influence on the individual antennas. We found this secondary
peak to be too strong to be caused by direct ion detection. A possible explana-
tion was found in the application of the Pantellini et al. (2012) process, which
predicts a strong response of cylindrical antennas to the vicinity of ions, which
prevents the photoelectron recollection for a short time. With our adaptation
of the Pantellini process, we partially explained the relation between the pri-
mary and the secondary peak’s amplitude. Based on the findings of Paper III,
we suggest that the maximum amplitude of a signal is not a good proxy for
the impact-generated charge, and the amplitude of the primary peak is to be
studied instead.

Paper IV

PSP detects most of the dust impacts in the near vicinity of the Sun, where an
important, or even dominant, portion of the impacts is attributable to bound
dust. This makes the measurements unique with respect to other instruments,
and this motivated Paper IV, in which we: first compared the measurements
of PSP and SolO near 1AU and, second developed a phase-space distribution
function based model for the impact counts, which takes into account orbital
parameters of the bound dust cloud and semi-empirical parameters of the ex-
periment. We did not fit the PSP data with the model directly, as the model
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is clearly too crude to replicate the experiment, but two general features were
studied. We compared the heliocentric dependence of the dust count predicted
by the model with the dependence observed in the data. We found that the de-
pendence of the observed count on the relative speed between dust and PSP is
lower than previously assumed, implying a comparatively flat mass distribu-
tion of dust inside 0.5AU. By studying the predicted and the observed dust
count near perihelia, we found that the flux minimum observed near the peri-
helia is too prominent to be explained by the alignment between the spacecraft
velocity and the dust velocity. We offered alternative explanations for the flux
minimum, including the presence of a dust depletion zone.



72 CHAPTER 6. SUMMARY OF PAPERS



7 | Conclusions
and future work

This thesis has shown that by statistical analysis, physically meaningful pa-
rameters of the interplanetary dust cloud can be yielded from the dust impact
counts recorded with spacecraft, which improves our understanding of the in-
ner solar system dust cloud. We showed that a convolutional neural network is
a viable tool for dust identification in antenna measurements, which we used
for SolO data, and which has the potential to improve the quality of data
products of other spacecraft. We presented a Bayesian approach to modelling
the dust counts recorded with spacecraft, which can fit more sophisticated
models. We also presented and demonstrated a statistical toolbox for this
task, and we used it to characterize the dynamics of β-meteoroids, and to de-
scribe their deceleration. As a part of this thesis, the method of dust detection
with antennas was studied, and we have shown the importance of photoelec-
trons for the detection. Understanding of the data relies on robust knowledge
of the impact process, which we also contributed to as a part of this thesis, by
pointing out and the presence of a two-peak structure in the impact records.
Using the formalism of kinetic theory, we explained several features of the dust
flux observed with PSP and we showed that such modelling effort is fruitful
and potentially practical for other spacecraft and other dust environments. In
particular, we showed that the available data are compatible with a near-solar
dust depletion zone and that the spacecraft properties are consequential for
the interpretation of the data. To understand the inner solar system dust
environment more deeply, and to make the most of the presented methods,
several tasks remain for future inquiry.

The dust identification method presented in Paper I is significantly more
reliable than the methods used before, but it is limited to certain measurement
regimes of the specific device used on SolO. The development of a routine for
automatic classification of waveform signals is challenging, as the compatibil-
ity between different measurements is limited, due to differences in physical
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design, and in the data products. Since human experts can classify wave-
forms from different devices without technical knowledge of the device, it is
feasible. Having such a routine would be useful, as it would provide another
layer of harmonization of data between different spacecraft. The application
of such routine onboard spacecraft would save the data transfer, and therefore,
potentially allow for better data coverage.

The statistical analysis presented in the thesis and used in Paper II is
superior to the often used least squares fitting, since it treats the counting
error correctly. This is especially important if the number of detections within
a temporal interval is a small number, which it often is. It is strongly suggested
that such a method is used for future analysis of dust counts of not only SolO
and PSP.

The assumption of a dust flux proportional to the impact speed to a power
higher than one was used in several works, including Paper IV of this thesis.
The reason is that since higher impact speed generates more charge, small
grains are detected at a high impact speed, but not at a low impact speed.
The flux therefore depends on the mass distribution of the grains, and on
the charge production as a function of the impact speed. As a simplification,
it was assumed that the produced charge depends on the power of the impact
speed, and that the mass distribution is a power-law. Both are arguable.
The charge production was never experimentally measured at a speed as high
as is the typical impact speed on PSP, or even SolO, so we are limited to
a reasonable extrapolation. More questionable is the assumption of a power-
law distribution of masses. While it might be true for large masses, when
grain to grain collisions shape the cloud, the dynamics of sub-micron dust
depends on the size in a different way. This is clearly demonstrated with
β-meteoroids, which move differently from bound dust, but they occupy only
an order of magnitude or two on the mass scale. Since nearly all grains within
the mass range of β-meteoroids are β-meteoroids, these are missing in the mass
distribution of bound dust. Therefore, the mass distribution of micron and sub-
micron sized bound dust grains cannot be a power-law. A further investigation
of their distribution would prove instrumental for modelling efforts.

Interstellar dust (ISD) was barely addressed in the thesis, since neither SolO
nor PSP are very well suited for its detection. The situation might change when
SolO’s orbit becomes more inclined, and gets to the region, where bound dust
and β-meteoroids are less plentiful. This is coincidentally planned for the late
2020’s, when the ISD flux will likely have recovered, due to the orientation of
the solar magnetic field. Understanding the flux observed out of the plane of
ecliptic would require generalization of the models for the flux but will place
further constraints on the dust parameters. We offered tools which are suitable
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for the forward modelling of ISD in Paper IV and for statistical analysis of ISD
in Paper II.

Several spacecraft have reported nanodust observations and since nanodust
dynamics are strongly influenced by the electromagnetic field, its flux is likely
to depend on the solar cycle. We did not observe nanodust with SolO nor
with PSP, but this might be due to solar cycle. As was shown in Paper III,
antenna dust detection is specific for each spacecraft, and the understanding of
the antenna detection process is still limited. However, SolO’s electrical suite
is similar to that of STEREO, which detected nanodust, so nanodust detection
remains an option for SolO in the future.

Each spacecraft’s in-situ detections happen along its orbit. An intrinsic
bond exists between the velocity and the location, and, therefore, between
the amount of detected bound dust and β-meteoroids. Spacecraft, which
change their orbital elements due to gravity assists, such as SolO and PSP,
change this bond in discrete steps, allowing for a decoupling the two compo-
nents of the flux from each other. Multi-spacecraft analysis allows for even
more, as time and location are not bonded together, allowing for the esti-
mates of time-evolution of the dust cloud. As demonstrated in Paper IV,
multi-spacecraft analysis is complicated, but feasible. It is therefore worthy of
future pursuit, as SolO will get inclined, and more dust-detecting spacecraft
will operate in the solar system simultaneously.
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Abstract. This article presents the results of automatic de-
tection of dust impact signals observed by the Solar Orbiter
– Radio and Plasma Waves instrument.

A sharp and characteristic electric field signal is observed
by the Radio and Plasma Waves instrument when a dust parti-
cle impacts the spacecraft at high velocity. In this way, ∼ 5–
20 dust impacts are daily detected as the Solar Orbiter trav-
els through the interplanetary medium. The dust distribution
in the inner solar system is largely uncharted and statistical
studies of the detected dust impacts will enhance our under-
standing of the role of dust in the solar system.

It is however challenging to automatically detect and sepa-
rate dust signals from the plural of other signal shapes for two
main reasons. Firstly, since the spacecraft charging causes
variable shapes of the impact signals, and secondly because
electromagnetic waves (such as solitary waves) may induce
resembling electric field signals.

In this article, we propose a novel machine learning-based
framework for detection of dust impacts. We consider two
different supervised machine learning approaches: the sup-
port vector machine classifier and the convolutional neu-
ral network classifier. Furthermore, we compare the perfor-
mance of the machine learning classifiers to the currently
used on-board classification algorithm and analyze 2 years
of Radio and Plasma Waves instrument data.

Overall, we conclude that detection of dust impact sig-
nals is a suitable task for supervised machine learning tech-
niques. The convolutional neural network achieves the high-
est performance with 96 %± 1 % overall classification accu-
racy and 94 %± 2 % dust detection precision, a significant
improvement to the currently used on-board classifier with
85 % overall classification accuracy and 75 % dust detection
precision. In addition, both the support vector machine and
the convolutional neural network classifiers detect more dust
particles (on average) than the on-board classification algo-
rithm, with 16 %± 1 % and 18 %± 8 % detection enhance-
ment, respectively.

The proposed convolutional neural network classifier (or
similar tools) should therefore be considered for post-
processing of the electric field signals observed by the Solar
Orbiter.

1 Introduction

1.1 The dust population in the inner solar system

The interplanetary dust population in the inner solar system
(≤ 1 AU) is formed by collisional fragmentation of asteroids,
comets and meteoroids. The meteoroids and the larger dust
particles are in bound orbits around the Sun and their life-
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time is limited by collisions, while the smaller particles that
form through collisional fragmentation are repelled from the
Sun by the radiation pressure force (Mann et al., 2004). The
sources and sinks of the interplanetary dust particles are well
studied at the orbit of Earth (Grün et al., 1985), while there
have been few observations inside 1 AU until recent years.

Model calculations show that the number density of dust
within 1 AU is diminished by collisional destruction (Ishi-
moto, 2000). However, there are a number of uncertainties
that enter the model calculations since the dust collision rates
depend both on the dust number density distribution and on
the relative velocities between the dust particles. These pa-
rameters are generally unknown inside the orbit of the Earth
and the estimated sizes of the fragmented dust particles are
currently based on empirical relations, inferred from labora-
tory measurements of accelerated dust particles (Mann and
Czechowski, 2005). Furthermore, there is an additional dust
population with an interstellar origin that streams through the
solar system. The interstellar dust distribution is largely un-
known and thus complicates the analysis of the interplanetary
dust population. Remote observations of the zodiacal light
and the Fraunhofer corona (F-corona) provide some infor-
mation of the dust population within 1 AU, but mainly of the
larger (> µm) dust particles (Mann et al., 2004). For all these
reasons, in situ measurements are needed in order to better
understand the role of dust in the inner solar system.

1.2 Exploration of the inner solar system

At present, the inner solar system is explored by the
Parker Solar Probe (Szalay et al., 2020), launched 12 Au-
gust 2018, and the Solar Orbiter (Müller et al., 2020),
launched 10 February 2020. Systematic studies of the dust
flux near 1 AU are conducted with the Solar Terrestrial Re-
lations Observatory (STEREO) (Zaslavsky et al., 2012) and
Wind (Malaspina et al., 2014). The first analyses show that
a large fraction of the observed dust particles are repelled
from the Sun, i.e., the dust particles are in unbound orbits
(Zaslavsky et al., 2021; Szalay et al., 2020; Malaspina et al.,
2020). Mann and Czechowski (2021) used model calcula-
tions to explain the impact rates observed by the Parker Solar
Probe. The dust production was modeled by collisional frag-
mentation near the Sun and the dust trajectories were cal-
culated with included radiation pressure and Lorentz force
terms. Mann and Czechowski (2021) showed that the ob-
served impact rates largely agree with the model calculations
for dust > 100 nm and proposed that the differences may be
explained by the influence of smaller particles and of other
dust components, such as dust in bound orbits and interstellar
dust.

In this work, we analyze data acquired by the Solar Or-
biter. The spacecraft orbits the Sun in an elliptic orbit with
a period of approximately 6 months. At perihelion, the Solar
Orbiter reaches a minimum solar distance of 0.28 AU, just
within the perihelion of the Mercury orbit. The expected mis-

sion duration is 7 years, with a possible 3-year extension. The
Solar Orbiter will thus provide long-term, in situ observa-
tions of the environment in the inner solar system with mul-
tiple instruments. One of these instruments is the Radio and
Plasma Waves instrument, allowing observations of the cos-
mic dust flux with typical diameters ranging from ∼ 100 to
∼ 500 nm (Zaslavsky et al., 2021).

1.3 Radio and plasma waves instruments for dust
detection

Radio and plasma waves instruments (i.e., antennas) have
been used for studying dust in the solar system since the Voy-
ager mission (Gurnett et al., 1983; Aubier et al., 1983). A
dust impact is observed by the spacecraft antennas as a sharp
and characteristic electric field signal, produced by the im-
pact ionization process.

The impact ionization process occurs when dust parti-
cles hit a target in space with impact speeds on the order
of ∼ km s−1 or larger, impact speeds which are typical for
space missions in the interplanetary medium. The kinetic en-
ergy of the impact is transferred into deformation, shattering,
melting and vaporization of the dust projectile – and target
material, producing a cloud of free electrons and ions on the
surface of the spacecraft. Laboratory measurements (Collette
et al., 2014) and model calculations (Hornung et al., 2000) in-
dicate that the free-charge yield depends on multiple param-
eters, where the most important are the dust impact velocity,
the dust mass, and the material of both the dust projectile
and the target (the spacecraft surface) (Mann et al., 2019).
The forming cloud of charged particles is partly expanding
into the ambient solar wind and is partly recollected by the
spacecraft. This induces the characteristic electric field sig-
nal, hereafter referred to as the dust impact signal/waveform.

Radio and plasma waves instruments allow for the en-
tire spacecraft body to serve as a dust detector, providing a
large collection area in comparison to dedicated dust detec-
tion instruments. Thus, radio and plasma waves instruments
can provide dust distribution estimates based on thousands
of dust impacts each year, statistical products that are diffi-
cult to acquire by dedicated dust instruments. Still, radio and
plasma waves instruments have lower sensitivities than ded-
icated dust detectors (Zaslavsky, 2015) and the shape of the
dust impact waveform is highly dependent on the potential
difference between the spacecraft and the ambient plasma
(Vaverka et al., 2017). This complicates the analysis of the
dust distribution in the solar system since statistical studies
rely on automatic dust detection with high accuracy, which
is difficult to attain with the software currently in use.

1.4 Machine learning classification of time series data

In this article, we present a machine learning-based frame-
work as a novel method for detecting dust impact signals in
radio and plasma waves instrument data. Machine learning
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methods, in particular neural networks in the recent decade,
have been extensively used for challenging time series classi-
fication problems, such as: speech recognition (Trosten et al.,
2019), heart rate monitoring (Wickstrøm et al., 2022) and hu-
man activity classification (Villar et al., 2016).

A neural network has previously been used for selecting
the signals of interest observed by the WAVES instrument on
board the Wind spacecraft (Bougeret et al., 1995). An unsu-
pervised method (self-organizing maps) was used for iden-
tifying and categorizing plasma waves in the magnetic field
data observed by the MMS1 spacecraft (Vech and Malaspina,
2021). Still, no machine learning tools have been developed
for classifying dust impacts in radio and plasma waves in-
strument data, although the characteristic signal produced by
the impact ionization process is distinctive and could there-
fore be suitable for machine learning detection.

1.5 Motivation and article structure

The main motivation for this work was to develop a dedi-
cated dust detection tool that can be used to automatically
process the large amount of data acquired by the Radio and
Plasma Waves instrument on board the Solar Orbiter. The
aim was to develop a classifier with a high overall classifica-
tion accuracy on a balanced data set that can make statistical
studies more reliable and easier to conduct. For this project,
we defined high accuracy to be (& 95 %) after some initial
testing. We considered (& 95 %) accuracy to be satisfactory
for meaningful statistical studies and a significant improve-
ment to the currently used classification system. In order to
achieve this objective, we used supervised machine learning
techniques to develop the dust classifiers, trained and tested
on a set of 3000 manually labeled observations.

The remaining of this article is structured as follows. Sec-
tion 2 explains the Solar Orbiter – Radio and Plasma Waves
observations and the on-board algorithm that is currently
used for dust impact detection. Section 3 describes the pro-
cedure that was used for developing the machine learning
classifiers, from the downloaded data to the training and test-
ing of the classifiers. Section 4 investigates the performance
of the classifiers and includes the resulting dust impact rates,
calculated by analyzing 2 years of automatically classified
Solar Orbiter data. Finally, Sect. 5 presents the overall con-
clusions of this project.

2 Observations and data acquisition

2.1 The Radio and Plasma Waves (RPW) Instrument
and the Time Domain Sampler (TDS) receiver

This work focuses on electric field signals (i.e., waveforms)
observed by the Radio and Plasma Waves (RPW) instrument
on board the Solar Orbiter (Maksimovic et al., 2020). The
RPW instrument consists of three antennas operating syn-
chronously and the measured electric potential is recorded

by the Time Domain Sampler (TDS) receiver unit (Soucek
et al., 2021).

The TDS receiver is designed to capture plasma waves
(such as ion acoustic and Langmuir waves) in the frequency
range 200 Hz–100 kHz, in addition to the dust impact signals
(Soucek et al., 2021). The antenna voltages are converted to
electric field values using the antenna effective lengths but
are otherwise uncalibrated. We consider only signals sam-
pled with a sampling rate of 262.1 kHz in snapshots of 16 384
time steps, acquired when the TDS receiver was operating in
the XLD1 mode.

The XLD1 mode is the most commonly used observa-
tional mode of the RPW–TDS system (Soucek et al., 2021).
XLD1 is a hybrid mode, where channel 3 (CH 3) is operat-
ing in monopole mode, while channel 1 (CH 1) and channel 2
(CH 2) are operating in dipole mode:
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where Vi −VSC denotes the potential difference between an-
tenna i and the spacecraft body along the antenna boom with
unit vector L̂i and effective lengthLi . For this work however,
the three RPW antenna signals are all converted to monopole
electric field signals (E1, E2, E3) by the following conver-
sion:
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The Solar Orbiter RPW–TDS detection threshold is ∼ 5 mV,
allowing dust impact identification of the cosmic dust flux
with typical diameters ranging from ∼ 100 to ∼ 500 nm (Za-
slavsky et al., 2021).
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Figure 1. Waveforms recorded by the TDS receiver and measured by one of the RPW antennas. The signal label, classified by the TDS
classification algorithm, is included for each snapshot in the subplot titles. The top row presents dust waveforms: (a) is a clean dust impact
waveform; (b) shows a dust impact that saturates the receiver unit (or reaches the non-linearity limit); and (c) presents a weak dust impact
signal that is strongly affected by noise. The middle row presents ambiguous waveforms: (d) might be a dust impact, but information
is limited by the signal framing; (e) is likely a dust impact, but the signal shape resembles solitary waves and is strongly affected by
noise; and (f) might be a dust impact, but noise and possible electromagnetic waves make the signal difficult to interpret. The bottom row
presents waveforms without dust: (g) shows Langmuir waves, characterized by the high-frequency E-field oscillations with a lower-frequency
amplitude modulation; (h) presents solitary waves, which sometimes resemble dust impact waveforms; and (i) shows a signal dominated by
noise, without any clear features. Note that the full (63 ms) snapshots are zoomed to 15 ms intervals around the interesting features and that
the signal amplitudes are normalized to ± 1 and centered around zero for illustrative purposes.

2.2 The Triggered Snapshot WaveForms (TSWF) data
product and the TDS classifier

For this project, we use the Triggered Snapshot WaveForms
(TSWF) data product, processed with software version 2.1.1
and acquired over a 25-month period, spanning between
15 June 2020 to 14 July 2022. The TSWF data product con-
sists of signal packets (63 ms snapshots) that are down-linked
only if the classification algorithm on board the Solar Orbiter
is triggered. The accuracy of the on-board classification al-
gorithm is therefore important in order to optimize the data
transfer and provide reliable data products for statistical anal-
ysis.

The input to the on-board classification algorithm, here-
after named the TDS classifier or the TDS classification al-

gorithm, is the 63 ms signal packet, while the output is cat-
egorized into one out of three labels: dust, wave or other.
Figure 1 presents a few examples of recorded snapshots with
included labels, as classified by the TDS classification algo-
rithm. The TDS classifier assigns the label based on three
extracted features as follows:

1. The snapshot peak amplitude (Vmax)

2. The ratio of the peak amplitude to the median absolute
value of the signal (Vmax/Vmed)

3. The full width half maximum (BW) of the main spectral
peak, identified by analyzing the discrete Fourier trans-
form of the signal.
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Figure 2. A dust waveform observed by antenna 2 on 8 Septem-
ber 2021. The panels illustrate the different stages of the pre-
processing procedure. (a) The electric field offset is removed and
the signal is centered around 0 mV m−1. (b) The signal is filtered by
a median filter over seven time steps to reduce the high-frequency
noise. (c) The signal is compressed by a factor of 4 to reduce the
data size. (d) The waveform is normalized by the maximum abso-
lute value of the signal in order to ease the parameter optimization
of the machine learning classifier. Note the waveform is zoomed to
a 15 ms time period around the dust impact in order to better visual-
ize the impact shape modification by the pre-processing procedure.

The signal label is then determined by comparing the ex-
tracted feature values against configurable thresholds. The
threshold criterion reflects that observations of waves are typ-
ically narrow band (low BW) and the peak of the signal is not
much larger than the median value (low Vmax/Vmed). In con-
trast, dust observations are sharp non-periodic signals (high
BW) that generally have a high maximum to median ampli-
tude ratio (high Vmax/Vmed). For more detailed descriptions
of the TDS classifier, see Soucek et al. (2021).

Figure 1 illustrates that it is challenging to detect and sep-
arate dust signals from the plural of other signal shapes. In
particular, the dust waveform in panel (c) is classified as
other, while the Langmuir wave and solitary wave snapshots
in panels (g) and (h) are erroneously classified as dust by the
TDS classification algorithm. For more information on ob-
servations of Langmuir and ion acoustic waves in the Solar
Orbiter data, see e.g., Soucek et al. (2021), and for an anal-
ysis of Wind observations of electrostatic solitary waves, see
Malaspina et al. (2013).

3 Machine learning-based framework for automatic
dust impact detection

The goal of the machine learning classifier is to take a
monopole RPW snapshot as an input and automatically out-
put if the signal contains a dust impact or not. For this pur-
pose, we use a supervised classifier. A supervised classifier
relies on manually labeled data to learn (i.e., train) the func-
tion that maps the input observation (the electric field signal)
to the output label. For this work, we focus exclusively on
detecting dust impact signals, we therefore use the binary la-
bels: dust or no dust. Additional labels, such as: ion-acoustic
waves, Langmuir waves and solitary waves, could however
be implemented in a similar machine learning-based frame-
work.

3.1 Data pre-processing for machine learning
classification

In order to construct a balanced data set, we selected ∼ 1500
waveforms classified as dust and ∼ 1500 waveforms classi-
fied as wave/other by the TDS classification algorithm. The
signals were randomly drawn from the TDS data archive and
acquired between 15 June 2020 to 16 December 2021. The
TDS signals were then pre-processed to standardize the input
to the classifier and speed up the training. Standardized data
further reduces bias effects and makes the manual labeling of
the signals easier to conduct. For this work, a four-step pre-
processing procedure was used independently on each an-
tenna signal, the pre-processing procedure applied on a sam-
ple signal is illustrated in Fig. 2.

1. Remove the signal offset. The electric field offset is re-
moved by subtracting the raw signal with the median
of a heavily filtered version of the raw data. A sliding
median filter over 21 time steps was selected by visual
inspection of the noise characteristics. The removal of
the electric field offset centers the signal around zero
and reduces bias effects from offset waveforms.

2. Filter the data. The signal is filtered using a sliding
median filter over seven time steps in order to re-
duce the high-frequency noise. The seven time-step fil-
ter was selected by inspecting the power spectrum of
impact signals and by noticing that most information
above (fN = 35 kHz) is buried in noise, although the
TDS sampling frequency is higher (fs = 262.1 kHz),
thus making a filter length (< fs/fN ≈ 7.5) appropriate
without significant loss of information.

3. Compress the data. The signal is re-sampled with a
compression factor of 4 using linear 1-dimensional in-
terpolation. The compression is done to speed up the
training of the classifier, resulting in a re-sampling
from 16 384 to 4096 time steps.

https://doi.org/10.5194/angeo-41-69-2023 Ann. Geophys., 41, 69–86, 2023



74 A. Kvammen et al.: Machine learning detection of dust impact signals

Figure 3. Data flow, from the TDS data sets to the machine learning performance metrics. The diagram illustrates the data flow by the
black arrows and the applied process by the arrow label. The cylinders indicate the signal waveforms and the cylinder color indicates the
associated label. The gray circles mark data transformation processes. The random draw of the TDS data and the pre-processing is explained
in Sect. 3.1, while the manual labeling is described in Sect. 3.2. A description of the randomization and splitting of the manually labeled
data into a training and a testing set is included in Sect. 3.3. Sections 3.4 and 3.5 explain the training and testing of the machine learning
classifiers. Finally, the performances of the machine learning classifiers are compared and evaluated in Sect. 4.1.

4. Normalize the signal. The data are normalized to be be-
tween −1 and 1 by dividing all data samples with the
maximum absolute value of the signal. The normaliza-
tion makes the machine learning classifier more robust
to variations in the signal strength and eases the param-
eter optimization during training.

3.2 Manual waveform labeling

Manually labeled data are used both to train the machine
learning classifiers and to test the performance of the trained
models. Thus, great care is needed in order to construct a
high-quality labeled data set, without significant contamina-
tion of corrupted data files, biases and mislabeled signals.

We manually labeled the data into either dust or no dust.
Each signal was displayed without indications of the previ-
ously assigned label by the TDS classifier in order to reduce
bias effects. Furthermore, a zoom function was used to inves-
tigate the areas of interest, and options were included both
to correct labeling mistakes by the user and to indicate am-
biguous signals that do not clearly fit into any label (dust or
no dust). Appendix A presents the graphical user interface
(GUI) that was used to label the 3000 observations.

It should be noted that 134 signals (i.e., 4.5 %), out of
3000 manually labeled waveforms, were marked as ambigu-

ous and did not clearly fit into either the dust or no dust la-
bel, see the middle row of Fig. 1 for ambiguous examples.
Furthermore, the manual waveform labeling was done by
one scientist, although with consultations with other experts.
Thus, it is to be expected that different scientists will dis-
agree on a proportion (up to 5 %) of the manual labels. The
disagreement level could possibly be reduced if several ex-
perts labeled the same data set, and the labeling consensus
was used as the effective waveform label.

3.3 Developing the machine learning classifiers

The manually labeled data were split into a training set (con-
taining 80 % of the data) and a testing set (with the remain-
ing 20 %). The training data are used to optimize the free
parameters of the machine learning classifiers with respect
to the assigned labels, while the testing data are used as an
independent set to evaluate the performance of the trained
classifiers. The performance of a machine learning classifier
is quantified by comparing the outputs of the trained model
to the labels of the testing data. Figure 3 illustrates the data
flow, from the TDS data sets to the machine learning perfor-
mance metrics.

There are numerous machine learning techniques that are
suitable for time series classification. In this work, we focus
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Figure 4. (a) The (1× 2) feature vectors extracted from all (2400)
observations in the training data, the associated labels are indicated
in green (dust) and red (no dust). (b) The SVM decision line is
defined as a second-order polynomial, obtained by minimizing the
non-separable SVM cost function. The optimized SVM decision
line appears to be reasonable, and most observations are separable
in the training data.

on two well-known techniques: the support vector machine
(SVM), described in Sect. 3.4, and the convolutional neural
network (CNN), discussed in Sect. 3.5.

3.4 The support vector machine (SVM)

The support vector machine (Boser et al., 1992; Cortes and
Vapnik, 1995) is a robust and versatile classification algo-
rithm, considered to be one of the most influential approaches
in supervised learning (Goodfellow et al., 2016). SVMs learn
the decision hyperplane that maximizes the discriminative
power between the observations categorized into two classes
(in this case, dust or no dust). However, SVMs are highly de-
pendent on the representation of the data and often achieve
sub-optimal performance on high-dimensional data (when
used directly). In this case, the observations from three an-
tenna measurements, each with 4096 time steps, are both
high-dimensional and noisy (each time step contains little in-
formation). It is therefore common to extract important char-
acteristics (i.e., features) from the data to provide the SVM
with compactly represented information with less noise and
redundancies.

3.4.1 Feature extraction

In order to develop a baseline machine learning classifier,
comparable to the on-board TDS classification algorithm, a
simple 2-dimensional SVM classifier was considered. Thus,
every observation with dimension (3× 4096) is represented
by a 2-dimensional feature vector (1× 2). After some initial
testing, we selected two features that had a high discrimina-
tive power between the dust and no dust observations.

1. The standard deviation. The mean standard deviation is
calculated over the three antenna channels, each with
4096 time steps. The standard deviation is an appropri-
ate feature since normalized dust signals typically have
a lower mean standard deviation than normalized no
dust signals.

2. The convolution ratio. The log10 value of the convolu-
tion ratio (|conv|max/|conv|median) is calculated, where
|conv| is the absolute values of the convolution of the
antenna signals with a normalized Gaussian of width
0.5 ms. |conv|max is the maximum value of |conv|, while
|conv|median is the median. The convolution ratio was se-
lected as a feature since the dust signals typically have
a larger convolution ratio than the no dust signals. The
Gaussian width of 0.5 ms was experimentally found to
give high correlations with dust impact signals.

3.4.2 Training the support vector machine

The two features (standard deviation and convolution ratio)
were extracted from all observations in the training data. The
decision hyperplane, in this 2-dimensional case a decision
line, is defined by a polynomial of degree 2 that is optimized
by minimizing the non-separable SVM cost function, see
e.g., Theodoridis and Koutroumbas (2009) for details. The
SVM classifier was trained with a slack variable factor of 1
and equal weighting between the dust and no dust observa-
tions. The 2-dimensional SVM is computationally inexpen-
sive to optimize with a training time of ∼ 1 s on a modern
laptop. Figure 4 illustrates the training of the SVM classifier.

3.4.3 Testing the support vector machine

The performance of the trained SVM classifier is evaluated
using the independent testing data, i.e., the remaining man-
ually labeled data (20 %) that were not used for training the
classifier. Figure 5 presents the SVM classification perfor-
mance on the testing data.

Overall, the SVM classifier achieves a classification accu-
racy of 94 % on the testing data using the 2-dimensional fea-
ture vectors. Note that the inclusion of additional extracted
features can possibly enhance the SVM performance. Sev-
eral additional features can be considered, such as the mean
amplitude of the signal, the range between the signal max-
imum and minimum values and the cross-correlation length
(the time lag to the first zero crossing).
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Figure 5. (a) The (1× 2) feature vectors extracted from the testing data (600 observations with hidden labels). (b) The testing data are
classified using the trained SVM decision line, where all observations within the polynomial line are classified as dust, while all observations
outside are classified as no dust. (c) The “true” labels (from the manual labeling) are revealed. It is clear that some observations are confused,
predominantly near the decision line. Still, the SVM classifier achieves an overall classification accuracy of 94 %, calculated by comparing
the outputs from the SVM classification (b) to the “true” labels (c).

3.4.4 Explainability of the support vector machine

Ideally, we want to develop a machine learning classifier
that not only has a high accuracy, but also makes decisions
that are understandable for human experts (Holzinger et al.,
2019). In other words, we want to be able to explain why
the machine learning classifier selected the predicted class
for a given observation. In machine learning, this is often
referred to as the explainability of the trained classifier. Fig-
ure 5 presents the testing data in the 2-D feature vector space,
but this plot gives no clear indications of how different signal
shapes are distributed and which signatures are confused by
the SVM classifier. In order to better understand the decisions
made by the SVM classifier, the signal examples in Fig. 1 are
studied in detail. The analysis is presented in Fig. 6.

It should be noted that the signal examples in Fig. 6 are
not representative for the general distribution of observations
in the 2-D feature vector space, since most observations are
clustered in distinct dust and no dust regions, as can be seen
in Fig. 5. Figure 6 focuses mostly on signal examples that are
challenging to classify. Still, Fig. 6 indicates that the SVM
classifier provides mostly comprehensible outputs, but might
have difficulties classifying weak dust impact signals and sig-
nals with important signatures located at the edge of the snap-
shot frame.

3.5 The convolutional neural network (CNN)

Convolutional neural networks are algorithms designed for
processing grid-like data and have achieved premium perfor-
mance on a number of different tasks in the recent decade,
such as image (He et al., 2016; Kvammen et al., 2020), video
(Karpathy et al., 2014) and time series (Wang et al., 2017;
Wickstrøm et al., 2021) classification.

3.5.1 Feature extraction

Unlike the SVM, the CNN does not require pre-defined fea-
ture extraction routines. Instead, the CNN extracts the fea-
tures based on a chain of convolution operations and auto-
matically optimizes the convolution filters based on the train-
ing data and the associated labels.

For this work, we employed the three-layer fully convolu-
tional network architecture presented in Wang et al. (2017)
and suggested for time series classification after extensive
testing (Wickstrøm et al., 2022; Fawaz et al., 2020; Karim
et al., 2019). The rectified linear unit (ReLU) function (Glo-
rot et al., 2011) was used as the activation function and Batch
Normalization (BN) (Ioffe and Szegedy, 2015) was used at
each convolutional layer in order to regularize the network
and accelerate the training process. Figure 7 presents the em-
ployed CNN architecture.
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Figure 6. The signal examples are presented in (a)–(i), the manual labels are indicated along the y axis and the predicted labels, classified by
the SVM decision line, are presented in the subplot titles. Panel (j) presents the associated signal examples in the 2-D feature vector space
along with the SVM decision line. The dust signals are illustrated in green, the ambiguous signals are marked in yellow and the no dust
signals are indicated in red. The SVM classifier provides mostly explainable outputs. The clear dust signals (a–b) are located well within the
SVM decision line, the ambiguous signals (e–f) are located near the decision line, while the no dust signals (g–i) are clearly located outside.
However, dust signal (c) is erroneously located just outside the decision line, this can possibly be explained by the weak signal-to-noise ratio.
In addition, signal (d) is located well within the decision line, although this signal is labeled ambiguous-no dust due to the signal framing,
this indicates that the SVM might have difficulties classifying signatures located at the edge of the snapshot frame. Note that the signals are
zoomed to 15 ms intervals around the interesting features, similar to the examples in Fig. 1.

3.5.2 Training the convolutional neural network

The three-layer fully convolutional network consists
of 267 010 free parameters (weights and biases) that need
to be optimized to solve the dust impact classification
task. The free parameters are randomly initialized and
thereafter optimized using the ADAM gradient descent
optimizer (Kingma and Ba, 2014). The CNN was trained
for 225 epochs with a cross-entropy loss function using the
2400 labeled observations in the training data. CNNs are
computationally expensive to optimize, as compared to the

SVM classifier, and a training time of∼ 20 min was required
using TensorFlow on a MacBook Pro with a 32-core M1
Max GPU chip. For more details on neural network training
and optimization, see for example (Montavon et al., 2012).

3.5.3 Testing the convolutional neural network

In order to visualize the features extracted by the CNN, we
employ the t-distributed Stochastic Neighbor Embedding (t-
SNE) method (Van der Maaten and Hinton, 2008). The t-
SNE method is used for visualizing high-dimensional data by
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Figure 7. The three-layer fully convolutional network used for the dust impact classification task. The input to the network is the (3×
4096) waveform. The feature extraction process is defined by three convolutional layers, consisting of 128, 256 and 128 independent filters
with kernel lengths of 8, 5 and 3 weights, respectively. Batch normalization (BN) is used at each convolutional layer to regularize the
inputs and the rectified linear unit (ReLU) function was used as the activation function. Finally, the output of the convolutional layers (with
dimension 128×4096) is averaged in the global pooling layer to a feature vector with dimension (128×1). The class score is then determined
in a fully connected (FC) network layer and the output label probabilities (Pdust, Pno dust) are calculated using the softmax function. The
figure is adopted from Wickstrøm et al. (2021).

Figure 8. (a) The testing data (600 observations with hidden labels) are visualized by a dimension-reduced t-SNE map, where similar feature
vectors are modeled by nearby points, while dissimilar observations are modeled by distant points with high probability. (b) The testing data
classified by the trained CNN. (c) The “true” manual labels are presented. Only a few observations, predominantly in the transition region
between the dust and no dust observations, are confused. An overall classification accuracy of 96 % is calculated by comparing the labels
predicted by the CNN to the manual labels. Note that the presented testing data is the same data set that was used to test the SVM classifier,
illustrated in Fig. 5.

assigning each observation a location in a 2-D space such that
similar observations are modeled by nearby points, while dis-
similar observations are modeled by distant points with high
probability. The (128×1) testing feature vectors, extracted in
the global pooling layer, are presented in a 2-D t-SNE map
in Fig. 8, along with a visualization of the CNN classification
performance.

Overall, the CNN obtains a high (& 95 %) classification
accuracy and might therefore be suitable for automatic pro-
cessing of electric field signals observed by the RPW instru-
ment on board the Solar Orbiter.

3.5.4 Explainability of the convolutional neural
network

Neural networks have traditionally been regarded as black
boxes (Shwartz-Ziv and Tishby, 2017; Alain and Bengio,
2016), where the network carries out the desired task, but
the network decisions are difficult to interpret. However,
progress has been made in recent years for making the neu-
ral network decisions more accessible and easier to interpret
(i.e., explainable) for human users (Samek et al., 2021). In
this section, we analyze the CNN decisions by employing
class activation maps and the previously described t-SNE
method.
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Figure 9. The signal examples and the CAM analysis are presented in (a)–(i), the manual labels are indicated along the y axis and the
predicted label, classified by the CNN, is presented in the subplot titles. The highlighted green color indicates the CAM values associated
with the dust class, the green regions therefore emphasize the regions that are considered important by the CNN for detecting dust impact
signatures. Similarly, the red color indicates the regions that are influential for the no dust class. Note that the signals are zoomed to 15 ms
intervals around the interesting features, similar to Figs. 1 and 6. Panel (j) presents the associated signal examples in the t-SNE space along
with the training data signals as transparent points. The dust signals are illustrated by the green dots, the ambiguous signal examples are
marked in yellow and the no dust signals are indicated in red. The t-SNE map shows that the clear dust signals (a–b) are distinctly located in
a green (dust) region, whereas the clear no dust signal (i) is distinctly located in a red (no dust) region. The remaining signals are located in
more mixed regions. It should however be noted that the observations are represented by a 128-dimensional feature vector in the CNN and
that the (2-D) t-SNE representation presented in (j) diminishes a lot of information, meaning that even the signals located in a mixed region
of the t-SNE plot might be separable in the 128-dimensional feature vector space.

Class activation maps (CAMs) (Zhou et al., 2016) high-
light the regions of the data that are important for a consid-
ered label (l) by analyzing the features extracted in the global
pooling layer and the weights in the FC layer that are asso-
ciated with label (l), see e.g., (Wang et al., 2017) for a de-
tailed description. The outcome of the CAM analysis is that
we can visualize the sections of the signal that are influen-
tial for the CNN classification decision. Figure 9 presents the
CAM analysis of the signal examples in Fig. 1 along with
an illustration of the signal features in a dimension-reduced
t-SNE space. Note that the t-SNE mapping in Fig. 9 is differ-
ent from the t-SNE mapping in Fig. 8, since Fig. 9 considers
a different CNN where the signal examples are specifically
excluded from the training data.

The CAM analysis in Fig. 9 illustrates that the CNN
makes classification decisions that are comprehensible (in
most cases). It is however interesting to note that signal (c),
manually labeled as dust, is erroneously classified as no dust
by the CNN, and that this decision is largely based on the tail
(the relaxation period) of the impact signal. It should how-
ever be noted that it is more difficult to explain the no dust
predictions than the dust predictions, since the no dust CNN
decisions are based on the lack of a signature (dust impact)
rather than on the presence of a signature. In addition, signal
(d), manually labeled as ambiguous-no dust, is classified as
dust by the CNN, and this decision is based on a wide region
of the signal with emphasis on the tail of the (ambiguous)
dust impact signal, this section might not have been high-
lighted as particularly important by a human expert.

https://doi.org/10.5194/angeo-41-69-2023 Ann. Geophys., 41, 69–86, 2023



80 A. Kvammen et al.: Machine learning detection of dust impact signals

Table 1. The TDS, SVM and CNN classification performance metrics: accuracy, precision, recall and F1-score. The SVM and CNN scores
and error values are the mean and the standard deviation across 10 training runs. The bold numbers indicate statistically enhanced perfor-
mance with a significance level of 0.01, computed using a t-test.

Classifier Accuracy Precision Recall F1 Score

TDS 0.850 0.746 0.944 0.833
SVM 0.936± 0.012 0.903± 0.027 0.941± 0.017 0.921± 0.015
CNN 0.964± 0.006 0.939± 0.020 0.972± 0.008 0.955± 0.008

Figure 10. (a) The confusion matrix entries are described by the
true (correctly classified) and false (erroneously classified) values;
compared to the manual labels (Lab), positive indicates dust pre-
dictions (Pred), and negative indicates no dust predictions. (b) The
TDS classifier confuses dust and no dust observations, where a sig-
nificant proportion (> 0.20) of dust predictions are manually la-
beled as no dust. (c) The SVM classifier predicts both dust and no
dust observations with a high (> 0.90) accuracy. (d) The CNN clas-
sifier predicts a very large (> 0.95) proportion of both dust and no
dust observations correctly.

In general however, the CNN achieves a high accuracy
(& 95 %) and makes decisions that are mostly in line with hu-
man interpretation. It is therefore reasonable to infer that the
CNN will have a performance comparable to the agreement
level between human experts, where disagreement predom-
inantly occurs for ambiguous and noisy signals, while clear
dust and clear no dust signals are classified correctly.

4 Results and discussions

4.1 Analysis of the classification performance

The average classification performance is obtained by train-
ing and testing the machine learning classifiers over 10 runs,
each run with different training and testing sets. The clas-
sifiers are initialized from scratch and the training and test-
ing sets are selected independently 10 times by randomiza-
tion and splitting of the manually labeled data, as indicated
by the gray circles in Fig. 3. The average class-wise perfor-
mance of the on-board TDS classifier and the machine learn-
ing SVM and CNN classifiers are summarized as confusion
matrices in Fig. 10. Overall, the CNN has the highest perfor-
mance for both dust and no dust classification. In addition,
both the SVM and the CNN classifiers obtain stable perfor-
mances with only small variations for each run.

The classification performance is further evaluated by the
accuracy, precision, recall and F1 score. The definitions for
the performance metrics are included in Appendix B. The av-
erage performance metrics, calculated over 10 runs, are sum-
marized in Table 1. Again, the CNN has the highest perfor-
mance across all metrics. The CNN obtains a significant im-
provement in the classification performance with a statistical
significance at a level of 0.01, computed using a t-test. The
t-test was computed in a pairwise manner between both the
CNN and the SVM scores and the CNN and the TDS scores.
In all cases, the enhanced performance of the CNN classifier
was significant.

The results from both the confusion matrices and the per-
formance metrics strongly suggest that the SVM and CNN
classifiers provide binary classification results with higher re-
liability than the TDS classifier and further that the CNN is
the most reliable classifier overall. We therefore propose that
the CNN classifier (or similar tools) should be considered for
post-processing of the TDS data product in statistical studies
of dust impacts observed by the Solar Orbiter RPW instru-
ment.

In addition, it should be noted that 134 signals (i.e., 4.5 %),
out of 3000 manually labeled waveforms, were marked as
ambiguous, illustrated by the yellow cylinder in Fig. 3, and
did not clearly fit into either the dust or no dust label,
see Fig. 1 for label examples. It is therefore improbable to
achieve a classification accuracy exceeding ∼ 98 % for the
considered data set, and an accuracy approaching ∼ 99 %

Ann. Geophys., 41, 69–86, 2023 https://doi.org/10.5194/angeo-41-69-2023



A. Kvammen et al.: Machine learning detection of dust impact signals 81

should be considered suspicious and can be an indication of
over-fitting.

Both the trained SVM and CNN classifiers are computa-
tionally inexpensive to run. One thousand observations are
classified in 5 s using the SVM model, while the CNN clas-
sifier requires 50 s on a modern laptop, including the needed
time for pre-processing and feature extraction. The proposed
machine learning classifiers are therefore suitable for pro-
cessing large data sets with thousands of new observations
acquired every month as the Solar Orbiter continues its oper-
ation.

4.2 The dust impact rate

In this section, we use the trained classifiers to automati-
cally process a large data set, consisting of 104 032 observa-
tions. This data set contains all TSWF observations acquired
over a 25-month period, spanning between 15 June 2020 to
14 July 2022, that satisfy the criteria in Sect. 2.1 (sampling
rate of 262.1 kHz, 16 384 time steps and XLD1 mode).

Figure 11 presents the TDS, SVM and CNN daily impact
rates with included error estimates. The daily impact rate
is calculated from the automatically detected daily dust im-
pact number and the time-dependent TDS–RPW duty cycle.
The number of dust particles detected by the Solar Orbiter
on each day can be modeled as a Poisson process (Kočiščák
et al., 2022), where the variance in the daily count is equal to
the daily count number, resulting in the standard deviation er-
ror bars presented in Fig. 11. The impact rate function curves
are obtained by fitting the dust flux model from Zaslavsky
et al. (2021) with an included offset as follows:

R = F1AUScol

( r

1AU

)−2 νimpact

νβ

(
νimpact

νimpact(1AU)

)αδ
+C, (7)

where F1 AU is the unknown cumulative flux of particles
above the detection threshold at 1 AU and Scol = 8 m2

is the Solar Orbiter collection area, as defined in Za-
slavsky et al. (2021). Furthermore, r is the radial distance
from the sun, νimpact is the relative velocity between the
spacecraft and the dust particles, assuming a constant ra-
dial and azimuthal velocity vector for the dust particles,
νβ = [50 km s−1, 0 km s−1], and the product αδ = 1.3, as
suggested in Zaslavsky et al. (2021). The assumed constant
radial velocity is a good approximation for dust in hyperbolic
orbits originating near the Sun that is deflected outward by
the radiation pressure force. Finally, we included a constant
impact rate offset, C, in order to obtain an improved fit. The
description of the dust flux in Eq. (7) is based on the assump-
tion that the dust and spacecraft orbits are in the same orbital
plane.

Figure 11 shows that the machine learning classifiers de-
tected significantly more dust particles than the TDS classi-
fier. The SVMs obtained a dust impact detection enhance-
ment of 16 %± 1 %, while the CNNs had an 18 %± 8 % in-
crease. Both the SVM and the CNN classifiers obtain im-

pact rates that are notably higher around the aphelion and
distinctly lower in the vicinity of the perihelion, resulting in
a lower dynamic range of the impact rates than observed in
the TDS data product.

Furthermore, Fig. 11 illustrates that the fitted SVM and
CNN impact rate function cures are in very good agreement.
It is promising that two entirely different machine learning
approaches provide comparable impact rates after classify-
ing a large data set (consisting of 104 032 observations) when
trained and tested on a limited data set consisting of 3000 ob-
servations. This suggests that both the SVM and CNN clas-
sifiers have obtained stable performances and can be used to
classify observations outside the domain of the training and
testing data.

Still, the shape of the dust impact signal is dependent on
the local plasma environment, where influential parameters
are as follows: the electron plasma density, the mean elec-
tron velocity and the electron temperature (Zaslavsky, 2015;
Babic et al., 2022). These parameters will vary throughout
the spacecraft orbit. It should therefore be noted that the ma-
chine learning classifiers were trained and tested on wave-
forms acquired over a 1.5-year period, spanning between
15 June 2020 to 16 December 2021. During this period, the
Solar Orbiter sampled the interplanetary medium at solar dis-
tances ranging from ∼ 0.5 to ∼ 1.0 AU. The spacecraft will
however reach a minimum solar distance of 0.28 AU, and the
performance of the machine learning classifiers might suffer
if the observed dust impact shapes in the vicinity of∼ 0.3 AU
are significantly different from the dust impact shapes at
∼ 0.5 to ∼ 1.0 AU.

Finally, we note that a dip in the SVM and CNN dust im-
pact rates can be observed in Fig. 11, roughly 0.5–1 month
before perihelia 1 and 2 (no data for perihelion 3). This dip
is possibly due to a change in the relative velocity between
the spacecraft and the interstellar dust particles, which is up-
stream at 259◦ in the Ecliptic coordinate system. Still, there
is a large natural (Poisson) variation in the dust impact rates
at perihelion that make visual analysis difficult with the pre-
sented data set. In addition, complicating effects will have an
enhanced influence on the daily dust count number towards
the Sun, such as an enhancement in false detections due to in-
creased variability in the ambient plasma and validity degra-
dation of the dust flux model assumptions in Eq. (7) close to
the formation region of the hyperbolic dust particles.

5 Conclusions

5.1 Summary and scientific implications

We have presented a machine learning-based framework for
fully automated detection of dust impacts observed by the
Solar Orbiter – Radio and Plasma Waves (RPW) instrument.
Two different supervised machine learning approaches were
considered: the support vector machine (SVM) and the con-
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Figure 11. (a) The daily dust impact rates according to the TDS classifier. The full vertical lines indicate times when the Solar Orbiter is at
aphelion, while the dashed lines indicate times at perihelion. (b) The median of the daily impact rates classified by 10 trained SVM classifiers.
(c) The median of the daily impact rates from the 10 CNN classifiers. The impact rate function curves are obtained by fitting the dust flux
model from Zaslavsky et al. (2021), Eq. (7). (d) The impact rate function cures are compared. The SVM and CNN dust impact rates are
very similar, whereas the TDS provides notably smaller impact rates at aphelion and higher impact rates at perihelion. The accumulated dust
impact detections for the TDS classification algorithm and the mean and standard deviation of the dust impact detections for the 10 CNN
and SVM classifiers are presented in the subplot titles. Note that the large data gap around April 2022 (perihelion 3) is due to a different
observational setup for the Solar Orbiter RPW–TDS system, where the sampling frequency was doubled. These data were excluded since it
can not be reliably classified by the SVM/CNN methods without additional data processing and/or training.

volutional neural network (CNN). The CNN classifier ob-
tained the highest performance across all evaluation metrics
and achieved 96 %± 1 % overall classification accuracy and
94 %± 2 % dust detection precision, a significant improve-
ment to the currently used on-board TDS classification al-
gorithm with 85 % overall classification accuracy and 75 %
dust detection precision. We therefore conclude that the CNN

classifier (or similar tools) should be considered for post-
processing of the TDS data product for statistical studies of
dust impacts observed by the Solar Orbiter.

The SVM and CNN classifiers were used to analyze
104 032 observations acquired over a 2-year period, span-
ning between 15 June 2020 to 14 July 2022. On average,
the machine learning classifiers detected more dust parti-
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cles than the currently used TDS algorithm, the SVMs had
a 16 %± 1 % detection enhancement and the CNNs had
an 18 %± 8 % increase. Furthermore, the SVM and CNN
classifiers were in very good agreement and both classifiers
obtained a notably higher dust impact rate in the vicinity of
aphelion and a distinctly lower impact rate at perihelion, as
compared to the dynamic range of the TDS impact rates. This
might indicate a higher ambient dust distribution than previ-
ously observed. This result is significant since it suggests the
presence of dust populations other than the hyperbolic dust
particles in the data. Possible other populations are interstel-
lar dust and interplanetary dust in bound orbits.

The labeled data and the trained SVM and CNN clas-
sifiers are available online with included user instructions.
The proposed method and the presented classifiers can thus
provide the interplanetary dust community with thoroughly
tested and more reliable data products than those currently
in use. The daily dust count numbers from the CNN clas-
sification were employed by Kočiščák et al. (2022) to in-
fer meaningful physical properties of the dust population by
modeling the number of dust detections within a day as a
Poisson-distributed random variable. Kočiščák et al. (2022)
further demonstrated that the same procedure did not provide
dust parameters that were in line with prior knowledge when
using the daily dust detections from the TDS classification.
This result is independent of the manually labeled testing
data, which might be prone to biases, and further suggests
that the CNN approach provides more reliable data products
than the currently used TDS algorithm.

5.2 Outlook and method constraints

The presented machine learning classifiers may be consid-
ered for on board processing of the observed electric field
signals. However, the trained SVM and CNN classifiers pre-
sented in this article are trained on Triggered Snapshot Wave-
Forms (TSWF) data, and should not be used for processing
‘untriggered” signals without additional training and testing
on ‘untriggered” data. Additional training can also be used
to further enhance the performance of the machine learning
classifiers. In particular, adding labeled data acquired near
the Sun (∼ 0.3 AU) and during periods of strong solar ac-
tivity will likely improve the overall accuracy and make the
machine learning classifiers more robust to challenging con-
ditions.

It should also be noted that the classifiers presented in this
work are trained and tested on data labeled by one scien-
tist, although with consultations with other experts. Labeled
data from several experts can provide machine learning clas-
sifiers that are more in line with the labeling consensus in the
interplanetary dust community. Additional labeling can also
be used to extend the machine learning classifiers to include
automatic detection of other characteristic signatures, such
as ion acoustic, Langmuir and solitary waves (Soucek et al.,
2021).

Finally, we would like to highlight that a machine
learning-based framework can be developed for automatic
post-processing of data acquired by radio and plasma waves
instruments on board other spacecrafts, such as the Solar Ter-
restrial Relations Observatory (STEREO) (Zaslavsky et al.,
2012), Wind (Malaspina et al., 2014) and the Parker Solar
Probe (Szalay et al., 2020). Automatic and reliable detection
of dust impact signals observed by multiple instruments at
several locations and over several years will likely facilitate
statistical studies that will enhance our understanding of the
role of dust in the inner solar system, beyond what is attain-
able with the data products that are currently in use.

Appendix A: Graphical user interface for manual
labeling

Figure A1 presents the graphical user interface (GUI) that
was used to manually label all considered (3000) signals into
either dust or no dust. In addition, efforts were made to use
a similar setup (with the same monitor and figure resolution)
throughout the manual labeling in order to reduce bias ef-
fects.

Figure A1. The manual labeling user interface showing a signal
observed 28 July 2021. (a), (c) and (e) display the full snapshot
(from 0 to ∼ 63 ms) at all antennas. An area of interest is selected
by adjusting the red vertical lines. (b), (d) and (f) display the signal
within the area of interest. The signal can be labeled as dust by
pressing the [d] key on the keyboard and no dust by pressing the [r]
key. The signal is indicated to be ambiguous if the waveform does
not fit clearly into either of the two labels; note however that signals
indicated to be ambiguous were also labeled into either dust or no
dust using the [a] and [w] keys. There is also an option to correct [c]
the previously labeled signal (in case of an error), repeat [t] the area
of interest selection and quit [q] the manual labeling user interface.
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Appendix B: The classification performance metrics

The classification performance metrics are calculated using
the true positive (TP), true negative (TN), false positive (FP)
and false negative (FN) values, defined by comparing the pre-
dicted classes and the manually labeled classes, illustrated in
Fig. 10.

The overall accuracy of the classifier is the proportion of
observations that were correctly predicted by the classifier.
The accuracy is mathematically defined as

Accuracy=
TP+TN

TP+TN+FP+FN
. (B1)

Precision (in this case) is defined as the proportion of data
points predicted by the classifier as dust, whose “true” label
is indeed dust. Precision is therefore calculated as

Precision=
TP

TP+FP
. (B2)

Recall (in this case) is the proportion of observations man-
ually labeled as dust, that were correctly predicted as dust by
the classifier. Recall is defined as

Recall=
TP

TP+FN
. (B3)

The F1 score acts as a weighted average of precision and
recall and is calculated as

F1= 2
(

Precision ·Recall
Precision+Recall

)
. (B4)

Code and data availability. The code used for this
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ABSTRACT

Context. Solar Orbiter provides dust detection capability in the inner heliosphere, but estimating physical properties of detected dust
from the collected data is far from straightforward.
Aims. First, a physical model for dust collection considering a Poisson process is formulated. Second, it is shown that dust on hyper-
bolic orbits is responsible for the majority of dust detections with Solar Orbiter’s Radio and Plasma Waves (RPW). Third, the model for
dust counts is fitted to Solar Orbiter RPW data and parameters of the dust are inferred, namely radial velocity, hyperbolic meteoroids
predominance, and the solar radiation pressure to gravity ratio as well as the uncertainties of these.
Methods. Nonparametric model fitting was used to get the difference between the inbound and outbound detection rate and dust radial
velocity was thus estimated. A hierarchical Bayesian model was formulated and applied to available Solar Orbiter RPW data. The
model uses the methodology of integrated nested Laplace approximation, estimating parameters of dust and their uncertainties.
Results. Solar Orbiter RPW dust observations can be modeled as a Poisson process in a Bayesian framework and observations up
to this date are consistent with the hyperbolic dust model with an additional background component. Analysis suggests a radial
velocity of the hyperbolic component around (63 ± 7) km s−1 with the predominance of hyperbolic dust being about (78 ± 4)%.
The results are consistent with hyperbolic meteoroids originating between 0.02 AU and 0.1 AU and showing substantial decelera-
tion, which implies effective solar radiation pressure to a gravity ratio ≳0.5. The flux of the hyperbolic component at 1 AU is found to
be (1.1 ± 0.2) × 10−4 m−2s−1 and the flux of the background component at 1 AU is found to be (5.4 ± 1.5) × 10−5 m−2s−1.

Key words. zodiacal dust – methods: statistical

1. Introduction

Among dust detected with in situ measurements within 1 AU,
particles on unbound hyperbolic trajectories originating in the
relative vicinity of the Sun play a major role, as has already been
shown in the case of measurements of Solar Orbiter (Zaslavsky
et al. 2021). Most of these hyperbolic particles of a submicron
size are believed to be so-called β meteoroids, which are gener-
ated by a high radiation pressure to gravity ratio, denoted as β:

β =
Fradiation

Fgravity
. (1)

It is clear that in the region of dust sizes s ≫ λ ≈ 500 nm,
where s denotes the dimension of a dust particle and λ denotes
the wavelength of incident light, Fradiation depends on a dust
particle’s cross section, while Fgravity depends on a dust grain’s
volume. Hence, the smaller the particle, the higher the β value.
A maximum of β is therefore reached when s ≈ λ and usu-
ally βmax ≈ 1. Notably, both Fradiation and Fgravity depend on the
inverse square of heliocentric distance, hence β remains con-
stant for a given particle throughout its trajectory. We note that
Fradiation and Fgravity are the predominant forces for the β mete-
oroids, as electromagnetic forces become relevant for dust grains
of size s < 100 nm (Mann et al. 2014). Dust of size s < 100 nm
can also be on an unbound trajectory due to electromagnetic
forces (Czechowski & Mann 2021; Mann & Czechowski 2021).

For β = 1, the grain neither accelerates nor decelerates due to
Solar influence. For β = 0.5, the grain feels solar attraction, but
effective Solar attraction is reduced to one-half, which means
that a sudden change in β from 0 to 0.5, for example due to
a change in the size of the grain, causes an originally circu-
lar orbit to become an unbound, parabolic orbit. Particles with
β ≥ 0.5 are created mostly in collisions of larger dust (Dohnanyi
1972, Zook & Berg 1975, and Grün et al. 1985). Larger particles
have very low β ≪ 1 and are therefore originally on Keple-
rian orbits (referred to as initial orbits hereafter), hence β = 0.5
could be considered the minimal value needed for dust to become
unbound.

The population of bound (β ≪ 0.5) dust particles inside 1 AU
is notably responsible for visual observations of zodiacal light.
Their spatial density has been observed to depend on heliocen-
tric distance approximately as ∼r−1.3 (Leinert et al. 1981), which
holds well down to 20 R⊙, or 0.1 AU. Inward of that distance,
they show shallower dependence, suggesting a maximum in den-
sity somewhere inward of 0.05 AU, or 10 R⊙ (Stenborg et al.
2021). Regions with high density of bound dust is very likely
the region of origin of β meteoroids, as the collision rate of
bound dust depends on the square of its spatial density (Mann
& Czechowski 2005).

As β meteoroids likely make up most of the submicron
hyperbolic dust where the particles considered have sizes
s > 100 nm, the two terms are almost interchangeable for the
purpose of the present discussion (Zaslavsky et al. 2021). The
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term β meteoroids is used where radiation pressure ejection
is important and the term hyperbolic dust is used where only
trajectories of the grains are relevant.

The detection of bound dust particles is usually done
remotely, both historically (Van de Hulst 1947 and Leinert et al.
1981) and currently (Howard et al. 2019 and Stenborg et al.
2021), taking advantage of light scattering properties of these
particles. The detection of submicron particles is done mostly
in situ (at an encounter with a particle), due to their insignif-
icant light scattering properties and low spatial density, often
taking advantage of the so-called impact ionization effect (Fri-
ichtenicht 1962 and Alexander & Bohn 1968). Impact ionization
dust detection is a passive data-gathering process carried out by
either a specialized instrument (Dietzel et al. 1973 and Srama
et al. 2004) or often as a byproduct of electric (Gurnett et al.
1997; Meyer-Vernet et al. 1986; Kurth et al. 2006; Wang et al.
2006; Zaslavsky et al. 2012, 2021; Vaverka et al. 2018; Malaspina
et al. 2020; Mozer et al. 2020; and Nouzk et al. 2021) or
magnetic (Malaspina et al. 2022 and Gasque et al. 2022) mea-
surements. Due to high energy density present at the impact site,
free charge is generated upon a hypervelocity dust impact. The
charge generated is partially picked up by the spacecraft body
and/or antennas, which results in specific signatures in fast elec-
tric measurements (Zaslavsky 2015; Meyer-Vernet et al. 2017;
Vaverka et al. 2017; Mann et al. 2019; Shen et al. 2021; Rackovic
Babic et al. 2022). The amount of generated charge Q has been
empirically found to approximately follow the equation

Q = Amγvα, (2)

where in the range of impact velocities 20 km s−1 < v< 50 km s−1

achieved in laboratory (Friichtenicht 1962; Dietzel et al. 1972;
and Shu et al. 2012) γ ≈ 1 and 3 ≲ α ≲ 5. All three parameters A,
γ, and α are dependent on both the material of the grain and the
target (Grün 1984; Grün et al. 2007; and Collette et al. 2014).

For many decades now, it has been standard to express cumu-
lative mass distribution of dust near 1 AU in terms of a power-law
distribution over about 20 decades of masses, from nanodust to
comets and asteroids and above. Clearly, the distribution is an
approximation and the distribution is described with a different
exponent in different intervals. However, it is often the case that
a single experiment is sensitive over several orders of magnitude
and finds that the mass distribution (number of particles with a
mass of at least m) follows a power-law

F(m) = F(m0)
(

m
m0

)−δ
(3)

over the observed range. For example, the work of Whipple
(1967) reported δ ≈ 1.34 for the mass range 10−8–10−1 kg and
δ ≈ 0.51 for the mass range 10−13–10−8 kg. Compiling previ-
ous estimates and relying on the stationarity of a dust cloud,
Dohnanyi (1970) reported δ ≈ 7/6 for sporadic meteoroids of
masses from macroscopic down to 10−11 kg and δ ≈ 1/2 between
10−14 kg and 10−11 kg. Grün et al. (1985) suggested δ ≈ 0.8
in the range 10−21–10−17 kg, that is β meteoroids and smaller.
Recently, Zaslavsky et al. (2021) inferred δ ≈ 0.34 for Solar
Orbiter’s Radio and Plasma Waves (RPW) dust detections of dust
of m ≳ 10−17 kg. It is not clear whether Eq. (3) represents a good
approximation for β meteoroids.

A Poisson point process is a stochastic process defined by the
following properties: (1) a Poisson distribution of counts within
an arbitrarily chosen bounded region (for example a temporal
interval); (2) statistical independence of counts within disjoint

regions (temporal intervals); and (3) no two events can happen
at the exact same location (time).

It is reasonable to assume that the third condition is met,
especially near 1 AU. For Solar Orbiter specifically, the detec-
tion of two subsequent impacts is possible unless they happened
in the same 62 ms window, which is unlikely given the mean
waiting time ≈200 s on the most hit intensive days (see Fig. 4).
The first two conditions demand that a detection of a dust parti-
cle does not influence the probability of detection of a particle at
any other point in time, for example particles do not interact, and
their reservoir cannot be depleted. In the case of β meteoroids,
all of these can be assumed, as particles are likely formed far
away from the spacecraft, they are sparsely distributed, and their
trajectories are uncorrelated. We are aware that the Solar Sys-
tem’s dust cloud is not homogeneous on small scales and that
a large stream (Szalay et al. 2021) or a coronal mass ejection
(Ragot & Kahler 2003) could alter the rate on short timescales,
but we see no evidence for that with Solar Orbiter. Therefore,
a Poisson process is the simplest conceivable model and it is
natural to consider dust counts as an inhomogeneous Poisson
point process, that is a Poisson process with a nonconstant rate.
This means that the rate depends on other parameters, in our
case the distance from the Sun and spacecraft velocity. In fact,
the observed number of detections within a naturally consid-
ered temporal interval, for example an hour or a day, is usually
a low number. This implies a considerable probability of zero
detections, which makes the random variable of detections per
temporal interval a poor fit to a frequently considered normal dis-
tribution, which allows for negative numbers. Hence, a Poisson
distribution of counts should be considered.

Inferring the variable detection rate could be done by least
squares fitting a model onto a time series of detections per unit
time, as is often done. A least squares fit produces the maxi-
mum likelihood estimate when the error of the data (residuals)
are normally distributed. However, detections per unit time have
a Poisson distribution, as discussed above. It is possible to obtain
a maximum likelihood estimate with more careful analysis, but
uncertainty is not directly accessible and must be estimated by
other means (for example using the bootstrap method). Adapting
a procedure designed specifically to fit a Poisson process to Pois-
son observations grants the resolution needed to fit a complicated
model precisely. Moreover, given we meet model assumptions,
we can make more meaningful error estimates and potentially
compare competing models in a meaningful way.

In the present work, we take advantage of the Bayesian
inference, which is a general procedure that works with mod-
els for observations with unknown parameters and meets both
of the above-mentioned criteria: it handles the Poisson distri-
bution and provides an uncertainty estimate. In this approach,
unknown parameters are regarded as random variables coming
from an unknown distribution, about which some prior infor-
mation is available (in the form of a prior belief, or prior
distribution). The procedure infers the posterior (improved)
distribution of unknown parameters based on the prior distribu-
tion and observed data. This distribution automatically carries
information about uncertainty.

Integrated nested Laplace approximation (Rue et al. 2009,
2017; INLA for short) implements an approximate Bayesian
inference for a wide class of three-stage hierarchical models.
This class of models contains multilevel (nested) models,
spatio-temporal models, survival models, and others (Gómez-
Rubio 2020). A decisive advantage of INLA as opposed to
other Bayesian methods (for example sampling-based methods)
is its computational efficiency allowing for one to fit more
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complicated models to more observations within available time,
making it the method of choice for the course of this work. The
inference is carried out using the R-INLA package (Martins
et al. 2013 and Rue et al. 2017) for the Bayesian inference.

In Sect. 2, we briefly introduce the Solar Orbiter mission,
its dust measurement results, and the data product that we use
throughout the work. Section 3 is a discussion and analysis of
observed hyperbolic dust velocity. The fitting of the dust detec-
tion rate using INLA is presented in Sect. 4 and we conclude our
findings in Sect. 5. Finally, an outlook for Solar Orbiter and other
missions is briefly discussed in Sect. 6.

2. Solar Orbiter’s dust observations and data
products

Solar Orbiter is a spacecraft that orbits the Sun on an ellip-
tical trajectory. Solar Orbiter underwent several gravity assists
and its orbital parameters have therefore changed several times
since its launch in early 2020. As of the summer of 2022, Solar
Orbiter has had a low inclination, effectively making measure-
ments in the ecliptic plane. Its aphelion is close to 1 AU and
perihelion 0.3 AU; however, for the majority of its mission so
far, its perihelion has been close to 0.5 AU.

Radio and Plasma Waves (RPW) is an experiment onboard
Solar Orbiter designed to measure both the electric and the mag-
netic field in three components in a wide frequency band, from
near-DC to 16 MHz in the case of the electric field (Maksimovic
et al. 2020). The measurements of electric fields, and as is cru-
cial for the present work, allow for the detection of cosmic dust
impacts, which is one of the auxiliary scientific objectives of
Solar Orbiter. A part of the data analyzed here was accessed
at Solar Orbiter/RPW Investigation (2022)1, specifically time
domain sampler (TDS) waveform electrical data (Level 2).

In their recent work, Zaslavsky et al. (2021) describe proper-
ties of Solar Orbiter’s RPW as a dust detector. It has the capacity
of C ≈ 250 pF, a sensitivity to pulses of V ≳ 5 mV, a collec-
tion area of S col ≈ 8 m2, and a duty cycle of D ≈ 6.2%. They
show that Solar Orbiter’s RPW instrument is indeed capable of
dust detections and that these could be modeled as hyperbolic
dust. The authors mostly discuss β meteoroids, as they are likely
the observed population, but in principle the model fits to any
hyperbolic dust population. The model for the detection rate R
presented in the aforementioned work,

R = F1 AUS col

( r
1 AU

)−2 vimpact

vdust

(
vimpact

vimpact(1 AU)

)αδ
, (4a)

vimpact = |udust − usc|,

=

√(
vradial

dust − vradial
sc

)2
+

(
vazimuthal

dust − vazimuthal
sc

)2 (4b)

has three parameters: αδ, F1 AUS col, and vdust. We note that,
both αδ and F1 AUS col are products of two quantities. All three
parameters could have a spatio-temporal dependence.

The model shows a good fit to the data with the parame-
ters that are considered constant: the outward radial heliocentric
speed of vdust ≈ 50 km/s and exponent αδ ≈ 1.3. The value for vβ
was inferred by relating the difference in the detection rate in the
inbound and the outbound leg of an orbit (Zaslavsky et al. 2021)
and it was used directly, not as a free parameter of Eq. (4a). A

1 Solar Orbiter / Radio and Plasma Waves Data, data retrieved
from Observatoire de Paris, LESIA, https://rpw.lesia.obspm.
fr/roc/data/pub/solo/rpw/data/L2/

value of δ ≈ 0.34, which is a dimensionless parameter in mass
distribution of detected dust grains (see Eq. (3)), was inferred
from the distribution of impact pulse amplitudes. The value of α,
which stands for the power of velocity in charge-yield Eq. (2) is
deduced from the knowledge of αδ and δ. It is important to note
that α is often measured in a laboratory setup and its inferred
value is compatible with ground-based measurements (Collette
et al. 2014). The exponent of αδ accounts for the change in sen-
sitivity due to higher velocity, hence the flux is to be hereafter
understood as the flux of detectable grains or the flux of grains
that are large and fast enough. The parameter F1 AU stands for the
flux at 1 AU, F1 AU ≈ 8 × 10−5 m−2 s−1 (see Zaslavsky et al. 2021
for details).

In addition to L2 Solar Orbiter RPW data, this work makes
use of the data product provided by Kvammen et al. (2023),
which is a result of a convolutional neural-network-classified
time-domain-sampled data. It builds on a supervised classifica-
tion algorithm trained using a randomly chosen subsample of
manually labeled data. Its main advantage over visual inspection
of all data on-board classified as dust (which is a time-consuming
task) is that it is fully automatic and reasonably time-consuming.
Therefore, it allows for not only type 1 error correction (detec-
tion confirmation), but also for type 2 error correction, implying
a search for dust in the vast data that has not been classified as
dust by an on-board algorithm a priori. Building upon the anal-
ysis of TDS snapshots, it is worth mentioning that the classifier
distinguishes impacts happening in distinct snapshots, but it is
not reliable with the detection of two impacts within the same
snapshot, which is an unlikely situation. There is also a neces-
sary amplitude filter, as only transmitted TDS snapshots could
be classified, while only snapshots containing phenomena of a
sufficient amplitude are transmitted. This however does not spoil
the assumption of Poisson distribution and it is accounted for in
the analysis. Although no supervised classifier could get rid of
human bias and error completely, these data provide the most
reliable Solar Orbiter dust detection data available to date, as
has been shown in Kvammen et al. (2023). The data set con-
sists of 4606 dust detections acquired over approximately 669 h
within 457 days between 29 June 2020 and 16 December 2021.
There are several intervals of unavailable data lasting longer than
a week in July and August of 2020 (23 days) and September
of 2021 (9 days). We make use of the data that were pub-
licly available on 01 September 2022. We refer to these data as
TDS/TSWF-E/CNN and it is publicly accessible (see Kvammen
et al. 2023).

3. Impact rates and velocities of hyperbolic dust

3.1. Single-particle velocities

We note that β meteoroids are moving mostly radially outward
from their region of origin, which is located well within 0.5 AU.
Figures 1, 2 display possible single-particle velocity profiles (see
Appendix A for underlying equations). As β < 0.5 leads to finite
aphelion, β ≈ 1 requires a rather specific set of parameters,
and values of β ≳ 0.5 are shown. We note that this choice is
inconsequential and was made for illustration purposes only, as
we do not presuppose a β value in a further analysis. In fact,
we do not presuppose that the observed population includes β
meteoroids, though that is likely the case. The effective initial
orbit of β grain’s parent body must lie outside of the near-solar
dust-free zone, but in the region with a high bound dust concen-
tration, which restrains the r0 values shown. As shown in Fig. 1,
radial β meteoroid velocities expected between 0.5 AU and 1 AU
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Fig. 1. Radial velocity profiles of β meteoroids released by a sudden
parameter change (for example due to a collision) from an initially cir-
cular orbit. A selection of β values and origins (r0) is shown.
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Fig. 2. Azimuthal velocity profiles of β meteoroids released by a sud-
den parameter change (for example, due to a collision) from an initially
circular orbit. A selection of origins (r0) is shown, with the β value not
being relevant.

are between 30 km s−1 and 90 km s−1 for the given combinations
of parameters and they are nearly independent of heliocentric
distance (nearly constant). Solar gravity and radiation pressure
forces are central forces; therefore, the β value does not influ-
ence azimuthal velocity as a function of heliocentric distance,
which is governed by angular momentum conservation and the
initial orbit only. Azimuthal velocities of β meteoroids of cho-
sen parameters between 0.5 AU and 1 AU are therefore between
7 km s−1 and 30 km s−1 and decreasing ∝ r−1, as shown in Fig. 2.

If dust detections on Solar Orbiter’s RPW correspond to
hyperbolic dust, a difference in detection rate Rin versus Rout due
to spacecraft radial velocity should be present, as is indeed the
case. It is shown by Zaslavsky et al. (2021) that this approach
allows for an order of magnitude estimation of the radial compo-
nent of dust velocity vdust;rad ≈ 50 km s−1, which is in line with
expectations. In the present work, we extend the approach to
estimate continuous heliocentric-distance-dependent dust radial
velocities, using the data product of Kvammen et al. (2023) and
taking into account more unknown variables that influence our
estimates.

3.2. Velocity estimation

A first estimate of vdust;rad is obtained if a model for the dust col-
lection rate with linear dependence on relative Solar Orbiter and
dust velocity vimpact is assumed (R ∝ vimpact). This corresponds to
linear dependence on the volume of space scanned per unit of

time only:

vdust;rad ≈ Rin + Rout

Rin − Rout
|vsc;rad|, (5)

where |vsc;rad| is the absolute value of the spacecraft’s radial
velocity at a given heliocentric distance. We note that Rin and
Rout are obtained at the same heliocentric distance, but in
inbound and outbound legs of the orbit, respectively. If, however,
a different dependence of R(vimpact) is assumed, Eq. (5) changes.
Assuming R ∝ vqimpact, a second estimate of vdust;rad is obtained by

vdust;rad = |vsc;rad|
(
R2/q

in + R2/q
out

)
(
R2/q

in − R2/q
out

) +
√

D̃(
R2/q

in − R2/q
out

) , (6a)

D̃ = v2sc;rad

(
R2/q

in + R2/q
out

)2 − v2sc

(
R2/q

in − R2/q
out

)2
, (6b)

where q is equivalent to 1 + αδ in Eq. (4a) and D̃ has no direct
physical interpretation. We took the spacecraft’s azimuthal
velocity into account, but not the dust’s azimuthal velocity,
as that would be a second unknown component for which we
do not have enough information. It is nonetheless possible to
correct for assumed dust azimuthal velocity by subtracting it
from vsc (see Appendix B for the derivation of Eqs. (5)–(6b)).

It follows from Eq. (6a) that with Rin and Rout being observed,
the value of q > 1 leads to a higher velocity estimate than in
the case of q = 1, an estimate that is higher by a factor of q
in first order approximation. Zaslavsky et al. (2021) reported
inferred velocities vdust;rad ≈ 50 km/s assuming q = 1 and they
show compatibility of detection rates with the model assuming
q = 1 + αδ ≈ 2.3 according to Eq. (4a). With assumptions being
met, vdust;rad ≈ 50 km/s is likely an underestimate. The most
important assumption here is that the dust does indeed come
from a hyperbolic population.

We note that the assumption that all detected dust grains are
hyperbolic is difficult to verify or falsify. The most prominent
trend in detections is that the counts diminish with increas-
ing heliocentric distance, which could easily hide a plethora
of other components, such as bound dust or interstellar dust.
The first correction to the assumption that all detections come
from a hyperbolic dust stream is the assumption of having
a two-component field: hyperbolic dust and sporadic (back-
ground) detections, with the latter having no dependence on the
spacecraft location or velocity. This is not to say that the nonhy-
perbolic component has no temporal dependence, this is just the
simplest conceivable correction. For further discussion, readers
can refer to Sect. 4.4.

3.3. Velocity inference

Assuming that the dust flux is not explicitly dependent on time,
the dust detection rate is a function of orbital phase as long
as the orbital parameters do not change. Conversely, gravity
assists change orbital parameters, such as perihelion, aphelion,
and eccentricity. For the present analysis, we therefore treated
sets of orbits, delimited by gravity assists, as separate data sets.
In this way, data were aggregated for several orbits with the
same orbital parameters, but we did not aggregate incompati-
ble measurements. For instance, dust detection counts recorded
near 0.6 AU on branches 2 and 3 are expected to be very different
due to a vastly different Solar Orbiter radial velocity (see Solar
Orbiter’s radial velocity and its heliocentric location throughout
its trajectory in Fig. 3). Minor orbital alterations between gravity
assists have been neglected.
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Fig. 3. Solar Orbiter’s heliocentric distance and absolute value of its
radial velocity. Colors separate individual branches of the orbit that
come with changes in orbital parameters at gravity assists. Dashed lines
correspond to all the combinations of radial velocity and location, while
solid lines denote that Solar Orbiter passed through both inbound and
outbound arms for the combination. The horizontal dashed line denotes
Solar Orbiter’s radial velocity of 5 km s−1.

Since 29 June 2020, Solar Orbiter has undergone three grav-
ity assists, producing four distinct sets of data. The last of these
chronologically so far did not accumulate data sufficient for anal-
ysis, and crucially did not produce any detections in the inbound
part of the orbit at the time of analysis, hence the first three
branches were used. The difference between a detection rate in
the inbound and outbound leg of an orbit could be used for dust
radial velocity inference, provided that radial spacecraft veloc-
ity is not negligible, compared to dust radial speed. Hence data
represented by dashed lines in Fig. 3 are not used for this analy-
sis. Data with radial spacecraft velocity < 5 km s−1 are not used
as they carry little information (see horizontal dashed line in
Fig. 3).

In order to estimate radially dependent velocity, we pro-
duced smooth estimates of radially dependent detection rates,
as defined in the TDS/TSWF-E/CNN data set. The fitting was
done separately for inbound and outbound legs for each grav-
ity assist delimited data set. In order to not rely on assumptions,
we decided to use nonparametric fitting, specifically Nadaraya-
–Watson kernel regression (Watson 1964 and Nadaraya 1964)
with a Gaussian kernel (FWHM ≈ 2.355σ = 0.15 AU). This is
a simple and robust local-averaging fitting procedure, producing
C∞ estimates. Dust detection counts are Poisson random vari-
ables; therefore, they have a variance equal to their mean value.
To evaluate the uncertainty, we constructed confidence intervals
for the nonparametric fit by bootstrapping on daily dust counts:
new samples were generated with original counts as rates for
new Poisson-distributed random variables. For an illustration of
all three data sets and fitted rates, readers can refer to Fig. 4.
It is important to keep in mind that the detection rates here-
after have been normalized to the observation time. For every
branch, we only used the heliocentric distance interval where
both inbound and outbound legs are available, bounded by the
innermost and the outermost detection on the leg (see the grayed
areas in Fig. 4). We did not use the r < 0.62 AU of branch 2, as
there are no outbound detections near 0.6 AU and the detections
near 0.5 AU show little difference between the inbound and the
outbound leg. This may be due to a spatial limitation of the given
model, an unlikely combination due to scarce data, a truly higher
radial velocity, or a combination of more effects.

Having smooth detection rate estimates, we produced veloc-
ity estimates using Eq. (6a) (see Fig. 5). Bootstrap samples
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Fig. 4. Nonparametric fitting of the detection rate observed between
29 June 2020 and 27 November 2021 in th inbound and outbound part
of the trajectory, with branches being separated by gravity assists on
26 December 2020 and 8 August 2021. The lines are the results of non-
parametric fitting and only grayed intervals are used for further analysis;
readers can compare this with Fig. 3.

of detection rates were used to calculate the shown percentile
confidence intervals. Notably, not all the bootstrap samples for
λbg = 4 h−1 allowed for a solution, which is apparent from the jit-
ters of the blue curve at r > 0.75 AU. Confidence intervals were
constructed from the solutions that were obtained. This issue
is to be expected, as λbg = 4 h−1 implies very little hyperbolic
dust at r > 0.8 AU (see Fig. 4) and therefore uncertainty in the
inferred velocity. The estimate shown in Fig. 5 assumes αδ = 1.3
and an initial heliocentric distance of 0.1 AU, with the latter in
the form of correction for dust azimuthal velocity.

To further estimate the uncertainty, we included three rele-
vant parameters (in total): (1) a background (nonhyperbolic) rate
λbg, corrected for by subtraction from the estimated detection
rate; (2) the product αδ included in Eq. (6a); and (3) azimuthal
dust velocity corresponding to different initial circular orbits,
as shown in Fig. 2, giving a straightforward generalization of
Eq. (6a).

We have an estimate of the region of likely velocities (see
Fig. 6), given a reasonable variation of free parameters. The
analysis shows the velocity to be mostly between 40 km s−1 and
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Fig. 6. Velocity estimated from TDS/TSWF-E/CNN. Single velocities
were obtained from profiles for better readability. The points were con-
structed as averages of velocities at 0.65, 0.75, and 0.85AU for all the
branches, where a velocity is the median solution for all the bootstrap
replications. For full profiles, readers can refer to Appendix C.

100 km s−1, according to Fig. 6. We know that the rate λbg of con-
stant, nonhyperbolic dust could clearly not be lower than 0 and
could not be much higher than ≈4 h−1 either, because the total
detection rate is about ≈4 h−1 at a heliocentric distance ≈1 AU,
which would imply 100% contribution of background dust in this
region (see Fig. 4). This explains why no solutions of Eq. (6a)
are found near 1 AU in that case, as Fig. 5 shows. The reason
being that the difference between inbound and outbound rates
are observed to be too high, such that they cannot be explained
in the case of λbg = 4 h−1. A rather low amount (≲1 h−1) of non-
hyperbolic dust would imply a higher velocity in the range of
≈100 km s−1. The conclusion is that the higher the background
detection rate λbg is, the lower the underlying dust velocity. Sim-
ilarly, a higher αδ product implies a higher velocity, and a larger
initial radius (in the case of β meteoroids) implies higher under-
lying radial velocity. Furthermore, assuming β meteoroids, low
velocities ≳50 km s−1 imply a low β factor (see Fig. 1). While
bearing many uncertainties in mind, this inference is very robust
as it does not depend on a specific model for dust, in particular it
is independent of dust spatial density as a function of heliocen-
tric distance, because we only compare observations on the same
heliocentric distance. The background component is among the
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Fig. 7. Modeled dust spatial densities for different β values assuming
a circular initial orbit of 0.1 AU. Solid lines show the spatial density
and they were normalized to the density at 0.5 AU. Dashed lines are
approximations to the solid lines, assuming a power dependence on r.

biggest unknowns (see Appendix C for full velocity profiles that
produce the data in Fig. 6).

3.4. Spatial density

If the hyperbolic grains do not accelerate (for example β mete-
oroids with β ≈ 1 are assumed), a radial dependence of spatial
density of ∼r−2 is the result. This is not the case if accelera-
tion or deceleration is present. Particularly, it makes sense to
assume slowing dust (β < 1), as Fig. 5 suggests slowing rather
than accelerating dust. Also, β ≈ 1 or even β > 1 needs a rather
specific set of conditions (a combination of material and spe-
cific size, see Mann 2010), while 0.5 < β < 1 is possible for a
broad range of dust parameters. The observed effective β is then
determined by aggregation of all components. The equation for
detection rate (4a) contains r−2, but it remains the correct expres-
sion for dust flux even if vdust is not constant. In that case, r−2

should not be interpreted as a spatial density of dust, but as a
geometric factor. The spatial density is then expressed through
the nonconstant vdust. However, this makes it very difficult to
fit model (Eq. (4a)) to the data, as vdust is no longer a numeric
parameter, but a function of r.

We shall continue to explore the spatial density view and
examine the effective exponent of r given β meteoroids with
some 0.5 ≤ β < 1. Figure 7 shows an example of how the
β value influences the spatial dust density (for a spatial dust
density calculation, see Appendix A). The analysis of spatial
density as a result of deceleration does not require the dust to
be β meteoroids, but the relation to the β value clearly does. In
Fig. 7, an initial orbit of 0.1 AU is assumed; readers can refer to
Appendix E for plots of the dust spatial density variation simi-
lar to Fig. 7 for different initial orbits. The particular exponents
depend on the initial orbit, but the general trend of a lower β
value implying deceleration remains.

4. Daily count inference

4.1. Model formulation

We decided to model the number of dust detections within a
day as a Poisson-distributed random variable, as dust detection
itself is a prime example of a Poisson point process in time,
as discussed in Sect. 1. The rate λ of the process is considered
dependent on multiple parameters θ. Notably, we consider λ to
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not be explicitly dependent on time, but to be temporarily depen-
dent indirectly, through the orbital parameters and the orbital
phase of the spacecraft. Importantly, the rate is also consid-
ered dependent on the parameters of the dust cloud. Therefore,
we formulated a hierarchical Bayesian model with five param-
eters, ϵv, ϵr, λβ, λbg, and νr, which, for simplicity, we denote as
θ = (ϵv, ϵr, λβ, λbg, νr). These parameters were used to model the
rate λ and by extension detected counts (see Eqs. (7a) to (7d)).
We note that the rate λ (see Eq. (7b)) is a generalization of
Eq. (4a) with an additional constant (background) term and a
variable exponent of heliocentric distance.

In order to keep the present model simple and yet allow
for nonconstant velocity, we used the parameters νr and ϵr as
the mean radial dust velocity and density exponent, respectively
(see Appendix D for a further interpretation). This combination
allows for one to fit a single constant mean velocity and effec-
tive acceleration (through the exponent ϵr) at the same time with
just two constant scalar parameters. It is important to keep in
mind though that the parameter νr is the effective mean radial
velocity of the dust grains. The velocity of an individual dust
grain changes as it moves through the Solar System. The exact
meaning of this effective mean is therefore opaque, as the mea-
surement was done at a variable heliocentric distance. However,
the radial velocity between 0.5 AU and 1 AU changes gradually
and, in the extreme case of β = 0.5 and r0 = 0.05 AU, it changes
by about 30 % (see Fig. 1), which is a smaller difference than the
difference due to either different β or r0. Therefore, it is of lesser
importance whether the inferred mean is the temporal mean, the
spatial mean, or anything in between.

The Poisson likelihood (Eq. (7a)) includes the exposure time
E (in hours) and the rate λ (in detections per hour). Then Eq. (7c)
is a straightforward definition of relative velocity between the
spacecraft and the dust particle, while Eq. (7d) describes the
decomposition of dust velocity into radial and azimuthal com-
ponents. In practice, the model defines the parameter νr as the
radial velocity of a dust particle and the variable νa as the
azimuthal velocity of the same particle, but only νr is regarded
as a random variable. The variable νa is directly related to helio-
centric distance |r| according to Eq. (7e), which is approximately
equivalent to the r0 = 0.1 AU line in Fig. 2. This is due to the
simpler and less important dependence of vimpact on νa and as a
compromise in order to keep the number of free parameters rea-
sonable with respect to the available data (the attempts to fit six
parameters were not fruitful). The main goal of the fitting proce-
dure is to determine the marginal posterior distributions of each
of the parameters θ of the model

N |λ, θ ∼ Poiss(E · λ(θ)), (7a)
λ(θ) = λβ · vϵvimpact · rϵr + λbg, (7b)

vimpact =
|usc − udust|
50 km s−1 , (7c)

udust = νr · er + va · eϕ, (7d)

νa = 12 km s−1 0.75 AU
|r| . (7e)

There are N detections observed in a given day, the expo-
sure E is the total time when the instrument was collecting data
in a mode that allows for dust detection, hence it is known pre-
cisely. The location and velocity of Solar Orbiter are also known
precisely. In Eq. (7c), a dimensionless parameter is constructed
– it has computational advantages if vimpact ≈ 1, as a rather
high power of the variable was computed in the process. Equa-
tions (7c)–(7e) explain the role of the parameter vr in Eq. (7b)

and they have only been separated from Eq. (7b) for better read-
ability. We note that purely 2D motion of dust particles, within
the ecliptic plane, is assumed in Eq. (7d).

The parameter ϵv is the exponent of vimpact in the mean rate
formula and it incorporates the dependence on the rate of volume
scanning (V/t ∝ S · vimpact), hence v1impact, and the dependence on
charge yield α and dust mass power-law exponent δ in the form
of vαδ. The dependence is then v1+αδimpact = v

ϵv
impact. The parameter ϵr

is the exponent of heliocentric distance r, which is notably influ-
enced by acceleration and deceleration of dust, as discussed in
Sect. 3.4. Readers can refer to Appendix D for a further inter-
pretation. The parameter λβ plays the role of a normalization
constant, accounting for an absolute dust spatial density and
spacecraft detection area and holds the physical unit of h−1. It
is uninteresting to study this parameter in itself, in the sense that
it merely normalizes the model so that the detection rate corre-
sponds to the observed mean rate and has no consequence on
the physical characteristics of any given particle. The parame-
ter λbg has the meaning of detections per hour as well, but it is
clearly interpreted as the background detection rate, that is to
say the rate of detections that are not attributable to hyperbolic
dust. The parameter νr also has a very direct meaning, which is
the mean outward radial velocity of the hyperbolic dust in our
experimental range. We note that variation of impact velocity is
still allowed by variation in spacecraft velocity usc. Acceleration
is accounted for in ϵr.

4.2. Prior distributions of parameters

For Bayesian inference, choosing reasonable priors is important.
Ideally, priors should be informative (narrow) enough to capture
the prior knowledge about parameters, but vague (wide) enough
so that they still allow for additional information to play a role.
It is physically infeasible for the parameters λβ and λbg to be
negative, as they have a meaning of detection rate. Furthermore,
positive radial velocity is also required by the model to work.
Therefore, we opted for gamma priors for these three parameters.
Although we are quite sure about the sign of the parameters ϵv
and ϵr, neither the model nor the physical unit actually rules out
the possibility of ϵv or ϵr having any sign. We therefore opted for
normal priors for ϵv and ϵr. The choice of prior family for ϵv, ϵr,
and νr is of little importance. Generally speaking, prior choice
makes less of a difference the more data are analyzed.

In order to incorporate our actual prior belief about the
model, we chose what we believe are moderately informative
priors for the parameters. The following paragraphs discuss our
choice. For a graphical representation of the prior distributions
of the parameters, readers can refer to Fig. 8.

The parameter ϵv stands for 1+αδ. Since we have indications
from Zaslavsky et al. (2021) that δ ≈ 0.3 and most laboratory
experiments show (Collette et al. 2014) that 3 ≲ α ≲ 5, we
expect 1.9 ≲ ϵv = 1 + αδ ≲ 2.5. We therefore chose the prior
ϵv ∼ Norm(mean = 2.2, stdev = 0.2), which places emphasis on
the range 2.0 < ϵv < 2.4 and yet does not prohibit any real ϵv.
We note that δ and α are the only pieces of information used
for prior construction taken from outside of this work. For more
discussion, readers can refer to Appendix I.

Provided that there are no major sources of dust between
0.5 AU and 1 AU and provided that dust neither accelerates nor
decelerates, ϵr = −2, which follows easily from mass conserva-
tion. If we relax the latter assumption, then ϵr , −2. In fact,
the dependence no longer follows rϵr exactly, but as is shown
in Fig. 7, for β meteoroids of 0.5 ≲ β ≲ 1 the dependence is
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Fig. 8. Prior and posterior distributions for the parameters θ. The prior
distributions are described in the main text. Summary statistics for pos-
terior distributions are described in Table 1.

Table 1. Marginal posterior mean and the standard deviation for all the
parameters.

Mean St. dev.

ϵv 2.04 0.20
ϵr –1.61 0.16
λβ 1.96 0.38
λbg 1.54 0.25
νr 63.4 6.7

Notes. Readers can refer to Fig. 8 for a visual representation of the
posterior distributions.

very similar to rϵr with −2 ≲ ϵr ≲ −1.59. We therefore chose a
prior ϵr ∼ Norm(mean = −1.8, stdev = 0.2), which emphasizes
the range −2.0 < ϵr < −1.6 but in principle allows for any real
ϵr. As for the parameter λβ, we know it is on the order of the
total rate, which is 6.9 h−1 on average. The interpretation of the
parameter is made less clear by the normalization in Eq. (7c).
However, the factor of vϵvimpact is on the order of 1 and the fac-
tor of rϵr is > 1, hence we expect 1 ≲ λβ ≲ 10. We chose a less
informative prior of λβ ∼ Gamma(shape = 3, scale = 1).

Figure 5 shows that for background detections, λbg <

4 h−1 is feasible. We chose a less informative prior λbg ∼
Gamma(shape = 3, scale = 1), which is wide and allows for any
positive λbg.

Based on Fig. 6, we believe that values 40 km s−1 ≲
νr ≲ 80 km/s are mostly expected. We chose the prior
νr ∼ Gamma(shape = 10, scale = 5) that emphasizes that range,
with the mean of 50 km s−1, which is the value that Zaslavsky
et al. (2021) reported. This prior still allows for any positive
value of νr.

4.3. Posterior distributions

The analysis was performed using TDS/TSWF-E/CNN data. For
an analogous analysis performed on Solar Orbiter on board iden-
tified dust impacts, readers can refer to Appendix H. Posteriors
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Fig. 9. Covariance between νr (radial dust velocity) and λbg (background
detection rate); correlation is −0.3. The red line is the mean νr condi-
tioned on λbg and it was produced by sampling from the joint posterior
distribution of θ.

were inferred using R-INLA. The model (7b) was complicated
by the steep dependence of the rate λ, especially the depen-
dence on exponential parameters ϵv and ϵr. We note that a radial
velocity ≳60 km/s is consistent with detection rate λbg ≈ 1.5 and
αδ ≈ 1.0, according to Fig. 6. It is important to note that the
exact choice of priors and other parameters, such as the refer-
ence azimuthal velocity in Eq. (7c) and the procedure starting
point (as INLA works on a grid largely defined by the initial
point), influences the exact result; although, no major difference
is encountered when parameters or priors are reasonably varied
(see Appendix I). As for the initial point, the mode of the joint
prior was used: θ = (2.2,−1.8, 2, 2, 45).

Several measures can be used to evaluate the appropriateness
of a model to a data set. We inspected the conditional predic-
tive ordinates (CPO) and the predictive integral transform (PIT),
which indicated no issues (see Appendix F for details).

4.4. Discussion of the posterior distribution

The inferred posterior distribution of velocities shown in Fig. 8 is
not to be interpreted as a distribution of velocities within the dust
cloud directly, but rather as a distribution of the effective mean
velocities encountered on each day, or even better – the uncer-
tainty in effective velocity. There could indeed be dust grains
with velocity well off the effective support of the posterior dis-
tribution, as long as the mean of all velocities does not exceed
the region indicated by the posterior distribution.

The θ parameters are not independent. Figure 9 shows the
covariance between the νr (radial velocity) and λbg (background
detection rate) parameters. A negative correlation suggests that
higher νr is likely to occur in the case of lower λbg. This offers
a sanity check: a higher velocity would mean a lower differ-
ence between an inbound and outbound flux, which has a similar
effect to the higher background component scenario – a negative
correlation between νr and λbg is thus expected. For covariances
between all parameters, readers can refer to Appendix G.

The TDS/TSWF-E/CNN data set contains 6.9 h−1 detec-
tions on average. The inferred value of λbg = (1.54 ± 0.25) h−1

implies that, in total, (78 ± 4) % of dust is attributed to hyper-
bolic dust within the model. The constant background λbg is the
simplest available generalization and is therefore likely an over-
simplification. The hyperbolic dust detection rate shows a strong
negative correlation with heliocentric distance. If, for instance,
nonhyperbolic dust shows a similar anticorrelation, the actual
nonhyperbolic component is higher than inferred. Conversely, if
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Fig. 10. Estimated posterior mean of the dust impact with 90 % HPD
credible intervals. The credible intervals are not supposed to cover the
data scatter (see text for an interpretation of the credible intervals that
are shown).

nonhyperbolic prevalence shows a correlation with the heliocen-
tric distance, the actual nonhyperbolic component is lower than
inferred. Both cases would also imply changes to the inferred
parameters of hyperbolic dust (see Appendix J for a visual expla-
nation). If the nonhyperbolic component is mostly nondust (for
example, misattributed electrical phenomena), independence on
the heliocentric distance is reasonable. However, if most of
the nonhyperbolic contribution is due to bound (Keplerian)
dust particles, then anticorrelation is expected. If interstellar
dust (ISD) streaming predominantly from one direction approxi-
mately within the ecliptic plane is present, a positive correlation
is also feasible due to the velocity vector orientation.

Indeed, ISD was observed (Baguhl et al. 1996; Zaslavsky
et al. 2012; and Malaspina et al. 2014) to arrive mainly from
a 258 ◦ ecliptic longitude. The highest flux is observed when a
spacecraft has an antiparallel velocity, which vaguely coincides
with a higher heliocentric distance phase of Solar Orbiter’s orbit
so far. If ISD is an important contribution to λbg, the actual back-
ground flux may be lower than the suggested λbg ≈ 1.5 h−1. For
now, ISD is not apparent in Solar Orbiter data and the fact that
models fit well without ISD suggests it is not an important com-
ponent of Solar Orbiter detections. Near the solar minimum of
2020, the solar magnetic field had a defocusing configuration
with the Lorentz force acting on the interstellar dust in the outer
heliosphere pointing away from the heliospheric current sheet
(Mann 2010), hence depleting the ISD flux in the near-ecliptic
region and inside 1 AU. Identifying ISD with Solar Orbiter is,
however, beyond the scope of the present work, but it remains
worthy of future investigation, especially since ISD may become
more important during the current solar cycle (Mann 2010).
For now, no bound dust particles are apparent either, nor are
the retrograde dust particles. If the constant background is a
crude oversimplification and the nonhyperbolic component has
a prominent dependence on heliocentric distance, the present
interpretation of the θ parameters is not correct, as the model
is not on point. Inclusion of more parameters in the model
(for example a more sophisticated nonhyperbolic term) may be
feasible with more data in the coming months.

The posterior mean of the detection rate is shown in Fig. 10
in units of: m−2h−1, assuming a detection area of 8 m2 (Solar
Orbiter thermal shield approximate area); and day−1, taking into
account the detection time per day and extrapolating to 24 h.
We note that the credible intervals reflect the uncertainty of the
inferred mean detection rate (the uncertainty of our knowledge,
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Fig. 11. Estimated posterior mean of the hyperbolic dust detections and
HPD prediction intervals. The prediction intervals are supposed to cover
the data scatter (see text for an interpretation of the prediction intervals
that are shown).

given the data), which is the same uncertainty as visualized in
Fig. 8. The spread of data points in Fig. 10 is much wider and
mostly defined by the variance of the Poisson random variable,
given the mean rate, rather than the uncertainty in the mean
rate. The prediction intervals of the Poisson random variable are
shown in Fig. 11 and, there, data points seem to be appropriately
covered by the credible intervals.

The inferred value of the parameter ϵr ≈ −1.6 suggests that
dust grains are slowing distinctly on their way out of the inner
heliosphere between 0.5 AU and 1 AU, resulting in a spatial
distribution different from the trivial λ ∝ r−2 case. Readers
can refer to Fig. 7 for a comparison. With an inferred velocity
of (63 ± 7) km s−1 between 0.5 AU and 1 AU, significant
deceleration suggests a much higher velocity closer to the Sun.
Assuming β meteoroids with a circular initial orbit, the ϵr value
implies a specific β value needed for just the right level of
deceleration. Deceleration is a result of energy transfer from
kinetic to potential, and therefore, given the initial heliocentric
distance, the deceleration rate depends on the initial velocity.
This makes the assumption of a circular initial orbit crucial
when we are to infer the β parameter. For example, a β value
needed to explain an observed ϵr is different if the β meteoroid
parent object has an eccentricity of 0.3, rather than 0. For an
analysis of the implied β values in the case of the circular parent
orbit, readers can refer to Fig. 12. Various initial parent body
orbit radii are shown in Fig. 12 to demonstrate that the model
is not very sensitive to that parameter. For comparison, we note
that velocities ≳60 km s−1 are consistent with β ≈ 0.6 and the
origin between 0.05 AU and 0.1 AU, according to Fig. 1. We
note that 0.05 AU ≈ 10 R⊙, where R⊙ is the Solar radius.

However, it is feasible to expect a parent body with an eccen-
tricity of 0.3, as the mean eccentricity in the inner asteroid belt
is e ≈ 0.15 (Malhotra & Wang 2016). If a dust grain is ejected
from a given heliocentric distance r, the eccentricity e = 0.3
implies a +14% ejection speed if r is the perihelion and a −16%
ejection speed if r is the aphelion, compared to ejection from
a circular orbit of radius r. In the case of e , 0, β > 0.5 is
not the right condition for the unbound β meteoroid. In fact,
for e = 0.3 the condition is approximately β > 0.35 for peri-
helion, and β > 0.65 for aphelion ejection. It is important to
keep in mind that the +14% could also be ∆v transferred at colli-
sion, as collisions between larger dust objects are likely a major
source of β meteoroids. Then the 14% relative speed would,
for instance, correspond to the collision of two asteroids on
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Fig. 12. β parameter resulting from ϵv posterior distribution under the
assumption of a circular parent body orbit (see text for a discussion).

circular orbits with a relative inclination of 8 ◦, which is also
a very feasible scenario. For instance, if the example of +14%
of ∆v (or an eccentricity of 0.3) is a good representative of the
process, the resulting implied β would be not β ≳ 0.5, but rather
β ≳ 0.35. Eccentricities and relative velocities in the zodiacal
cloud remain uncertain. We note that even in the described case,
we are still considering a dust grain with a purely azimuthal
velocity at liberation, which is yet another simplification.

4.5. Comparison with previous results

As Solar Orbiter has been operated only since 2020 and will be
operated at least until 2027, the results presented in this paper
are one of the earlier ones for the mission. Based on similar
data, though collected over a shorter time period, Zaslavsky
et al. (2021) have reported several physical parameters of the
β-meteoroid population. Interestingly, they have reported radial
velocity to be about 50 km s−1, which is within two standard
deviations from (63±7) km s−1 reported here, but it is important
to bear in mind that the number was inferred under substan-
tially different assumptions. The velocity is crucial to infer the
β-meteoroid flux at 1 AU for example, which Zaslavsky et al.
(2021) have reported to be 8 × 10−5 m−2s−1. Under our model
assumptions (constant radial dust velocity) and taking the joint
posterior distribution of the parameters, we report (1.6 ± 0.1) ×
10−4 m−2s−1 for hyperbolic dust and the residual component
(λbg) together (measured on a stationary spherical object, per m2

of the cross section), a value higher by a factor of ≈2. For the
component consistent with hyperbolic dust only, we report the
flux of (1.1±0.2)×10−4 m−2s−1 and for the component attributed
to the residual, background component (5.4±1.5)×10−5 m−2s−1.
As for αδ (keeping in mind that αδ = ϵv−1 here), Zaslavsky et al.
(2021) have reported consistency with αδ = 1.3, while we report
ϵv − 1 = (1.04 ± 0.20).

As for a comparison of the present results with the β-
meteoroid flux near 1 AU, Wehry & Mann (1999) reported the
flux of β meteoroids in the ecliptic plane detected by Ulysses
between 1.0–1.6AU to be (1.5 ± 0.3) × 10−4 m−2s−1. Zaslavsky
et al. (2012) reported a flux of β meteoroids at 1 AU of size 100–
300 nm on STEREO/Waves in the range of 1–6 × 10−5 m−2s−1,
which is a somewhat lower value than reported here. Solar
Orbiter detections are likely of 100 nm and larger dust, but
the upper limit is somewhat higher for Solar Orbiter due to a
wider dynamic range (3–150 mV for STEREO and 3–700 mV
for Solar Orbiter), which may account for some of the differ-
ence. Malaspina et al. (2015), however, reported the value for

STEREO/Waves by about a factor of 2.5 higher than Zaslavsky
et al. (2012), which is on its upper bound virtually identical
to the value reported here. For the Wind/WAVES experiment,
Malaspina et al. (2014) reported (2.7 ± 1.4) × 10−5 m−2s−1 for
the sum of β meteoroids and interstellar dust of 0.1–11µm size.
It has yet to be determined if and how much interstellar dust con-
tributes to the measurements of Solar Orbiter’s RPW analyzed in
the present work. Recently, Szalay et al. (2021) have reported 4–
8 × 10−5 m−2s−1 for the β-meteoroid flux at 1 AU measured with
Parker Solar Probe. The upper bound of this estimate is similar
to the value reported in the present work.

5. Conclusions

We have presented the analysis of the velocity of hyperbolic dust
grains between 0.5 AU and 1 AU based on the highest-quality
available data on daily dust detections by Solar Orbiter’s RPW,
including a discussion of implications for the velocity in the
case of nonhyperbolic (be it another dust population or false
detections) component to the counts. Velocities in the range 30–
110 km s−1 are compatible with the data. We have presented a
Bayesian hierarchical model and demonstrated how it is used
to infer physical parameters of the hyperbolic dust population
in the studied region. It is likely that (1.5 ± 0.3) h−1 are in fact
not caused by hyperbolic dust. Then observations are consis-
tent with a mean radial velocity of the hyperbolic component
(63 ± 7) km s−1 between 0.5 AU and 1 AU. Spatial dependence
of the detection rate suggests substantial deceleration of the
observed hyperbolic dust particles. If they are β meteoroids, the
value of β is likely just above the liberation threshold, specifi-
cally β ≳ 0.5 under the assumption of circular orbits of parent
bodies. Hence closer to their origin, they likely have velocities
higher than the inferred (63 ± 7) km s−1. As a result of our mod-
eling, we provide estimates of hyperbolic dust flux at 1 AU of
(1.1 ± 0.2) × 10−4 m−2s−1, which is a value compatible with the
results of other relevant measurements.

6. Outlook

Solar Orbiter will be significantly inclined, starting in 2025,
which will require further generalization of the model to account
for the dust distribution out of the ecliptic plane. The parameters
of hyperbolic dust out of ecliptic will likely provide more infor-
mation on in-ecliptic hyperbolic dust, such as its parent bodies’
mean eccentricity. Due to independence on β, knowledge of the
azimuthal velocity would be a good indicator of the origin of β
meteoroids, but it is hard to infer as the azimuthal component is
much smaller than the radial component. The ecliptic detections
may help in this regard as well.

As mentioned earlier, the de-focusing solar magnetic field
configuration near the 2020 solar minimum does not favor the
detection of ISD. With solar cycle 25, the focusing field configu-
ration will return at some time before the solar minimum of 2031.
It is possible that a significant ISD component will be observed
in the years following the solar maximum of 2025, which will, if
observed, provide new opportunities for dust population discrim-
ination and a more comprehensive dust cloud description thanks
to Solar Orbiter RPW data.
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S. Kočiščák et al.: Modeling Solar Orbiter dust detection rates in the inner heliosphere as a Poisson process

https://github.com/AndreasKvammen/ML_dust_detection. S.K. and
A.T. are supported by the Tromsø Research Foundation under the grant 19-
SG-AT. This work on dust observations in the inner heliosphere is supported
by the Research Council of Norway (grant number 262941). In addition, A.K.
acknowledges the support from the Research Council of Norway (grant number
326039). Authors sincerely appreciate the support of Solar Orbiter/RPW Investi-
gation team and thank the anonymous reviewer for constructive comments. This
work was made possible by R-INLA package, authors thank to R-INLA team,
see https://www.r-inla.org.

References
Alexander, W., & Bohn, J. 1968, in COSPAR Plenary Meeting, No. NSSDC-ID-

66-049A-21-PM (North-Holland Publishing Co.)
Baguhl, M., Grün, E., & Landgraf, M. 1996, Space Sci. Rev., 78, 165
Collette, A., Grün, E., Malaspina, D., & Sternovsky, Z. 2014, J. Geophys. Res.:

Space Phys., 119, 6019
Czechowski, A., & Mann, I. 2021, A&A, 652, A131
Dietzel, H., Neukum, G., & Rauser, P. 1972, J. Geophys. Res., 77, 1375
Dietzel, H., Eichhorn, G., Fechtig, H., et al. 1973, J. Phys. E: Sci. Instrum., 6,

209
Dohnanyi, J. 1970, J. Geophys. Res., 75, 3468
Dohnanyi, J. 1972, Icarus, 17, 1
Friichtenicht, J. 1962, Rev. Sci. Instrum., 33, 209
Gasque, C., Bale, S., Bowen, T., et al. 2022, AGU Fall Meeting 2021
Gómez-Rubio, V. 2020, Bayesian Inference with INLA (CRC Press)
Grün, E. 1984, in The Giotto Spacecraft Impact-induced Plasma Environment

(ESA SP), 224, 39
Grün, E., Zook, H. A., Fechtig, H., & Giese, R. 1985, Icarus, 62, 244
Grün, E., Pawlinka, S., & Srama, R. 2007, Dust accelerator tests with Cassini

RPWS samples (Max-Planck-Institut für Kernphysik), Tech. Rep.
Gurnett, D., Ansher, J., Kurth, W., & Granroth, L. 1997, Geophys. Res. Lett., 24,

3125
Howard, R. A., Vourlidas, A., Bothmer, V., et al. 2019, Nature, 576, 232
Kurth, W., Averkamp, T., Gurnett, D., & Wang, Z. 2006, Planet. Space Sci., 54,

988
Kvammen, A., Wickstrøm, K., Kociscak, S., et al. 2023, Ann. Geophys., 41, 69
Leinert, C., Richter, I., Pitz, E., & Planck, B. 1981, A&A, 103, 177
Maksimovic, M., Bale, S., Chust, T., et al. 2020, A&A, 642, A12
Malaspina, D., Horányi, M., Zaslavsky, A., et al. 2014, Geophys. Res. Lett., 41,

266
Malaspina, D. M., O’Brien, L. E., Thayer, F., Sternovsky, Z., & Collette, A. 2015,

J. Geophys. Res.: Space Phys., 120, 6085
Malaspina, D. M., Szalay, J. R., Pokornỳ, P., et al. 2020, ApJ, 892, 115
Malaspina, D. M., Stenborg, G., Mehoke, D., et al. 2022, ApJ, 925, 27

Malhotra, R., & Wang, X. 2016, MNRAS, 465, 4381
Mann, I. 2010, Annu. Rev. Astron. Astrophys., 48, 173
Mann, I., & Czechowski, A. 2005, ApJ, 621, L73
Mann, I., & Czechowski, A. 2021, A&A, 650, A29
Mann, I., Meyer-Vernet, N., & Czechowski, A. 2014, Phys. Rep., 536, 1
Mann, I., Nouzak, L., Vaverka, J., et al. 2019, Ann. Geophys., 37, 1121
Marshall, E., & Spiegelhalter, D. 2003, Stat. Med., 22, 1649
Martins, T. G., Simpson, D., Lindgren, F., & Rue, H. 2013, Comput. Stat. Data

Anal., 67, 68
McBride, N., & McDonnell, J. 1999, Planet. Space Sci., 47, 1005
Meyer-Vernet, N., Aubier, M., & Pedersen, B. 1986, Geophys. Res. Lett., 13, 617
Meyer-Vernet, N., Moncuquet, M., Issautier, K., & Schippers, P. 2017, J.

Geophys. Res.: Space Phys., 122, 8
Mozer, F., Agapitov, O., Bale, S., et al. 2020, ApJS, 246, 50
Nadaraya, E. A. 1964, Theory Probab. Applic., 9, 141
Nouzk, L., James, D., Nemecek, Z., et al. 2021, ApJ, 909, 132
Pettit, L. 1990, J. Roy. Stat. Soc. B (Stat. Methodol.), 52, 175
Rackovic Babic, K., Zaslavsky, A., Issautier, K., Meyer-Vernet, N., & Onic, D.

2022, A&A, 659, A15
Ragot, B., & Kahler, S. 2003, ApJ, 594, 1049
Rue, H., Martino, S., & Chopin, N. 2009, J. Roy. Stat. Soc. B (Stat. Methodol.),

71, 319
Rue, H., Riebler, A., Sørbye, S. H., et al. 2017, Annu. Rev. Stat. Applic., 4, 395
Shen, M. M., Sternovsky, Z., Garzelli, A., & Malaspina, D. M. 2021, J. Geophys.

Res.: Space Phys., 126, e2021JA029645
Shu, A., Collette, A., Drake, K., et al. 2012, Rev. Sci. Instrum., 83, 075108
Srama, R., Ahrens, T. J., Altobelli, N., et al. 2004, in The Cassini-Huygens

Mission (Springer), ed. C. T. Russell, 465
Stenborg, G., Howard, R., Hess, P., & Gallagher, B. 2021, A&A, 650, A28
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Appendix A: Single-particle velocity and spatial
density

For the purposes of Figs. 2 and 1, dust grains were assumed
to move within the ecliptics, liberated from an initially circu-
lar orbit and with their motion governed by the gravity and solar
radiation pressure only; therefore,

|v| =
√
v20 + 2GM(1 − β)

(
1
r
− 1

r0

)
, (A.1)

vtan = v0
r0

r
, (A.2)

vrad =

√
v2 − v2tan, (A.3)

where v0 is the initial (purely radial) velocity and r0 is the initial
heliocentric distance (radius of the circular orbit). Furthermore,
given a radial velocity profile of a radially escaping dust grain
vrad(r), the dust spatial density ρ at a heliocentric distance r is

ρ(r) = ρ(r0)
( r0

r

)2 vrad(r0)
vrad(r)

, (A.4)

where r0 is a reference heliocentric distance.

Appendix B: Dust radial velocity estimation

If we suppose that the detection rate is proportional to vqrelative,
then

R = R0 · vqrelative = R0 (udust − usc)q (B.1)

= R0

[√
(vdust;rad − vsc;rad)2 + v2sc;azim

]q
, (B.2)

where we assumed vdust;azim = 0. Then, at any given heliocentric
distance r,

R2/q
in = R2/q

0

(
(vdust;rad + |vsc;rad |)2 + v2sc;azim

)
, (B.3)

R2/q
out = R2/q

0

(
(vdust;rad − |vsc;rad |)2 + v2sc;azim

)
, (B.4)

and therefore

R2/q
in

R2/q
out

=
(vdust;rad + |vsc;rad |)2 + v2sc;azim

(vdust;rad − |vsc;rad |)2 + v2sc;azim

, (B.5)

from which

0 = v2dust;rad ·
(
R2/q

in − R2/q
out

)
(B.6)

+ vdust;rad ·
(
−2vsc;rad

(
R2/q

in + R2/q
out

))
(B.7)

+
(
R2/q

in − R2/q
out

)
·
(
v2sc;rad + v

2
sc;azim

)
, (B.8)

which leads to a quadratic root of

vdust;rad =
2|vsc;rad |

(
R2/q

in + R2/q
out

)
± √D

2
(
R2/q

in − R2/q
out

) , (B.9)

D = 4v2sc;rad

(
R2/q

in + R2/q
out

)2 − 4v2sc

(
R2/q

in − R2/q
out

)2
, (B.10)

where (+) in Eq. (B.9) leads to positive velocity vsc;rad. It is easy
to see that in the special case of q = 1; vsc;azim = 0 that

D = 4v2sc;rad

[(
R2

in + R2
out

)2 −
(
R2

in − R2
out

)2
]
, (B.11)

= 16v2sc;radR2
inR2

out, (B.12)

and, by extension,

vdust;rad =
|vsc;rad |

[(
R2

in + R2
out

)
± 2RinRout

]
(
R2

in − R2
out

) , (B.13)

which is

vdust;rad =
|vsc;rad | (Rin + Rout)

(Rin − Rout)
(B.14)

for (+) in the numerator.
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Fig. C.1. Velocity estimated from TDS/TSWF-E/CNN under the
assumption of αδ = 1.0. The panels correspond to different initial helio-
centric distances. The colors correspond to different assumptions as to
the background detection rate.

Appendix C: Velocity inference — Full velocity
profiles

The velocity profiles inferred in Section 3.2 are shown in
Figs. C.1 to C.3 (readers can compare them to Figs. 5 and 6).
We note that the missing solutions (jittery line) for heliocentric
distance > 0.7 AU and λbg = 4 cause incomplete data shown in
Fig. 6. These solutions only exist for some combinations of the
free parameters, in particular for λbg = 4.

0.5 0.6 0.7 0.8 0.9 1.0
0 0

50 50

100 100

150 150αδ = 1.3

r0 = 0.02

λbg = 0 λbg = 2 λbg = 4

0.5 0.6 0.7 0.8 0.9 1.0
0 0

50 50

100 100

150 150

D
u

st
ra

d
ia

l
v
el

o
ci

ty
[k

m
/
s]

αδ = 1.3

r0 = 0.1

λbg = 0 λbg = 2 λbg = 4

0.5 0.6 0.7 0.8 0.9 1.0

Heliocentric distance [AU]

0 0

50 50

100 100

150 150αδ = 1.3

r0 = 0.3

λbg = 0 λbg = 2 λbg = 4

Fig. C.2. Velocity estimated from TDS/TSWF-E/CNN under the
assumption of αδ = 1.3. The panels correspond to different initial helio-
centric distances. The colors correspond to different assumptions as to
the background detection rate.

Appendix D: Interpretation of the parameter ϵr
An intuitive explanation of the parameter νr as the mean dust
velocity and of the factor rϵr as the spatial density can be clar-
ified, assuming νr ∝ rξ. With the model (7b), the nonconstant
component R̃ of the rate R is proportional to

R̃ ∝ rϵr · vϵvimpact, (D.1)

where ϵr = −2 in the case of no acceleration of the dust.
Furthermore, ϵv is explained as ϵv = 1 + αδ, and therefore

R̃ ∝ r−2 · v1impact · vαδimpact. (D.2)

The factor of v1impact actually comes from the proportionality

R̃ ∝ vimpact

νr
(D.3)

if we assume only radial motion for simplicity; readers can com-
pare this with Eq. (4a). It is also apparent from the following:
Assuming a stationary spacecraft (vimpact = νr), the detection
rate (in s−1) is a product of the flux F(r) (in s−1) and the detec-
tion area S (in m2), independently of νr. We therefore have, for
nonaccelerating dust,

R̃ ∝ r−2 · vimpact

νr
· vαδimpact, (D.4)
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Fig. C.3. Velocity estimated from TDS/TSWF-E/CNN under the
assumption of αδ = 1.6. The panels correspond to different initial helio-
centric distances. The colors correspond to different assumptions as to
the background detection rate.

and finally assuming νr ∝ rξ, we get

R̃ ∝ r−2 · r−ξ · vimpact · vαδimpact = r−2−ξ · vϵvimpact, (D.5)

and therefore

ϵr = −2 − ξ. (D.6)

There is a dichotomy in Eq. (D.5) in that the assumption of
vdust ∝ rξ was used to expand the vdust but not the vimpact. This
is one way of interpreting the approximation described in Sec-
tion 4.1; we assumed a nonconstant dust velocity in the factor for
the spatial dust density, but a constant radial dust velocity in the
expression for vimpact (see Eq. (7c)). This was done because of a
clear relation of ϵr ≶ −2 to acceleration and deceleration of the
dust, which in our case (ϵr ≈ −1.6 =⇒ ξ ≈ −0.4) reveals that
the dust is decidedly decelerating.
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Fig. E.1. Modeled dust spatial densities for different β values assuming
a circular initial orbit of 0.05 AU. The solid lines show the spatial den-
sity and are normalized to the density at 0.5 AU. The dashed lines are
approximations to the solid lines, assuming a power dependence on r.
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Fig. E.2. Modeled dust spatial densities for different β values assuming
a circular initial orbit of 0.2 AU. The solid lines show the spatial den-
sity and are normalized to the density at 0.5 AU. The dashed lines are
approximations to the solid lines, assuming a power dependence on r.

Appendix E: Spatial density profiles

We assumed that the initial orbital distance influences the rela-
tionship between β values and the spatial dust density profiles. In
Fig. 7, the initial orbit of 0.1 AU was assumed. Readers can refer
to plots E.1 and E.2 for similar plots with different assumptions
as to the initial orbit., and Fig. E.3 for a similar plot if the eccen-
tricity of e = 0.2 and the perihelion ejection with a perihelion of
r = 0.1 AU is assumed. Although the estimates of the exponents
vary, the general conclusion of a lower β implying a lower expo-
nent holds. We note that the profile gets significantly influenced
when β is close to the threshold, and that it depends on the initial
orbit and eccentricity. Therefore, β < 0.5 is shown where 0.5 is
much higher than the liberation threshold.
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Fig. E.3. Modeled dust spatial densities for different β values assuming
an elliptical initial orbit with an eccentricity of e = 0.2 and perihelion
ejection. A perihelion of 0.1 AU was assumed. The solid lines show
the spatial density and are normalized to the density at 0.5 AU. The
dashed lines are approximations to the solid lines, assuming a power
dependence on r.
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Fig. F.1. Histogram of PIT values for the model described in Sec-
tion 4.3. Mean and standard deviation were compared to the values for
uniform distribution.

Appendix F: Model assessment

There are several options for model evaluation implemented in
R-INLA (Gómez-Rubio 2020, Chapter 2.4). We briefly describe
two measures of choice.

The conditional predictive ordinates (CPO, see Pettit (1990))
for a given observation point gives the posterior probability of
each observation when this observation is omitted in the model
fitting. CPO is used to detect surprising observations or outliers.
We examined the fit for failure flags for all the points, which
would suggest a contradiction between the model and a data
point. No failures were encountered.

The predictive integral transform (PIT, see Marshall &
Spiegelhalter (2003)) measures the probability that a new obser-
vation will be lower than the observed value for each observation
point individually. The histogram of the PIT values should there-
fore be similar to the uniform distribution between 0 and 1 when
the model explains the data well (see Fig. F.1).
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Fig. G.1. Illustration of the covariance between all parameter pairs,
constructed using sampling from the joint posterior distribution of all
parameters.

Table G.1. Covariance between all parameter pairs, constructed using
sampling from the joint posterior distribution of all parameters.

ϵv ϵr λβ λbg νr
ϵv 0.451 -0.109 0.068 -0.015
ϵr 0.451 0.392 -0.621 0.027
λβ -0.109 0.392 -0.244 -0.799
λbg 0.068 -0.621 -0.244 -0.303
νr -0.015 -0.027 -0.799 -0.303

Appendix G: Covariance plots of posteriors

As is shown in figure G.1, basically all parameter pairs show
a substantial correlation. The pairs hold useful information, but
this is hardly surprising and they are easy to interpret, with the
Eq. (7b) model in mind. The correlation is unimportant in the
case of λβ, which has a role of a normalization constant.
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Fig. H.1. Prior and posterior distributions of parameters, making use
of the original TDS (onboard processed) data. Prior distributions are
described in the main text in sec. 4. Posterior distributions are described
in Tab. H.1. Posteriors from Fig. 8 are shown as a reference in dashed
lines for comparison.

Appendix H: Model fitting to original data

The procedure described in sec. 4 was also applied to the orig-
inal TDS data, meaning impacts were identified onboard Solar
Orbiter, described by Maksimovic et al. (2020), which are differ-
ent from TDS/TSWF-E/CNN data (Kvammen et al. 2023) used
otherwise in sec. 4. The CNN-refined data used in sec. 4 have
fewer type 1 and type 2 errors, as well as better correspondence
with visual inspection by experts than the original data (see dis-
cussion in Kvammen et al. (2023)). However, the original data
were used previously (Zaslavsky et al. 2021) and the inspec-
tion of the result of the procedure is instructive nonetheless. The
results are presented in Fig. H.1.

The most important and intuitive difference is that a much
lower λbg is inferred in this case (readers can compare this
with Fig. 8). As described in Kvammen et al. (2023), the CNN
procedure identifies substantially more impacts near-aphelion,
which suggests more background dust, with everything else
being equal. It is important to keep in mind that, as evaluated by
Kvammen et al., the prevalence of impacts erroneously labeled
as dust impacts among TDS data is close to 20 %, which is much
higher than λbg infered here.

Importantly, the inferred velocity νr does not change sub-
stantially, even though ϵv and especially ϵr do change conse-
quentially. Importantly, ϵr < −2 implies accelerating dust, which
implies β > 1 and requires specific material and a particular size
of the grains, hence this is unlikely — at least for β meteoroids.
We note that ϵr is effectively far from our prior expectations,
providing a poor fit to our prior knowledge. These results lend
additional credence to the improvement of the CNN data.

Table H.1. Summary statistics for the parameters, making use of the
original TDS (onboard processed) data. For a visual representation,
readers can refer to Fig. H.1.

Mean St. dev.
ϵv 1.84 0.10
ϵr -2.33 0.09
λβ 1.45 0.16
λbg 0.23 0.08
νr 69.8 4.06

Appendix I: Variation of priors and model
parameters

In this appendix, we investigate the dependence of the results
in sec. 4 on the model parameters and priors. To contextualize
this variation, we review how the priors and model parameters
depend on previous work, in particular Zaslavsky et al. (2021).

The velocity νr has been inferred independently in this work
and the fact that it is found to be compatible with the find-
ings of Zaslavsky et al. is only reassuring. The velocity νa was
assumed based on first principles (see Section 4.1) and is of
lesser importance compared to νr. The background detection rare
λbg is discussed in the present work, independent of any previous
findings and the rate λβ merely serves the role of a normaliza-
tion constant. Both rates are closely tied to the observed counts
and are therefore constrained by the data. The exponent ϵr is dis-
cussed and assessed from first principles in the present work,
while the exponent ϵν is inspired by Zaslavsky et al. (2021). The
designated prior mean of 2.2 decomposes to the sum of 1 (from
first principles) and 1.2 = αδ, where only δ ≈ 0.34 ± 0.07 is
taken from Zaslavsky et al. (2021) and where the uncertainty of
0.07 corresponds to a 95% confidence. Moreover, δ there is not
yielded by Zaslavsky et al. from the fit to the flux, but rather from
the analysis of the charge distribution presented therein, which
adds another piece of information, independent from the flux
itself. For simplicity, we used the value of Zaslavsky et al. for
δ and the same analysis of TDS/TSWF-E/CNN data yields very
similar results. Then α is known from laboratory measurements,
for example from McBride & McDonnell (1999) and Collette
et al. (2014). Collette et al. found α ≈ 4 for most materials.
For consistency, however, we continued to use the findings of
McBride & McDonnell, who reported α ≈ 3.5. Assuming 95 %
confidence of α ≈ 3.5 ± 1, we arrived at αδ ≈ 1.2 ± 0.4 in terms
of 95 % confidence. We therefore believe that the standard devia-
tion of the ϵν prior of 0.2 represents the uncertainty well. Further
analysis shows that ϵv is not inferred substantially differently in
the case of wider priors for the parameters (see Fig. I.1 for an
example). The figure shows that in the case in which all param-
eter priors are considered to be broader, the result mean stays
within the reference posterior credible range. Also a practically
flat prior for ϵv leads to a similar posterior, given the remaining
priors are taken as in Fig. 8.

It is true that the priors themselves express the uncertainty in
prior knowledge; however, to demonstrate the robustness of the
analysis, we here show perturbed priors and the resulting pos-
terior combinations (Figs. I.1 and I.2) to show that the result –
though somewhat dependent on the prior selection – does not
change dramatically if priors are chosen arbitrarily slightly dif-
ferently. Also the choice of the value of parameter va (which is
not a free parameter in our modeling, see Eq. (7e)) is exam-
ined here (see Figs. I.3 and I.4). Last but not least, we show
the posteriors in the case of change of the initialization of the
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Fig. I.1. Prior and posterior distributions of the parameters, with the
priors being substantially wider (less informative). The priors and pos-
teriors from Fig. 8 are shown with dashed lines for comparison.

iterative procedure to estimate the parameters (Fig. I.5). We do
not claim that any of these results is as trustworthy as the main
result shown in Fig. 8; we had reasoning behind choosing the
priors and parameters that we chose. We note that the mean
of the marginal posteriors shown in Figs. I.1 to I.5 lie within
high credibility regions of posteriors shown in Fig. 8 and vice
versa, which supports the claim that the analysis presented here
is robust. It is important to observe that parameter values inferred
with a lower precision (wider posterior distributions) are more
susceptible to change due to a change in parameters, which is in
line with expectations and with the meaning of precision here. A
good choice of priors is still important to get the highest quality
estimate, but the result is not critically sensitive.
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Fig. I.2. Prior and posterior distributions of parameters, with priors
shifted toward lower values. The priors and posteriors from Fig. 8 are
shown with dashed lines for comparison.
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Fig. I.3. Prior and posterior distributions of parameters, with the fixed
parameter of azimuthal velocity having been changed from 12 km/s at
0.75 AU to constant 0 km/s. The posteriors from Fig. 8 are shown with
dashed lines for comparison.

Appendix J: Possible background profiles

In the present analysis, the nonhyperbolic component was
assumed to be present and constant. Readers can refer to Fig. J.1
for examples of possible nonhyperbolic component profiles, as
discussed in Section 4.4. In the plot, the mean rate of the non-
hyperbolic component is the same in all three panels. We note
that despite that, the dynamic range (that is ratios of maximum
over minimum values) changes significantly as a result of the
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Fig. I.4. Prior and posterior distributions of parameters, with the fixed
parameter of azimuthal velocity at 0.75 AU having been changed from
12 km/s to 24 km/s, which is a value higher by 100 %. The posteriors
from Fig. 8 are shown with dashed lines for comparison.
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Fig. I.5. Prior and posterior distributions of parameters, with a starting
point of ϵv = 3; ϵr = −3; λβ = 3; λbg = 3; νr = 30. The posteriors from
Fig. 8 are shown with dashed lines for comparison.

change in the temporal profile of the nonhyperbolic component.
A significant deviation from the constant case would therefore
likely change both the inferred prevalence of the nonhyperbolic
component and the parameters of the hyperbolic grains.
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Fig. J.1. Detection rate: selection of different combinations of hyper-
bolic and nonhyperbolic rates compounding to the same observed
detection rate. In panel a), the background component is independent
of the heliocentric distance. In panel b), the nonhyperbolic component
is negatively correlated with the heliocentric distance. In panel c), the
nonhyperbolic component is positively correlated with the heliocentric
distance.
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Abstract. Solar Orbiter is equipped with electrical anten-
nas performing fast measurements of the surrounding elec-
tric field. The antennas register high-velocity dust impacts
through the electrical signatures of impact ionization. Al-
though the basic principle of the detection has been known
for decades, the understanding of the underlying process is
not complete, due to the unique mechanical and electrical
design of each spacecraft and the variability of the process.

We present a study of electrical signatures of dust im-
pacts on Solar Orbiter’s body, as measured with the Radio
and Plasma Waves electrical suite. A large proportion of the
signatures present double-peak electrical waveforms in addi-
tion to the fast pre-spike due to electron motion, which are
systematically observed for the first time. We believe this is
due to Solar Orbiter’s unique antenna design and a high tem-
poral resolution of the measurements. The double peaks are
explained as being due to two distinct processes. Qualitative
and quantitative features of both peaks are described. The
process for producing the primary peak has been studied ex-
tensively before, and the process for producing the secondary
peak has been proposed before (Pantellini et al., 2012a) for
Solar Terrestrial Relations Observatory (STEREO), although
the corresponding delay of 100–300 µs between the primary
and the secondary peak has not been observed until now.

Based on this study, we conclude that the primary peak’s
amplitude is the better measure of the impact-produced
charge, for which we find a typical value of around 8 pC.
Therefore, the primary peak should be used to derive the
impact-generated charge rather than the maximum. The ob-

served asymmetry between the primary peaks measured with
individual antennas is quantitatively explained as electro-
static induction. A relationship between the amplitude of the
primary and the secondary peak is found to be non-linear, and
the relation is partially explained with a model for electrical
interaction through the antennas’ photoelectron sheath.

1 Introduction

Since their first in situ observation, interplanetary dust grains
were observed not only with specialized instruments but also
as byproducts of other measurements, making dust detec-
tions much more abundant. One promising and actively dis-
cussed option for auxiliary dust detection of recent years is
impact ionization detection with electrical antennas (Meyer-
Vernet, 2001; Mann et al., 2014, and references therein).
When a spacecraft collides with a dust grain at a relative ve-
locity exceeding a few kilometers per second, the impact re-
leases free charge due to the high energy density present on
the impact site (Friichtenicht, 1964). The released charge is
quasi-neutral, yet the present fields often act to separate pos-
itive and negative constituents quickly, allowing for its effec-
tive detection through the signature in the electric field mea-
surement, once separated. How exactly the detection is done
depends greatly on the spacecraft’s properties, surrounding
environment, impact site, and detecting apparatus. In any
case, the perturbation of the electric field stays present for
less than 1 ms, while the process of charge separation takes
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even less time. Therefore, fast electrical measurements are
needed in order to observe the process closely.

Solar Orbiter is one of the first (Bale et al., 2016; Mak-
simovic et al., 2020; Mann et al., 2019) missions to include
a wave analyzer suite designed with dust detection in mind.
Dust impact events are readily recognized based on a charac-
teristic peak (Zaslavsky et al., 2021; Kvammen et al., 2023),
yet the analysis and the interpretation of the recorded signals
are made difficult by unclear dependence of the process on
spacecraft properties, which is also an issue with other space-
craft conducting similar detection (Zaslavsky et al., 2012;
Malaspina et al., 2014; Vaverka et al., 2017; Ye et al., 2019;
Page et al., 2020; Ye et al., 2020; Zaslavsky et al., 2021;
Kellogg et al., 2021; Racković Babić et al., 2022). In the
present paper we report the first observation of a double-peak
structure (in addition to the fast electron pre-spike) associ-
ated with dust impacts recorded with electrical antennas. The
double-peak structure is explained as being caused by two
charge collection processes happening simultaneously or in
a quick succession and analyzed as such.

We structure the article as follows: in this section, we
present Solar Orbiter as a dust detector. We inspect the data
and describe our findings in Sect. 2. In Sect. 3, we describe
the electrical process theoretically and with quantitative esti-
mates as due to two processes. In Sects. 4 and 5, we focus on
primary and secondary peaks respectively. We show that the
primary peaks are understood with current knowledge, and
we discuss potential explanations for the secondary peaks.
We summarize in Sect. 6.

1.1 Solar Orbiter as a dust detector

Solar Orbiter is a three-axis stabilized spacecraft, launched
on 10 February 2020, orbiting the Sun, with an aphelion
near 1 AU and a perihelion shrinking from 0.5 AU to cur-
rently 0.28 AU. Solar Orbiter has remained close to the eclip-
tic plane so far but will be gaining orbital inclination gradu-
ally, starting in 2023 and reaching the maximum inclination
of 24 ° and possibly 33 ° in the late 2020s.

The area of the Solar Orbiter’s body and shield combined
is ≈ 28.4 m2. In addition, the backside of the solar pan-
els is conductive and coupled to the body, which adds an-
other 15.1 m2 (Zaslavsky et al., 2021). The spacecraft there-
fore provides ≈ 43.5 m2 of surface sensitive to dust impacts,
where, importantly, ≈ 7.4 m2 is taken by the heat shield
front side, which is the effective cross section as seen from
the Sun. The effective cross section in the ram direction is
≈ 4 m2 (ESA, 2023). We note that the areas are based on a
simplified description of the spacecraft as a cuboid with a
heat shield, while a portion of the area is covered by insensi-
tive surfaces. Other sensitive surfaces may contribute to the
area besides the cuboid. The heat shield is made of calcium-
phosphate-coated titanium, while the body is covered with
various metallic and non-metallic materials. Which materi-

Figure 1. The Solar Orbiter’s heat shield (black rectangle) and
the RPW antennas (dashed red) viewed in the spacecraft reference
frame (from behind).

als are exposed definitely plays a role in the distribution of
impact amplitudes, and this is worthy of future investigation.

1.1.1 Radio and Plasma Waves instrument

The Radio and Plasma Waves instrument (RPW) is a com-
bined electric and magnetic suite for an in situ study of fields
and waves (Maksimovic et al., 2020). It provides fast elec-
trical measurements with its three rigid conical nickel cobalt
alloy antennas, which enable detection of dust impact events.
Each of the antennas is 6.5 m long with a near-base diameter
of 38 mm and lies in one plane recessed approximately 1 m
behind the heat shield; see the diagram in Fig. 1. Though dust
impact events might be identifiable in the electrical spectra,
the Time Domain Sampler subsystem (TDS) of RPW is the
key to a robust analysis (Zaslavsky et al., 2021), since the
dust impacts are solitary pulse events which provide little in-
formation on spectra.

1.1.2 Radio and Plasma Waves data

The three RPW electrical antennas measure in various con-
figuration modes: monopole, dipole, and mixed. In the
monopole configuration, abbreviated SE1, antennas measure
voltage against the spacecraft body – this configuration is
in principle best suited for dust detection, as the dust im-
pacts’ influence on the body potential is of interest. In the
dipole mode (DIFF1), antennas measure the electric poten-
tial against each other, which has the benefit of the largest
effective length for the electrical fields study, but the mea-
surement is nearly insensitive to the changes of the poten-
tial of the body. Nonetheless, dust impacts were identified in
dipole measurements before and can be identified in DIFF1
measurements of Solar Orbiter, given that the impact influ-
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ences the potential of an antenna. DIFF1 measurement also
provides redundant information on electric fields, as the three
antennas lie in a plane; hence only two components could be
measured. In the mixed mode (XLD1), the three channels are
occupied by two dipoles and a monopole, which in principle
retains benefits of both of the aforementioned configurations,
as both monopole and dipole signals could be reconstructed.
For a more detailed description, see Appendix A. The XLD1
mode is the one that the instrument spends the most time in
(≈ 95.4 %).

The RPW records electrical waveforms with a 6.25 % duty
cycle, that is the first 62.5 ms of every second. In trigger
mode, the onboard algorithm decides whether to keep each
of the recordings, based on the maximum amplitude ob-
served within the window. Up to several hundreds out of
approx. 86 400 windows a day are stored and transmitted.
The onboard algorithm also classifies the stored waveforms
into three different phenomena categories, one of which is
the dust impact (more details in Souček et al., 2021). The
onboard algorithm, however, does not achieve the precision
and accuracy of ground based classifications. In a recent pa-
per, Kvammen et al. (2023) re-did the classification with
machine-learning techniques, and this dataset (Kvammen,
2022) is used in the present paper.

Due to technical limitations of the amplifiers, the recorded
waveforms can only be trusted within a limited bandwidth.
For the purpose of waveform analysis and plotting in the
present work, the raw data are altered by a sequence of dig-
ital filters to expand this range as much as possible. As a re-
sult, the waveforms are trusted in the bandwidth of 500 Hz<
f < 70 kHz. For a comprehensive description, consult Ap-
pendix B.

2 Observation of impact ionization on Solar Orbiter

Solar Orbiter’s RPW electrical antennas (Maksimovic et al.,
2020) are similar in terms of construction and the sampling
rate to the Solar Terrestrial Observatory (STEREO)/Waves
electrical suite (Bale et al., 2008). The antennas are rigid
thick poles, with the difference that in the case of STERE-
O/Waves, the bases of the three orthogonal antennas are
physically close to one another, while in the case of Solar
Orbiter/RPW, the three antennas lie in one plane, and their
bases are physically distant, with the spacecraft’s body be-
tween them. Nevertheless, the systems’ semblance suggests
comparable capabilities for dust detection. Therefore, in this
section we will present and examine the dust data acquired
with Solar Orbiter/RPW, building on the results of and com-
paring to STEREO/Waves.

2.1 Single and triple hits

STEREO had observed two kinds of dust impact events, so-
called single hits and triple hits. The difference is that the

Figure 2. Heat map in the ternary plot for the channel maxima
(VX = antX − body) for all the events identified as dust impacts.
4534 data points contribute to the heat map.

triple hits are observed similarly strong on all three chan-
nels, which suggests that most of the process takes place
on the common ground the channels measure against, rather
than on each of the antennas (Zaslavsky et al., 2012). The
single hits were reportedly produced by nanodust impacts,
which were observed on both STEREO and Cassini with
similar fluxes (Schippers et al., 2014, 2015; Meyer-Vernet
et al., 2017) when the solar wind electric field focused them
towards the ecliptic (Juhász and Horányi, 2013) – a condi-
tion that stopped after 2012 (Le Chat et al., 2015). Since they
produce small voltages, they were only observed on the an-
tenna lying within the impact cloud, whose voltages could
be amplified (Pantellini et al., 2012a; Zaslavsky et al., 2012),
and their flux was several orders of magnitude larger than
that of beta particles and much more variable, as predicted
by Mann et al. (2007). Although STEREO-like single hits
are not expected to return until after 2024 (Poppe and Lee,
2020, 2022), it is useful to compare the channels’ amplitudes
to one another, and we will keep using the terms single and
triple hits for Solar Orbiter events, where appropriate. We
compare the amplitudes using the ternary plot of channels’
maxima, that is the highest amplitude of the voltage between
the antenna and the body. The ternary plot is the plot in an
equilateral triangle, in which the position in the triangle cor-
responds to the relative contribution of the three contributors
to the sum. In our case, ternary plots are normalized to the
sum of three channel maxima for an impact, showing a rela-
tive amplitude of the three channel maxima; see Fig. 2.

We see that many events lie near the center, which corre-
sponds to a similar response on all three antennas. However,
many events lie towards the corners as well, especially near
the triangle’s medians, which implies an amplitude in one
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channel higher than in the other two channels, which are in
turn nearly equal to one another. This suggests that a process
concerning antenna might be present – similar to the conclu-
sion made for STEREO’s single hits (Zaslavsky et al., 2012;
Pantellini et al., 2012a). The spacecraft has a rough lateral
mirror symmetry between antennas 2 and 3, while antenna 1
lies in the plane of symmetry. We see a small preference of
antenna 3 against antenna 2, which is to be expected, since
antenna 3 is closest to the ram direction, while antenna 2 is
close to the anti-ram. The schematic view of the three anten-
nas with respect to the spacecraft body is shown in Fig. 1. We
also see that double hits (strong in two and weak in one chan-
nel) are not very frequent, but clearly the pair of antenna 3
and antenna 1 is the most prevalent for such hits. This is also
to be expected given the direction of the ram. Note that this is
a crude representation as it only accounts for the global posi-
tive maxima and is therefore an imperfect measure of impact
location. Overall, the preference for ram direction is appar-
ent, and a process concerning antennas is hinted at through
the presence of single hits.

2.2 Waveform inspection

Upon inspection of the corrected signals (see Appendix B)
recorded in monopole (SE1) mode (see Fig. 3), we see that
many of the waveforms show the following structure: a si-
multaneous peak of similar amplitude in all three of the chan-
nels (Fig. 3a; let us denote the peak a primary peak), often
followed by a secondary peak of a different amplitude and
delay in each channel, not always present in all of the chan-
nels (Fig. 3b, c, d). Sometimes one of the channels shows a
more prominent peak instead of the primary peak (Fig. 3d).
It seems reasonable to explain these cases as the secondary
peak following shortly after the primary peak and hence
overshadowing the primary peak. Since it is often the case
that just one of the channels shows a secondary peak much
stronger than the primary peak (Fig. 3b, c, d), we identify
the often-seen single hits as being due to the secondary peak
(see Fig. 2 and the corresponding discussion). The two-peak
structure is clearly present in many of the impacts (≈ 50 %),
and even more are consistent with the pattern. To the best of
our knowledge, this is the first time when such clear double-
peak structures in the impact signals were observed. For sep-
arate ternary plots for the impacts that do and that do not
show double-peak structure, see Appendix C.

Signals recorded in mixed (XLD1) mode, decomposed to
the monopole channels (see Appendix A) and corrected the
same way as monopole signals (see Appendix B), fit the
description outlined in the previous paragraph as well (see
Fig. 4). This is not surprising, given that the information re-
tained in XLD1 data is virtually the same, except for satura-
tion levels and, to a minor extent, bandwidth. This however
confirms that we are justified to treat decomposed XLD1 data
the same way as one would treat the monopole signals.

Figure 3. Dust impact events, recorded in true monopole (SE1)
mode, corrected (see Appendix B). The voltages are shown as
VX = antX − body. The triangular insets show the corresponding
location of the event on the amplitude ternary plot; consult Fig. 2.
The left-hand side shows detail of the shaded portion of the right-
hand side, which in turn shows the whole recording of 62 ms.
(a) A clear triple hit: simultaneous and with similar amplitude in
all three channels. (b) Channel V3 shows larger amplitude, com-
pared to channels V1 and V2. A relative delay of≈ 50 µs is present.
(c) Channel V1 shows larger amplitude, compared to channels V2
and V3. A relative delay of ≈ 150 µs is present. (d) A common pri-
mary peak is visible in channels V1 and V2, a secondary peak is
present in V2, and a larger amplitude and a delay are present in V3.
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Figure 4. Dust impact events, monopoles reconstructed from sig-
nals recorded in hybrid monopole/dipole (XLD1) mode, corrected
(see Appendix B). The voltages are shown as VX = antX − body.
The triangular insets show the corresponding location of the event
on the amplitude ternary plot; consult Fig. 2. The left-hand side
shows detail of the shaded portion of the right-hand side, which
in turn shows the whole recording of 62 ms. (a) A clear triple
hit: simultaneous and with similar amplitude in all three channels.
(b) Channel V2 shows larger amplitude, compared to channels V1
and V3. A relative delay of ≈ 200 µs is present. (c) A common pri-
mary peak is visible all the channels, a secondary peak is present in
V3, with hints of it in V1 and V2. A negative pre-spike is clearly
present. (d) A common primary peak is visible in all three channels,
and a larger amplitude and delay peak are present in V1. Hints of
secondary peaks are present in V2 and V3 with different delays.

In addition to the primary and the secondary peak, there is
often a negative pre-spike present in the waveforms, imme-
diately preceding the main signal. We believe this to be due
to electron dynamics, and we will address it in Sects. 3.2 and
4.3.

There is a post-impact negative overshoot present in many
of the recordings shown in plots in Figs. 3 and 4. One pos-
sible explanation for this behavior was developed and de-
scribed in Zaslavsky (2015) as being due to a partial collec-
tion of the electrons by antennas, that have a longer discharge
time constant τRC compared to the spacecraft’s body. More
generally, the behavior is the same, even if the antenna is
charged by a different process than the one described by Za-
slavsky (2015); that is, the charge does not have to originate
directly in the impact plasma. We will not pursue the expla-
nation now, as the tails of the impacts are generally on the
edge or outside of the trusted bandwidth, that is, f < 500 Hz
or τ > 2 ms. Let us only note that even though the overshoots
are likely distorted and out of scope of this paper, they are
likely at least partially physical, as similar overshoots were
observed on STEREO (Zaslavsky, 2015) and Parker Solar
Probe (Kellogg et al., 2021).

2.3 Features’ extraction

For the present analysis, we used the convolutional neural
network (CNN)-refined data described in Kvammen et al.
(2023), decomposed into monopole signals. In order to de-
scribe the events of interest only, that is the body impacts
sunlit metallic parts conductively coupled to the spacecraft’s
body, we employ the following filtering criteria: only the im-
pacts of a maximum amplitude below 0.3 V that are predom-
inantly positive in all the monopole channels were analyzed.
The upper limit of 0.3 V is employed in order to avoid reach-
ing the saturation level. We note that predominantly negative
pulses produced by antenna hits are also present in the data
yet out of scope of the present work, as the electrical process
is different for these. Besides, for the sake of data quality, we
disregarded the signals captured very near the beginning or
the end of the recording window that is within the first or the
last 100 samples, or 0.38 ms, since these often do not show
the full peaks of interest. After applying these criteria, we are
left with & 50% of the waveforms in the CNN dataset.

We are interested in the following parameters: amplitude
of the primary peak, electron pre-spike presence and am-
plitude, secondary peaks’ presence and amplitudes, and the
primary peak’s rise and decay times, where the former two
peaks (electron and primary peaks) are assumed to be com-
mon in all three channels, and the latter (secondary) is ana-
lyzed channel-wise. For a comprehensive description of how
these are extracted, the reader is referred to Appendix D.
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3 Dust impact pulse and process description

Given the previous literature (Friichtenicht, 1964; Auer and
Sitte, 1968; Gurnett et al., 1983; Zaslavsky et al., 2012;
Pantellini et al., 2012a; Meyer-Vernet et al., 2014; Collette
et al., 2015; Meyer-Vernet et al., 2017; Vaverka et al., 2017;
Nouzák et al., 2018; Mann et al., 2019; Ye et al., 2019;
Kočiščák et al., 2020; Kellogg et al., 2021; Shen et al.,
2021b, a; Racković Babić et al., 2022; Shen et al., 2023) and
what we observe in the case of Solar Orbiter’s RPW data, we
formulate a following simplified outlook on the process.

Since the spacecraft is practically always in the sunlight,
photoelectrons are released from its body, leading to a posi-
tive charge of the most of the spacecraft’s body. Upon a hy-
pervelocity dust impact on the spacecraft body, quasi-neutral
charge is released. In the case of a spacecraft’s body hit, mea-
surement of the spacecraft’s antennas potential against its
body (8ant−8body) shows an evolution of the voltage dif-
ference, summarized on different timescales as follows. The
phases numbered (1)–(5) are also visualized in Fig. 5.

1. The impact. A quasi-neutral cloud is born in the near
vicinity of the spacecraft. Neglecting a usually small
charge possibly carried by the incident dust grain, no
change is induced in the spacecraft’s potential due to
the impact, as the newborn cloud is quasi-neutral, and
all the charged particles remain in the near vicinity of
each other and therefore have no net influence on the
potential. Due to the high density and low mean free
path in the newborn cloud, the cloud is at least partially
thermalized (Ye et al., 2019; Kočiščák et al., 2020).

2. The electron motion timescale. A portion of the elec-
trons is collected by the spacecraft’s body. Simulta-
neously, a fraction of released electrons with energies
high enough to surpass the spacecraft’s potential well
escapes from the vicinity of the spacecraft. The much
slower, net positive ion cloud remains in the vicinity of
the impact site. There are two effects going on simul-
taneously: (a) body potential rises, since the electrons
that escaped no longer influence its potential, and (b) an-
tenna potential rises, since neither the escaped electrons
nor the electrons collected by the body influence its po-
tential any longer. The latter effect is asymmetric with
respect to the three channels, since each antenna is in-
fluenced differently, owing to the location of the impact
site. The escaping electrons are, however, visible in the
form of a symmetric negative spike, owing to the influ-
ence of the body potential, possibly forming the afore-
mentioned negative pre-spike. These two (asymmetric
positive and symmetric negative) influences counteract
each other, and therefore the result is ambiguous, de-
pending on the spacecraft’s potential, as well as the in-
strument geometry and impact site, besides other fac-
tors.

3. The timescale of the impact cloud retreating from the
vicinity of the spacecraft’s surface. As the spacecraft
body is positively charged, the net positive impact cloud
is repelled. When the impact cloud’s electrostatic induc-
tion on the body ceases, the electrons previously col-
lected by the body show in the form of a positive peak in
the voltage difference, which we denoted as the primary
peak. The rise time of the primary peak is therefore the
time that ions need to escape far enough from the space-
craft body’s vicinity or, alternatively, time until the ion
cloud is sparse and far enough so that it is shielded by
the photoelectron sheath. The peak is in principle the
same on all the channels, since it happens on the body,
rather than on the individual antennas. An asymmetry
might still be visible due to the electrostatic induction of
the ion cloud on the antennas that may not have halted
yet, discussed in the previous paragraph. This asymme-
try halts on a timescale similar to the rise time of the
primary peak, as they both depend on ion motion and
shielding.

4. The timescale of the impact cloud reaching the anten-
nas. There is a spike due to ions getting so close to the
antennas, that they influence their potential locally. The
peak is delayed behind the primary peak due to a finite
drift and diffusion velocity of the ions. In fact, the delay
of & 100 µs provides a clear distinction from the induc-
tion effect of the ion cloud on the antennas that is ob-
served on a much faster timescale, discussed in phase 2.
The antenna charging process is not obvious. Several
possibilities for the charging process were previously
proposed, observed, and debated.

5. The timescale of potential equalization. Neglecting
other influence, the spacecraft’s potential is positive and
in equilibrium due to balance between the photoelectron
current with negative dependence on the spacecraft’s
potential and the ambient (solar wind) electron collec-
tion current with positive dependence on spacecraft’s
potential. This balance is perturbed by the net negative
charge collection from the dust impact, and it is restored
on a timescale much more slowly than the impact cloud
motion timescale.

Each phase corresponds to one process being dominant;
therefore the phases may or may not begin and end with
peaks, which depends on amplitudes and timing for the given
event. We note that certain phases may or may not be pro-
nounced in individual waveforms, due to a specific voltage
balance or phase timing or an insufficient temporal resolu-
tion of the waveform sampler. Different behavior may be ob-
served in the case of a less likely impact on a scientific instru-
ment, a non-metallic surface, or a non-illuminated back side
of the body. We note that even though the solar panels have
a large area compared to the spacecraft’s body, they are non-
conductive on the front side, which makes them less sensitive
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to dust impacts. Much is not understood about the panels’
response to the impacts, and this is out of scope presently,
though it is worthy of future investigation.

3.1 Charge production equation

The charge is released from the impact site shortly after the
dust impact. The amount of charge was found (Auer and
Sitte, 1968) to depend on the mass and velocity and is of-
ten assumed to follow this empirical equation:

Q

C
= A

(
m

kg

)α( v

kms−1

)β
, (1)

wherem and v are the grain’s mass and velocity respectively,
and A, α, and β are material constants. We note that the pro-
cess is stochastic and depends on other parameters, such as
the angle of incidence of the impact velocity, so the exact
charge can not be reliably predicted, even if these parame-
ters are known, but Eq. (1) was found to work for the mean
charge obtained in a repeated experiment. For experimental
results and discussion, the reader is referred to Collette et al.
(2014) and references therein.

3.2 Electron pre-spike

The negative, electron pre-spike forms due to electrons es-
caping from the potential well of the positively charged
spacecraft. One of the extreme cases is that the potential of
the spacecraft is so high compared to the energies of the elec-
trons that virtually no electrons escape, and, hence, no elec-
tron peak is observed. In the other extreme case, the potential
of the spacecraft is so low that all the electrons moving ini-
tially outward (that is, one half of all the electrons) escape.
Since the Solar Orbiter operates in the solar wind and in sun-
light, its potential does not usually get below +5 V, which
means that the latter scenario is unlikely. In reality, values
between the two extremes are obtained, leaning towards the
former scenario.

3.3 Primary peak

As the Solar Orbiter is typically positively charged to ≈ 7 V,
the positive ions released at the impact are repelled from the
spacecraft’s body and leave behind the negative charge. It
was explained and evaluated before (Zaslavsky et al., 2021)
that if the peak is due to a sudden deposition of free charge
Q onto the body of the spacecraft, and the antenna’s poten-
tial φant remains roughly constant throughout the process,
the peak’s amplitude V is linked to the amount of deposited
charge as follows:

V ≈
Q0

Csc
, (2)

where Csc is the electrical capacity of the spacecraft’s body
(Csc ≈ 355 pF), while 0 is the capacitive transfer function

Figure 5. The phases of impact ionization process, as described in
Sect. 3. Different eventualities are shown to demonstrate the vari-
ability of the pulses that fit the proposed framework. The curves are
fictitious, with reasonable primary and secondary peak amplitudes
of 50 and 120 mV, as well as a reasonable timescales. The second
phase provides an ambiguous step function and is not otherwise re-
lated to a specific shape of the curve. Compare to the individual
channels in the panels of Fig. 4. (a) No secondary peak is visible;
(b) the peaks are discerned by an inflection point; (c) all the phases
are clearly visible, although only one local maximum is reached;
and (d) all the phases are visible, and two local maxima are reached.
The amplitude of the primary peak is 70 mV, rather than 50 mV.
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between the body and the antenna:

0 =
Cant

Cant+Cstray
, (3)

where Cant is the antenna’s self-capacitance (Cant ≈ 55–
70 pF, depending on the variable local plasma conditions),
and Cstray is the capacitive coupling between the antenna and
the body, including the preamplifier capacitance (Cstray ≈

108 pF). It should be noted that Eqs. (2) and (3) present a
simplified outlook, sufficient for our current endeavor. More
precise approaches have been taken recently (Shen et al.,
2021b; Racković Babić et al., 2022). The approximation re-
quires that the rise of the signal is much faster than the re-
laxation, which is, as we will see, well met. Then we have
0 ≈ 0.34–0.39. Numbers considered, for the primary peak,
we calculate

V

Q
≈ 109V/C. (4)

In their recent modeling effort, Racković Babić et al. (2022)
concluded that, in the case of STEREO spacecraft with a sim-
ilar antenna system, Eq. (2) underestimates the total charge
released by about 30 % due to finite rise and finite decay
timescales but is a reliable linear measure of the charge re-
leased.

We also note that in the case of the presence of the electron
peak, we evaluate the amplitude V of the primary peak in
reference to the low point of the electron peak, that is to the
high point of the spacecraft’s potential.

3.3.1 Antenna-induced primary peak asymmetry

In this section, an order-of-magnitude estimate of impact
cloud influence on antennas is presented. As explained in
Sect. 3, shortly after the impact, electrons are collected by
the spacecraft or escape from the cloud of impact-generated
plasma. Therefore, the leftover is a net positive charge cloud
near the impact site. As the cloud moves away from the im-
pact site, its influence on the body potential gradually ceases,
and the primary peak appears, which is the scope of point 3
in Sect. 3. The cloud however influences not only the space-
craft body but also each of the three antennas via induc-
tion, as debated in Meyer-Vernet et al. (2014) and Shen et al.
(2021a). This influence also ceases once the ion cloud is far
away from the spacecraft, but before that happens, this influ-
ence is the source of an asymmetry of the primary peak as
measured with individual channels, as demonstrated by Shen
et al. (2021a). This influence does not require that the ions
have moved far from the impact site and is the scope of point
2 in Sect. 3. As an order-of-magnitude estimate, let us study
the influence on the antennas’ potential if a point charge is
located near the heat shield.

Assume a point chargeQ at the location xq and the Debye
length of λD. The electric potential at the point of space x is

Figure 6. The ratio of primary peak amplitudes as predicted by the
model for detection in different channels.

then coulombic with Debye shielding:

8=
Q

4πε
e
−
|x−xq |

λD

|x− xq |
. (5)

The Debye length in solar wind plasma is typically be-
tween 3 and 8 m (Guillemant et al., 2013) and hence greater
than or similar to the linear dimension of the spacecraft, and
the shielding by photoelectron cloud is neglected for simplic-
ity; hence the exponential factor in Eq. (5) is assumed to be
equal to unity. A thin antenna (defined by a path l) measures
a potential of

8ant =
1
|l|

∫
l

8dl. (6)

Each antenna responds to the point charge differently, de-
pending on their relative location. The response of the space-
craft’s body is assumed as in Eq. (4). Employing a Monte
Carlo model for the charge location on the heat shield, we
find that the ratio R of primary peak amplitude detected with
different channels is up to R ≈ 1.5; see Fig. 6. Similar con-
clusion can be arrived to based on the results of Shen et al.
(2021a), albeit for a different configuration of antennas. For a
more detailed description of the model, refer to Appendix F.

3.4 Secondary peak

Should the antenna get charged, the corresponding voltage
would be given by an equation equivalent to the one for the
charging of the body but with a different value of the capaci-
tance,

V ≈
Q0

Cant
, (7)

and is hence different by a factor of Csc/Cant. By substitution
for the difference, we find that

V

Q
≈ 6 · 109V/C. (8)
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It is unlikely that the antenna will get charged by collec-
tion of free charges (O’Shea et al., 2017); however the sec-
ondary peak might be caused by various mechanisms. Should
the antenna only detect the approaching charge remotely (via
induction), its response would depend on the geometry of
the encounter: the closer the charge gets to the antenna, the
stronger the response, with the maximum equal to the charge
collection in case of a very close approach. Should the an-
tenna charge due to photoemission (Pantellini et al., 2012a;
Kellogg, 2017), the above-mentioned equation holds, and the
Q would be the charge due to photoemission. Finally, we
note that since the secondary peak is noticeably retarded by
& 100 µs with respect to the primary peak (see Figs. 3, 4), it
can not be explained as an electrostatic response to the im-
pact plasma cloud located near the impact site – the motion
towards the antenna must be important, and the charging pro-
cess must be local, requiring proximity of the ion cloud to
the antenna. Besides, we observe the electrostatic response
as well, on a different timescale, in the form of the primary
peak asymmetry.

3.5 Timescales

The electron peak rises when the electrons no longer induce
charge on the spacecraft body. It happens no later than when
the electrons are displaced from the spacecraft’s body by a
displacement comparable to the size of the spacecraft body
(≈ 1 m). Consider that the energy of the electrons has to be
high enough to overcome the positive potential of the space-
craft’s body. The temperature of the impact cloud was es-
timated before (Friichtenicht et al., 1971; Eichhorn, 1976;
Collette et al., 2016; Kočiščák et al., 2020) to be & 1 eV k−1

B ,
which implies an electron velocity of ve & 500 km s−1, lead-
ing to a rise time of τe . 2 µs, which is well below the
262 ksps resolution of the sampler; hence it appears to be
instantaneous. If an electron pre-spike appears to be stronger
on certain antennas, it might indicate that it is partially due
to electron collection by the antenna.

Similar to the electron peak, the primary peak appears as
soon as the released ions no longer induce charge on the
spacecraft’s body. Two processes cause this: physical dis-
placement of the ions and the shielding of the ions by the
electrons (ambient electrons and photoelectrons). Adopting a
moderate ion temperature of 5 eV k−1

B (Collette et al., 2016;
Kočiščák et al., 2020) and assuming carbon nuclei, we find
the ion speed to be vi ≈ 9 km s−1. By applying a general
electrostatic model for collected and induced charging of
all the relevant elements, that is both the antennas and the
body of a simplified physical model of a spacecraft, Shen
et al. (2021a) measured the speed of ions expanding from a
dust impact in laboratory. They found the expansion speed
to be vi = 11.3± 0.7 km s−1. This value is compatible with
the laboratory results of Shen et al. (2021b), who found vi =

9± 1 km s−1 using a scaled-down model of Cassini space-
craft. Based on in situ dust impact measurements on Mag-

netospheric Multiscale (MMS) spacecraft and making use
of its tip-sensitive antennas, Vaverka et al. (2021) reported
vi = 27± 5 km s−1. Recently, Racković Babić et al. (2022)
reported 13 km s−1 using a multi-element model applied to
STEREO spacecraft’s data. Assuming the expansion speed
of 10–20 km s−1 we find that the displacement of 1 m occurs
in ≈ 50–100 µs – a time well resolved by the RPW sampler.
Should the impact happen within the photoelectron sheath,
the photoelectrons are easily the dominant electron popu-
lation. Assuming typical plasma conditions at 1 AU and an
ion speed of vi = 10 km s−1, Meyer-Vernet et al. (2017) es-
timated the timescale for the shielding of Q= 1.6 pC charge
to

τph ≈ 12µs; τph ∝Q
1/3d2/3v

−2/3
i , (9)

which is on the edge of the resolution of the RPW sampler.
The potential altered by the net charge left deposited on

the spacecraft’s body will decay towards the original space-
craft potential, that is, until the equilibrium is reached again.
Under the assumption that the potential perturbation is small
compared to the equilibrium potential, the time constant τRC
of the decay is

τRC ≈
CsckBTph

e|Ie|
≈
CsckBTph

e2neveSsc
, (10)

where kBTph is the photoelectron temperature (in eV), and
|Ie| is the magnitude of the ambient electron current on the
body of the spacecraft, expanded into the product of the
charge, density, velocity, and surface eneveSsc. For details,
the reader is referred to Henri et al. (2011). Assuming Csc =

355 pF, kBTph = 3 eV, ne = 5× 106 m−3, ve = 500 km s−1,
and Ssc = 28.4 m2, we get an order-of-magnitude estimate of

τRC ≈ 93µs (11)

for a typical r = 1 AU solar wind environment. It is often
reasonable to assume ne ∝ r

−2.

4 Statistical analysis of the primary peak

The primary peaks are found synchronous and with similar
amplitude in all three channels; therefore we believe that the
primary peak is the result of the net charge deposition to the
spacecraft’s body due to impact. In this section, we exam-
ine the statistical properties for the primary peaks, such as
the distribution of their amplitudes and their rise and decay
times. We also compare these to theoretical predictions.

4.1 Amplitude distribution

We analyzed the primary peak amplitudes (as described in
Sect. 2.3 and Appendix D) as these are the better measure
of the total released charge, compared to the channel global
maxima reported previously (Zaslavsky et al., 2021), since
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the dataset now excludes secondary peaks’ amplitudes. The
smallest consistently resolved peaks are & 0.5 mV, and the
largest included peaks are amplitudes of ≤ 0.3 V. Assuming
the relation between the primary peak amplitude V and the
charge Q in the form of Eq. (4), we find the mean charge
to beQmean ≈ 21 pC and the median to beQmedian ≈ 8.1 pC.
Further discussion is available in Appendix E.

The charge production equation (see Eq. 1) for So-
lar Orbiter is unknown. We assume a production rela-
tion as in McBride and McDonnell (1999), that is Q

C
=

0.7
(
m
kg

)1.02(
v

km s−1

)3.48
, and a mean incident velocity as in

Kočiščák et al. (2023), vmean = 63 km s−1. We find the mean
incident dust mass mmean ≈ 1.5× 10−17 kg, which corre-
sponds to a spherical dust grain with the diameter of 0.24 µm,
assuming the density of ρ = 2 gcm−3.

4.2 Rise time

We analyzed the rise time of the primary peak and compared
it with the estimates presented in Meyer-Vernet et al. (2017)
for the case of the sunlit impact surface and for the case of
the shaded impact surface (see Sect. 3.5). We adapted the es-
timates to the median charge of 8.1 pC, as well as the ion
speeds of vi = 10 and 20 km s−1, obtained as described in
Sect. 3.5. The estimates were done assuming only one (pho-
toelectron shielding or ambient plasma shielding) process,
while the other one plays a role as well, as described in
Meyer-Vernet et al. (2017) Therefore, even sunlit estimates
are overestimates. On the experimental side, the exact defini-
tion of the rise time is important, as the rise profile is usually
not exponential. In order to exclude a potential fast contribu-
tion of the induced charge (as in Sect. 3.3.1), we define the
rise time as the time needed to get from 1/e of the maximum
to the maximum value of the peak.

Figure 7 shows the dependence of the rise time on the he-
liocentric distance. Inferred means are close to the theoret-
ical estimate for sunlit surface impact. Figure 8 shows the
dependence of the rise time on the primary peak amplitude,
assuming heliocentric distance of 0.75 AU. The data show
significantly less variation than predicted; however the sunlit
estimate is clearly better than the shade estimate. There might
be several reasons for the disagreement of the data with the
theory. Either the process understanding as in Meyer-Vernet
et al. (2017) is incomplete, or there are correlations present
between the variables in Eq. (9). We note that several papers
(for example, Collette et al., 2016; Nouzák et al., 2020) sug-
gested that the higher impact velocity might lead to a higher
ion velocity vi in addition to a higher charge yield Q, al-
though recent measurements did not observe this (Shen et al.,
2021a). If a higher impact speed is correlated with a higher
ion expansion speed, then these effects partially counteract
each other, and the scaling of the rise time τph is not as in Eq.
9. The theoretical predictions made in Meyer-Vernet et al.
(2017) and the ion escape velocity between 10 and 20 km s−1

Figure 7. Rise times of the primary peaks as a function of the he-
liocentric distance. Predictions from Meyer-Vernet et al. (2017) are
shown in the case that impact cloud shielding is dominated by pho-
toelectrons (sunlit) or solar wind plasma (shade). The predictions
are for the median primary peak’s charge of 8.1 pC and for an ion
escape velocity of 10 and 20 km s−1.

Figure 8. Rise times of the primary peaks as a function of the body’s
peak amplitude. Predictions from Meyer-Vernet et al. (2017) are
shown in the case that impact cloud shielding is dominated by pho-
toelectrons (sunlit) or solar wind plasma (shade). The predictions
are for the heliocentric distance of 0.75 AU and for an ion escape
velocity of 10 and 20 km s−1.

are compatible with the data with respect to the timescale of
the rise time. The theory is also compatible with the varia-
tion with the heliocentric distance, though the dependence of
the rise time on the impact charge was not observed as pre-
dicted, with sunlit estimates providing a better fit to the data,
compared to shade estimates.

4.3 Negative pre-spike

The negative pre-spike is present intermittently, for example
in Fig. 4c. The presence indicates that a portion of free elec-
trons was able to escape the spacecraft’s potential well. We
note that the induced charge on the antennas due to the posi-
tive impact cloud appears nearly as quickly as the electron
pre-spike, and these two effects therefore counteract each
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Figure 9. The histogram of spacecraft potential at each dust impact
for impact with and without pre-spikes. Averages are shown for the
two populations as vertical lines.

other, differently in each channel. The induction on the an-
tennas may be fast and ample enough so that the electron
pre-spike is obscured. Concerning the presence and the am-
plitude of the pre-spike, the exact impact location certainly
plays a role, since spacecraft’s surface potential is not uni-
form. On top of that, the spacecraft’s potential must play a
role as a lower potential implies a shallower potential that
electrons need to overcome in order to escape. To see this
dependence, we examine the spacecraft potential data prod-
uct, based on low-frequency receiver measurements of RPW
(Maksimovic et al., 2020). We note that this a result of an in-
direct measurement and therefore the reliability is limited,
especially in the case of very high or very low values. A
correlation between the pre-spike presence and a relatively
lower potential is expected, which is why we show a separate
normalized histogram of spacecraft potentials at the times of
impacts with pre-spikes and without; see Fig. 9. Pre-spikes
are present for nearly any spacecraft potential, but the corre-
lation is apparent, as expected.

4.4 Decay time

We established the decay time for the primary peaks as the
time to get from 100 % to 1/e, always for the channel that
showed the lowest primary peak amplitude, as that is the one
least affected by a possible secondary peak. Furthermore, we
disregarded any value over 200 µs for the same reason – if the
decay time is very long, it is likely due to the secondary peak.
We note that only impact shapes such as in panels (a) and (d)
in Fig. 5 allow for this analysis. We compare the result to
the theoretical values presented in Sect. 3.5; see Fig. 10. The
decay time shows a clear variation, albeit different from the
model (Eq. 10). The data show a significant scatter and are
compatible with the model with an additional constant offset
of around 35 µs. We note that there are uncertainties, for ex-
ample, in the spacecraft capacitance Csc and in the spacecraft
surface Ssc. The shallower dependence might be a result of

Figure 10. Decay times of the primary peaks as a function of the
heliocentric distance.

Figure 11. Antenna-induced asymmetry to the primary peak’s am-
plitude.

electron temperature being higher at lower heliocentric dis-
tance, which we do not take into account in the theoretical
calculation. We also can not exclude an artifact of the sec-
ondary peaks that are present, though not apparent, as these
may introduce error that is hard to estimate. The definition of
the decay time might play a role, as the decay profile is often
non-exponential.

4.5 Antenna-induced asymmetry

We studied the amplitudes of individual primary peaks in
order to compare them to the theoretical predictions of
Sect. 3.3.1. We only analyzed the events that show no sec-
ondary peak in any channel. In parallel to Fig. 6, ratios of
channel pairs are shown in the histogram in Fig. 11. The his-
togram does not show data with the ratio > 2.2, and as a re-
sult, 5 of 327 values are not shown. Similarly to the results of
the numerical model shown in Fig. 6, values < 0.5 are rare,
as are the values & 2, which implies that the process as de-
scribed in Sect. 3.3.1 is a good model for the situation, as it
explains the magnitude of observed asymmetry.
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202 S. Kočiščák et al.: Impact Ionization process analyzed in high temporal resolution on Solar Orbiter

Figure 12. Histogram of the strongest secondary peak’s delay
against the primary peak.

5 Statistical analysis of the secondary peak

An important proportion of the impacts (≈ 50 %) shows a
clear double-peak structure, while even more are compatible
with the double-peak structure. The secondary peaks’ promi-
nent features include the following:

– strong asymmetry in the three channels,

– intermittent presence,

– variable but pronounced delay with respect to the pri-
mary peak.

The first point leads to the conclusion that the process caus-
ing secondary peaks mainly takes place on the antennas,
rather than on the spacecraft body. This implies that, in the
process, the affected antenna is charged more positively. The
latter two points imply that the effect relies on a drift of the
cations. In this section, we describe statistical properties of
the identified secondary peaks.

5.1 Delays

The typical delay lies in the range of 100 µs to 300 µs; see
the histogram in Fig 12. The secondary peak’s delay varies,
nearly uncorrelated with the peak’s amplitude or the space-
craft’s heliocentric distance; see Figs. 13 and 14. This time
is too long to correspond to charge generation, collection, or
even equalization due to ambient plasma currents, as we de-
scribed all of these earlier, and they happen within . 150 µs.

Assuming the ion velocity of 10–20 km s−1 as before, the
time delay of 100 to 300 µs translates to 1–6 m of displace-
ment. We note that the Solar Orbiter’s heat shield’s size is
approximately 2.4×3.1 m2, and the antennas are 6.5 m long.
We therefore conclude that this delay is due to ion motion,
since it is the only electric process that happens on this
timescale. The fact that no important variation is observed
in Fig. 14 suggests that the ion velocity does not vary with
the heliocentric distance.

Figure 13. Strongest secondary peak’s delay against the primary
peak as a function of its amplitude.

Figure 14. Strongest secondary peak’s delay against the primary
peak as a function of the spacecraft’s heliocentric distance.

We note that the delay of 100 to 300 µs is far enough for the
cloud to get shielded by the photosheath, due to its high elec-
tron number density (compare with values shown in Figs. 7
and 8). However, the photosheath decays with the distance
from the illuminated surface rather quickly, with the typical
Debye length of 0.25 m close to Solar Orbiter’s perihelia and
1 m close to 1 AU (Guillemant et al., 2013). We therefore
come to a conclusion that at least a part of the impact cloud
passes through the photosheath (consult Appendix G), and
this cloud later influences the antennas. We also note that the
photosheath is not uniform and weaker at places that are less
illuminated, such as spacecraft sides.

The delay does not show variation with the peak absolute
amplitude (Fig. 13), but it shows a weak correlation with the
amplitude relative to the primary peak amplitude, as is shown
in Fig. 15. The primary peak’s amplitude is a good measure
of the total charge released on the impact, and since we study
the secondary peak as a random process, normalization to the
impact magnitude is natural.

We also note that the secondary peak is not only delayed;
it also evolves and decays on a & 100 µm timescale, as is ap-
parent from waveforms shown in Figs.3 and 4. This hints that
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Figure 15. Strongest secondary peak’s delay against the primary
peak as a function of the strongest secondary peak’s amplitude rel-
ative to the primary peak.

the evolution of the secondary peak is also dependent on the
dynamics of the ion cloud’s motion. This is also consistent
with the positive correlation between the secondary peak’s
relative amplitude and the delay with respect to the primary
peak (Fig. 15).

5.2 Amplitudes

The secondary peak’s amplitude varies, and the peak is not
always present. We do not claim that small secondary peaks
are non-existent; however for the purpose of our analysis, the
secondary peaks are considered absent in cases when their
amplitudes are much smaller than the primary peak’s ampli-
tudes, as then we can not identify them reliably. If the sec-
ondary peak is present in a channel, we study its amplitude
relative to the amplitude of the primary peak, as the primary
peak’s amplitude is a good measure of the total charge re-
leased on the impact. See Fig. 16 for the plot of relative am-
plitude of the secondary peak over the primary peak vs. the
heliocentric distance in cases where the secondary peak is
present. We observe that the typical relative amplitude is be-
tween 3 and 5 but often is over 10. There is not a strong
correlation between the relative amplitude of the secondary
peak and the heliocentric distance.

Given the time delay that corresponds to the ion motion
along Solar Orbiter and what was suggested and observed
previously with different spacecraft, one may try to explain
the secondary peak as the antenna’s response to the ion
cloud’s electric field. This field may be due to the charge sep-
aration electric field of the cloud (Oberc, 1996) or due to the
different plasma potential within the impact cloud (Zaslavsky
et al., 2012). Alternatively, this peak may be due to collection
of ions from the impact cloud (Meyer-Vernet et al., 2014; Za-
slavsky, 2015; Vaverka et al., 2021; Kellogg et al., 2021). In
the extreme case of the collection of all the created ions by
a single antenna, the amplitude would be approximately pro-
portional to the amplitude of the primary peak by a factor of

Figure 16. The secondary peak relative to the primary peak as a
function of heliocentric distance for the events that show a sec-
ondary peak. If the secondary peak is present in multiple channels,
the strongest one is shown. The absence of values < 1 is due to the
secondary peak being obscured by the primary peak. We do not in-
tend to imply there are no small secondary peaks, but we can not
identify them reliably.

Csc/Cant ≈ 5. That is ignoring the fact that the ion cloud is
exposed to the solar wind plasma for 100 to 300 µs. The re-
sponse to the charge collection is also an upper estimate of
the response to the induced fields. We also note that a com-
plete collection of the ions by an antenna is unlikely. The rea-
son is that the antennas present a small cross-section for the
ions, since they occupy a small solid angle as seen from usual
impact site and are metallic and therefore positively charged
(O’Shea et al., 2017). Moreover, we often find the secondary
peak in multiple channels, which clearly rules out the option
that one antenna collects all the ions. Therefore the factor
of ≈ 5 is understood as a very safe overestimate of the sec-
ondary peak amplitude, if it is due to the antenna’s response
to the ion cloud’s electric field. As is shown in Fig. 16, the
limit of 5 is breached very often, which rules out the linear
response of the antenna to the electric field of the escaping
ions. The conclusion is that an additional antenna charging
process must be present. A similar conclusion was arrived at
by Pantellini et al. (2012b) for STEREO spacecraft’s single
hits.

The capacitance of the antennas and of the spacecraft in-
crease with decreasing heliocentric distance due to photo-
electron sheath’s presence, but since a greater portion of
the antennas is sunlit compared to the spacecraft body, one
would expect a positive correlation in the Fig. 16, should the
variable capacitance be important, which is not observed.

5.3 A possible process

In Sect. 5.2 we concluded that an additional effect must be
present near the antennas, allowing none, one, or more of
them to be charged beyond the linear electrostatic response
to the ion cloud that is present post-impact.
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A mechanism providing a strong response to a relatively
small positive charge near the thick cylindrical antennas of
STEREO/WAVES was proposed by Pantellini et al. (2012a)
and revised by Pantellini et al. (2013). The idea is that al-
though the ions do not induce enough response on the an-
tennas, the provided electric field is strong enough to perturb
the photoelectron sheath around the antennas, which mani-
fests as a strong transient charging. Pantellini et al. (2012a)
concluded that the strength of the effect is proportional to
the cylindrical antenna’s radius, as that is proportional to the
photoelectron current. We note that the STEREO/WAVES
electrical antennas have the diameter of 32 mm near the base
(Bale et al., 2008), similar to the ones on Solar Orbiter that
have the near-base diameter of 38 mm.

The photoelectron sheath perturbation process as proposed
by Pantellini et al. (2012a) is effective once an antenna is
partially enveloped by the impact ejecta cloud. Hence, a time
delay is expected with respect to the impact on the order of
d/vion, where d is the distance from the antenna to the impact
site, and vion is the ejecta velocity. We note that this was not
observed in the case of STEREO single hits (Zaslavsky et al.,
2012) but is observed with present results; see Sect. 5.1.

We perform an order-of-magnitude estimate of the max-
imum secondary peak amplitude, assuming that due to en-
velopment of a portion of an antenna, the photoelectron re-
turn current is fully suppressed for a time. A similar estimate
was done before by Pantellini et al. (2012a). The secondary
peak’s amplitude Vsec depends on the total charge the antenna
accumulates Qant due to the effect,

Vsec =
0

Cant
Qant, (12)

while the accumulated charge depends on the photocurrent
density jph, the submerged antenna length L(t), the width w,
and the time τ during which the return current is suppressed:

Qant =

τ∫
0

jphwL(t)dt. (13)

Assuming a constant photon flux (jph = const.) and
a cylindrical antenna (w = const.), zero initial expansion
(L(0)= 0) and a constant expansion speed of the cloud until
the maximum expansion Lmax = L(τ) are reached in time τ
when the suppression is no longer effective, by integrating
Eq. (13), we get

Qant =
1
2
jphwLmaxτ. (14)

The maximum submerged length Lmax is related to the to-
tal positive charge Q released at the impact but also to the
impact cloud motion geometry and how much photoelec-
trons and ambient solar wind electrons are bonded by the
post-impact cloud before it reaches the antenna. Again, for
the order-of-magnitude estimate we assume spherical expan-
sion of the impact cloud and neglect the neutralization of

the cloud by ambient electrons; therefore the number den-
sity ncloud within the cloud of the charge Q and the radius
Lmax is

ncloud =
Q

e

3
4πL3

max
, (15)

where e is the elementary charge. We note that the fact that
the cloud ions are screened by the photoelectrons does not
imply that the photoelectrons remain bonded to the cloud af-
ter the cloud has passed the photoelectron sheath – see dis-
cussion in Appendix G. Then assuming that the cloud is ef-
fective at suppressing the return current until its number den-
sity ncloud reaches the solar wind number density nsw, we get
the radius of the maximum extent of

Lmax =

(
3Q

4πensw

) 1
3
. (16)

Then the time τ to reach this maximum extent, assuming
the expansion speed of vion is

τ =
Lmax

vion
. (17)

Considering Eq. (2) for relating Q and the primary peak
amplitude Vpr, we get the relation between the primary and
the secondary peak amplitudes

Vsec =
0jphw

2Cantvion

(
3VprCsc

4πensw0

) 2
3
. (18)

We note that this is a clear overestimate due to the un-
known magnitude of the photoelectron screening, besides
other uncertainties. Assuming jph ≈ 6× 10−5 Am−2, 0 ≈
0.37, Cant ≈ 60 pF, nsw ≈ 107 m−3, w ≈ 3.8 cm, and the rest
as previously, we get

Vsec

V
≈ 10

(
Vpr

V

) 2
3
, (19)

which translates to a relative amplitude (Vsec/Vpr) of a 100
in the case of Vpr = 1 mV and a relative amplitude of 21 in
the case of Vpr = 0.1 V. This is a far higher relative ampli-
tude than observed, which is mostly due to the neglect of the
charge screening in this estimate, as well as the ineffective-
ness in liberating the photoelectrons from their suborbital tra-
jectories around the antenna. However, a least-squares fit of
the ratio Vsec/Vpr for the strongest channel (for only the im-
pacts that show a secondary peak) shows a slope of ≈ 0.74,
which is close to the theoretical value of 2/3; see Fig. 17.
Compared to the theoretical estimate, the fit of the ratio is
consistent with an additional factor of ≈ 1/10, which would
be roughly the product of the portion of impact ions that in-
fluence the antennas and the portion of photoelectrons that
are liberated, once immersed in the impact cloud. We also
note that the fit is influenced by the lower amplitude limit for
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Figure 17. The estimate of the ratio Vsec/Vpr for the process re-
sponsible for the secondary peaks. Each point corresponds to one
impact in which a secondary peak was observed. The least-squares
fit is shown, alongside 1 : 1, 3 : 1, and 10 : 1 ratio lines and Eq. (19).

detection as well as the cutoff at 0.3V. We conclude that the
Pantellini et al. (2012a) effect, as described in present work,
is strong enough to explain the observed secondary ampli-
tudes.

The ion motion provides a good explanation for the de-
lay of the secondary peak (see discussion in Sect. 5.1), yet
the Pantellini et al. process in the present form does not ex-
plain the timescale of & 100 µs over which the effect lasts.
This is obviously too long for electron motion dynamics but
in agreement with the ion motion timescales. In the original
paper of Pantellini et al. (2012a), the authors describe how
the photoelectron trajectories are temporarily altered due to
the presence of a relatively weak electric field of the expand-
ing plasma cloud. This alteration suppresses the photoelec-
tron return current for a time, so that the affected electrons
orbit around the influenced antenna’s axis. In order to have a
longer-lasting secondary peak, as we do, a sink for the excess
photoelectrons is required, so that the photoelectrons are not
recollected by the antenna on the electron motion timescale,
which is what is suggested by Kellogg (2017). The claim that
the electrons do not return to the antenna they were emitted
from is supported by Zaslavsky et al. (2012), who reported
the exponential decay profile of the pulses that were believed
to be caused by the Pantellini et al. process. Since the ion
cloud does not provide a field strong enough to liberate a
significant portion of the bounded photoelectrons to reach
infinity, the sink for the photoelectrons has to be present at
around the antenna potential. The only suitable sink here is
provided by the spacecraft body. Since the body potential is
similar to the antenna potential, the affected electrons orbit-
ing around the antenna axis are free to migrate along the an-
tenna axis and can reach it rather easily. Moreover, due to the
BIAS subsystem of RPW, the spacecraft body is usually on
a somewhat higher potential, compared to the antenna poten-
tial (Maksimovic et al., 2020). Given all this, we believe that
an important portion of the affected electrons is recollected

by the spacecraft’s body, so the secondary peak is therefore a
result of a temporarily amplified current between the affected
antenna and the body. A consequence of this is that each such
antenna-emitted body-collected electron is counted twice in
the affected monopole channel; hence the peak is enhanced
further. Also, the body potential is changed, albeit by a dif-
ference smaller by the ratio of the antenna’s and the body’s
capacitance, which then shows synchronously in all the chan-
nels – a phenomenon that is observed reasonably often.

6 Conclusions

We studied the charge generation electrical process upon the
impact of a dust particle on the surface of Solar Orbiter, as
recorded with RPW electrical antennas. We found double-
peak dust impact signals in about 50 % the electrical wave-
forms containing dust impact signatures. To the best of our
knowledge, this is the first time such double-peak impact sig-
natures were systematically observed and analyzed.

Upon inspection of the primary peak, we conclude consis-
tence with the state-of-the-art theory for body potential influ-
ence by the impact charge. Our analysis indicates a mean im-
pact charge magnitude of 21 pC and a median impact charge
magnitude of 8 mV. We find that the rise time of the pri-
mary peak is variable and consistent with the timescale of the
photoelectron sheath shielding of the impact cloud. We find
the decay time consistent with the timescale of the potential
equalization due to ambient charge collection. We were able
to explain the small observed asymmetry between the pri-
mary peaks recorded in individual channels with electrostatic
influence of antennas, on top of an otherwise symmetric peak
caused by the change in body potential.

The secondary peak is found to be highly variable and very
asymmetric with respect to the three channels. A relatively
long delay of ≈ 100–300 µs with respect to the primary peak
suggests that the secondary peak’s presence is linked to the
impact cloud moving much closer to the antennas. This de-
lay is consistent with an ion escape velocity of 10–20 km s−1.
We concluded that the observed amplitudes of the secondary
peak are too strong for either impact charge collection by an-
tennas or antennas being immersed in impact cloud potential,
which clearly suggests the presence of an additional effect.

We found that the assumption that the channel maxima
correspond to the impact charge leads to a systematic er-
ror. We believe that the primary peak is the better measure
of the impact charge, compared to the global maximum of
the channel, which is more likely influenced by the often-
present secondary peak. It is therefore advisable to disregard
the channel which shows the highest amplitude and to study
the amplitudes of the primary peaks instead – the exact pro-
cedure used in present work is described in Appendix D.
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206 S. Kočiščák et al.: Impact Ionization process analyzed in high temporal resolution on Solar Orbiter

Our semi-quantitative explanation of the secondary peak’s
appearance uses the photoelectron sheath perturbation effect,
first described in Pantellini et al. (2012a). Furthermore, we
hypothesize that the Pantellini et al. (2012a) effect might
temporarily enhance the current between the antenna and the
spacecraft body, as this would explain the longer-lasting na-
ture of the secondary peaks. Importantly, the amplitudes of
the secondary peaks are likely related to the impact location
on the spacecraft and the delay between the primary and the
secondary peak provides a measure of the location and of the
ion expansion speed. This is worthy of future investigation
and may prove useful for identification of the dust popula-
tion, which the incident dust grain came from.

Appendix A: RPW measurement modes

Table A1. The relations between the channels in different measure-
ment modes of RPW. For compactness, V 1;V 2;V 3 denote the volt-
ages between the antenna 1;2;3 and the spacecraft body, respec-
tively.

channel SE1 DIFF1 XLD1

CH1 V 1 V 1−V 3 V 1−V 3
CH2 V 2 V 2−V 1 V 2−V 1
CH3 V 3 V 3−V 2 V 2

The Radio and Plasma Waves (RPW)electrical suite con-
sists of three cylindrical antennas. There are three measure-
ment modes: monopole (SE1), dipole (DIFF1), and mixed
(XLD1). Whichever the mode RPW is in, it produces three
channels of electrical data. See Table A1 for the modes’ de-
scription and Souček et al. (2021) for much more compre-
hensive explanation.

Since the device spends by far the most time in XLD1
mode, it was chosen as the only mode of interest. Since the
monopole data (SE1) are symmetric and the easiest to inter-
pret, the XLD1 data are decomposed to SE1-like data for the
analysis and visualization. The decomposition is performed
as follows:

V1= CH3−CH2 (A1)
V2= CH3 (A2)
V3= CH3−CH2−CH1. (A3)

Though such decomposition provides the data user with
the three reconstructed monopole channels, the user should
be careful for two reasons: first, the saturation level is not
clearly defined, as a difference between two saturated sig-
nals might not have been saturated otherwise, and second, the
transfer function of a dipole is different to the transfer func-
tion of a monopole; hence the signal might be distorted, espe-
cially the components near the threshold frequencies. These

limitations do not prohibit the analysis as described in the
present publication.

Appendix B: Raw data filtering

The voltage data WAVEFORM_DATA_VOLTAGE of
_rpw-tds-surv-tswf-e_ are used and are only
calibrated by a constant, rather than the full empirical
transfer function. Since the data show a high-frequency
artificial modulation at ≈ 80 and ≈ 110 kHz, the data are
filtered with the Butterworth low-pass filter of 32nd order at
flo = 70 kHz, which leaves us with the temporal resolution
of τmin ≈ 14 µs.

According to the system’s response function as measured
by the RPW’s engineering team, there is a significant low-
frequency distortion in the < 2 kHz region. There is also a
minor high-frequency distortion in the f > 50 kHz region,
which we decided to not correct for, as its impact is very
limited. The low-frequency part is corrected using Laplace-
domain correction, as the very limited window length of
62 ms introduces other artifacts should the Fourier-domain
correction be used. The first-order filter with the critical fre-
quency of fhi = 370 Hz (see Eq. B1) was found to be the best
fit according to the response spectrum; see Fig. B1.

vcorr(t)= vorig(t)+ 2πfhi

t∫
0

v(τ)dτ (B1)

As a result, the corrected signal stays well corrected in the
range of 500 Hz< f < 70 kHz. We note that higher-order ef-
fects might be present as well, which, along with the error
we introduce when dividing a small value by another, place a
limit on the reliability of the low frequencies below 500 Hz.
For the spectra before and after the corrections, see Fig. B2.
For the signal before and after the corrections applied, see
Fig. B3; pay attention to the overshoot attenuated and the
secondary overshoot eliminated.

Figure B1. The RPW’s response function and the Laplace-domain
correction.
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Figure B2. The spectrum of an electrical signal, before the low-pass
and the Laplace corrections as well as after. We note that Laplace
correction changes the signal on the low-frequency end only, while
low-pass filter changes the high-frequency end.

Figure B3. The waveform time series of an electrical signal, where
the red line shows voltage time series before the low pass and the
Laplace corrections, while the black line shows the same after the
two corrections. The left-hand side shows detail of the shaded por-
tion of the right-hand side, which in turn shows the whole recording
of 62 ms.

Appendix C: Ternary plot for primary and secondary
peaks

The ternary plot in Fig. 2 shows a data point for every event,
with the amplitudes based on the channel global maximum.
In sections starting with Sect. 2 we treat the waveforms as
containing two major peaks (called primary and secondary),
while the latter is not always present. Since we argue that the
ternary plot (Fig. 2) shows this indirectly, it makes sense to
redo the ternary plot for the XLD1 events that do and do not
contain secondary peaks respectively; see Fig. C1. It is clear
that the primary peaks are much more consistent across the
channels, compared to the cases when secondary peaks are
added.

Figure C1. Ternary plot for the global maxima of the three
monopole channels, one point for each XLD1 event. (a) The im-
pacts that do show at a secondary peak in at least one channel and
(b) the impacts that do not show any secondary peak in either chan-
nel.

Appendix D: Feature extraction

The signals of interest (as defined in Sect. 2.3) were analyzed
as follows:

1. A positive primary peak is assumed to be present in
each channel, and it is assumed to be of the same ampli-
tude Vbody in all the channels. The reason is that it is a
rather typical case that the primary peak is obscured by
a much larger peak in a close succession in at least one
of the channels. Therefore, the amplitude of the primary
peak is established as the mean of the amplitude of the
weaker two, with the reference zero as the mean of the
non-affected background signal shortly preceding the
impact. The temporal location of the peak is first found
approximately, using a minimum of the second deriva-
tive near the global signal maximum, and then precisely,
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using a local maximum in the correlation of the signal
and a one-sided parabola, which works for both distinct
peaks and inflection points. The pre-spike and body lo-
cations are identified as demonstrated in Fig. D1.

2. The rise time of the primary peak is evaluated as the
time to get from 43 % to 80 % of the maximum ampli-
tude, assuming zero on the preceding background level.
This range (37 %) corresponds to 1/e of the maximum
and is chosen so that neither the flat nature of the pri-
mary peaks nor the background noise influences the es-
timate.

3. A secondary positive peak may or may not be present
in each of the channels separately. First, primary peak
is subtracted from the data in the form of asymmetric
Gaussian peak with the rise time τ body

rise given by the
data and the decay time τ body

decay assumed to be equal to

3τ body
rise , as that is found to be a good approximation in

cases where no secondary peak is present. Second, the
secondary peak is considered present if the signal af-
ter the subtraction of the primary peak shows a maxi-
mum of amplitude of at least 75 % of the primary peak.
Then amplitudes of the present secondary peaks (after
primary peak subtraction) are measured. See this step
shown in Fig. D2.

4. The decay time of the primary peak is only evaluated
on the channel with the lowest global maximum and is
done so as the time in takes the signal to decay from
100 % to 63 %, that is 1/e. Here we evaluate the de-
cay time closer to the maximum as the undershoot ef-
fects and the possible secondary peak influence the re-
sult much more than the flat nature of the primary peak
or the noise.

5. A negative pre-peak may or may not be present and is
assumed to be of the same amplitude in all three chan-
nels. The presence is decided by a 3σ criterion with
regard to the noise. If the peak is found present, the am-
plitude of the primary peak is corrected by this value in
the last step.

Given that in most cases the primary peak is not the chan-
nel maximum, careful analysis is advised, as opposed to the
assumption that the channel maximum is proportional to the
amount of generated charge. However, the secondary peak
is only present in one of the channels, therefore assuming
that the lowest of the three maxima to be proportional to the
amount of generated charge leads to a systematic error that
is a lot lower and is advised if a more careful approach is not
an option.

Figure D1. The waveform time series of an electrical signal. The
dotted black line shows the voltage signal after the spectral cor-
rections, while the yellow line shows the second derivative. The
vertical dashed green and blue lines show the locations of the nega-
tive pre-spike and the primary peak, respectively. The left-hand side
shows detail of the shaded portion of the right-hand side, which in
turn shows the whole recording of 62 ms.

Figure D2. The waveform time series of an electrical signal. The
dotted black line shows the voltage signal after the spectral correc-
tions, while the dashed blue line shows the approximated primary
peak. The primary peak is subtracted from the measured signal, and
the residual is plotted as the red line. The vertical dashed green,
blue, and red lines show the locations of the negative pre-spike, the
primary peak, and the secondary peaks respectively. The left-hand
side shows detail of the shaded portion of the right-hand side, which
in turn shows the whole recording of 62 ms.

Appendix E: Primary peaks’ amplitude distribution

In Sect. 4.1 we report on the amplitudes of the primary peaks
that are connected to the amount of charge liberated at dust
impacts. See Fig. E1 for the normalized histogram of the am-
plitudes. We note that no signals with global maxima over
300 mV are included, which also disqualifies the signals with
Vbody < 300 mV provided that the secondary peak is over
the threshold – leading to underestimation of high ampli-
tude (& 100 mV) counts. Also, given the secondary peak is
often of the highest amplitude present, recognition of low-
amplitude primary peaks is conditioned by the presence of
a secondary peak. Therefore, the presence of small primary
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peaks (. 10 mV) is underestimated by a factor that is hard to
evaluate. The former bias is more apparent in the black line
of Fig. E1, while the latter is more apparent in the light-blue
line of the same figure.

We note that, contrary to the distribution of global max-
ima of the signal on an arbitrary monopole (Zaslavsky et al.,
2021), the distribution of the primary peaks’ amplitudes does
not resemble a power law. This is not a basis to claim that the
power law is not present in the distribution of amplitudes, or
by extension masses, as there is selection bias present, as was
mentioned previously.

Figure E1. Histogram (normalized) of the primary peak amplitudes
of all the signals in black; the mean and median are also shown. A
separate normalized histogram of only those hits that do not show
a secondary peak in any channel is shown in light blue. The verti-
cal error bars represent the 90 % confidence intervals obtained by
bootstrapping. The conversion from the peak voltage to the impact
charge is V/Q= 109V/C.

Appendix F: Primary peak asymmetry – the model for
antennas’ response to a point charge

The model assumes antennas in a plane that are made of thin
wire and are 6.5 m long. A response of these antennas to
a test charge is calculated, alongside the calculation of the
spacecraft’s body response to the same charge as by Eq. (2).
In order to produce samples of signal responses, the model
samples charge locations (impact spots) from a plane parallel
with the antenna plane and 1 m in front of the antenna plane,
in the rectangle of 2.4 m by 3.1 m, which approximately co-
incides with the size and the relative location of the Solar Or-
biter’s heat shield; see Fig. F1. The potential of an antenna
is integrated numerically as the average field along the an-
tenna, according to equations in Sect. 3.3.1. The value of λD
is assumed infinite; hence Eq. (5) is simplified to

8=
Q

4πε
1

|x− xq |
. (F1)

The ch1, ch2, and ch3 are calculated as the sum of the
respective antenna’s response with the spacecraft body’s re-
sponse, since the body detects negative, while antennas de-
tect positive charge. We note that a simplification is present:
the maxima of the peak of the body response and the peak
of the antenna response are typically not synchronous, yet
we treat them as such in order to evaluate the ratios of the
channel maxima shown in Fig. 6.

Figure F1. The Solar Orbiter’s heat shield (black rectangle) and
the RPW antennas (dashed red) viewed from behind, as used for
the purpose of the antennas’ response to a point charge modeling –
sampling illustrated.

Appendix G: Impact cloud potential and photoelectron
temperature

The photoelectrons near the illuminated areas of the space-
craft provide a relatively dense (≈ 108 m−3

= 100 cm−3) re-
gion of free negative charges (Meyer-Vernet et al., 2017),
with the corresponding photoelectron Debye length of λph ≈
0.29−0.98 m at the heliocentric distance of R = 0.25−1 AU
(Guillemant et al., 2013). The photoelectron sheath is there-
fore effective at screening the escaping positive impact cloud
from the spacecraft body after it has passed sufficiently far
from the body, which is indeed the process that seems to
control the rise time of the primary peak; see Sect. 4.2 and
Meyer-Vernet et al. (2017). However, the cloud escapes the
vicinity of the spacecraft, and it is not straightforward to de-
termine whether it will do so neutralized by the photoelec-
trons it was exposed to or not. A possible estimate is done
by comparing the typical photoelectron energy with the po-
tential barrier the predominantly positive ion cloud poses for
them. Should the photoelectrons be relatively cold, compared
to the depth of the potential hole of the cloud, they are likely
to be captured and hence to neutralize the cloud. Should the
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photoelectrons be much more energetic than the ion cloud
potential hole, they are likely to screen only and to not be
bounded by the cloud, therefore not neutralizing it.

An order-of-magnitude photoelectron energy may be done
by comparing the incident UV photon energy (≈ 10 eV) and
the spacecraft’s surface material work function (≈ 4 eV),
yielding the typical photoelectron energy of 6 eV near the
surface. Guillemant et al. (2013) used the mean photoelec-
tron energy at emission of 3 eV and 10 eV in their numerical
estimates of the spacecraft charging. The kinetic energy of
an electron at its maximum extent from the antenna is very
low. Let our order-of-magnitude estimate be Tph = 3 eV.

For an order-of-magnitude estimate of the ion cloud’s po-
tential, let us assume spherical expansion of the cloud and
a uniform distribution of the charge within the cloud. As-
suming the most extreme case, that is the cloud made of
cations only, the mean charge of the cloud is Q≈ 21 pC (see
Sect. 4.1). Then, the potential8 within the cloud of radius R
at the distance from the center of r is readily obtained as

8=
1

4πε0

r2Q

R3 . (G1)

The maximum potential is present at the edge of the cloud
(r = R); that is

8max =
1

4πε0

Q

R
, (G2)

which numerically is

8max ≈
0.2Vm
R

, (G3)

or

8max(R = 10cm)≈ 2 V; (G4)
8max(R = 1m)≈ 0.2 V. (G5)

We see that the simple order-of-magnitude estimate shows
that the potential within the impact cloud drops below the
photoelectron energy well within 10 cm of expansion, sug-
gesting that one may neglect it in calculating the photoelec-
tron current collected by the cloud.
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ABSTRACT

Context. Parker Solar Probe (PSP) counts dust impacts in the near-solar region, but modelling effort is needed to understand the dust
population’s properties.
Aims. We aim to constrain the dust cloud’s properties based on the flux observed by PSP.
Methods. We develop a forward-model for the bound dust detection rates using the formalism of 6D phase space distribution of the
dust. We apply the model to the location table of different PSP’s solar encounter groups. We explain some of the near-perihelion
features observed in the data as well as the broader characteristic of the dust flux between 0.15 AU and 0.5 AU. We compare the
measurements of PSP to the measurements of Solar Orbiter (SolO) near 1 AU to expose the differences between the two spacecraft.
Results. We found that the dust flux observed by PSP between 0.15 AU and 0.5 AU in post-perihelia can be explained by dust on
bound orbits and is consistent with a broad range of orbital parameters, including dust on circular orbits. However, the dust number
density as a function of the heliocentric distance and the scaling of detection efficiency with the relative speed are important to explain
the observed flux variation. The data suggest that the slope of differential mass distribution δ is between 0.14 and 0.49. The near-
perihelion observations, however, show the flux maxima, which are inconsistent with the circular dust model, and additional effects
may play a role. We found indication that the sunward side of PSP is less sensitive to the dust impacts, compared to the other PSP’s
surfaces.
Conclusions. We show that the dust flux on PSP can be explained by non-circular bound dust and the detection capabilities of PSP.
The scaling of flux with the impact speed is especially important, and shallower than previously assumed.

Key words. cosmic dust – Parker Solar Probe – Solar Orbiter – phase-space distribution

1. Introduction

The Parker Solar Probe (PSP) (Fox et al. 2016) and Solar Or-
biter (SolO) (Müller et al. 2020) space missions are currently
exploring the inner Solar System, conducting in-situ measure-
ments on an unprecedented scale and traversing regions never
before reached by space probes. Through remote and in-situ de-
tections, they among others also enable unprecedented observa-
tions of the innermost region of the interplanetary dust cloud.
Most of the interplanetary dust cloud originates from the aster-
oids and the comets of the solar system and it is observed in the
Zodiacal light and its inner extension into the solar corona, called
F-corona (see Koschny et al. (2019) for a recent review). While
there were only a few in-situ measurements of dust within 1 AU,
this changed with SolO and PSP because their experiments in-
vestigating plasma waves with antenna measurements: FIELDS
(Bale et al. 2016) on PSP and RPW (Maksimovic et al. 2020) on
SolO are also sensitive to dust impacts. Earlier analyses of im-
pact measurements of PSP (Szalay et al. 2020, 2021; Malaspina
et al. 2020) and SolO (Zaslavsky et al. 2012; Kočiščák et al.
2023) showed that the observation included mainly dust in hy-
perbolic trajectories, which were carried away from the Sun due
to the effect of the radiation pressure force, and dust in bound
orbits determined by gravity. The hyperbolic grains, which are
pushed outward as a result of the radiation pressure force are
often denoted as β-meteoroids, since for those particles the ra-
tio β of the radiation pressure force Frp and the gravity force

⋆ samuel.kociscak@uit.no

Fg is roughly 0.5 or larger. Their motion is the typical central
force problem, while the effective gravity force the grains are
subjected to is reduced by a factor of (1 − β). Electromagnetic
forces seem to have little influence in comparison, or affect only
a small fraction of the dust (Mann & Czechowski 2021). It is
assumed that the observed dust is created by dust-dust collisions
near the Sun. This would imply that the relative amount of β-
meteoroids compared to dust in bound orbits decreases with in-
creasing proximity to the Sun. We therefore investigate whether
the observed dust fluxes in the close vicinity of the Sun can be
due to dust in bound orbits. We also compare the dust fluxes that
are observed with SolO and PSP.

The work is structured as follows: in Sec. 2, we present
Parker Solar Probe and Solar Orbiter and the previous results
of other authors. We present the principle and the limitations of
dust detection with electrical antennas in Sec. 3 along with the
the data from the two spacecraft, which we use in later analysis.
In Sec. 4, we compare the dust measurements of the two space-
craft near 1 AU. In Sec. 5 we introduce the parametric forward
model, which we use to explain the features observed in the dust
flux measured by Parker Solar Probe in Sec. 6. We discuss the
implications of the results in Sec. 7 and in Sec. 8 we summarize.

Article number, page 1 of 19
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2. Parker Solar Probe and Solar Orbiter

2.1. Dust detection with Parker Solar Probe

PSP orbits the Sun on highly eccentric orbits between 0.05 AU
and 1 AU. The orbital parameters change significantly during
gravity assists, but remain nearly identical between the assists,
forming several distinct orbital groups of nearly identical orbits.
PSP has made 20 orbits around the Sun so far. PSP was found
to be sensitive to impacts of dust grains on the spacecraft body
(Szalay et al. 2020; Malaspina et al. 2020; Page et al. 2020)
thought the measurements of its FIELDS antenna suite (Bale
et al. 2016). In addition to the electrical antennas, dust phenom-
ena were observed with the Wide-Field Imager for Parker So-
lar Probe (WISPR) (Stenborg et al. 2021; Malaspina et al. 2022)
and dust possibly damaged the Integrated Science Investigation
of the Sun (IS⊙IS) instrument (Szalay et al. 2020).

It was found that the dust detection can be successfully mod-
elled as a combination of bound dust and β-meteoroids (Sza-
lay et al. 2021). During the initial orbits, most impacts were
attributed to β-meteoroids. However, during the later orbits, in
post-perihelia, where the relative speed between β-meteoroids
and the PSP is low, the dust counts are sometimes likely to be
dominated by bound dust. The β value depends greatly on the
grain’s size and β-meteoroids have the typical size of 100 nm ≲
d ≲ 1 µm, since this is where β has its maximum (Kimura et al.
2003). The Lorentz force is negligible for β-meteoroids and boud
dust, due to the low Q/m < 1× 10−7 e/mp (Czechowski & Mann
2010).

The size of the grains detected with antennas is estimated
only indirectly. Based on the impact charge yields measured in
laboratory hypervelocity experiments, and in combination with
estimates of dust impact speed for individual dust populations
based on first principles modelling, Szalay et al. (2021) esti-
mated the lower size radius limit for detections as a function of
time. They found that during the orbits 8 − 16 of PSP, the bound
dust grains were detected as small as r ≳ 300 nm near perihe-
lia and r ≳ 2 µm near aphelia, while the β-meteoroids were de-
tected as small as r ≳ 100 nm during most of the orbit, except
for post-perihelia, where the threshold was close to r ≳ 1 µm.
We note that while r = 100 nm is close to the lower size limit of
β-meteoroids, r = 1 µm is close to the upper size limit.

Szalay et al. (2021) observed a clear double peak structure
with a minimum in perihelion during the orbits 4, 5, and 6 of
PSP. The minimum was anticipated and at least partially ex-
plained by Szalay et al. (2020) as being due to alignment be-
tween the nearly-circular speed of bound dust and purely az-
imuthal speed of PSP in the perihelion. Szalay et al. (2021) also
explained the post-perihelion maximum as being potentially due
to the encounter between PSP and the hypothesized Geminids β-
stream produced by the collisions between the bound dust cloud
and the Gemminids meteoroid stream.

2.2. Dust detection with Solar Orbiter

PSP’s observations of the inner zodiacal cloud are unique, and
the closest available comparable observations are those of Solar
Orbiter (Mann et al. 2019). Similarly to PSP, SolO is equipped
with electrical antennas of its Radio and Plasma Waves (RPW)
instrument (Maksimovic et al. 2020), which registers dust im-
pact on the body of the spacecraft through their electrical signa-
tures (Soucek et al. 2021). Compared to PSP, Solo experiences
much lower radial speed, and with its perihelia of about 0.3 AU,
it doesn’t go nearly as close to the Sun. Unlike PSP, the dust flux

SolO measures is always dominated by β-meteoroids (Zaslavsky
et al. 2021; Kočiščák et al. 2023). Those were concluded to have
the radius of r ≳ 100 nm (Zaslavsky et al. 2021) and β ≳ 0.5
(Kočiščák et al. 2023).

2.3. Components of the observed dust flux

One of the difficulties in explaining the observed flux is that sev-
eral populations contribute to the detections (Mann et al. 2019;
Szalay et al. 2020, 2021; Kočiščák et al. 2023), and therefore
one must assume several components of the impact rate, which
greatly decreases the fidelity of parameter estimation. As was de-
bated by Szalay et al. (2020), bound dust and β-meteoroids are
the main contributors to the dust flux on PSP. Interstellar dust
grains (Mann 2010) were not yet reported by either of the space-
craft, but their presence in data is likely, even if they are a minor
contributor to the overall detection counts.

A model for the β-meteoroid flux observed by both space-
craft must be currently built on many assumptions, as there are
many unknowns to the population of β-meteoroids. Any differ-
ences between the fluxes might be attributed to the properties of
the population, or to the differences between the two spacecraft,
which are numerous. The β-meteoroids population was studied
extensively by these (Szalay et al. 2021; Zaslavsky et al. 2021;
Kočiščák et al. 2023) and by other spacecraft (Zaslavsky et al.
2012; Malaspina et al. 2014). Although we focus on the bound
dust component, constraining this will implicitly provide infor-
mation on β-meteoroids, since they together make up the de-
tected flux.

Bound dust grains are in bound orbits, and therefore have
both positive and negative heliocentric speeds. In the special case
of a circular orbit, the dust grain has zero heliocentric component
of speed. β-meteoroids are on outbound trajectories, with each
of them having a positive heliocentric speed. The proportion of
β-meteoroids is the highest, when the spacecraft has negative he-
liocentric speed. Conversely, the proportion of impacts of bound
dust to all impacts is the highest when PSP’s radial speed is pos-
itive. The relative speed between PSP and bound dust is approx-
imated well by PSP’s radial speed (Szalay et al. 2020), which
was between 32 kms−1 and 72 kms−1 during the orbital groups
1 − 5 between 0.15 AU and 0.5 AU. The relative speed between
PSP and β-meteoroids depends on their outward speed and the
creation region, and was in tens of km/s in the outbound legs of
the studied orbits.

Szalay et al. assumed perfectly circular bound dust trajecto-
ries with β = 0 and β-meteoroids originating at R0 = 5Rsun and
having β = 0.5. Under these assumptions, they found the relative
speed between PSP and bound dust to be higher at 0.15 AU <
R < 0.5 AU for the 6th and subsequent orbits, compared to β-
meteoroids. A two-component fit to the data performed by (Sza-
lay et al. 2021) is consistent with the flux of bound dust being
higher than the flux of β for 0.15 AU < R < 0.5 AU during the
6th orbit. In fact, the fit suggests that bound dust flux is more
than a decade higher than in β-meteoroid flux for the 6th perihe-
lion’s outbound leg at R = 0.2 AU. Although the exact numbers
and distances are model specific, the general trend is clear: the
bound dust flux is higher than β-meteoroid flux for a good por-
tion of the post-perihelion passage, especially for the orbit six
and the later orbits.
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3. Measurement technique

3.1. Antenna dust detection

When a dust grain collides with a spacecraft at a speed, which
exceeds a few km/s, the impact is followed by a release of a
plume of quasi-neutral charge cloud (Friichtenicht 1962). The
amount of this charge depends on many factors, most impor-
tantly the grain’s material and mass, and the impact speed. De-
pending on the spacecraft and the surrounding environment, a
portion of the charge is collected by the spacecraft and the rest
escapes from its vicinity. This process, which usually happens
in µs, may be detected with fast measurements of electrical an-
tennas, if such measurement is present. In this way, electrical an-
tennas performing fast measurements act as dust detectors, while
the whole surface of the spacecraft’s body is potentially sensitive
to the impacts.

The configuration of the antennas, their location with respect
to the impact site, and the material of the spacecraft surface are
among the factors, which influence the detection efficiency the
most (Shen et al. 2023; Collette et al. 2014). Both the FIELDS
instrument of PSP and the RPW instrument SolO are equipped
with multiple thick cylindrical antennas close to their respec-
tive sun-facing heat shields (Bale et al. 2016; Maksimovic et al.
2020). Some of these antennas operate in the monopole config-
uration for both spacecraft, in which the voltage is measured be-
tween the antenna and the spacecraft body. This is the prefer-
able configuration for dust detection, since it makes the body a
more sensitive target (Meyer-Vernet et al. 2014), in comparison
to dipole antennas. In dipole configuration, voltage is measured
between two antennas, and such measurement is not directly sen-
sitive to the potential of the body.

Since detections are recorded on the body of the spacecraft,
the effective cross section of the body is important to establish.
One of the differences between PSP and SolO is the shape. The
body of SolO, excluding the solar panels, has a rough cuboid
shape (ESA 2023). The body of PSP, excluding the solar pan-
els, has more cylindrical shape (Garcia 2018). The difference
between a cuboid and a cylinder is of no consequence to dust
modelling within the plane of ecliptics, but is a factor if there is
an inclination between the spacecraft’s trajectory and that of the
dust.

3.2. PSP’s potential

The potential of the spacecraft has influence on the amplitude of
the generated signal, which was studied in laboratory previously
(Collette et al. 2016; Shen et al. 2023), and this affects the detec-
tion efficiency. In the absence of a direct measurement, the float-
ing potential of PSP can be approximated by the average of the
DC voltages Vi between the antenna i and the spacecraft (Bale
et al. 2020). If the antennas are on the local plasma potential,
then the antennas measure voltage between the spacecraft body
and the ambient plasma. The dependence of the spacecraft po-
tential on the heliocentric distance is shown in Fig. 1. To reduce
the amount of data to show, points were drawn uniformly ran-
domly from the first 30 months of the mission and the potential
was inferred this way, using DFB_WF_DC data product of FIELDS
(Malaspina et al. 2016). There are many factors beyond the he-
liocentric distance, which influence the final potential (Guille-
mant et al. 2012, 2013). Even still, one can see that the poten-
tial is mostly positive outside of 0.3 AU, close to zero at around
0.2 AU, and changing suddenly inward of 0.15 AU. The poten-
tial of the TPS heat shield is presumably different again, since

its sunward side is not conductively coupled to the spacecraft, as
is discussed in Sec. 3.3. Nevertheless, this data suggests that the
dust detection process does not change significantly with the he-
liocentric distance, if the spacecraft is outside of 0.15 AU. This
distance coincides with the distance of ≈ 0.16 AU, inside which
the heat shield was estimated to become conductively coupled to
the spacecraft body (Diaz-Aguado et al. 2021). These two dis-
tances are possibly related.
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Fig. 1: Spacecraft potential estimated as the average of four DC
antenna measurements.

3.3. Influence of the heat shield

Both PSP and SolO are protected against the extreme near-solar
conditions by heat shields. The heat shields have different sur-
face materials than the rest of the spacecraft. The sunward side
of PSP’s heat shield (Thermal Protection System — TPS) is, in
addition, on a different potential to the rest of the body. These
both influence dust detection. The sunward side of PSP’s heat
shield is made of alumina, which is non-conductive nor is it con-
ductively connected to the spacecraft body (Reynolds et al. 2013;
Diaz-Aguado et al. 2021). The shield only becomes conductively
coupled to the spacecraft body through plasma currents, once the
spacecraft is inside of ≈ 0.16 AU (Diaz-Aguado et al. 2021). The
sunward side of SolO’s heat shield is made of titanium and is
conductively coupled to the rest of the spacecraft body (Dama-
sio et al. 2015). The heat shields are exposed to dust impacts and
even impacts on the non-conductive heat shield of PSP gener-
ate impact plasma (Shen 2021), which is potentially identified
in the antenna measurements. Unlike impacts in the spacecraft
parts connected conductively with the body ground, impacts on
the heat shield only produce dipole response, which is more di-
rectionally dependent (Shen et al. 2023) and generally weaker
(Mann et al. 2019). Moreover, the amount of charge generated
by impacts on the PSP’s heat shield is comparably lower, with
respect to other common spacecraft materials, see Fig. 2.

3.4. Data

In the present work, we use the data of FIELDS-detected dust
counts along the trajectory of PSP, made available by Malaspina
et al. (2023). The data are built on the TDSmax data product of
the FIELDS instrument (Bale et al. 2016), and assume that all the
fast electrical phenomena strong enough in the monopole mea-
surement detected over quiet enough periods of time contain dust
impacts. This was demonstrated to be a good approximation of
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Fig. 2: Mass-normalized impact charge yield for several com-
mon spacecraft materials, assuming 10−14 kg dust. TPS stands
for PSP’s Thermal Protection System and MLI stands for the
multilayer insulation of Solar Terretrial Relations Observatory
(STEREO). References: 1 – McBride & McDonnell (1999), 2 –
Grün (1984), 3 – Collette et al. (2014), 4 – Shen (2021). All ex-
periments were done with iron grains.

the actual dust count, with about 10.5 % false positive rate and
about 7 % miss rate (Malaspina et al. 2023). The data are struc-
tured in intervals of 8 h, and contain the impact count in the time
interval corrected for under-counting. The data also contain the
total effective observation time in the 8 h interval, corrected for
the time then wave activity made dust detection ineffective. The
data product is described in detail by Malaspina et al. (2023).
The data from the orbits 1 − 16, and, therefore from the first five
orbital groups are examined.

In addition to the PSP data, we also use SolO dust data. SolO
detects dust with the electrical antennas of RPW instrument, and
we use the convolutional neural network (CNN) data product
provided by (Kvammen 2022). The data product builds on the
data set of time-domain sampled triggered electrical waveform
data and was shown to have a low false positive error rate of
about 4 % and about 3 % of miss rate (Kvammen et al. 2022).

4. PSP and SolO dust flux comparison

Although SolO and PSP have very different orbits at any given
time, a direct comparison of dust fluxes can be done for several
points near 1 AU, where the two spacecraft had a similar helio-
contric distance and speed — albeit at different times and differ-
ent helio-ecliptic latitudes. Six such time intervals were found
and are listed in Tab. 1. Three of these are in pre-perihelion,
with negative heliocentric radial speed (vr < 0) and three are
in post-perihelion (vr > 0). In pre-perihelion, the ram direction
of the spacecraft lies between azimuthal and sunward. The pro-
portion of impacts on the heat shield is likely higher, than in
post-perihelion, when the ram-direction lies between azimuthal
and anti-sunward.

We compare the 14-day average flux F during the six align-
ments (7 days before and 7 days after the alignment), and the
comparison is shown in Fig. 3. The flux implied by SolO is by a
factor of two to three higher than the flux implied by PSP. Since
the flux per unit area and time are compared, the ratio depends on
the cross sections, which are here assumed 6.11 m2 and 10.34 m2

for PSP and SolO respectively. A part of the difference might be
due to the difference between instruments and detection algo-
rithms, leading to a different size sensitivity. The detection algo-

rithm on PSP’s FIELDS for example applies a signal threshold
of 50 mV (Malaspina et al. 2023), which has to be surpassed, in
order for detection to count. This threshold, in combination with
the dust speed and mass distribution, influences the total detected
counts.

One can see from Fig. 3 that the relative detection rate of
PSP with respect to SolO is higher in post-perihelia than in pre-
perihelia. Unlike PSP, SolO’s body is covered with conductive
materials on all sides. If SolO is assumed to be equally sensitive
to dust impacts from all sides, this implies that the sunward side
of PSP is less sensitive than the rest of the spacecraft. This is
possibly related to the non-conductive nature of the PSP’s heat
shield. A less sensitive heat-shield would also contribute to the
lower overall flux through reducing the effective cross section of
PSP.
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Fig. 3: Comparison of the 14 days cumulative flux (centered at
the indicated day) observed with PSP and with SolO during their
near alignments. The error bars are ±σ, bootstrapped assuming
Poisson distribution. See Tab. 1 for the heliocentric locations,
velocity components and fluxes corresponding to the individual
points.

5. Description of the model

In this section, we present a parametric model for bound dust
detection rate on a spacecraft, which we will use to explain some
of the observed features of the impact rate recorded on PSP. The
model is built using the formalism of 6D distribution function
over space r = (x, y, z) and velocity v = (vx, vy, vz): f (r, v) =
f (x, y, z, vx, vy, vz), similarly to how this is done in plasma theory.
A single population of bound dust is assumed. The dust number
density n(r) is evaluated as

n(r) =
$

R3
f (x, y, z, vx, vy, vz) dvx dvy dvz, (1)

where the unit of n is [n] = m−3. The flux j(r) as measured by the
spacecraft is evaluated as the first moment of relative speed be-
tween the spacecraft and the dust. For example, the flux through
a stationary test loop oriented perpendicular to the x-axis is

jx(r) =
$

R3
|vx| f (x, y, z, vx, vy, vz) dvx dvy dvz, (2)

where the unit of jx is [n] = m−3s−1. The model in this form
does not include the distribution of masses, and merely assumes
all the dust grains are detected on contact with the spacecraft,
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Table 1: Near alignments of speed and heliocentric distance between PSP and SolO.

PSP date R λ vr vϕ F SolO date R λ vr vϕ F
[AU] [◦] [km s−1] [km s−1] [m−2 h−1] [AU] [◦] [km s−1] [km s−1] [m−2 h−1]

27/10/19 0.886 316 7.9 17.7 0.13 14/06/23 0.878 66 8.9 22.5 0.27
28/11/19 0.911 335 −5.1 17.3 0.12 28/01/23 0.928 99 −5.0 21.6 0.38
19/12/18 0.785 306 15.4 19.9 0.16 16/05/22 0.821 41 13.8 25.1 0.43
20/02/19 0.785 348 −15.5 20.2 0.28 24/08/22 0.822 118 −13.7 25.7 0.89
21/07/19 0.779 348 −15.8 20.4 0.34 06/02/22 0.818 118 −13.9 25.9 0.83
15/05/19 0.760 304 16.9 20.6 0.23 29/11/22 0.785 51 13.8 25.1 0.48

regardless of the impact speed vimpact or grain’s mass m. The
focus of the model is not to explain the absolute amount of the
detected dust, the model works with a multiplicative prefactor.

The spatial scaling of density n(r) is assumed spherically
symmetric:

n(r) ∝ rγ, (3)

where r is the distance from the Sun. This allows for the pre-
sented study of the exponent γ.

An important component of the model is the 6D distribution
function f , which describes the dust cloud and is derived in Ap-
pendix A to be in the shape

f (x, y, z, vx, vy, vz) = C · (rvϕ)γδ(z)δ(vz)δ (vr ± ṽ) , (4)

where ṽ is the radial speed of dust given by

ṽ =

√
(e2 − 1)µ2 + 2µv2

ϕr − v4
ϕr

2

vϕr
, (5)

which is Eq. A.30 of Appendix A. The independent integration
variable for the moments of f (such as Eq. 2) is chosen to be
the dust azimuthal speed vϕ. The integration boundaries are then
the lower-most and the higher-most speeds the dust grains might
have, given their eccentricity e and the effective gravity µ(β).
Therefore,
√

(1 − e)µ
r

< vϕ <

√
(1 + e)µ

r
, (6)

which is Eq. A.33 of Appendix A.
The model captures dust’s eccentricity e, inclination θ, radi-

ation pressure to gravity ratio β, and the fraction of retrograde
dust grains in the population rp. The tilt of the dust cloud is
not included, as it is not higher than a few degrees (Mann et al.
2006) and therefore inconsequential for the current effort. The
model can be generalized to out of ecliptics case by assuming
dependence on the distance from the plane of ecliptics z. Yet,
the spacecraft of interest operate very close to the ecliptic plane
and the current assumption is deemed sufficient for the present
study. The model is capable of capturing dependence of the flux
through the surface i, denoted ji on impact speed by evaluating
a moment different from |vimpact |. In this work, we assume the
dependence

ji ∝ vϵimpact, (7)

where ϵ is the relative speed exponent, equivalent to 1 + αδ as
used in several publications (Szalay et al. 2021; Zaslavsky et al.
2021; Kočiščák et al. 2023), where α is the proportionality ex-
ponent in the charge generation equation

q ∝ mvα, (8)

and δ is the slope of the mass distribution

n(m) ∝ m−δ. (9)

The model treats all the parameters e; θ; β; rp; γ; ϵ as single val-
ues (degenerate distributions). This can be, owing to the linear-
ity, generalized to a sum of terms approximating an arbitrary
distribution of these parameters, if desired. The model might in
principle deal with an arbitrary shape of the spacecraft, but since
the spacecraft of interest is PSP, a cylindrical shape with the axis
pointing towards the Sun is assumed.

Practically, the model evaluates the flux on the spacecraft,
given the position and the speed of the spacecraft, and is there-
fore straight-forward to use the model to generate flux profiles
starting with a position table of the spacecraft of interest, which
is presently PSP.

The derivation of the equations and a detailed discussion
of the model is in Appendix A. Namely: in Sec. A.1, the as-
sumptions on the distribution function f are explained, and in
Sec. A.2, the orbital dynamics equations are laid out, which are
needed to integrate the flux. The integration is done in Sec. A.3
and normalization of the flux to a known number density at 1 AU
is explained in Sec. A.4. Sec. A.5 examines the assumption of
power-law scaling of perihelia dust density, which is an impor-
tant assumption for the derivation. The model from Sec. A.1
– A.5 includes the free parameters e; β; γ, and in Sec. A.6 we
generalize the model to account for the remaining parameters
θ; rp; ϵ.

6. Observed flux and model results

In this section, we compare the post-perihelion data of each or-
bit with the results of the model for orbital parameters repre-
senting each of the encounter groups. These are described in
Appendix B. We choose the post-perihelion region for two rea-
sons. First, the bound dust impacts are more frequent than those
of β-meteoroids in this region. Second, if the sunward side of
PSP is less sensitive to dust impacts, this matters the least in
post-perihelia, since the sunward side is less exposed. We study
post-perihelia outward of 0.15 AU, since inward the dust detec-
tion process might change, as the properties of PSP change close
to the Sun, as well as to avoid the possible dust depletion zone.
In the next step, we also study the near-perihelion minimum of
flux observed in the data to see, which features of the dust cloud
included in the model might cause the dip.

6.1. Scaling of the flux with distance

One of the features which the model should reproduce is the
scaling of the observed flux with the heliocentric distance. In this
section, we compare the model results to the data in the region
between 0.15 AU and 0.5 AU, where the flux is dominated by
bound dust impacts.
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Inspection of the data shows that, with the exception of the
first orbital group, which has its perihelion outside of 0.15 AU,
the flux scales approximately as j ∝ R−2.5 over the outbound leg
of each orbit. This is shown in Fig. 4. A variation is observed be-
tween individual orbits within the same orbital group, which was
previously attributed to the stochastic nature of the dust cloud
(Malaspina et al. 2020).
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Fig. 4: The flux as detected by PSP in the outbound part of each
orbit, compensated by R−2.5, grouped by orbital groups. Individ-
ual encounters within a group are distinguished by markers of
different shape or color. The solid lines are the power-law least
squares fits to the observed flux, exponent of which is shown in
the top left corner of each panel. To demonstrate the approximate
accuracy of the R−2.5 scaling, the dashed lines are the power-law
fits of the data, with the exponent offset by ±0.3 from the least
squares fit.

The base model is considered: e = 0; θ = 0; rp = 0; β =
0; γ = −1.3; ϵ = 1. This is in line with the assumption of parti-
cles on circular orbits, with no inclination, no radiation pressure,
without retrograde grains, and with spatial number density scal-
ing as n ∝ R−1.3 and the assumption that every grain is always
detected, if impact happened: j ∝ vimpact. It is found that this as-
sumption in not compatible (Fig. 5) with the slope observed in
the data (Fig. 4), since the dependence produced by the model is
appreciably shallower than ∝ R−2.5.

We study, what combination of parameters changes the slope
to the desired ∝ R−2.5. It is found that the parameters e; θ; β; rp
all influence the slope in the desired direction (see Appendix C),
yet even in the most favorable case, they do not suffice to explain
the slope observed in the data, as is shown in Fig. 5. It is also
seen from Fig. 5 that especially the flux during the later orbits
is very little influenced by these four parameters. The explana-
tion, therefore, lies at least partially in the scaling of density with
the two parameters not yet varied: the heliocentric distance ex-
ponent γ and the relative speed exponent ϵ. These both influence
the slope appreciably, as is seen in Figs. 7 and 8. We see that
in the case of all the other parameters being equal to the base
value, γ ≈ 3, resp. ϵ ≈ −3 show nearly flat plots, and, therefore,
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Fig. 5: The base model-predicted flux is shown in the solid line,
compensated by R−2.5. The slope is considerably shallower than
∝ R−2.5, hence the inclining trend after the compensation. The
model-predicted flux in the case of e = 0.5; θ = 45◦; rp =
10%; β = 0.5; γ = −1.3; ϵ = 1 is shown in the dashed line.
Even these, rather extreme, assumptions don’t suffice to explain
the slope observed in the data.

serve as upper estimates of the values. Many combinations of the
six parameters are capable of reproducing the right slope. We
therefore study the range of combinations, which reconstructs
the slope acceptably well. A viable combination of parameters
is shown in Fig. 9, but we note that the slope is not very sensitive
to changes in e; θ; β; rp. Viable combinations of the most influen-
tial parameters: γ and ϵ are shown in Fig. 6, where the other four
parameters are included together in two cases: the base case, and
the upper estimate: the dashed case from Fig. 5. Fig. 6 shows
−2 < γ < −1, which is the range of expected values of γ for
bound dust (Ishimoto & Mann 1998). We find our results com-
patible with previously reported γ ≈ 1.3 (Leinert et al. 1981;
Stenborg et al. 2021), in which case 2 < ϵ < 2.5

6.2. Near-sun profile

The model is capable of reproducing features observed in the
data close to perihelia. Notably, there is a distinct minimum
in the measured flux in the perihelion. This minimum was at-
tributed to the velocity alignment between PSP and bound dust
(Szalay et al. 2021), which is implicitly included in the present
model as well. In this section, the near-solar flux is studied as a
function of the free parameters of the model.

The observational data are shown in Fig. 10 and the near-
perihelion minimum is apparent. We note that the flux is not
symmetric around perihelia due to the presence of β-meteoroids
in pre-perihelia, where the relative speed between them and
the spacecraft is high. We focus on the post-perihelia, as we
will seek the consistence between these and the model predic-
tions. We also note that the PSP perihelia lie well inside the
β-meteoroid creation region (Szalay et al. 2021), where the β-
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Fig. 7: The base model-predicted flux is shown in the solid line.
In addition, the influence of the heliocentric distance exponent γ
on the slope is demonstrated.

meteoroid grains still have an important angular momentum and
their trajectories are therefore similar to the trajectories of bound
dust grains, making the distinction less clear.

The base model predicted flux is shown in Fig. 11 and we
note it is symmetric around the perihelia: since only the bound
dust population is assumed, and the heat shield is assumed as
sensitive as the rest of the spacecraft, there is nothing to cause the
asymmetry. The same set of vertical lines, approximately corre-
sponding to the heliocentric locations of the maxima are shown
symmetric around the perihelia in Figs. 10 and 11. There is no
post-perihelion maximum in orbital group 1, the vertical line is
based solely on the pre-perihelion maximum. In case of the base
model (as before, e = 0; θ = 0; rp = 0; β = 0; γ = −1.3; ϵ = 1),
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Fig. 8: The base model-predicted flux is shown in the solid line.
In addition, the influence of the velocity exponent ϵ on the slope
is demonstrated.
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Fig. 9: The base model-predicted flux is shown in the solid line.
In addition, the model with parameters: e = 0.1; θ = 10◦; rp =
0.03; β = 0.05; γ = −1.9; ϵ = 2 is shown as a representative of a
viable option.

the maxima in the flux are predicted decidedly closer to the per-
ihelia than observed. It is observed in the same figure that by
varying the velocity exponent ϵ the location of the expected max-
ima is moved, possibly to the extent that it is consistent with
the data. None of the other parameters influences the location of
the maxima of the flux appreciably and they are shown and dis-
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Fig. 10: The detection rate of dust impacts near the perihelia.
The data from individual solar encounters are grouped according
to the orbital groups. Individual encounters within a group are
distinguished by markers of different shape or color.

cussed in App. D. They however do influence the relative depth
of the near-perihelion flux minimum. Increasing any value ex-
cept for the velocity exponent ϵ would result in a shallower per-
ihelion dip, see the comparison on the influence of each indi-
vidual parameter in App. D. We note that the dip is predicted
shallower (approx. 50 % of the maximum) than observed (less
than 25 % of the maximum) even in the base case.

Fig. 12 shows the same combination of parameters as Fig. 9
does, which was found reasonable and viable to explain the ob-
served post-perihelion slope. Even with this reasonably conser-
vative parameter choice, the perihelion dip is a lot less pro-
nounced, due to a less sharp alignment between the spacecraft’s
and the dust’s speed. It is also observed that ϵ is less effective
at changing the position of the maxima, if other parameters are
higher than in the base model. Therefore, we find it unlikely that
the near perihelion dip is solely due to the velocity alignment
between the dust cloud and the spacecraft.

7. Discussion

To extract physical information from the dust counts data of PSP
and SolO, we performed different analyses in different helio-
spheric regions. In this section, we discuss our results with re-
spect to the heliocentric distance.

7.1. Near 1 AU

Near 1 AU, the comparison between PSP and SolO is possible
and shows that PSP detects fewer dust impacts compared to SolO
(see Fig. 3), especially in pre-perihelia. This is possibly an in-
strumental effect of a smaller sized dust being detected more
effectively with SolO. As PSP’s sunward side, where the heat
shield is, has a different surface material to the rest of the space-
craft, it is possibly less sensitive to dust impacts, compared to the
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Fig. 11: The base model-predicted flux near the perihelia is
shown in solid line. Different values of ϵ are shown for com-
parison. The same vertical dashed lines as in Fig. 10 are shown
for reference.

rest of the spacecraft (see Fig. 2). This implies that β-meteoroid
impacts might be underrepresented in the data, as these are more
likely to impact on the heat shield side, compared to the bound
dust grains. Other instrumental effects might play a role, such as
the position of antennas, and/or the presence of solar panels.

Beyond the likely instrumental cause of the difference of the
flux on PSP and SolO, physical explanations are possible. Small
sub-micron dust with r < 100 nm might be influenced by elec-
tromagnetic force. It was shown for dust of radius r ≤ 30 nm that
the flux might change both with solar cycle, that is on the order
of years (Poppe & Lee 2022), and with solar rotation, that is
on the order of days Poppe & Lee (2020); Mann & Czechowski
(2021) even in the case of a symmetric source. A similar, albeit
weaker effect might play a role for r ≈ 100 nm dust as well. The
individual points in space where we compared PSP and SolO
(Fig. 3) are separated by months or weeks for a given spacecraft,
and pre-perihelion and post-perihelion data points alternate in
time. Therefore, a possible long-term change from 2019 to 2022
does not strongly affect the result. Due to the low number of
data points, we can not dismiss the possible influence of a well-
timed short-term variation, which needs to be on the order of
25 % to explain the observed difference. With the low number
of points, a stochastic counting error is not negligible, but the
points are based on tens and hundreds of detections over 14 days
each, leading to error bars smaller than the observed variance.

We note that the points of similar heliocentric distance and
speed between PSP and SolO lie on different heliocentric lon-
gitudes. Localized sources of β-meteoroids (Szalay et al. 2021)
or the interstellar dust (Mann 2010) might contribute to the dif-
ference observed between the spacecraft, although there are no
indications of localized β-meteoroid sources at 1 AU. The peri-
helia of SolO in 2022 and 2023 are oriented close to the upstream
direction of the interstellar dust, which means that more inter-
stellar dust is likely present in the pre-perihelion data than in the
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Fig. 12: The base model-predicted flux near the perihelia is
shown in solid line. In addition, the model with parameters:
e = 0.1; θ = 10◦; rp = 0.03; β = 0.05; γ = −1.9; ϵ = 2 is shown
as a representative of a viable option.

post-perihelion data. The interstellar dust flux fIS D was reported
to be coming from the heliocentric longitude of approximately
λ ≈ 250 ◦ with the flux of fIS D < 0.036 m−2s−1 between 2016
and 2020 (Racković Babić 2022). This is an order of magnitude
lower than the pre-perihelia SolO fluxes reported here (Tab. B.1).
Although the interstellar dust might contribute to the difference,
its flux is too low to explain the whole difference.

7.2. Between 0.15 AU and 0.5 AU

Between 0.15 AU and 0.5 AU, we were looking for the solutions
of a parametric bound dust model, which would explain the ob-
served slope of the detected flux. The two lines of ϵ(γ) in Fig. 6
may be regarded as an upper and a lower estimate of the ve-
locity exponent ϵ. We find that ϵ lies between 1.5 and 2.7, as-
suming the value of the exponent γ between −2 and −1. This is
much lower then previously assumed 4.15 (Szalay et al. 2021).
We note that the bound dust which contributes to the results is
mostly of the µm and sub-µm size. For a reasonably conserva-
tive α ≈ 3.5 (Collette et al. 2014) in ϵ = 1 + αδ, it is implied
that 0.14 < δ < 0.49, which is a much lower value than δ ≈ 0.9
observed for larger dust (Grün et al. 1985; Pokorný et al. 2024).
The value of α is better constrained than the value of δ. This
is therefore an indication that the mass distribution may not be
a single power-law in the mass range of interest and at all he-
liocentric distances. However, this makes sense, because of the
narrow mass interval: the power-law distribution of masses was
described over 20 decades of magnitude in mass (Grün et al.
1985), while PSP detects grains wihch span less than two orders
of magnitude (Malaspina et al. 2023). Since the dust in ques-
tion is bound, there is a necessary depletion in the small size
region, as small dust (r ≲ 100 nm) is not bound, due to high β.
Interestingly, our value is compatible with δ ≈ 0.34, which was
reported by Zaslavsky et al. (2021) for β-meteoroids, which are

also limited in mass, and the power-law distribution of masses is
therefore also problematic.

7.3. Near perihelia

We studied the compatibility between the bound dust model and
the observed perihelion dip. A similar dip is formed due to the
velocity alignment between the spacecraft and the bound dust,
but the dip is too shallow and readily smeared out by non-zero
eccentricity, inclination, or other parameters. If the near perihe-
lion dip is not due to the velocity alignment, other factors might
contribute to the dip, and we list several of them. First, the dust
number density is believed to diminish closer to the Sun. A dust
free zone was hypothesised to exist (Russell 1929), since the dust
grains do not survive for long in the extreme conditions near the
Sun. It was estimated using WISPR that a dust depletion zone
enveloping the dust free zone lies inward of 19 Rsun ≈ 0.09 AU
and the dust free zone likely lies inward of 5 Rsun ≈ 0.023 AU
(Stenborg et al. 2021). Such dust depletion zone may explain
the apparent depletion of dust near perihelia. The second pos-
sible explanation of the dip is the ineffective detection. The an-
tenna detection process is very much dependent on the space-
craft’s charge state and the surrounding environment (Shen et al.
2021; Racković Babić et al. 2022; Shen et al. 2023). An indica-
tion that the process changes rapidly inward of 0.15 AU is that
the spacecraft’s potential seems to be a steep function of the he-
liocentric distance in this region, potentially disturbing the oth-
erwise effective dust detection. For example, the heat shield be-
coming conductively coupled to the spacecraft’s body inward of
≈ 0.16 AU (Diaz-Aguado et al. 2021) also changes spacecraft’s
charge state. See Sec. 3.2 for the discussion of the spacecraft po-
tential. The third possible contribution to the dip is that if the
relative speed between the dust and the spacecraft is higher than
a certain threshold, all the bound dust grains are detected, and
therefore the flux plateaus. This would not produce the dip on its
own, but would lead to a shallower growth near the Sun, com-
pared to the case, when the proportionality of flux to ∝ vϵ is
assumed all the way. In addition to these three explanations, we
note that the minima near the perihelia might be a result of max-
ima before and after the perihelia, rather then a depletion. Such
maxima might result from either crossing the Geminids β-stream
(Szalay et al. 2021), or the spacecraft getting more sensitive to
dust impacts, possibly due to a higher potential (Fig. 1) and/or
better sensitivity of the heat shield.

7.4. Further work

We developed a model to describe bound dust impact rates onto
spacecraft, which work with sharp values of the free parameters,
but is easily generalized to distributions. Other free parameters
are feasible to be included, such as the tilt of the dust cloud with
respect to the ecliptic plane, which might be useful for mod-
elling the flux once the orbit of SolO becomes more inclined. It
is straight-forward to develop a similar model for dust on hyper-
bolic trajectories, such as β-meteoroids or interstellar dust. The
distribution of inclinations and eccentricities within β-meteoroid
cloud is worthy of future investigation.

The masses are presently treated in a crude way, assuming
power-law distribution of masses, which translates to the effi-
ciency of detection. As we argue, the assumption of a power-law
distributed masses might not be justified. A 7D distribution func-
tion describing masses, in addition to the phase space, would of-
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fer a more nuanced model, but would push the limits of what
information is possibly retrieved from the data.

8. Conclusions

The impact rate model, which we developed in this work, takes
into account dust cloud parameters: eccentricity e, inclination i,
radiation pressure to gravity ratio β, and retrograde dust frac-
tion rp. In addition, the model takes into account semi-empirical
parameters: the exponent γ of number density dependence on
heliocentric distance and the exponent ϵ of the detection rate de-
pendence on the impact speed. We compared the model results
to the dust count data of the first 16 orbits of PSP.

Although the model does produce a dip in flux due to the ve-
locity alignment between the dust and the spacecraft in the cir-
cular dust base case, but the dip is not sufficient and is smeared
away easily, especially with non-zero eccentricity. The dip ob-
served close to each of the perihelia for the third and subsequent
orbits of PSP is reproduced neither as deep nor as wide by the
model as is observed in the data. Therefore, other effects con-
tribute to the dip beyond the velocity alignment, namely the dust
depletion zone or instrumental effects.

The parameters of the dust cloud: e, i, β, rp all have minor
influence on the model profile, while the semi-empirical param-
eters γ and ϵ are crucial. By varying these, we can reproduce the
observed dependence of flux in the post-perihelion region on the
heliocentric distance between 0.15 AU and 0.5 AU, where the in-
fluence of β dust is expected the lowest. The parameter ϵ, which
represents the combined influence of dust mass distribution and
impact charge production, is found lower than what was previ-
ously used for PSP dust data analysis, and likely between 1.5 and
2.7. This is consistent with the slope δ of differential mass distri-
bution of µm and sub-µm dust between 0.14 and 0.49, which is
shallower than what was reported for bigger bound dust further
away from the Sun.

A comparison of the dust counts of PSP and SolO shows that
PSP observed comparatively less dust in pre-perihelia than in
post-perihelia, with the difference of about 25 %. This suggests
that PSP’s sun-facing side, and therefore the heat shield (TPS),
offers a less dust sensitive target, compared to the other surfaces
of PSP. Because of this instrumental effect, the observations are
not incompatible with a stationary and symmetric dust cloud.
However, due to the low number of data points, we can not reject
the possibility that the effect is physical, possibly attributed to
the short-term temporal or spatial variation of the cloud.
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Racković Babić, K., Zaslavsky, A., Issautier, K., Meyer-Vernet, N., & Onic, D.

2022, Astronomy & Astrophysics, 659, A15
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Appendix A: Integrating the phase-space density

Appendix A.1: Phase-space density

Assume there is a time-invariant dust density f in the usual 6D
phase space:

f (r, v) = f (x, y, z, vx, vy, vz), (A.1)

which is normalized to number density as

n(x, y, z) =
$

R3
f (x, y, z, vx, vy, vz) dvx dvy dvz, (A.2)

which is a very useful way of looking at it, since n(r) can be
measured remotely for bigger (≳ 1 µm) dust grains. We note that
we disregarded grain size for now, the density n represents the
number density of suitable dust grains, whatever the suitability
criteria are.

Since the Solar system near the ecliptic is our main goal, we
will introduce simplifying assumptions on f :

– We assume that the plane x ⊗ y is the ecliptic, with (0, 0)
point being the Sun and assume that all the grains within
the distribution move within this plane, with no pole-ward
component of the speed vz.

– We assume that the dust cloud has a rotational symmetry
around the z axis, and for convenience we are going to use
the density f̃ expressed using (r, ϕ) instead of (x, y), where
r =

√
x2 + y2 and ϕ is the angle of rotation around z-axis,

measured from an arbitrary ray in the ecliptic.
– We assume the dust grains don’t collide. Then we make use

of Liouville’s theorem on the space (r, v).

The first assumption is translated to f using degenerate distribu-
tions δ(·) as

f (x, y, z, vx, vy, vz) = f (x, y, 0, vx, vy, 0)δ0(z)δ0(vz). (A.3)

The second assumption is translated using r, ϕ as

f (x, y, 0, vx, vy, 0)δ0(z)δ0(vz)
= f (r, 0, 0, vx, vy, 0)δ0(z)δ0(vz)

= f̃ (r, 0, 0, vx, vy, 0)δ0(z)δ0(vz), (A.4)

where the first three arguments of f are all position arguments,
where f̃ has a position, angle, and a position arguments. We also
use a more compact 3D distribution f , with the meaning

f (x, y, z, vx, vy, vz)

= f̃ (r, ϕ, 0, vr, vϕ, 0)δ0(z)δ0(vz)
≡ f (r, vr, vϕ)δ0(z)δ0(vz) ∀ϕ ∈ R, (A.5)

since we assumed rotational symmetry in ϕ. The third assump-
tion has the form of

f (r1, v1) = f (r2, v2)⇔
f (r1, vr,1, vϕ,1) = f (r2, vr,2, vϕ,2) (A.6)

provided that the points (r1, v1), (r2, v2) (or, alternatively ex-
pressed points (r1, vr,1, vϕ,1), (r2, vr,2, vϕ,2)) share the same trajec-
tory of the system in the phase space. We note that we use ve-
locity, not the momentum, which is justified, since we assume
the mass conservation dm/dt = 0 for each particle. We assume
the dust cloud is composed of bound dust grains, each of them
on a heliocentric orbit. Then Eq. A.6 holds for any two points of

an orbit of a grain. If we assume all the grains follow the same
gravity field with the effective gravitational parameter

µ = (1 − β)κMS un, (A.7)

where β is the grain’s radiation pressure to gravity ratio and
κMS un is the solar gravitational parameter. Then all the grains
which acquire the state of (r1, v1) will also acquire the state of
(r2, v2), if this a valid solution for one of them. Therefore, we
may study f in a convenient point of the orbit of our choice
while being assured, it remains the same throughout the orbit.
We are soon going to see that the perihelion of the orbit of a dust
grains is a convenient point.

Appendix A.2: Orbital mechanics

To study the density f in a point of the orbit of our choice, we
must describe the orbits and be able to translate between the
points within the orbit. From Eq. A.6 we know that

f (rperi, 0, vperi) = f (r, vr, vϕ), (A.8)

provided that the spacecraft state in perihelion (rperi, 0, vperi)
shares the same orbit with a general state (r, vr, vϕ). By applying
the laws of orbital motion, we are going to find the relationship
between the points (rperi, 0, vperi) and (r, vr, vϕ). We know the an-
gular momentum is conserved:

rperivperi = vϕr ⇔ vperi =
vϕr
rperi

⇔ rperi =
vϕr
vperi
. (A.9)

as well as the energy is:

v2
peri −

2µ
rperi

= v2
ϕ + v2

r −
2µ
r
. (A.10)

Substituting vperi from the angular momentum, we get

(
vϕr
rperi

)2

− 2µ
rperi

= v2
ϕ + v2

r −
2µ
r
, (A.11)

and multiplying by r2 we get

r2
peri

(
v2
ϕ + v2

r −
2µ
r

)
+ rperi(2µ) − (v2

ϕr
2) = 0

ar2
peri + brperi + c = 0. (A.12)

The two formal solutions of this equation are

rperi =
−b ±

√
b2 − 4ac

2a
, (A.13)

where (+) and (−) correspond to the aphelion and perihelion re-
spectively, since we didn’t assume anything other than a station-
ary point yet. Hence, (−) corresponds to the true rperi and substi-
tuting back for a, b, c and substituting for vperi from Eq. A.9 we
get:

rperi =
−b −

√
b2 − 4ac

2a
=
−µ −

√
µ2 +

(
v2
ϕ + v2

r − 2µ
r

)
(v2
ϕr

2)
(
v2
ϕ + v2

r − 2µ
r

)

vperi =
vϕr
rperi
.

(A.14)
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These two equations are what was needed to solve Eq. A.8. How-
ever, our goal is to study different eccentricities. Since an arbi-
trary distribution of eccentricities is straight-forward to approx-
imate with a linear combination of sharp-eccentricity terms, we
will now focus on a sharp eccentricity e. Assuming that all the
grains are not only exposed to the same effective gravity µ, but
they also have the same orbital eccentricity e, it is apparent that
only one speed vperi is allowed in the perihelion rperi, which con-
forms to the eccentricity e (⋆). Vis-viva equation in perihelion
gives

vperi =

√
µ

1 + e
rperi
. (A.15)

Substituting for vperi from Eq. A.9, we get

(
vϕr
rperi

)2

= µ
1 + e
rperi

rperi =
v2
ϕr

2

µ(1 + e)
. (A.16)

This equation is the bond between an arbitrary r, vr, vϕ and the
only corresponding rperi, vperi given the eccentricity e.

As a reasonable simplification (Giese et al. 1986), we as-
sume the number density n(x, y, z) in the ecliptic depends on the
heliocentric distance:

n(x, y, z) = n(r, 0)δ0(z) = A
(

r
r0

)γ
δ0(z) = δ0(z)

A
rγ0

rγ, (A.17)

where γ is a parameter, reasonably constrained by experiment.
We normalized the expression by the number density at r0, which
might be for example 1 AU. Assume this dependence (∝ rγ)
holds for the distribution of dust grains in their perihelia (see
section A.5 for the discussion), which is surely an acceptable
assumption, at least for low e, since at low e, the difference be-
tween rperi and raph is very small.

Appendix A.3: Velocity moments’ integration

The net flux of particles through the x-plane is the first speed
moment

jx =

$

R3
vx f (r, v) dvx dvy dvz. (A.18)

The SI unit is [ jx] = m−2s−1. We are however not interested in
the net flux jx but the total flux jtot,x onto the plane x. For the
stationary plane x, we have

jtot,x =

∫ ∞

0

"

R2
vx f (r, v) dvx dvy dvz

+

∫ 0

−∞

"

R2
−vx f (r, v) dvx dvy dvz. (A.19)

Should the probe be moving in +x-direction with the speed of
vp,x, the detected net flux is going to be

jtot,x =

∫ ∞

vp,x

"

R2
(vx − vp,x) f (r, v) dvx dvy dvz

−
∫ vp,x

−∞

"

R2
(vx − vp,x) f (r, v) dvx dvy dvz. (A.20)

Since we assumed all the dust being concentrated around the
ecliptic plane (Eqs. A.3, A.5):

jtot,x =

∫ ∞

vp,x

"

R2
(vx − vp,x) f (r, vr, vϕ)δ0(z)δ0(vz) dvx dvy dvz

−
∫ vp,x

−∞

"

R2
(vx − vp,x) f (r, vr, vϕ)δ0(z)δ0(vz) dvx dvy dvz

= δ0(z)
∫ ∞

vp,x

∫

R

(vx − vp,x) f (r, vr, vϕ) dvx dvy

− δ0(z)
∫ vp,x

−∞

∫

R

(vx − vp,x) f (r, vr, vϕ) dvx dvy.

(A.21)

And since we align the x-axis with the probe, the speed vx = vr
is the radial dust speed and vy = vϕ is the azimuthal dust speed,
both in the unit of translational speed (as not to confuse with
the angular speed ϕ̇ , vϕ = rϕ̇). The flux measured on radially
oriented surfaces of the probe is

jtot,rad = δ0(z)
∫ ∞

vp,rad

∫

R

(vr − vp,rad) f (r, vr, vϕ) dvr dvϕ

− δ0(z)
∫ vp,rad

−∞

∫

R

(vr − vp,rad) f (r, vr, vϕ) dvr dvϕ, (A.22)

and, analogically, the flux measured on the azimuthally oriented
surfaces as

jtot,azim = δ0(z)
∫

R

∫ ∞

vp,azim

(vϕ − vp,azim) f (r, vr, vϕ) dvr dvϕ

− δ0(z)
∫

R

∫ vp,azim

−∞
(vϕ − vp,azim) f (r, vr, vϕ) dvr dvϕ,

(A.23)

where vp.azim is the azimuthal speed of the probe (prograde, lo-
cally in +y-direction).

To obtain the most convenient form of f in an easily inte-
grable shape, we use two additional pieces of information: 1.
the dependence on the heliocentric distance (Eq. A.17), and 2.
the fact, that Eqs. A.16 and A.14 must be demanded consistent,
which is the equivalent to the (⋆) claim. We are shortly going
to integrate f over vr and vϕ, as in Eqs. A.22 and A.23. We
know that not all combinations of vr, vϕ are possible given r,
e. Instead of integrating in two dimensions, we will integrate in
vr⊗vϕ space along the path vr(vϕ) given by (⋆). Hence, we relate
Eqs. A.16 and A.14 with the goal of obtaining vr(vϕ):

−µ −
√
µ2 +

(
v2
ϕ + v2

r − 2µ
r

)
(v2
ϕr

2)
(
v2
ϕ + v2

r − 2µ
r

) =
v2
ϕr

2

µ(1 + e)
(A.24)

This quadratic equation has two solutions for vr:

vr = ±

√
(e2 − 1)µ2 + 2µv2

ϕr − v4
ϕr

2

vϕr
= ±ṽ, (A.25)

These solutions correspond to the radial speeds of pre-perihelion
(in-going, vr < 0) and post-perihelion (out-going, vr > 0) dust,
as at a given r and with a given vϕ. Since f of the dust cloud is
assumed stationary, the grains don´t collide and are in repetitive
orbits, therefore there are exactly as many in-going as out-going.
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Now to get a convenient shape of f , assuming separable
power-law scaling with distance (consistently with Eq. A.17):

f (r, vr, vϕ) = f (r, vϕ)δ (vr ± ṽ)

∝ rγ f̂ (vϕ)δ (vr ± ṽ) , (A.26)

where in the first step we expressed the condition A.25 and
newly used a 2D distribution f according to f (r, vϕ)δ (vr ± ṽ) =
f (r, vr, vϕ) and in the second step we expressed the condition that
n(r) ∝ rγ using a new 1D f̂ (vϕ) and we lost the normalization.
Since Liouville’s theorem says that the density is the same along
the trajectory of the grain, it is the same in perihelion as well, and
its moments are the same, and therefore integrating over z, vz, vr
in an arbitrary time (LHS) and in perihelion (RHS):

rγ f̂ (vϕ) = rγperi f̂ (vperi)

rγ f̂ (vϕ) =


v2
ϕr

2

µ(1 + e)


γ

f̂
(
µ(1 + e)

vϕr

)

rγ f̂ (vϕ) = (µ(1 + e))−γ v2γ
ϕ r2γ f̂

(
µ(1 + e)

vϕr

)
. (A.27)

Since µ(1 + e) is a plain number, and except for f̂ (. . . ) we only
have rc1 and vc2

ϕ and we demand the equality for arbitrary r, vϕ,
the only thinkable solution for f̂ is of the form

f̂ (x) = Cxb, (A.28)

therefore:

rγCvb
ϕ = (µ(1 + e))−γ v2γ

ϕ r2γC
(
µ(1 + e)

vϕr

)b

1 = (µ(1 + e))b−γ v2γ−2b
ϕ rγ−b

1 =


v2
ϕr

µ(1 + e)


γ−b

, (A.29)

Where the only suitable solution is b = γ. Therefore, f̂ (x) = Cxγ
Eq. A.26 with Eq. A.25 give:

f (r, vr, vϕ) =
= C · (rvϕ)γδ(z)δ(vz)δ (vr ± ṽ)

= C · (rvϕ)γδ(z)δ(vz)δ


vr ±

√
(e2 − 1)µ2 + 2µv2

ϕr − v4
ϕr

2

vϕr


.

(A.30)

The last parenthesis of this equation may be interpreted as the in-
tegration trajectory in the vr ⊗ vϕ space. Since our integration pa-
rameter of the contraction from the the vr⊗vϕ space to a 1D space
of the path is going to be vϕ, we need the integration boundaries
for vϕ. The integration boundaries are given by the lowermost
and the uppermost vϕ the probe may encounter, given r,e. The
lowest possible vϕ corresponds to the probe being in aphelion,
whereas the highest corresponds to it being in the perihelion. We
use Eq. A.25, and both in the perihelion and in the aphelion, we
get vr = 0, hence

(e2 − 1)µ2 + 2µv2
ϕr − v4

ϕr
2 = 0, (A.31)

and this quadratic equation in v2
ϕ has two solutions:

v2
ϕ =

(1 ± e)µ
r
, (A.32)

corresponding to the highest possible vϕ (in the case r is the per-
ihelion) and the lowest possible (in the case r is the aphelion).
Negative vϕ would correspond to the dust grains on retrograde
orbits and are disregarded as we only want to include prograde
dust grains for now. These are, therefore, our integration bound-
aries:
√

(1 − e)µ
r

< vϕ <

√
(1 + e)µ

r
. (A.33)

We note that these correspond to the degenerate solutions of
Eq. A.25, which makes sense, since Eq. A.25 defines a cyclic
trajectory in the vr ⊗ vϕ space.

Radial flux

jtot,rad = δ(z)
∫ ∞

vp,rad

∫

R

(vr − vp,rad) f (r, vr, vϕ) dvr dvϕ

− δ(z)
∫ vp,rad

−∞

∫

R

(vr − vp,rad) f (r, vr, vϕ) dvr dvϕ

= δ(z)Crγ
∫ ∞

vp,rad

∫

R

(vr − vp,rad)vγϕδ (vr ± ṽ) dvr dvϕ

− δ(z)Crγ
∫ vp,rad

−∞

∫

R

(vr − vp,rad)vγϕδ (vr ± ṽ) dvr dvϕ.

(A.34)

The expression contains two terms: jtot,rad = δ0(z)Crγ( j+rad −
j−rad), which have the boundaries vr > vp,rad and vp,rad > vr re-
spectively, which corresponds to flux on the sun-facing (+) and
on the anti-sunward (−) respectively. We translate these bound-
aries from vr to vϕ in order to integrate over the parameter vϕ us-
ing the Heaviside function. Each of these two has two variants:
post-perihelion (post, vr > 0) and pre-perihelion (pre, vr < 0)
dust, as ±ṽ in Eq. A.25. Thus, we get four integral terms, each
with a prefactor of 1/2:

j+,pre
rad =

1
2

∫ ∞

vp,rad

∫

R

(vr − vp,rad)vγϕδ (vr + ṽ) dvr dvϕ

=
1
2

∫

R

∫

R

(vr − vp,rad)vγϕδ (vr + ṽ) H(vr − vp,rad) dvr dvϕ

=
1
2

∫

R

(−ṽ − vp,rad)vγϕH(−ṽ − vp,rad) dvϕ

=
1
2

∫ √
(1+e)µ

r

√
(1−e)µ

r

(−ṽ − vp,rad)vγϕH(−ṽ − vp,rad) dvϕ,

(A.35)

j+,post
rad =

1
2

∫ ∞

vp,rad

∫

R

(vr − vp,rad)vγϕδ (vr − ṽ) dvr dvϕ

=
1
2

∫ √
(1+e)µ

r

√
(1−e)µ

r

(ṽ − vp,rad)vγϕH(ṽ − vp,rad) dvϕ, (A.36)

j−,pre
rad =

1
2

∫ vp,rad

−∞

∫

R

(vr − vp,rad)vγϕδ (vr + ṽ) dvr dvϕ

=
1
2

∫ √
(1+e)µ

r

√
(1−e)µ

r

(−ṽ − vp,rad)vγϕH(ṽ + vp,rad) dvϕ, (A.37)
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j−,post
rad =

1
2

∫ vp,rad

−∞

∫

R

(vr − vp,rad)vγϕδ (vr − ṽ) dvr dvϕ

=
1
2

∫ √
(1+e)µ

r

√
(1−e)µ

r

(ṽ − vp,rad)vγϕH(−ṽ + vp,rad) dvϕ, (A.38)

where

ṽ =

√
(e2 − 1)µ2 + 2µv2

ϕr − v4
ϕr

2

vϕr
, (A.39)

and altogether:

jtot,rad = Cδ0(z)rγ
(

j+,pre
rad + j+,post

rad − j−,pre
rad − j−,post

rad

)
. (A.40)

We note that even and odd terms are straightforward to join
as the only difference is the complementary Heaviside, but in
the present shape it is easy to account for different effective
areas from front and from the back of the probe in this func-
tion, since front and back terms are separated. Eqs. A.35 – A.38
are straight-forward to evaluate numerically, for example with
Monte Carlo integration, drawing values of vphi between the
boundaries (Eq. A.33).

Azimuthal flux

jtot,azim = δ(z)
∫

R

∫ ∞

vp,azim

(vϕ − vp,azim) f (r, vr, vϕ) dvr dvϕ

− δ(z)
∫

R

∫ vp,azim

−∞
(vϕ − vp,azim) f (r, vr, vϕ) dvr dvϕ,

= δ(z)Crγ
∫

R

∫ ∞

vp,azim

(vϕ − vp,azim)vγϕδ (vr ± ṽ) dvr dvϕ

− δ(z)Crγ
∫

R

∫ vp,azim

−∞
(vϕ − vp,azim)vγϕδ (vr ± ṽ) dvr dvϕ

(A.41)

The expression contains two terms: jtot,azim = δ(z)Crγ( j+azim −
j−azim), which have the boundaries vϕ > vp,azim and vp,azim > vϕ
respectively. Since we assume prograde dust only (vϕ > 0), and
pre-perihelion and post-perihelion have the same effect on the
azimuthal flux, there is no further multiplication of terms, as in
the case of radial flux.

j+azim =

∫

R

∫ ∞

vp,azim

(vϕ − vp,azim)vγϕδ (vr ± ṽ) dvr dvϕ

=

∫ ∞

vp,azim

(vϕ − vp,azim)vγϕ dvϕ

=

∫ max
[√

(1+e)µ
r ,vp,azim

]

max
[√

(1−e)µ
r ,vp,azim

] (vϕ − vp,azim)vγϕ dvϕ

=


vγ+2
ϕ

γ + 2
−

vγ+1
ϕ vp,azim

γ + 1



max
[√

(1+e)µ
r ,vp,azim

]

max
[√

(1−e)µ
r ,vp,azim

] , (A.42)

j−azim =

∫

R

∫ vp,azim

−∞
(vϕ − vp,azim)vγϕδ (vr ± ṽ) dvr dvϕ

=

∫ vp,azim

−∞
(vϕ − vp,azim)vγϕ dvϕ

=

∫ min
[√

(1+e)µ
r ,vp,azim

]

min
[√

(1−e)µ
r ,vp,azim

] (vϕ − vp,azim)vγϕ dvϕ

=


vγ+2
ϕ

γ + 2
−

vγ+1
ϕ vp,azim

γ + 1



min
[√

(1+e)µ
r ,vp,azim

]

min
[√

(1−e)µ
r ,vp,azim

] , (A.43)

where we very liberally ignred δ0(vr ± . . . ), but since we inte-
grate in vr over R, it doesn’t matter where exactly this mass is
accounted for. Altogether we have:

jtot,azim = δ(z)Crγ( j+azim − j−azim), (A.44)

which is easy and straightforward to evaluate. Finally,

jtot = jtot,azim + jtot,rad. (A.45)

Appendix A.4: Normalization

In order to normalize the flux properly to a known value of den-
sity at 1 AU in the unit of m−3, we need to evaluate the number
density at r0, which might conveniently be 1 AU. If we don’t do
that, then Eqs. A.35 - A.38, A.42, A.43 all vary as ∝ 2

√
e for

low e. Let’s evaluate n(r = r0) for the parameter e. Analogically
to Eqs. A.40 and A.44:

n = δ(z)
∫

R

∫

R

f (r, vr, vϕ) dvr dvϕ,

= δ(z)Crγ0

∫

R

∫

R

vγϕδ (vr ± ṽ) dvr dvϕ

= δ(z)Crγ0

∫ √
(1+e)µ

r0

√
(1−e)µ

r0

vγϕ dvϕ

= δ(z)Crγ0


vγ+1
ϕ

γ + 1



√
(1+e)µ

r0

√
(1−e)µ

r0

= δ(z)Crγ0
1
γ + 1

[
vγ+1
ϕ

]√
(1+e)µ

r0√
(1−e)µ

r0

= δ(z)Crγ0
1
γ + 1


(

(1 + e)µ
r0

) γ+1
2

−
(

(1 − e)µ
r0

) γ+1
2


= δ(z)Crγ0
1
γ + 1

(
µ

r0

) γ+1
2 (

(1 + e)
γ+1

2 − (1 − e)
γ+1

2

)
(A.46)

Thus, we get that:

δ0(z)C =
n
rγ0

(
r0

µ

) γ+1
2 (γ + 1)(

(1 + e)
γ+1

2 − (1 − e)
γ+1

2

) , (A.47)

where [n] = m−3 at the distance of r0.
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Appendix A.5: Number density assumption

To derive the fluxes following the assumption of number density
scaling as n ∝ rγ, we conveniently assumed the equivalence

n ∝ rγ ⇔ n ∝ rγperi. (A.48)

Here we demonstrate the validity of this assumption. Assume a
dust grain is in orbit with the perihelion rperi and aphelion

raph =
1 + e
1 − e

rperi, (A.49)

where e is the eccentricity. The grain therefore spends time at the
heliocentric distance r:

rperi < r < raph, (A.50)

and the time spent, and therefore the probability g(r) the grain
will be (in random time) found at r it spends at r is proportional
to the inverse of the radial speed |vr |:

g(r|rperi) ∝ |vr |−1(r) =
∣∣∣∣∣
dr
dt

(r)
∣∣∣∣∣
−1

=
(
v2 − v2

ϕ

)− 1
2 , (A.51)

where v and vϕ are the total and azimuthal speeds of the grain.
Then we have from vis-viva equation:

v2 = µ

(
2
r
− 1

a

)
= µ

(
2
r
− 1 − e

rperi

)
, (A.52)

and vϕ is obtained using momentum conservation as

vϕ =
vperirperi

r
, (A.53)

where the perihelion speed vperi is also obtained from vis-viva as

vperi =

√
µ

1 + e
rperi
, (A.54)

which altogether gives:

g(r|rperi) ∝ |vr |(r) =


µ

(
2
r
− 1 − e

rperi

)
−



√
µ 1+e

rperi
rperi

r



2

− 1
2

=

(
µ

(
2
r
− 1 − e

rperi
− (1 + e)rperi

r2

))− 1
2

=

(
2µ
r

(
1 −

(
(1 − e)

2
r

rperi
+

(1 + e)
2

rperi

r

)))− 1
2

.

(A.55)

Obtaining r from rperi is a random process governed by the prob-
ability density function g(r|rperi). We can therefore draw a sam-
ple of rperi according to g(rperi) and transform rperi to r using the
density g(r|rperi) derived here. Fig. A.1 shows the γ compensated
probability density function of g(rperi) before the transformation
and g(r) after the transformation. A compensated density plot
shows a constant, if the slope of the density is the value, for
which we compensate, that is γ in our case. As is observed, the
dependence n ∝ rγ is really retained after the transformation, if
n ∝ rγperi is assumed.
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Fig. A.1: A sample of rperi is drawn according to n ∝ rγperi and
transformed using g(r|rperi). The distribution shows n ∝ rγ.

Appendix A.6: Generalization

Already included parameters The integrals for flux jtot,rad and
jtot,azim as derived and expressed in Sec. A.3 already allow for
evaluation of the flux along a trajectory of a spacecraft, given the
eccentricity of the dust’s orbits e, radiation pressure to gravity
ratio β, distance-scaling parameter γ and cuboid-approximated
spacecraft areas, since the flux is evaluated for each of the rele-
vant spacecraft sides independently.

Retrograde grains The simplest addition is the fraction of ret-
rograde grains in the dust cloud. Until, now all the dust grains
were considered prograde, but the fraction of retrograde dust is
taken into account by weighted summing of the flux encountered
along the true spacecraft trajectory, with the flux encountered by
mirrored (retrograde) spacecraft trajectory.

Higher exponent of the relative speed If the detection is effec-
tive regardless of the impact speed, the flux is proportional to the
relative speed between the spacecraft and the dust cloud. If the
flux is assumed proportional to an exponent ϵ of velocity, which
is higher than unity, such as because of the detection threshold
size variation with the impact speed, this is taken into account by
evaluating the higher moment of (vr − vp,rad) and (vϕ − vp,azim) in
the terms of Eqs. A.40 and A.44 respectively, which is straight
forward. We note that the normalization needs to be adjusted in
this case as well, as a scale relative velocity v0 has to be intro-
duced, at which the number density is measured.

Inclination A single inclination angle θ different from zero can
be introduced, under the assumption that all the grains share the
same inclination value, albeit in different (non-parallel) orbital
planes, that is with random ascending nodes. Under this assump-
tion, a spacecraft in the plane of ecliptics will only encounter
dust grains of this given inclination θ. As discussed in Sec. 2.2,
it is reasonable to approximate PSP by a cylinder. This makes no
difference compared to a cuboid approximation, until θ , 0 is
examined.

We note that an arbitrary inclination of the orbital plane of
each of the grains does not play a role in jtot,rad. For the az-
imuthal component, we need to evaluate the moment |vϕ−vp,azim|
over the f , as a function of inclination θ. We assume the cylin-
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Table B.1: The representative orbital parameters for PSP’s en-
counter groups.

Encounter
group

Perihelion
distance [Gm]

Perihelion
distance [AU]

Perihelion
speed [km/s]

1 24.8 0.166 95
2 19.4 0.130 109
3 14.2 0.095 127
4 11.1 0.074 147
5 9.2 0.061 163

drical symmetry:

vcyl(vϕ) ≡ |vϕ − vp,azim| =
√

v2
p,azim sin2 θ +

(
vϕ − vp,azim cos θ

)2
,

(A.56)

which we then need to integrate to

jtot,azim = δ(z)Crγ( j+azim − j−azim), (A.57)

where

j+azim =

∫ √
(1+e)µ

r

√
(1−e)µ

r

vcyl(vϕ)v
γ
ϕH

(
vcyl(vϕ)

)
dvϕ, (A.58)

j−azim =

∫ √
(1+e)µ

r

√
(1−e)µ

r

vcyl(vϕ)v
γ
ϕH

(
−vcyl(vϕ)

)
dvϕ. (A.59)

Since by definition | · | > 0:

j+azim − j−azim =

∫ √
(1+e)µ

r

√
(1−e)µ

r

vcyl(vϕ)v
γ
ϕ dvϕ, (A.60)

which we evaluate easily, for example with Monte Carlo integra-
tion, drawing values of vphi between the integration boundaries
(Eq. A.33).

We note that both non-zero eccentricity and non-zero inclina-
tion make the assumption of non-interacting grains problematic,
but the collisional evolution of the dust cloud is beyond the scope
of this work, and taken care of in reality by the micrometer dust
cloud being constantly replenished by the product of collision of
bigger grains.

Appendix B: Model trajectories of PSP

Every PSP’s solar encounter is different from the previous one,
even within the same orbital group. This is solely because of
the motion of the Sun, which in the first approximation orbits
around the common barycenter of the Sun — Jupiter system,
which lies outside of the solar photosphere. PSP orbits the Sun
on an orbit with perihelion distance sufficiently close the the Sun,
so that this effect plays a role when the distance from the Sun is
critical. This is however not as consequential as to change the
results presented in this work. To get rid of the effect, we study
fictitious, simplified solar encounters, which are assumed to lie
in the ecliptic plane (z = 0) and which represent the actual ones
well. The parameters of the encounters which we use for the
present study are listen in Tab. B.1.

Appendix C: The flux slope scaling with orbital
parameters

In Sec. 6.1, we claimed that the parameters: e; θ; β; rp all act to
make the slope of flux steeper, when their values differ from the
base case, but in the case of the later orbits, they tend to lead
to very little change. Their influence is independently shown in
Figs. C.1 – C.4.
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Fig. C.1: The base model-predicted flux is shown in the solid
line. In addition, the influence of eccentricity on the slope is
demonstrated.

Appendix D: The near-perihelia flux dependence on
other parameters

In Sec. 6.2, we claimed that the parameters: e; θ; β; γ, rp do not
change the location of the flux maxima appreciably. They how-
ever make the magnitude of the near-perihelia dip smaller, es-
pecially the parameter e does. Their influence is independently
shown in Figs. D.1 – D.5.

Article number, page 17 of 19



A&A proofs: manuscript no. output

0

2

4

G
ro

u
p

1 θ = 0.0 θ = 15 θ = 45

0

2

4

G
ro

u
p

2

0

2

4

F
lu

x
[C
·s
−

1
A
U

2
.5

]

G
ro

u
p

3

0

2

4

G
ro

u
p

4

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

R [AU]

0

2

4

G
ro

u
p

5

Fig. C.2: The base model-predicted flux is shown in the solid
line. In addition, the influence of inclination on the slope is
demonstrated.
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Fig. C.3: The base model-predicted flux is shown in the solid
line. In addition, the influence of β value on the slope is demon-
strated.
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Fig. C.4: The base model-predicted flux is shown in the solid
line. In addition, the influence of retrograde fraction on the slope
is demonstrated.
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Fig. D.1: The base model-predicted flux is shown in the solid
line. In addition, the influence of eccentricity on the slope is
demonstrated.

Article number, page 18 of 19
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Fig. D.2: The base model-predicted flux is shown in the solid
line. In addition, the influence of inclination is shown.
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Fig. D.3: The base model-predicted flux is shown in the solid
line. In addition, the influence of β value is shown.
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Fig. D.4: The base model-predicted flux is shown in the solid
line. In addition, the influence of the spatial density scaling with
heliocentric distance γ is shown.
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Fig. D.5: The base model-predicted flux is shown in the solid
line. In addition, the influence of retrograde fraction is shown.
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