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A B S T R A C T

A large hindrance to analyzing information in genetic or protein sequence data has been a lack of a mathematical
framework for doing so. In this paper, we present a multinomial probability space X as a general foundation for
multicategory discrete data, where categories refer to variants/alleles of biosequences. The external information
that is infused in order to generate a sample of such data is quantified as a distance on X between the prior
distribution of data and the empirical distribution of the sample. A number of distances on X are treated. All of
them have an information theoretic interpretation, reflecting the information that the sampling mechanism
provides about which variants that have a selective advantage and therefore appear more frequently compared to
prior expectations. This includes distances on X based on mutual information, conditional mutual information,
active information, and functional information. The functional information distance is singled out as particularly
useful. It is simple and has intuitive interpretations in terms of 1) a rejection sampling mechanism, where
functional entities are retained, whereas non-functional categories are censored, and 2) evolutionary waiting
times. The functional information is also a quasi-metric on X , with information being measured in an asym-
metric, mountainous landscape. This quasi-metric property is also retained for a robustified version of the
functional information distance that allows for mutations in the sampling mechanism. The functional informa-
tion quasi-metric has been applied with success on bioinformatics data sets, for proteins and sequence alignment
of protein families.

1. Introduction

Biology has changed profoundly in the last two decades, transition-
ing from a descriptive science into a dynamic landscape of design and
innovation driven by technological improvements. All life is based on
genetic sequences stored in DNA, and today a large amount of sequence
data is available in nucleotide and amino acid databases. An important
aspect of analyzing such nucleotide or protein sequence data is to find a
mathematical framework that makes it possible to extract information
from these large datasets. Indeed, information has become a central
concept of modern biology, and there is a common understanding that
the informational aspect of life is fundamental (Godfrey-Smith and
Sterelny, 2016; Walker and Davies, 2013; Griffiths, 2017). Claude
Shannon’s mathematical theory was a first important step towards
developing a quantitative understanding of biology (Shannon, 1948),
and his theory has been successfully applied to quantify and analyze
nucleotide and amino acid sequences (Schneider, 2006; Schneider and

Stephens, 1990). However, it is well known that Shannon’s theory is not
sufficient to describe the logic of biotic information in general (Thor-
valdsen et al., 2024), since it does not take into account that biotic in-
formation is relative to its context in terms of semantics, function and
codes within the living cell. This is to say that biotic information must be
treated as relative to its context (Logan, 2012).

In this paper we will apply the notion of relative information in the
context of a gene or protein family. In more detail, we develop a prob-
abilistic framework that makes it possible to quantify the amount of
external information that is required to generate a family of amino acids
of specific form. The same challenge is faced for other bioinformatics
datasets, whose components are different from amino acids. More spe-
cifically, we will quantify the amount of external information required
to generate a multicategory dataset, where categories typically corre-
spond to variants (or alleles) of biosequences. This external information
is defined as a distance between prior expectations of the biosequence
distribution, and the observed empirical distribution of the
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biosequences. In order to interpret such a distance, imagine a large pool
or reservoir of biosequences distributed according to the prior, and that
a small subset of sequences is sampled from this pool. The distance be-
tween the prior distribution of the reservoir and the distribution of the
sample then corresponds to the amount of information that the sampling
procedure that generated data mediates about the categories. The dis-
tance gets larger the more selection the sampling mechanism includes,
so that categories with a higher fitness will have higher empirical fre-
quencies compared to prior expectations. We consider distances based
on conditional mutual information, mutual information, active infor-
mation and functional information (FI). We argue that the latter func-
tional information distance is particularly appealing, since it has a
simple form, an intuitive interpretation in terms of FI (Szostak, 2003;
Hazen et al., 2007), it naturally corresponds to a rejection sampling
mechanism (Wells et al., 2004) that also incorporates mutations, and
under certain assumptions it relates to an evolutionary waiting time
(Durrett and Schmidt, 2008; Durrett et al., 2009; Behrens and Vingron,
2010; Sanford et al., 2015; Hössjer et al., 2021). The functional infor-
mation distance is also a quasi-metric (Wilson, 1931), which means that
it satisfies all properties of a regular metric except for symmetry. A
quasi-metric corresponds to path lengths of walks in an asymmetric
mountainous landscape, where the uphill distance between two points is
larger than the downhill distance between these points. For the FI dis-
tance in particular, an uphill walk typically corresponds to increasing
the frequencies of one or several categories, with low prior probabilities,
by large multiplicative factors, whereas for a downhill walk, none of the
categories have such a large multiplicative increase of its frequency.
Within a biological context this has a natural interpretation, that it is
more difficult to build up new structures within the living cell, than to
remove existing ones.

Our paper is organized as follows: In Section 2 we introduce multi-
nomial probability spaces with quasi-metrics for multicategory data.
Various measures of information are defined in Section 3, whereas the
sampling procedures that correspond to the abovementioned walks in a
mountainous landscape are described in Section 4. This is used in Sec-
tion 5 to define several distance measures between the prior and
empirical distributions of data. Some protein datasets are analyzed with
the FI quasi-metric in Section 6, and conclusions are presented in Section
7. Mathematical details are given in AppendicesA-E, and a summary of
the most important concepts and mathematical notation are provided in
Tables 1 and 2 respectively.

2. Multinomial probability spaces and quasi-metrics

2.1. Multinomial probability spaces

In probability theory a K-dimensional categorical distribution denotes
a discrete probability distribution that describes the possible results of a
categorical random variable X that can take on one of K possible cate-
gories, with the probability of each category separately specified. There
is no innate underlying ordering of these outcomes, but numerical labels
1,…,K are attached in describing the distribution, were p = (p1,…, pK)

are the probabilities that satisfy pk ≥ 0 and

∑K

k=1
pk =1.

We designate X the sample space of all such p, often referred to as
the standard (K − 1)-dimensional simplex.

The categorical distribution of X will be denoted Cat(p), and it is a
general distribution over a K-way event. Suppose Xsamp = (X1,…,XL) is a
sample of independent and identically distributed random variables
with marginal distribution Xl ∼ Cat(p). The total number of occurrences
of the K outcomes are represented by the components of the composition
vector N

(
Xsamp

)
= (N1, …,NK), with Nk =

∑L
l=11(Xl = k). This vector

has a multinomial Mult(L, p) distribution. Since p ∈ X can be seen as a

Table 1
Definitions and terminology.

Term Description

Allele, category or
type

A version of a particular biosequence, monomer or gene.

Base population or
reservoir

A large collection of copies of a biosequence, monomer or
gene.

Allele frequency The relative abundance, in a population, of a particular
allele

Allele frequency
vector

A vector with frequencies of all alleles.

Sampling procedure A description of how a subsample of biosequences is
collected from the base population.

Rejection sampling A sampling procedure where randomly chosen alleles are
retained (not censored) in proportion to their fitness.

Selection The alleles of the base population have different fitness, in
proportion to how easily they are sampled. This definition
of fitness does not involve the concept of generation or
reproduction.

Information The sampling procedure carries information about the
frequencies of the sampled alleles. This information is
positive if and only of the sampling procedure is not
selectively neutral.

Functional
information

For rejection sampling this is minus the base 2 logarithm (or
the self information) of the fraction of retained (functional)
biosequence copies.

Distance A distance is defined between the allele frequency vector of
the base population and the sample. The distance
corresponds to how much information the sampling
procedure carries about varying fitness of alleles.

Quasi-metric A non-symmetric distance measure that satisfies the
identity, point equality and triangle inequality.

Table 2
Mathematical notation.

Quantity Description

K Number of possible categories/variants/alleles.
X A randomly chosen allele (∈ {1,…,K}).
k Number of a particular allele (∈ {1,…,K}) and observed

value of X.
X Space of multinomial probability vectors.
R Large reservoir of alleles.
p = (p1,…,pK) Prior distribution of alleles (∈ X ) drawn from R.
L Size of base population.
Xsamp = (X1,…,XL) Base population (sample of size L drawn from R).
Υ Sampling space.
Y Random sample (∈ Υ) for rejection sampling. Either the

non-censored subsample Y = (Y1,…,YM) of Xsamp of size
1 ≤ M ≤ L, or a binary censoring indicator Y ∈ {0,1}.

y Observed value of Y.

qy =
(

q1y,…,qKy

)
Conditional distribution of alleles, given Y = y (qy ∈ X

and qky = P(X= k|Y= y) for k = 1,…,K).
q = (q1,…,qK) Approximation of qy for large populations.
ry =

(
r1y,…, rKy

)
Vector with probabilities of retaining alleles 1,…,K for
rejection sampling, given observed subsample Y = y of
non-censored observations.

r = (r1,…, rK) Approximation of ry for large populations.
N = (N1,…,NK) Composition vector, either for the base population (N =

N
(
Xsamp

)
) or the non-censored subsample (N = N(Y)).

d
(
p,qy

)
Distance between p and qy.

dFI

(
p,qy

)
Functional information distance between p and qy (= −

log2
(
p • ry

)
).

I(k) Self-information of outcome k of X.
H(X) Entropy of X.

CMI(X; y) = dCMI

(
p,qy

)
Conditional mutual information between X and observed
value y of Y.

MI(X,Y) = dMI(p,q) Mutual information between X and Y (= E[CMI(X;Y)]).

I+(X; y)= dKL

(
qy

⃦
⃦
⃦p
)

Expected active information between X and observed
value y of Y, or Kullback-Leibler distance between p and
qy.

ε Mutation probability.
Π Mutation probability matrix.
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multinomial probability vector, we also refer to X as a multinomial
probability space.

2.2. Genetics interpretation

In genetics, the categories of Section 2.1 represent K different vari-
ants (or alleles) of a portion of DNA (such as a genetic marker or a gene),
or the possible amino acids at a particular site of a family of aligned
protein sequences. In this context p is referred to as the vector of allele
frequencies. An important topic of population genetics is to study how p
changes forwards in time, prospectively, due to forces of selection,
mutations, genetic drift and migration. This includes, for instance, the
K-allele Wright-Fisher model and the K-allele Moran model (cf. Section
4.9 of Ewens, 2004, Section 8.1 of Durrett, 2008, and references
therein). In spite of the success of population genetics, selection and
fitness are theoretical constructs that are often difficult to interpret.
Fitness is often defined, in a given context, in terms of reproductive
schedules rather than biological functionality (Lewontin, 2003; Basener
et al., 2021).

In this article we will not study the allele frequency process pro-
spectively but instead have a retrospective approach. This makes it
possible to attain a somewhat more empirical and long-term definition
of fitness, which more easily opens up for interpretations in terms of
biological function. In more detail, we assume that the allele frequency
vector of a population, or large reservoir, has already been changed from
p to q by some process that is pictured as sampling from the reservoir.
This sampling procedure may implicitly involve the population genetic
trajectory and the fitness landscape (Wright, 1932) along the forwards in
time path from p to q (see Sections 4.3 and 7.3). Given that q has already
been observed, we will look back in time and ask ourselves the following
question: What information was infused into the sampling procedure in
order to change the allele frequencies from p to q and is it possible to
give this information a fitness interpretation? To answer this question,
we will first define a distance measure between p to q and later on give
this distance measure information theoretic and fitness interpretations.

2.3. Distances, quasi-metrics, and metrics

We will introduce a measure of distance d(p,q) between pairs of el-
ements p and q of the multinomial probability space X . A metric (dis-
tance) space suggests that given two points of the space there should be a
real number that measures the distance d between them. This is not
straightforward, and several options based on the underlying axioms
exist. The definition of a quasi-metric (or directed metric), (Wilson
1931; Stojmirovic 2005; Cobzas 2013; Khamsi 2015) and a metric are as
follows:

Let X be a set, which in this paper will be taken as the multinomial
probability space of dimension K − 1. A quasi-metric d on X is a map
d : X ×X →[0,∞) such that for all p,q, s ∈ X the following conditions
(i)-(iii) are satisfied:

(i) d(p,p) = 0; (Identity)
(ii) d(p,q) = d(q,p) = 0 ⇒p = q; (Point equality)
(iii) d(p, s) ≤ d(p,q) + d(q, s); (Triangle inequality)

If d satisfies (i)-(iii) and additionally

(iv) d(p,q) = d(q,p); (Symmetry)

we say that d is a metric on X , and X is a “standard” metric space.
Well known examples of metrics on X include the total variation
distance

d1(p,q)=
1
2
∑K

k=1
|qk − pk|,

the Hellinger distance

d2(p,q)=

(
1
2
∑K

k=1

( ̅̅̅̅̅
qk

√
−

̅̅̅̅̅
pk

√ )2
)1/2

,

and the maximum distance

d∞(p,q)=max1≤k≤K|qk − pk|.

Although these three distances have a simple form, they do not take
into account the way in which q is obtained form p through a sampling
procedure. They are also symmetric, and in our setting when the first
argument of d corresponds to a prior distribution and the second argu-
ment is the empirical distribution of data, this turns out to be a disad-
vantage. Avoiding the condition of symmetry allows us to distinguish
between the distance from p to q and that from q to p. This is intuitively
useful if d(p,q) is to measure the amount of effort to go from point p to
point q in a landscape of mountains and valleys, where it usually takes
more effort to go up than down. This involves asymmetric notions of
"cost" which arise naturally from the observation that it is harder to walk
uphill than downhill. In the same way it takes more effort to build up
information, than to dissolve it. This intuitive picture of quasi-metrics
d(p,q) is confirmed by general results (see for instance Stojmirovic,
2005) stating that a quasi-metrics can be represented as path distances
on weighted directed graphs. In this context, for a space X with a quasi-
metric d, the geodesic from p to q is the path from p to q that has the
shortest cumulative distance.

For these reasons, in this article we will search for distances d(p,q)
that a) are quasi-metrics, and b) have a natural interpretation in terms
obtaining q from p through a sampling procedure. Before defining such
distances in Section 5, we will first introduce measures of information
and sampling procedures in Sections 3 and 4 respectively.

3. Basic measures of information

Information theory is a vast subject, and we refer to Burgin (2010)
and Cover and Thomas (2006) for extensive overviews. In this section
we will define different ways of quantifying how much information the
sample Y ∈ Υ mediates about a category X ∼ Cat(p) from the base
population Xsamp. Loosely speaking the stronger the selection component
of the sampling mechanism is, the more information Y carries about X,
in the sense that the conditional distribution of X given Y departs more
from the prior distribution of X. It is assumed that the sampling mech-
anism belongs to some space Υ, the form of which will be specified in
Section 4.

3.1. Self-information and entropy

We will start by introducing some information measures for X, before
sampling takes place. What is commonly referred to as self-information in
information theory can be applied to the probabilities of the vector p.
This is a measure of information content or ‘surprisal’ of a particular
outcome k of X:

I (k)≝log2
1
pk

= − log2(pk).

This definition states that the surprisal of an outcome corresponds to the
amount of self-information carried by that outcome. In information
theory, the expected self-information

H(X) =H(p) = −
∑K

k=1

pk log2(pk)

of a random variable X ∼ Cat(p) is used to express the mutual infor-
mation of X with itself, and it equals the entropy of the random variable
(Shannon, 1948). This is the reason that entropy is sometimes referred to
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as expected self-information.

3.2. Conditional mutual information, mutual information, and Rokhlin
measures

We will refer to

CMI(X; y) = ΔH(X; y) = H(X) − H(X|y)

= −
∑K

k=1

pk log2(pk) +
∑K

k=1

qky log2

(
qky

) (1)

as the conditional mutual information between X ∼ Cat(p) and an
observed value y of the sampling mechanism Y ∈ Υ, see for instance
Thorvaldsen and Hössjer (2023) and references therein. This is the
reduction in uncertainty about X that the observation Y = y conveys,
and it involves the prior distribution pk = P(X= k) as well as the con-
ditional distribution qky = P(X= k|Y = y) of X given Y = y. The index y

of the sampling distribution qy =
(

q1y,…, qKy

)
indicates that this dis-

tribution depends of the actual outcome of the sample Y. However,
when the size of the sample Y gets large, it assumed that qy approaches
some limit q = (q1,…, qK) that only depends on the sampling mecha-
nism and not the outcome of the sample.

Mutual information MI(X,Y) = E[ΔH(X;Y)] was introduced by
Shannon (1948). In contrast to conditional mutual information, mutual
information refers to the expected reduction in the uncertainty of X that
Y mediates. It captures all dependencies between X and Y, and it mea-
sures how much the Shannon uncertainty for one of these two random
variables is expected to decrease when knowledge of another random
variable is taken into account. High mutual information indicates a large
reduction in uncertainty. In order to compute the mutual information
between X and Y we need to know pk, P(Y = y) and qky for all possible
outcomes k and y of X and Y. Given these quantities, the mutual infor-
mation can be found through

MI(X,Y) = H(X) − E[H(X|Y)]

= −
∑K

k=1

pk log2(pk) +
∑

y∈Υ
P(Y = y)

∑K

k=1

qky log2

(
qky

)
, (2)

or equivalently

MI(X,Y)=H(X) + H(Y) − H(X,Y), (3)

where H(Y) = −
∑

y∈Υ
P(Y = y)log2[P(Y = y)] is the entropy of Y and

H(X,Y) is the joint entropy of X and Y. It follows from equations (2) and
(3) that MI(X,Y) is also the expected value (with respect to the joint
variation of X and Y) of the so called pointwise mutual information

log2

[
P(X = k,Y = y)

P(X = k)P(Y = y)

]

= log2

[
qky

pk

]

,

introduced by Fano (1961).
Another notion of information, somewhat related to MI, is the

Rokhlin measure (Rokhlin 1967; Srivastava and Khare 1999).

R(X,Y)=H(X,Y) − 0.5[H(X) +H(Y)]. (4)

3.3. Active information

Active information, I+, was introduced by Dembski and Marks to
handle infusion of knowledge in random search algorithms (Dembski
and Marks 2009a, 2009b). It was later applied to population genetics by
Díaz-Pachón and Marks (2020), whereas Díaz-Pachón and Hössjer
(2022) used active information in order to model fine-tuning. In our

context, I+(k) = log2

(
qky /pk

)
is the active information associated with

a change of the frequency of outcome k from the prior probability pk to

the observed relative frequency qky. Note in particular that I+(k) equals
the pointwise mutual information.

Taking an average with respect to all possible outcomes of X, a
change in the frequency distribution from p to qy, corresponds to the
expected active information

I+(X; y) = E[I+(X)|Y = y] = E(p)
qy

− E(
qy)
qy

= − qy • log2 p+ qy • log2qy =
∑K

k=1
qky log2

qky

pk
,

(5)

where E(p)
qy

is the cross-entropy of p relative qy, log2 p = (log2 p1,…,

log2pK), • refers to the scalar product between two vectors of equal
length K and E(p)

p = H(p). Motivated by continuity, we define 0•log 0 =

0 for all terms in (5) such that qky = 0.

4. Rejection sampling and some new measures of information

4.1. Rejection sampling mechanisms

We will consider a subsample Y = (Y1,…,YM) of Xsamp = (X1,…,XL)
of size M = M(Y) ≤ L that belongs to a sample space

Υ=
⋃L

M=1
{1,…,K}M

.

The total number of occurrences of the K outcomes are represented
by the components of the composition vector N(Y) = (N1,…,NK), with
Nk =

∑M
m=11(Ym = k). Let y refer to the observed value of the sampling

scheme Y, whereas qy ∈ X is the corresponding observed value of N/M.

The elements of the vector qy =
(

q1y,…, qKy

)
are the relative frequency

counts for the K different categories, with an interpretation qky = P(X =

k|Y = y), where X is a randomly chosen member of the subsample Y. As
mentioned in Section 3, when the size M of the sample gets large, it is
assumed that qy approaches a limit q = (q1,…,qK).

One way of obtaining the subsample Y = (Y1,…,YM) from Xsamp =

(X1, …, XL) is through rejection sampling (Wells et al., 2004), with
proposal distribution p and a target distribution q. It is hypothetically
assumed that Xsamp is obtained through sampling L times from a very
large reservoir R, whose elements have one of K categories, with a dis-
tribution p. The subsample Y = Ync consists of M ≤ L non-censored ob-
servations. It is obtained through a rejection or censoring mechanism,
with

rk =
qk/pk

max(q1/p1,…, qK/pK)
(6)

the probability of retaining (not censoring) each sampled copy Xl of R
that equals k. The larger rk is the larger is the selective advantage of
category k in the sampling process by which Y is drawn. Equation (6)
implies that each non-censored copy is distributed as

P(Xl= k|Xl non − censored)=
pkrk

∑K
l=1plrl

= qk,

when the randomness of the base population Xsamp is accounted for.
From this it follows that

qy ∈ Mult(M,q)
/

M (7)

is the empirical distribution of categories from the observed sample y
with marginal frequencies qky = P(X= k|Y = y), where X is a randomly
chosen copy from the non-censored subsample. Analogously,

S. Thorvaldsen and O. Hössjer
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rky =
qky

/
pk

max
(

q1y

/
p1,…, qKy

/
pK

) (8)

can be seen as the fraction of sampled copies from Rwith outcome k that
are retained (not censored). Note in particular that M = L and qy ∈

Mult(L, p)/L ≈ p if none-of the sampled copies are rejected, so that rk =

1 and rky ≈ 1 when L is large, for k = 1,…,K.
Regarding the fraction p • ry of retained copies as functional, this

gives rise to the functional information

FI = − log2
(
p • ry

)
, (9)

see Szostak (2003), Hazen et al. (2007), and Thorvaldsen and Hössjer
(2023) for more details. The rejection sampling mechanism (6)–(7) will
be extended in Section 5.3.2 to not only include selection through
censoring, but also mutations.

4.2. Sampling in terms of censoring indicators

Consider the rejection sampling mechanism of Section 4.1, and as-
sume that a very large number L of copies Xsamp = (X1,…,XL) are drawn
from the reservoir R, with subsamples Ync and Yc of non-censored and
censored copies of lengths Mnc ≈ Lr and Mc = L − Mnc ≈ L(1 − r)
respectively, where r =

∑K
k=1rkpk is the probability that a randomly

chosen element drawn from R is retained. Suppose we want the sam-
pling mechanism to account for whether a copy drawn from the reser-
voir R was censored or not. This can be modelled as a binary censoring
variable Y ∈ Υ = {0,1}, where Y = 0 and Y = 1 correspond to a
censored or non-censored copy X of the base population Xsamp respec-
tively. From this it follows that P(Y = 0) = P(X ∈ Yc) = 1 − r and P(Y =

1) = P(X ∈ Ync) = r. Since L, and hence also M = Mnc, is large, if fol-
lows from (7) that the composition vectors of the non-censored and
censored samples satisfy

N(Ync)≈ L(r1p1,…, rKpK)= Lr(q1,…, qK)

and

N(Yc)≈ L((1 − r1)p1,…, (1 − rK)pK)= L(1 − r)(q10,…, qK0).

In particular, a randomly chosen member X of the non-censored and
censored subsamples are distributed as P(X= k|Ync) = qk1 = qk and
P(X= k|Yc) = qk0 = pk(1 − rk) /(1 − r) respectively. The more the vec-

tors q1 =
(

q11,…, qK1

)
= q and q0 =

(
q10,…, qK0

)
differ, the more se-

lection the sampling mechanism includes.

4.3. Evolutionary trajectory sampling

Consider a population that evolves of time, with L(t) the number of
individuals at time t ≥ 0, with L = L(0). Let Xl(t) ∈ {1,…,K} refer to the
category of individual l at time t. The population Xsamp = {X1(0),…,

XL(0)} at time 0 is drawn from a large reservoir R of individuals with
distribution p, whereas the future dynamics of the population is deter-
mined by selection. The population is sampled at some (possibly
random) time point T. The size of the sampled population is M = L(T),
the sample is Y = (Y1,…,YM) = (X1(T),…,XM(T)), and the sample space
Υ is the same as in Section 4.1.

Let Nt = (Nt1, …, NtK), with Ntk =
∑L(t)

l=11(Xl(t) = k), refer to the
composition vector at time t. Then pt = Nt /L(t) ∈ X is the genetic
composition of the population at time t, whereas qy = pT is the genetic
composition of the sample, taken at time T.

We will assume thatNt is a multitype death process. This is a Markov
model in continuous time, where individuals of type k die at rate λk ≥ 0,
independently of the other individuals. Consequently, Ntk decreases by
1 at rate λkNtk. Since λk depends on k, this makes it possible to include

selection, since the smaller λk is, the higher is the fitness of type k
individuals.

The Markov process algorithm can be viewed as a special case of the
rejection sampling algorithm of Section 4.1. Indeed, the probability of
retaining an individual of type k at time T is

rk =

∫ ∞

0
e− λkt f(t)dt, (10)

where f is the density function of T. In order for (4) to conform with the
requirement max(r1,…, rK) = 1 imposed by (6), we will assume that
λmin = min(λ1,…, λK) = 0.

5. Main results: information based distances

In this section we regard p = (p1,…, pK) ∈ X as a multinomial
probability vector that corresponds to a prior assumption on the distri-

bution of data X ∈ Cat(p) with K categories, whereas qy =
(

q1y,…,

qKy

)
∈ X summarizes the conditional distribution qky = P(X= k|y) of X

given data y. We will make use of the measures of information of Section
3 and the sampling mechanisms of Section 4 in order to introduce a

number of distance measures d
(
p,qy

)
that quantify how much data

change the prior assumptions on the distribution of X. In particular, we
will investigate which of these distance measures that qualify as quasi-
metrics, as defined in Section 2.3.

5.1. The conditional mutual information approach

A conditional version of the commonly used mutual information from
information theory may be applied to multinomial probability space X .
It follows from (1) that the conditional mutual information corresponds
to a distance

dCMI

(
p,qy

)
=ΔH(X; y)=H(X) − H(X|Y = y)= − p • log2 p+ qy • log2qy

between p and qy. Despite of its useful information theoretic interpre-
tation, this distance is skew-symmetric and since it takes on negative
values it does not qualify as a quasi-metric.

5.2. The active information approach

The expected active information was introduced in (5). It is equiv-
alent to the Kullback–Leibler divergence

dKL

(
qy

⃦
⃦
⃦p
)
=E[I+(X)|Y = y] = − qy • log2 p+ qy • log2qy

between p to qy (Kullback and Leibler 1951). Although some terms of the
expression for the expected active information are negative when
p ∕= qy, the sum is always non-negative and quantifies a directed ‘dis-
tance’, or relative information, between two probability distributions
over the same sample space, with dKL = 0 being the most similar (the
probability vectors p and qy are identical). This can be phrased as

dKL

(
qy

⃦
⃦
⃦p
)
≥ 0, with dKL

(
qy

⃦
⃦
⃦p
)
= 0 if and only if p = qy, so that dKL

satisfies the range, identity and point equality properties of Section 2.3.
The distance dKL is also asymmetric, and it has many useful properties,
with applications in statistics and data mining. However, the Kull-
back–Leibler divergence does not satisfy the triangle inequality (iii) of
Section 2.3 (Cover and Thomas, 2006). Thus dKL does not qualify as a
quasi-metric of a probability space.
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5.3. The Functional information approach

5.3.1. Functional information without mutations
The third model is Functional information. Recalling the censoring

mechanism of Section 4.1, it gives rise to the measure

dFI

(
p,qy

)
= − log2

(
p • ry

)
= log2 max

(
q1y

p1
,…,

qKy

pK

)

− log2

∑K

k=1
qky =max log2

(
q1y

p1
,…,

qKy

pK

)

(11)

of information (Thorvaldsen and Hössjer 2023), where ry =
(
r1y,…, rKy

)

is a vector containing the non-censoring fractions (8) for all outcomes
k = 1,…,K, given an observed value y of the censoring mechanism. Note

that dFI

(
p,qy

)
differs from the Kullback-Leibler divergence dKL

(
qy

⃦
⃦
⃦p
)

in that a weighted summation of all log2

(
qyk /pk

)
for k = 1,…,K, with

weights qky, is replaced by a maximum operation.
An expression analogous to (11) also appears in the definition of

functional information, as introduced by Jack Szostak, in an important
bioinformatical paper in Nature (Szostak, 2003; Hazen et al., 2007).
Szostak and his colleagues specified functional information in terms of a
gene string as − log2 of the tiny fraction of functional sequences that
have fitness values (activity of a biopolymer) greater than a specified
value (Hazen et al., 2007). This is the probability that a random
sequence will encode if the non-censored sequences are defined as
functional, whereas the censored sequences are non-functional. With
this interpretation of dFI, it follows that p • ry is the probability that a
randomly drawn copy of the reservoir is functional. The following result
states that dFI is a quasi-metric, and its proof can be found in Appendix A.

Proposition 1. Let X be a multinomial probability space, and let p,q∊X .

If all entries of p are positive (pk > 0) the distance dFI(p,q) as defined above
is finite, and it satisfies the properties of a quasi-metric metric. The geodesic
from p to q is the directed curve

l(p,q)= {exp[log(p)+ u(log (q) − log (p))];0≤ u≤1},

with u ranging from 0 to 1.
Note that l(p,q) is not a straight line. And in spite of the fact that dFI is

not symmetric, the geodesic l(q, p) has the same graph as l(p,q),
although it is traversed in the opposite direction, from q to p. As
mentioned in Section 2.3, in the mathematical literature asymmetric
quasi-metric spaces are often described as “mountainous” spaces, since
the effort of going upward to the top of a mountain is not the same as
descending downhill to the starting point. Although the path from p to q
is the same as the path from q to p, for dFI, the effort of passing through
the path is not the same in both directions. The quasi-metric dFI has the
additional advantage of quantifying the functional information specified
by Szostak, where the asymmetric metric may be interpreted as a greater
cost of building up functional information, than dissolving it.

In order to motivate the mountain climbing interpretation of dFI, it
follows from (11) that dFI(p,q) = log2

(
qk1 /pk1

)
and dFI(q, p) = log2

(
pk2 /

qk2

)
, where k1 and k2 are the categories that maximize qk/ pk and pk/ qk

respectively. It usually costs more to increase the frequency of a category
than to decrease it. Indeed, given the sampling mechanism of Section
4.1, a decrease in frequency of a category only requires censoring of this
category, whereas an increase in frequency requires that a number of
other categories are censored. Since dFI(p,q) > dFI(q, p) means that
going from p to q requires a higher, maximal frequency increase than
going from q to p, we may therefore associate a higher cost (or more
mountain climbing) to the former change of frequencies than to the
latter.

5.3.2. Functional information with mutations
A drawback of the functional information distance (11) is that

dFI(p,q) = ∞ when pk = 0 and qk > 0 for at least one category k. It is not
possible in this case to obtain q from p through rejection sampling alone,
since category k will always be absent after censoring some of the ele-
ments of the reservoir R, when no copies of k are available in R to start
with. It is possible though to define a version of the FI distance such that
a fraction 0 ≤ ε < 1 of the difference between p and q is due to muta-
tions, whereas the remaining differences between p and q are explained
in terms of rejection sampling. If the distribution of each mutated copy is
q, it follows that the category distribution of the reservoir changes from
p to qε = (1 − ε)p+ εq due to mutations. Hence, the functional infor-
mation distance required to change the mutated reservoir into q is

dε
FI(p,q)= dFI(qε,q), (12)

with d0
FI = dFI corresponding to the original definition (11) of the FI-

distance. Whenever ε > 0, dε
FI(p,q) is always well defined, with a

range [0, − log2(ε)) when p and q vary independently in X . The
following result states that dε

FI is a quasi-metric, and it is proved in
Appendix B:

Proposition 2. Let X be a multinomial probability space, and assume
0 < ε < 1. The distance dε

FI(p,q) in (12) is always well defined when p,q∊X
vary independently, with a range [0, − log2(ε)). Moreover, dε

FI is a quasi-
metric on X , and the geodesic l(p,q) between p and q is the same as in
Proposition 1.

We want to apply the functional information distance dε
FI(p,qY) to

investigate how much the observed composition qY of categories differs
from the prior p. Recall from (7) that qY is a multinomial fraction, based
on a sample of size M, that is an estimate of the probability vector q. We
may therefore view dε

FI(p,qY) as an estimate of dε
FI(p,q). When M is of the

same order as the number of categories K, it is important to adjust for
potential bias of this estimate. It is proved in Appendix C that

E
[
dε

FI(p,qY)
]
= dε

FI(p,q)+Cε(p,q)
/ ̅̅̅̅̅

M
√

+ o
(
1
/ ̅̅̅̅̅

M
√ )

(13)

as M→∞, with expectation taken with respect to multinomial variations
(7) of qY, and with Cε(p,q) ≥ 0 a constant defined in Appendix C.
Equation (13) suggests that a bias adjusted estimate

d̂
ε
FI(p,q)= dε

FI(p,qY) − Cε(p,qY)
/ ̅̅̅̅̅

M
√

(14)

of dε
FI(p,q) might work well. However, (14) is not very useful, due to the

fact that Cε(p,q) is a discontinuous function of q, with Cε(p,q) = 0 for
most values of q (more precisely, Cε(p,q) = 0 for all q such that the
maximum of qk/pk is attained for a unique category k). For this reason,
the bias correction term of (13) will be 0 with a very high probability.
Instead of (14) we therefore suggest using parametric bootstrap (Efron
and Tibshirani, 1994) in order to defined a bias corrected estimate

d̂
ε
FI(p,q)= dε

FI(p,qY) −
[
E
(
dε

FI
(
p,q*

Y
))

− dε
FI(p,qY)

]
, (15)

of dε
FI(p,q). The expectation in (15) is taken with respect to variations of

q*
Y ∼ Mult(M,qY)/M when qY is kept fixed, and it is computed with

Monte Carlo simulations.

5.4. Mutual information and Rokhlin measures

Assume that q is generated from p by means of censoring indicator
sampling, as described in Section 4.2. Recall that Y ∈ {0,1} can be seen
as a binary variable that determines whether an observation is censored
or not. After some computations it follows that the mutual information
distance (2)–(3) of Section 3.2 satisfies
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dMI(p,q) = E[dCMI(p,qY) ] = H(X) + H(Y) − H(X,Y)

=
∑K

k=1
pk[rk log2(rk) + (1 − rk)log2(1 − rk) ]

− r log2(r) − (1 − r)log2(1 − r),

(16)

where rk is the probability (6) of retaining category k, whereas r =
∑K

k=1rkpk is the probability of retaining a randomly chosen category. We
interpret (16) as the expected information that the censoring mechanism
provides about the frequency distribution of categories.

In Appendix D we prove the following result.

Proposition 3. Let X be a multinomial probability space. The distance
dMI(p,q) in (16) is always well defined when p,q∊X vary independently.
Moreover, dMI satisfies the identity and point equality properties (i) and (ii) of
Section 2.3, and also the triangle inequality (iii), for triples p,q, s such that
qk/pk and sk/qk are maximized for the same category k ∈ {1,…,K}.

We conjecture that the triangle inequality of dMI holds more gener-
ally, although we have not been able to prove that dMI is a quasi-metric.
In spite of several good properties of dMI we regard the mutual infor-
mation distance as somewhat less relevant than the functional infor-
mation distance dFI. The reason is that dMI includes the censored as well
as the non-censored samples q0 and q1, whereas dFI only involves the
more relevant non-censored sample q1.

Another quantity is the Rokhlin measure. From equation (4) it fol-
lows that

dR(p,q) = H(X,Y) − 0.5[H(Y) + H(X) ]

= 0.5[r log2(r) + (1 − r)log2(1 − r) ] −
∑K

k=1
pk[0.5 log2(pk)

+ rk log2(rk) + (1 − rk)log2 (1 − rk) ]. (17)

Although this measure is non-negative, it is not appropriate to use it
in our context, since dR(p, p) = 0.5 H(X) ∕= 0 and thus the identity and
point inequality properties (i)-(ii) are violated.

5.5. Distances based on evolutionary waiting times

Consider the Markov model of Section 4.3, where each individual of
type k dies at rate λk. Let L = L(0) be the size of the sample drawn from
the reservoir at time 0, and let

TL,δ(p,q)=min{t; d∞(pt ,q)≤ δ} (18)

be the waiting time until the supremum norm between the genetic
composition pt = (pt1,…, ptK) and the targeted probability vector q is at
most δ, where δ ≥ 0 is a small number. For a general theory of evolu-
tionary waiting times, cf. Durrett and Schmidt (2008), Hössjer et al.
(2021) and references therein. Note in particular that TL,δ(p,q) ∈ [0,∞]

is a random quantity, with TL,δ(p,q) = ∞ whenever the set in (18) is
empty. However, it is possible to impose conditions on the rates λk such
that the waiting time is deterministic and finite in the limit of large L and
small δ. Indeed, it is shown in Appendix E that

lim
δ→0

lim
L→∞

TL,δ(p,q) = dFI(p,q) (19)

for a specific choice of λ1, …, λK, with a weighted average equal to
1/log2(e). This implies that the functional information distance (11) can
be interpreted as an evolutionary waiting time for a large population
that starts with a genetic decomposition close to p and then looses in-
dividuals according to a Markov death process, with death rates λk that
are larger for categories k with smaller values of qk/pk.

6. Some bioinformatical applications

6.1. Functional information distance

Of all the information-based distances of Section 5 we regard the
functional information distance dFI as particularly promising, since it is
simple to define, has an intuitive interpretation in terms of functional
information, and additionally is a quasi-metric. In this section we will
apply dFI to some bioinformatics datasets.

We consider a vector-valued random variable qy = q = (q1,…, q20)

of amino acid probabilities, whose entries correspond to the frequencies
by which each of the 20 conventional amino acids in the protein al-
phabet occur (for simplicity of notation the index of qy is omitted). Let
X be the multinomial sample space, and as mentioned in Propositions 1
and 2 of Section 5.3 the pair (X , dFI) is a quasi-metric probability space
for the amino acid composition of proteins. The elements q of X are
patterns corresponding to the composition of specific proteins, protein
domains or families.

In a recent paper Thorvaldsen and Hössjer (2023) demonstrated how
an underlying probability distribution of X may be obtained. A refer-
ence distribution p = (p1,…, p20) on the set of amino acids was derived
directly from the genetic code, where each amino acid k is assigned a
prior probability pk proportionally to its constituting number nk of co-
dons (between 1 and 6), with a corresponding self-information
I(k) = − log2(nk /61) between 5.93 and 3.35 bits. This distribution as-
signs the same probability to each of the 61 codons of the genetic code
(=43-3, since 3 of the triplet codons of the genetic code are stop codons).
It corresponds to a non-informative prior distribution on the set of codons
and hence is a natural starting point, from ‘first principles’ thinking (cf.
Aristotle). A uniform distribution on the set of non-stop codons can also
be motivated from the Principle of Insufficient Reason (Bernoulli, 2024),
to model maximal ignorance about, or maximum entropy for, the codon
distribution before any data has been analyzed (Jaynes, 2003). More
explicitly we have

p=(p1,…, p20)

= (4c,6c,2c,2c,2c,2c,2c,4c,2c,3c,6c, 2c, c, 2c,4c,6c,4c, c,2c,4c),
(20)

with a constant c = 1/61, assuming that the 20 amino acids are listed in
standard order: A R N D C Q E G H I L K M F P S T W Y V. We regard p as a
prior distribution of a baseline and q as the distribution of amino acid

Table 3
The table shows distance dFI(p, q) of some protein sequences downloaded from
the Uniprot database. Column 2 refers to the length M of each protein sequence,
which is viewed as a sample with amino acid distribution q = qy. The prior
distribution p of (20) is the same for all proteins. The distance dFI(q, p) is added
in column 4.

Protein Length M
(amino acids)

dFI(p,q) dFI(q,p)

P01308. Insulin HUMAN 110 1.149 1.436
P95469. RecA PARACOCCUS D. 356 1.262 2.545
P00811. Beta-lactamase ECOLI 377 1.071 2.628
Q5T9A4. ATD3B HUMAN 648 1.372 1.087
P05067. A4 HUMAN 770 1.866 1.114
Uniform distribution (qk = p̃k =1/20) - 1.609 0.976

Note that dFI(p, q) < dFI(q, p) for a majority of the protein sequences in Table 3,
reflecting that every sequence has some very rare amino acids (qk small). On the
other hand, dFI(p, q) > dFI(q, p) when q = (1 /20,…,1 /20) has a uniform dis-
tribution. In this case dFI(p,q) corresponds to an effort of increasing the fre-
quency of the priori rarest amino acids M and W from 1/61 to 1/20, whereas
dFI(q, p) corresponds to a smaller effort of increasing the frequency of (the
apriori most abundant amino acids) R, L, and S, from 1/20 in q, to their apriori
frequency 6/61 in p.
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frequencies at which the protein sequence is sampled. Table 3 shows the
distance dFI(p,q) for some typical protein sequences downloaded from
Uniprot database. The distance to a uniform distribution p̃x = 1/ 20 is
also added (c.f. Durston and Chiu 2007).

An orthologue protein family is commonly represented by the align-
ment of its sequences. The vector q may then represent the amino acid
composition at a single column or site (i.e., vertical) along the multiple
sequence alignment of the protein family, i.e., a matrix representation
with M proteins as rows and a total of Lproteins (the length of the proteins)
sites as columns. Such large multiple sequence alignments can be
downloaded from the databases Cath and Pfam. Assuming independence
between the sites, the functional information will be additive over sites,
and an information profile of a protein family may be derived (Thor-
valdsen and Hössjer 2023), as shown in Fig. 1.

The asymmetry of the functional information distance is revealed by
the fact that dFI(q, p) = ∞ for a protein family like Fig. 1, for all sites
with some lacking amino acids (qk = 0). An additional illustration of the
asymmetry of dFI appears in Table 4, where the functional information
distance is computed, for some sequences pʹ, each one having two
compositional modifications of the distribution p in (20).

Note from Table 3 that dFI(p, pʹ) increases when pʹ has higher fre-
quencies of more rare amino acids like W, N and Y, compared to p. In
particular, note that dFI(p, pʹ) > dFI(pʹ, p) when pʹ, in comparison to p,
contains more of a rare amino acid and less of an abundant amino acid in
(20). On the other hand, dFI(p, pʹ) < dFI(pʹ, p) when pʹ contains more of
some abundant amino acid and less of some rare amino acid, compared
to p. When dFI(p, pʹ) > dFI(pʹ, p), advancing from p to pʹ demands a
higher, maximal frequency increase maxkṕk/pk than the maximal fre-
quency increase maxkpk/ṕk associated with descending from pʹ to p. We
may therefore connect a higher cost to the former change of frequencies
than to the latter.

In a recent paper (Thorvaldsen and Hössjer, 2023) we have
compared the results, estimated by the Functional information model
and the Conditional mutual information model, for nearly 50 protein
families downloaded from the Cath and the Pfam databases. The Cath
data are based on shared 3D structure and sequence similarity, and they
showed the strongest correlations.

The Functional information of a 3-dimensional categorical distribu-
tion may be visualized, and in Fig. 2 we present an illustrative example.
In the figure all instances of compositional data are represented as points
in the probability simplex, for the specific case p = (0.50, 0.242, 0.258),
located in the dark blue area. The information distance increases as
indicated by the color bar.1

6.2. Quantifying physiochemical properties of amino acids

The amino acids also have many different physicochemical proper-
ties (Gromiha et al. 1999), and the amino acid alphabet can be reduced
to data based on the physicochemical properties of each acid. All
property scales assign specific numerical values to each of the 20 amino
acids (e,g., its polarity, hydrophobicity or volume). This vector may be
normalized and directly transformed to a probability vector v where the
20 entries add up to 1.

Furthermore, it is straightforward to define a normalized scalar dot
product, σ, between two probability vectors v = (v1,…, v20) and p =

(p1,…, p20), that represent normalized physicochemical properties and
prior probabilities of all amino acids. This quantity σ is the scalar
product divided by the product of the Euclidean norms of the two vec-
tors:

σ(p, v)= v • p
‖v‖ • ‖p‖

This normalized scalar product of two probability vectors measures
their similarity, with σ =1 being most similar (the vectors are identical,
corresponding to a scenario where the property vk of an amino acid k is
proportional to its prior abundance pk), whereas σ =0 indicates that
none of the amino acids in one vector occurs in the other (orthogonality,
corresponding to a scenario where only the apriori absent amino acids,
pk = 0, can have nonzero values vk > 0 of the property of interest). The
similarity measure is related but not equivalent to the correlation co-
efficient between the sequences in v and p.

It can be seen that the similarity measure satisfies σ(ap, bv) = σ(p, v)
for any non-negative constants a > 0, b > 0. This implies that σ(p, v) is
not dependent on normalizing the physiochemical property vector v to a
probability vector. On the other hand, the Hellinger distance of Section
2.3 between v and p can be expressed in terms of the similarity measure
as

d2(p, v) =
(
1 − σ

( ̅̅̅
p

√
,
̅̅̅
v

√ ))1/2
,

with ̅̅̅p√
=
( ̅̅̅̅̅p1
√

,…,
̅̅̅̅̅̅̅p20

√ )
and

̅̅̅
v

√
=
( ̅̅̅̅̅v1
√

,…,
̅̅̅̅̅̅̅v20

√ )
, only when both

of v and p are probability vectors. The Hellinger distance can be seen as a
probabilistic analogue of Euclidean distance.

Since v and p refer to different quantities (a vector of normalized
values of a physiochemical property and a distribution respectively), it is
not possible to obtain one of these two vectors from the other by means
of a sampling procedure. For this reason, we use the symmetric measures
ρ and d2 to quantify similarity and distance respectively, between v and
p. By application of these vector space techniques, the physicochemical
properties that are most similar (closest) and most orthogonal (most
distant) to distribution (20) are quantified and listed in Table 5. One
may hypothesize that properties (like compressibility) with large simi-
larity scores σ are larger for more abundant amino acids in order for the
protein to fold well.

7. Concluding remarks

7.1. Quasi-metrics

The multinomial probability space, and the functional information
(FI) distance estimated by rejection sampling in the present paper con-
stitutes a quasi-metric space for multicategory data. It measures infor-
mation in a landscape of mountains, where it takes more effort to go up
than down. This corresponds with an intuitive understanding of infor-
mation in a meaningful way, where a larger effort, or more information,
is obtained when initially a large collection of categories is given, with a
composition according to prior expectations, and then a smaller fraction
of categories remains after censoring, with the empirically observed
composition of categories. The model has the advantage of quantifying
functional information specified by Szostak (2003). Together with an
underlying prior distribution derived from the genetic code, the new
model has been applied with success on real data from proteins and large
multiple sequence alignments.

7.2. Impact of mutations

The FI quasi-metric incorporates selection as the mechanism which
causes the allelic composition of sampled data to be different than prior
expectations, assuming that alleles with higher rejection probabilities
are less fit. However, in Section 5.3.2 we added, as a second mechanism
of the sampling procedure, a fraction ε of mutations in order to obtain a
more robust functional information distance dε

FI.
An important aspect in the definition (12) of dε

FI is the assumption
that all mutated categories are distributed as q. This corresponds to a
mutational distribution that for a given value of the mutation proba-
bility ε minimizes the functional information associated with trans-
forming p to q. An alternative approach would be to introduce a
mutational matrix Π = (πkl) of order K, with πkl the probability that the

1 This specific case p = (0.50, 0.242, 0.258) is based on a distribution from
Premier League football (home wins, draws, away wins).
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mutated version of category k is l. The corresponding functional infor-
mation distance would be

dε,Π
FI (p,q)= dFI((1 − ε)p+ εpΠ,q).

It can be shown however that the distance dε,Π
FI (p,q) does not satisfy

the triangle inequality and hence does not quality as a quasi metric. It
differs from (12) in replacing the target dependent mutational distri-
bution q with the target-independent mutational distribution pΠ. Ex-
amples of mutational matrices Π for the set of K = 61 non-stop codons
appear in Thorvaldsen (2016).

7.3. Impact of genetic drift

In this article we included two forces of genetic change, a sampling
mechanism with selection and mutations, in order to define a functional
information distance dFI(p,q) between a prior distribution p of cate-
gories or alleles and their observed empirical distribution q. In Sections
4.3 and 5.5 we added a dynamic perspective to the sampling mecha-
nism, with allelic distribution pt at time t ≥ 0, p = p0 the allelic distri-
bution at time 0 and q = pT the allelic distribution after some waiting

time T. Since strong selection (and no mutations) was assumed in Sec-
tion 5.5, pt was, in the limit of large populations, a deterministic func-
tion of t, and this made it possible to characterize dFI(p,q) as a non-
random waiting time.

A possible extension of our work is to include genetic drift and regard
pt as a stochastic process, such as the composition of a K-allelic Wright-
Fisher or Moran population whose size L(t) possibly varies with time t
(Crow and Kimura, 1970; Durrett, 2008). Note that the functional in-
formation distance dFI(p,pt), with p = p0, will also be a stochastic pro-
cess when genetic drift is accounted for. It is of interest then to study
how dFI(p, pt) evolves over time due to the forces of selection, mutations
and genetic drift. In particular, the impact of genetic drift will not vanish
in the diffusion limit of large populations if selection coefficients and
mutation probabilities are inversely proportional to population size. If
additionally, the mutational matrix Π between the K alleles is irreduc-
ible, it is known that under mild conditions pt converges weakly as t→∞

Fig. 1. The information profile shows how information values dFI(p, q) vary along the sites of a protein alignment, with M = 2295 proteins in the alignment. At each
site dFI(p, q) quantifies the distance between the proteins at this site. The site dependence of dFI(p, q) is due to the fact that the amino acids of the proteins at each
particular site is viewed as a sample y, with a site-dependent, observed amino acid distribution q = qy , whereas p in (20) is fixed. The peak at sites 21 and 22 is
dominated by amino acid M with prior probability pk = 1/61, in spite of the fact that M is not fully conserved at any of these two sites (qk < 1 and hence dFI(p,q) <
log2(61) = 5.93). A minor correction factor from Appendix B in Thorvaldsen and Hössjer (2023) is also included. Sites containing gaps are unfilled.

Table 4
The table illustrates asymmetries of dFI(p, pʹ) versus dFI(pʹ, p) based on various
choices of pʹ, each one having two compensating modifications of p in (20). Note
in particular that dFI(p, ṕ ) is larger than, equal to, or less than dFI(pʹ, p) for the
top, middle (rows 8-10), and bottom rows respectively.

p’ modifications (amino acids) dFI(p,pʹ) dFI(pʹ,p)

R: 6c →4c,W : 1c→ 3c 1.5850 0.5850
R: 6c →5c,W : 1c→ 2c 1 0.2630
A: 4 c →3c,W : 1c→ 2c 1 0.4150
I: 3 c →2c,W : 1c→ 2c 1 0.5850
A: 4 c →3c,N : 2c→ 3c 0.5850 0.4150
I : 3c→4c, R: 6 c → 5c 0.4150 0.2630
A: 4 c →5c,R : 6c→ 5c 0.3219 0.2630
Y : 2c→1c, W: 1 c → 2c 1 1
Y: 2 c →3c, I : 3c→ 2c 0.5850 0.5850
I: 3 c →4c,A : 4c→ 3c 0.4150 0.4150
A: 4 c →6c, I : 3c→ 1c 0.5850 1.5850
A: 4 c →5c,N : 2c→ 1c 0.3219 1
R: 6c →7c,D : 2c→ 1c 0.2224 1
A: 4 c →5c, I : 3c→ 2c 0.3219 0.5850
R: 6c →7c,A : 4c→ 3c 0.2224 0.4150

Fig. 2. An example that depicts compositional data and its representation in
the probability simplex for the case p = (0.50, 0.242, 0.258), cf. Theune (2023).
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to a limiting distribution Q on the (K − 1)-dimensional simplex X

(Wright, 1949; Shiga, 1981; Barbour et al., 2000). This implies that the
functional information distance dFI(p, pt) converges weakly to dFI(p,q)
as t→∞, where q is a random variable with distribution Q. It is of interest
then to study how the distribution of dFI(p,q) depends on p, genetic drift,
mutation probabilities and selection coefficients. If p is far away from
the region where Q puts most of its probability mass, we expect that a
large amount of functional information is needed in order to change the
allele frequency vector from p to the equilibrium distribution Q.

7.4. Symmetric similarity/distance measures and ordinary metrics

We did not use a quasi-metric approach for quantifying similarity/
distance between qualitatively different variables, such as between the
distribution p and physiochemical properties v of amino acids. The
reason is that quasi-metrics are closely related to paths in a landscape
with mountains and valleys, and there is no clearly defined path in such
a landscape, in terms of a sampling mechanism with selection and mu-
tations, from p to v. For this reason, we used more robust and symmetric
measures in order to quantify similarity/distance between vectors of
different origin.

7.5. Practical use of the FI quasi-metric

We believe that the FI quasi-metric can also be applied to other types
of biomolecules than proteins, in order to quantify how much the
composition of their building blocks (categories) differs from prior ex-
pectations. In this context, it is of interest to apply the functional in-
formation quasi-metric to structures having different types of building
blocks such as amino acids, carbohydrates, and lipids.

As mentioned in Section 2.2, we hypothesize that the FI quasi-metric
can be used to pinpoint, from empirical data, alleles with a selective
advantage, with higher frequencies compared to prior expectations. We

believe that this opens up for finding functional reasons for the fitness
gain of these alleles, when their role in the cell is understood at a mo-
lecular level.
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Appendix A. Quasi-metric properties of the Functional information distance

In order to verify Proposition 1, that the functional information distance dFI(p,q) in (11), between the multinomial vectors p = (p1,…, pK) and q =

(q1,…,qK), is a quasi-metric, we need to verify the requirements of a quasi-metric in Section 2.3. This includes showing that the range is nonnegative,
as well as establishing the three properties (i) identity, (ii) point equality, and (iii) triangle equality. We will also verify that the symmetry condition
(iv) fails, from which it follows that dFI is not a metric.

Range
We have that dFI(p,q)= [0, − log2(min(pk) )]⊂[0,∞) for any choice of q ∈ X , as long as min(pk) > 0.
Identity
Since r = 1 when p = q, dFI(p, p) = − log2 (p • 1) = − log2

(
∑K

k=1pk

)

= − log2 (1) = 0 follows.
Triangle inequality
Recall from equation (11) that

Table 5
The table shows the similarity σ(p, v) and the Hellinger distance d2(p, v) between p in (20) and some of the physico-
chemical properties v of the amino acids. The properties with the highest (lowest) detected similarity (Hellinger distance)
scores are shown in the upper part of the table, whereas the corresponding lowest (highest) scores are presented in the
lower part.

Property Similarity Hellinger distance

Unfolding entropy change (Oobatake and Ooi, 1993) 0.893 0.219
Compressibility (Iqbal and Verrall, 1988) 0.885 0.222
Unfolding entropy changes of chain (Oobatake and Ooi, 1993) 0.881 0.225
Isoelectric point (Zimmerman et al., 1968) 0.855 0.241
Average flexibility indices (Bhaskaran and Ponnuswamy, 1988) 0.851 0.248
Equilibrium constant (Zimmerman et al., 1968) 0.850 0.255
Self-information ( − log2(p)) 0.508 0.492
Metabolic costs (Akashi and Gojobori, 2002) 0.484 0.500
Polarity (Zimmerman et al., 1968) 0.439 0.613
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dFI(p,q)= − log2(p • r)= log2 max
(

q1

p1
,…,

qK

pK

)

− log2

∑K

k=1
qk =max log2

(
q1

p1
,…,

qK

pK

)

,

where the second equality follows from the definition of r = (r1,…, rK) in (6), whereas in the third equality we make use of
∑

k
qk = 1. Now assume that

the output of the first sampling mechanism, that generated q, is the input of a second sampling mechanism that generates a new s. That is, the observed
amino acid distribution s = (sk) is obtained from a pool of amino acids with distribution q, corresponding to a distance dFI(q,s). On the other hand, a
combined sampling procedure, with a pool of amino acids with frequencies p, and observed frequencies s, corresponds with dFI(p, s). In order to
demonstrate the triangle inequality for dFI we have to prove

dFI(p, s)≤ dFI(p,q) + dFI(q, s).

But this follows by taking the base 2 logarithm of the inequality

max
(

s1

p1
,…,

sK

pK

)

≤max
(

q1

p1
,…,

qK

pK

)

× max
(

s1

q1
,…,

sK

qK

)

.

Hence, this measure of functional information satisfies the triangle inequality since all components pk and qk of p and q are non-negative.
Point equality.
Suppose by contraposition that p ∕= q. Since

∑K
k=1pk =

∑K
k=1qk = 1, it follows that at least one of the elements of r, say rk, is strictly less than 1.

Since also pk > 0 by assumption, it follows that p • r ≤ p • 1 − pk(1 − rk) < 1. Consequently dFI(p,q) = − log2(p • r) > 0.
Symmetry.
It is easily seen that the measure of functional information is not symmetric and thus does not qualify as a regular metric. As simple example with

K = 2 is p = (1 /3,2 /3) and q = (1 /2,1 /2). It can be shown that dFI(p,q) = − log2(2 /3) = 0.585 whereas dFI(q,p) = − log2(3 /4) = 0.415.
We end this appendix by motivating why l(p,q), defined in Proposition 1, is a geodesic from p to q. It can be seen that the triangle inequality holds

with equality, for any three points along l(p,q). From this it follows that the length L[l(p,q)] of l(p,q), in the sense of differential geometry, is d(p,q),
whereas the length L[γ] of any other path γ between p and q exceeds d(p,q). Since l(p,q) is the path γ from p to q that minimizes L[γ], it is a geodesic from
p to q.

Appendix B. Quasi-metric properties of the Functional information distance with mutations

In order to verify Proposition 2, we start by rewriting the functional information distance with mutations as

dε
FI(p,q)= log2 maxk

qk

(1 − ε)pk + εqk
= log2

maxk(qk/pk)

1 + ε[maxk(qk/pk) − 1]
= f(dFI(p,q)),

where the function f : [0,∞)→[0, − log2(ε)) is defined through

f(d)= log2 g
(
2d),

with g : [1,∞)→
[
1, ε− 1) is the strictly increasing function

g(z)=
z

1 + ε(z − 1)
.

After some computations it can be seen that the first two derivatives of f satisfy

fʹ(d)=
2dgʹ( 2d

)

g
(
2d
) =

1 − ε
1 + ε

(
2d − 1

)

and

f ʹ́ (d)= − log(2) •
2dε(1 − ε)

[
1 + ε

(
2d − 1

)]2 < 0

respectively. From this it follows that f is a strictly increasing and strictly concave function on [0,∞) with f(0) = 0, fʹ(0) = 1 − ε and f(∞) =

limd→∞f(d) = − log2(ε).
It follows from (12) and the fact that dFI(p,q) can be made arbitrarily large as p and q vary independently in X , that the range of dε

FI(p,q) is f(∞) =

− log2(ε). Identity (i) and point equality (ii) of dε
FI follow from the identity and point equality properties of dFI, and the fact that f(0) = 0 and f(d) > 0

for d > 0 respectively. Finally, the triangle inequality (iii) of dε
FI follows from

dε
FI(p, s)= f(dFI(p, s))≤ f(dFI(p,q)+ dFI(q, s))≤ f(dFI(p,q))+ f(dFI(q, s))= dε

FI(p,q) + dε
FI(q, s),

where in the first and fourth steps we invoked the definition (12) of dε
FI, in the second step we made use of the triangle inequality of dFI, and in the third

step we used that f is a strictly concave function on [0,∞) with f(0) = 0.
In order to prove that l(p,q), defined in Proposition 1, is a geodesic from p to q under dε

FI, we let Lε[γ] refer to the length of a path γ from p to q under
dε

FI, whereas L[γ] is the length of such a path under dFI. Since
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Lε[γ] = fʹ(0)L[γ] = (1 − ε)L[γ],

it follows that Lε[γ]must be minimized by the same path from p to q as L[γ]. We already know from the proof of Proposition 1 that l(p,q) is the path from
p to q that minimizes L[γ]. Hence, l(p,q) must also be the path from p to q that minimizes Lε[γ]. By definition, l(p,q) must therefore be the geodesic
between p to q under dε

FI.

Appendix C. Bias of Functional information distance with mutations for small samples

In this appendix we will verify (13), the bias formula for the functional information distance dε
FI of equation (12). This will be done in two steps,

where firstly we prove the bias formula

E[dFI(p,qY)] = dFI(p,q)+C0(p,q)
/ ̅̅̅̅̅

M
√

+ o
(
1
/ ̅̅̅̅̅

M
√ )

(21)

for the functional information distance (11) without mutations, as the sample size M→∞. This corresponds to the special case ε = 0 of (13). The
general case (13) with mutations (0< ε < 1) will then be derived as a corollary of (21).

In order to prove (21), it is convenient to first rewrite the ratios between the coordinates of qY and p as

qkY

pk
=

qk

pk
+

δk
̅̅̅̅̅
M

√ . (22)

Due to the Central Limit Theorem and the covariance matrix of the multinomial distribution, for large M, the vector δ = (δ1,…, δK) approximately
has a multivariate normal distribution with expected value 0 = (0,…,0) and a covariance matrix Σ = (Σkl) whose diagonal elements are given by
Σkk = qk(1 − qk)/p2

k , whereas the off-diagonal elements are Σkl = − qkql/(pkpl). Because of the form of the covariance matrix Σ, it is possible to rewrite
the coordinates of δ as

δk ≈

̅̅̅̅̅qk
√ Zk

pk
−

qk
∑K

l=1
̅̅̅̅ql

√ Zl

pk
,

where Z1,…,ZK are independent and identically distributed random variables with a standard normal distribution N(0, 1). When M is large, it follows
from (22) and a Taylor expansion of dFI(p,qY) around dFI(p,q) that

dFI(p,qY)≈ dFI(p,q) +
1

log(2)•2dFI(p,q)
•

1̅̅
̅̅̅

M
√ • max

k∈J
δk, (23)

where

J=
{

k;
qk

pk
= max

1≤l≤K

ql

pl
=2dFI (p,q)

}

is the set of indexes k that maximize the ratios between the components of q and p. Using the fact that qk/pk = 2dFI(p,q) for all k ∈ J, we find that

max
k∈J

δk =max
k∈J

̅̅̅̅̅qk
√ Zk

pk
− 2dFI (p,q)

∑K

l=1

̅̅̅̅
ql

√
Zl. (24)

Taking expectation in (23), and using (24), it follows that (21) holds with

C0(p,q)=
E
[
maxk∈J

( ̅̅̅̅̅qk
√ Zk

/
pk
)]

log (2) • 2dFI (p,q)
=
−
∫ 0
− ∞ F(t)dt +

∫∞
0 [1 − F(t)]dt

log (2) • 2dFI(p,q)
, (25)

and

F(t)=
∏

k∈J
Φ
(
pkt
/ ̅̅̅̅̅

qk
√ )

the distribution function of maxk∈J
( ̅̅̅̅̅qk
√ Zk /pk

)
, whereas Φ is the distribution function of a standard normal N(0, 1) random variable. In particular, it

follows from (25) that C0(p,q) = 0 if and only if |J| = 1, that is, when qk/pk has a unique maximizer. The reason is that F in this case has a symmetric
normal distribution, so that the sum of the two integrals of the numerator of (25), vanishes.

In order to derive (13) from (21), we use the characterization of dε
FI(p,q), in the first displayed equation of Appendix C, in terms of the function f . A

first order Taylor expansion of f around the point dFI(p,q) leads to

E
[
dε

FI(p,qY)
]
=E[f(dFI(p,qY))]≈ f(dFI(p,q))+ fʹ(dFI(p,q))

C0(p,q)
̅̅̅̅̅
M

√ = dε
FI(p,q) +

Cε(p,q)
̅̅̅̅̅
M

√ ,

where

Cε(p,q)= fʹ(dFI(p,q))C0(p,q)=
1 − ε

1 + ε
(
2dFI (p,q) − 1

) • C0(p,q). (26)
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Note in particular that Cε(p,q) = 0 if and only if C0(p,q) = 0, that is, if and only if |J| = 1. Whenever C0(p,q) > 0, we have that Cε(p,q) > 0 is a
strictly decreasing function of ε that approaches 0 as ε→1. Hence, the larger the fraction of mutations, the less important bias correction of dε

FI(p,qY) is.

Appendix D. Quasi-metric properties of the Mutual information distance

In order to verify that dMI satisfies the conditions of Proposition 3 we proceed as in Appendix A, and show that (0) its range is nonnegative, as well
as establishing the (i) identity, (ii) point equality, and (iii) parts of the triangle equality properties of Section 2.3. To this end, we rewrite the definition
of dMI in (16) as

dMI(p,q)=
∑K

k=1
pk[ρ(r) − ρ(rk)],

where ρ(x) = − x log2(x) − (1 − x)log2 (1 − x) is non-negative and strictly concave on (0,1), whereas r =
∑K

k=1pkrk. The concavity of ρ and Jensen’s
Inequality imply that dMI(p,q) ≥ 0, with equality if and only if rk = r for k = 1,…,K, which in turn, because of (6), requires r = 1 and p = q. Thus we
have verified (0), (i), and (ii). In order to prove the triangle inequality for dMI under the conditions of Proposition 3, we have to demonstrate that

dMI(p, s)≤ dMI(p,q) + dMI(q, s). (27)

As in Appendix A we assume that the output of the first sampling mechanism (with non-rejection probabilities rk = rqk/pk) that generated q, is the
input of a second sampling mechanism (with non-rejection probabilities vk = vsk/qk, where v =

∑K
k=1qkvk) that generates a new amino acid frequency

vector s. That is, the observed amino acid distribution s = (sk) is obtained from a pool of amino acids with distribution q, corresponding to a distance
dMI(q,s). On the other hand, a combined sampling procedure, with a pool of amino acids with frequencies p, and observed frequencies s, corresponds to
non-rejection probabilities wk = wsk/pk, where w =

∑K
k=1pkwk, and a distance dMI(p, s). Note in particular that the combined non-rejection proba-

bilities satisfy

wk =
w
rv

rkvk ≥ rkvk, (28)

for all k = 1,…,K, with equality if and only of if

rk0 = vk0 = 1 (29)

for some k0 ∈ {1,…,K}. As stated in Proposition 3, we will prove the triangle inequality (27) when (29) holds. Assume X ∼ Cat(p), and let Y,Z,U ∈

{0,1} be non-censoring indicators for the first, second and combined sampling mechanism respectively. Note also that U = YZ whenever (29) holds,
since (29) implies P(Y = 1|X = k) = rk, P(Z= 1|X= k,Y = 1) = vk and P(U= 1|X = k) = wk= rkvk. Without loss of generality, we assume that Z = 0
whenever Y = 0. It follows from (16) that

dMI(p, s)=H(YZ) − E[H(YZ|X)] ≤ H(Y,Z) − E[H(Y, Z|X)] = H(Y) + E[H(Z|Y)] − E[H(Y|X)] − E[H(Z|X,Y)] = dMI(p,q) + P(Y =1)dMI(q, s)

≤ dMI(p,q) + dMI(q, s),

so that the triangle inequality holds whenever (29) is satisfied. In the general case, we will compare

dMI(p, s)=
∑K

k=1
pk[ρ(w) − ρ(wk)],

with

d̃MI(p, s)=
∑K

k=1
pk[ρ(rv) − ρ(rkvk)]=

∑K

k=1
pk[ρ(cw) − ρ(cwk)],

where rv = r
∑K

k=1qkvk =
∑K

k=1pkrkvk and c = rkvk/wk∈ (0,1]. Note that (29) is equivalent to c = 1. It follows from the proof of the triangle inequality,
when (29) holds, that

d̃MI(p, s)≤ dMI(p,q) + dMI(q, s) − (1 − r)dMI(q, s),

since r = P(Y = 1). Note also that

dMI(p, s) − d̃MI(p, s)=
∑K

k=1

pk[g(w) − g(wk)] ≥ 0,

where the last step follows from Jensen’s Inequality, since

g(x)= ρ(x) − ρ(cx)

is a strictly concave function of x. Putting things together we find that
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dMI(p, s)≤ dMI(p,q)+ dMI(q, s) − (1 − r)dMI(q, s) +
∑K

k=1
pk[g(w) − g(wk)]. (30)

Equation (30) does not prove the triangle inequality for dMI, since the right-hand side might exceed dMI(p,q)+ dMI(q,s). However, the right-hand
size of (30) is often below dMI(p,q) + dMI(q, s) when c is close to 1. Since some of the estimates that lead to (30) are conservative, we believe the
triangle inequality holds much more generally than (29).

In order verify asymmetry of dMI we use the same example as in Appendix A, with K = 2, p = (1 /3,2 /3) and q = (1 /2,1 /2). It can be shown that

dMI(p,q)= ρ
(

2
3

)

−
2
3

ρ
(

1
2

)

=0.252.

whereas

dMI(q,p)= ρ
(

3
4

)

−
1
2

ρ
(

1
2

)

=0.311,

Note in particular that the inequality between the two path lengths goes in the direction dMI(q, p) > dMI(p, q), whereas the opposite inequality
dFI(q, p) < dFI(p,q) holds for the functional information distance. The reason is that whereas dFI only takes the non-censored subsample into account,
dMI includes the censored as well as the non-censored subsamples. As mentioned in Section 5.4, we consider the latter mutual information approach
less appealing, and this is due to the fact that dMI(q, p) is larger than dMI(p,q), in spite of the fact that the path from p to q requires a larger increase of
frequencies of categories.

Appendix E. Conditions under which the evolutionary waiting times equals the functional information distance

In order to verify (19), notice that the genetic composition pt = (pt1,…, ptK) at time t has components

lim
L→∞

ptk =
pke− λkt

∑K
j=1pje− λj t

(31)

in the limit of large L. Suppose the components of the vector λ = (λ1,…, λK) of death rates is chosen as functions λk = − log(rk)/C of the non-censoring
probabilities rk in (6) and some constant C > 0 (to be defined below). It follows from (6) and (31) that

lim
δ→0

lim
L→∞

TL,δ(p,q)=C. (32)

In particular, with

C= dFI(p,q) (33)

the functional information distance between p and q, the limiting evolutionary waiting time

lim
δ→0

lim
L→∞

TL,δ(p,q) = dFI(p,q) (34)

agrees with (31). We will show that (33) provides a convenient normalization of the death intensities λk. To this end we introduce the function f(x) =
e− Cx and notice that

∑K

k=1
pkf(γk) =

∑K

k=1
pkrK = 2− C = e− C/log2 (e) = f

(
1

log2 (e)

)

. (35)

Equation (35) states that 1/log2 (e) is a type of weighted average of the elements λ1,…, λK of λ.
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https://doi.org/10.1073/pnas.062526999
https://doi.org/10.1007/978-3-319-70658-0_121-1
https://doi.org/10.1007/978-3-319-70658-0_121-1
https://doi.org/10.1214/aoap/1019737667
https://doi.org/10.1214/aoap/1019737667
https://doi.org/10.1089/cmb.2010.0084
https://doi.org/10.1089/cmb.2010.0084
http://refhub.elsevier.com/S0303-2647(24)00141-2/sref4
https://doi.org/10.1111/j.1399-3011.1988.tb01258.x
https://doi.org/10.1111/j.1399-3011.1988.tb01258.x
http://refhub.elsevier.com/S0303-2647(24)00141-2/sref5
http://refhub.elsevier.com/S0303-2647(24)00141-2/sref5
https://doi.org/10.1007/978-3-0348-0478-3
https://doi.org/10.1007/978-3-0348-0478-3
http://refhub.elsevier.com/S0303-2647(24)00141-2/sref7
http://refhub.elsevier.com/S0303-2647(24)00141-2/sref8
http://refhub.elsevier.com/S0303-2647(24)00141-2/sref8
https://doi.org/10.1109/ICSMC.2009.5346119
https://doi.org/10.1109/TSMCA.2009.2025027
https://doi.org/10.5048/BIO-C.2020.4
https://doi.org/10.5048/BIO-C.2020.4
https://doi.org/10.3390/e24101323
https://doi.org/10.3390/e24101323


BioSystems 243 (2024) 105256

15

Durrett, R., 2008. Probability Models for DNA Sequence Evolution. Springer, New York.
Durrett, R., Schmidt, D., 2008. Waiting for two mutations: with applications to

regulatory sequence evolution and the limits of Darwinian evolution. Genetics 180,
1501–1509. https://doi.org/10.1534/genetics.107.082610.

Durrett, R., Schmidt, D., Schweinsberg, J., 2009. A waiting time problem arising from the
study of multi-stage carinogenesis. Ann. Appl. Probab. 19 (2), 676–718. https://doi.
org/10.1214/08-AAP559.

Durston, K.K., Chiu, D.K.Y., Abel, D.L., Trevors, J.T., 2007. Measuring the functional
sequence complexity of proteins. Theor. Biol. Med. Model. 4, 47. https://doi.org/
10.1186/1742-4682-4-47.

Efron, B., Tibshirani, R.J., 1994. An Introduction to the Bootstrap. Chapman and Hall,
New York.

Ewens, W.J., 2004. Mathematical population genetics I. In: Theoretical Introduction.
Springer, New York.

Fano, R.M., 1961. Transmission of Information: A Statistical Theory of Communications.
MIT Press, Cambridge, MA.

Godfrey-Smith, P., Sterelny, K., 2016. Biological Information. Stanford Encyclopedia of
Philosophy. https://plato.stanford.edu/entries/information-biological/. (Accessed
21 August 2021).

Gromiha, M.M., Oobatake, M., Sarai, A., 1999. Important amino acid properties for
enhanced thermostability from mesophilic to thermophilic proteins. Biophys. Chem.
82 (1), 51–67. https://doi.org/10.1016/S0301-4622(99)00103-9.

Griffiths, P.E., 2017. Genetic, epigenetic and exogenetic information in development and
evolution. Interface Focus 7 (5), 20160152. https://doi.org/10.1098/
rsfs.2016.0152.

Hazen, R.M., Griffin, P.L., Carothers, J.M., et al., 2007. Functional information and the
emergence of biocomplexity. Proceedings of the National Academy of Sciences of the
USA 104 (Suppl. 1), 8574–8581. https://doi.org/10.1073/pnas.0701744104.
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