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Abstract
Current genetics studies often refer to notions from information science. The purpose
of this paper is to summarize and structure the different notions of information used in
biology, as a step towards developing a taxonomy of information. Within this frame-
work we propose an extension of Floridi’s conceptual model of information. We also
make use of the concept of specified information and show that functional information
andmany other notions of information are either special cases of, or are closely related
to, specified information. Since functionality of the proteins that genes code serves
as an external and independent specification, this makes it possible to define genetic
information in a way that includes semantic aspects. In particular, we discuss how to
understand the qualitative aspects of genetic information, how to measure its quanti-
tative aspects, and how variants of Shannon’s information measure can be applied to
molecular sequence data of protein families. While a mathematical framework may
not be able to incorporate all that is included within biological information, some
aspects of it allow for statistical modelling. This is especially true if we restrict our
focus on the discipline of genetics. The concept of genetic information is still disputed
because it attributes semantic traits to what seems to be regular biochemical entities.
Some researchers maintain that the use of information in biology is just metaphori-
cal and may even be misleading. We argue that the foundation of the metaphorical
view is relatively weak given the current findings in bioinformatics and show that the
present understanding of genetics fits well into the context of the modern philosophy
of information. The paper concludes that informational concepts have robust scientific
applications at the level of genes.
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1 Introduction

1.1 The use of information in biology and genetics

The concept of information is important within a number of scientific disciplines. The
founder of cybernetics, Norbert Wiener, even argued that information was something
more essential than matter and energy. He put it in this way: ‘Information is informa-
tion, not matter or energy. No materialism which does not admit this can survive at the
present day’ (Wiener, 1961, p. 132). The short slogan ‘It fromBit’ by physicistWheeler
(1990) also points out that the ultimate physical reality (It) is information-based (Bit).

In particular, it is well known that the notion of information is relevant in biology.
The analysis of tree-rings is an interesting example. The study of the patterns of these
concentric circles may be said to follow certain syntactic rules, and the semantic
interpretation of them may give rise to factual information not only about the ages
of the trees but also about the weather during their history. In this paper we shall
concentrate on the genetics of life, and we shall show that the usefulness and relevance
of information studies in biology is even more obvious when we focus on genetics.

One of the rather surprising discoveries in biology is that genetic information is
organised in a way that resembles conventional text, while the cell operates in a way
that resembles modern technology. Life displays a deep unity at the biochemical level,
despite its huge diversity expressed at the morphological level. With a few excep-
tions, all forms of life use DNA as their genetic material, and proteins are constructed
from the same 20 amino acids as their building blocks. RNA bridges the two worlds
through the genetic code, where one symbolic language translates into another with
the aid of a sophisticated universal apparatus. Bioinformatics has unlocked informa-
tional aspects of molecular biology through the use of computers and statistics. Terms
such as ‘code’, ‘language’, ‘transcription’, ‘messenger’, ‘information’, ‘library’ and
‘motor’ have proved useful in describing and understanding biology at its molecular
level. Notions of information are embedded within the description of the cell machin-
ery. Bioinformatics is the application of mathematical and informational techniques to
perform biological exploration, usually by developing computer programs, mathemat-
ical models, or both. In this way, life is treated as a close partnership between genes
and mathematics (Stewart, 1999). One major aspect of bioinformatics is data mining
and the analysis of data assembled by numerous genome projects. As an interdisci-
plinary domain of study, bioinformatics splices biology, computer science, information
engineering, statistics, and mathematics to study and interpret these biological data.

Historically, the concept of information has been a central issue within biology
since the discovery of the coding structure of DNA in 1953 by Francis Crick and
James Watson, and the idea that DNA serves as a computer program is not new. John
von Neumann was among the first who attempted to formalise this (von Neumann,
1961), and other theoretical researchers followed (Chaitin, 1979; Yockey, 1974). Von
Neumann even drewmuch of his inspiration from genetics when designing his famous
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von Neumann architecture for an electronic digital computer (von Neumann et al.,
1987).

In this way, information has become a major notion of present biology, and there
is a common understanding that the informational aspect of life is a key property.
Some researchers have even suggested that it might be seen as the master key property
(Godfrey-Smith & Sterelny, 2016; Walker & Davies, 2013). If so, life should be stud-
ied as fundamentally related to information processing and communication. Such an
analysis of life’s informational properties and contents holds the potential for turning
biology into a more quantitative science (Davies & Walker, 2016).

After the discovery of the genetic code (Crick, 1958), it is clear that most notions
of genetic information can either be formulated in terms of nucleic acid sequences
or amino acid (protein) sequences. In particular, amino acid sequence data often pro-
vide thousands of examples of similar, but different, protein sequences that convey
the same meaning, in the sense that they encode essentially the same structure and
function. A gene family is a group of closely related genes that encode similar prod-
ucts, usually proteins, but also RNA. More radical are examples of protein molecules
with entirely different sequences and structures but similar biochemical functions.
Thus, different molecular structures may be functionally equivalent. Such examples
pose crucial questions regarding the nature of the information contained in genetic
sequences. How can we best define and quantify the information content of protein
sequences, when there is no one-to-one correspondence between these sequences and
their function/meaning? There is still a great deal of open conceptual space and much
room for new accounts of biological information.

1.2 Aim and contents of the article

This paper aims to present a promising new line of enquiry to bring coherence to
the domain of biology by focusing on information as a unifying and computable
concept. We make use of the scientific literature from statistics, molecular biology,
cybernetics, and biosemiotics in order to seek a common theme across diverse fields.
Our synthesis is intended to provide some common conceptual ground for further
scientific exploration of the role of information in genetic systems, with a particular
focus on gene families. Our hope is that such a synthesis is a step towards formulating
a taxonomy of information for genetics and molecular biology. A crucial part of our
analysis is the role of semantics and meaning for information of biological systems.
Some researchers maintain that the use of information in biology is just metaphorical
and may even be misleading, whereas others argue that the role of information in
biology is more profound. This discussion is possibly one of the deep issues in modern
biology.

Our article naturally splits into three parts. In the first part (Sects. 2 and 3) we
analyse and try to structure the different meanings of information. In Sect. 2 we
review some major concepts of information theory, with specified information a core
concept. Then in Sect. 3 we present Floridi’s conceptual model of information (Floridi,
2010) and explain how thismodel unifies several of the information theoretic notions of
Sect. 2. In the second part (Sect. 4 andAppendix A)we present methods of quantifying
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information of gene families in ways that incorporate semantic aspects of meaning,
based on the foundation laid in Sects. 2–3. Finally, in the third part (Sect. 5) we provide
a discussion with concluding remarks. In particular, in this discussion we argue that
genetic information is not only a metaphor, but that it is a genuine, essential, and
non-material entity essential for life, a type of necessary initial condition for life to
exist.

2 Current concepts of information

The relevance of information in genetics and biology, in general, depends on an under-
standing of the notion of information itself. Information is a multifaceted concept that
is relevant for understanding a diverse set of features, such as the degree of organisa-
tion of a system or the contents of a string of letters. It is not a simple task to provide a
brief account of this crucial notion in modern science. Various ways to capture infor-
mation have been suggested in the literature. Despite being a central concept across
science, it is employed differently across disciplines. Matter and energy are modelled
and well-studied in physics, but there is no universal model of information. It may
even be inherently impossible to give a general definition of information, given the
uncontained use of the term. Although information must be instantiated into physi-
cality for storage or communication, it is generally accepted as a non-material entity
with many attributes, both qualitative and quantitative. The philosophy of informa-
tion (e.g. Floridi, 2002, 2010, 2016) is a general area of research investigating the
conceptual nature and basic principles of information. In this section we review a
number of notions of information, before relating them to Floridi’s conceptual model
of information in Sect. 3.

2.1 Ontological, epistemic and practical information

Three types of information can be distinguished, based on the way in which it relates
to reality (Borgmann, 1999; Floridi, 2002; Osimani, 2014), and all of them are of rele-
vance for biology. Ontological information is information as reality (such as the actual
structure of aDNA sequence), epistemic information is information about reality (such
as an agent, with a mind, having knowledge about the DNA sequence), whereas prac-
tical information is information for reality (such as the DNA sequence corresponding
to instructions, that are either successfully transcribed and translated into a functional
protein, or not).

Epistemic information corresponds to knowledge, and as such it can be further
divided into three types (Pavese, 2021); acquaintance knowledge (to get to know
persons), knowledge how (to learn certain skills), and knowledge that (to learn the
truth value of propositions or facts). Whereas practical information concerns the end
product of a series of instructions, knowledge how is a concept that rather focuses on
an agent (with a mind) being able to perform such instructions. With this definition, if
an enzyme (without a mind) carries out biological instructions successfully, this does
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still not qualify as knowledge how. In Sect. 3 we will use the word know-how (rather
than knowledge how) to characterize such effective algorithms.

Knowledge that is closely related to justified, true belief. Foundationalism and
coherentism are normative theories for howbeliefs are justified. Foundationalists argue
that there are self-evident basic beliefs that need no justification, whereas all other
beliefs must be grounded in basic beliefs in order to be justified. Coherentists argue
that a belief is justified if it coheres with other beliefs. In any case, the grounding or
coherence can be internal to the agent having the belief, or external. Regardless of
how the justification part of knowledge that is defined, an agent is more motivated to
acquire knowledge that about a proposition, if it carries some meaning (Sect. 2.2) to
him.

2.2 Quantitative and qualitative/semantic information

Claude Shannon’s well-known information theory relies on probability theory, as his
model only considers the statistical properties of the symbols that form messages
(Shannon, 1948). Details on Shannon’s information theory and entropy can be found
in the literature (Yockey, 2005). Here, we briefly emphasise the application of this
concept in molecular biology. In a sequence of characters, the classical Shannon mea-
sure of information is purely a function of the probabilities of the character string: a
quantitative theory without a semantic dimension (see Sect. 4.1).

However, Shannon recognised that his theory of informationwas not the lastword in
the mathematical modelling of information. Shannon’s model of information theory
was framed to address the problem of communication. Depending on the field of
application, we must choose different approaches to information. In particular, the
present paper is framed to address some of the challenges within genetics.

In addition to the quantitative ideas of information suggested by Shannon and
Weaver (1949), there is a vital qualitative notion of information going back to Carnap
(1947), who suggested the use of modal logic to understand these qualitative aspects
of information. Warren Weaver acknowledged: ‘In fact, two messages, one of which
is heavily loaded with meaning and the other of which is pure nonsense, can be
exactly equivalent, from the present viewpoint, as regards information’ (Shannon &
Weaver, 1949, p. 8). This is clearly the case if we concentrate on the numerical and
engineering aspects of the communication. However, we may also choose to focus
on the content and qualitative aspects. Although modern biology has frequently made
use of the concept of information, it has to some extent avoided these qualitative
concepts of meaning and semantics. But since the semantic concepts of information
can be established in several ways (Floridi, 2015; Lopez-Ruiz, 2005; Weinberger,
2002; Atlan & Koppel, 1990), there is plenty of room for defining qualitative aspects
of information within biology.

We will find in Sect. 4 that a semantic approach to information does not exclude
a numerical approach. In fact, the modern notion of information should be conceived
as a combination of these two aspects—statistics and semantic—that together capture
some of the double nature of information. This dual nature of Shannon and semantic
information is a basic dichotomy in the literature. In spite of this, there are common
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features of quantitative and qualitative information, such as a tendency to protect
itself. Indeed, quantitative, digital information is typically robust against perturbations
and allows for accurate error correction, and the same is often true for qualitative
information.

2.3 Information and elimination of possibilities

According to Fred Dretske (1981, p. 4), ‘the amount of information associated with,
or generated by, the occurrence of an event (or the realisation of a state of affairs)’
should be identified with ‘the reduction in uncertainty, the elimination of possibili-
ties, represented by that event or state of affairs’. This idea of defining information
in terms of the elimination of possibilities is the basis of the quantitative concepts of
self-information and Shannon information (Sect. 4.1) and the use of a language, with
a certain syntax, in order to define information. In this way, it is the syntax that allows
some strings of letters and eliminates others. A further (and more qualitative) elimina-
tion of possibilities, among all syntactically valid text strings, occurs when only some
of these syntactically valid text strings convey meaning (Gitt, 1989). Elimination of
possibilities can also be used as a qualitative tool of information through the concept
of possible worlds semantics (Floridi, 2015; Martinez & Sequoiah-Grayson, 2018),
giving rise to a very attractive approach to the notion of semantic information.William
A. Dembski stated that ‘the ultimate act of information must then consist in separat-
ing out the actual world from among all possible worlds’ (1998, chap. 4). Basically,
in order to qualify as a definition of semantic information, we will require that the
abovementioned rule for separating the true world from the other worlds is based on
some type of code (Sect. 2.4), as well as some type of specification (Sect. 2.7) that
provides meaning.

2.4 Information and its relation to codes, causation and syntax

An important example of the relevance of meaning in molecular biology and genetics,
is its close connection to the idea of a code. This was predicted already by Erwin
Schrödinger in his popular book “What is life?” (Schrödinger, 1945), and further
highlighted by Francis Crick when he discovered the Central Dogma of Biology:

Once information has passed into protein it cannot get out again. In more detail,
the transfer of information from nucleic acid to nucleic acid, or from nucleic
acid to protein may be possible, but the transfer from protein to protein, or
from protein to nucleic acid is impossible. Information means here the precise
determination of sequence, either of bases in the nucleic acid or of amino acid
residues in the protein (Crick, 1958, p. 153).

Stating that a code establishes correspondence between two objects (e.g., triplets of
nucleic acids and amino acids) is equivalent to stating that one object is the meaning
of the other, internally within the coded system. In this restricted sense of meaning,
we cannot have codes without meaning or meaning without codes. When the code
is between mental objects, meaning is a mental entity that is related to epistemic
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information (Sect. 2.1). However, meaning is a genetic entity when the code is between
geneticmolecules. Similarly, semantic informationhas intentionality about something;
it is directed to other things. Genes carry semantic information if and only if they are
interpreted as such.

The concept of code, and its established correspondence between two objects, is
closely related to causation. Predrag Sustar reduces the notion of genetic information
to causation (Sustar, 2007), whereas Barbara Osimani defines genetic information as
a special kind of cause, which causes something to be one way rather than another, by
combining elementary units one way rather than another (Osimani, 2014).

The ‘precise determination of sequence’ quote from Crick’s 1958 article refers to
the way in which the nucleic acids or amino acids are arranged. This emphasizes the
importance of language, and the syntactic nature of information (which we refer to
as syntactic information). Much effort has been made to build up an integrated view
of genetic information and its role in biology, incorporating such a syntactic nature
of genetic information, contained in the coded DNA, and the semantic quality of
processes by which genes specify biological forms and functions (i.e., biosemiotics)
(Hoffmeyer, 2008; Jablonka, 2002; Maynard-Smith, 2000; Wills, 2016). Maynard-
Smith maintained that bioinformation is both specific and intentional, and that genes
are meaningful in the same way that words are in a language. Wills argues that the
processes inside cells are under computational control of genetic programming, and
Barbieri (2016) refers to the idea that ‘life is chemistry plus information plus codes’
as the code paradigm.

2.5 Natural information

The work of Dretske (1981) was among the first systematic and influential theory of
semantic information. It builds directly on the technical-theoretical resources coming
from Shannon’s non-semantic information theory. The crucial idea was that the state
of one system could carry information about the state of another, and that this informa-
tion could provide a basis for the meaning of the signals mediating the sender–receiver
relation. This kind of information is commonly known as ‘natural information’ and
it is defined as a mind-independent, lawful relation between systems or events in the
world, e.g., between fire (F) and smoke (s). According to Dretske (1981, p. 65), the
information that one system carries about another can be expressed in probabilistic
terms: A received signal r carries the information that s is F if the conditional proba-
bility of s being F, given r and background knowledge k, is 1; whereas the conditional
probability of s being F, given only k, is less than 1.

This analysis contains two conditional probabilities. First the probability of s being
F given both the signal r and background knowledge k; and second the probability of
s being F given only the background knowledge k, in the absence of signal r. Hence,
r carries the information that s is F, when the first conditional probability is one and
the second is less than one.

Several authors have critically discussed Dretske’s theory. His view has two notable
shortcomings, one being that the requirement that signal r must raise probabilities
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to unity as too strict (e.g., Millikan, 2000; Scarantino, 2015), and the other being
that it fails to provide a way of determining the background knowledge k, that is, the
reference classes of information-carrying states. The strictness problem can be relaxed
by modifying Dretske’s view to incorporate more nuanced notions of correlations,
probabilities and initial conditions to maintain that imperfectly related events can
carry natural information, and then aim to specify the conditions under which they
do (Baker, 2021; Stegmann, 2015). An updated version of natural information can be
stated as follows:

A received signal r being in state G carries information about the source s being in
state F, relative to background knowledge k, if and only if

P(s is F |r is G&k) > P(s is F |k).

The transmission of positive information amounts to the presence of a positive corre-
lation between the received signal and what the signal is about (relative to reference
knowledge k). A more general definition of natural information is given in Appendix
A.3.

Baker (2021) also states that the problem of identifying the relevant background
knowledge is non-trivial, as it requires resources from outside of information theory.
This means that we have to recognize a basic limit on what information-theoretic tools
can do to tell us something about the content of intentional processes, since information
theory by itself is useless in determining the semantic content in the understanding
of biological features. Natural information is still an indispensable idea for much
scientific work and it plays a crucial role for analyses that try to shed light on the
way in which physical systems can exhibit intentional processes. Both philosophers
and philosophically minded biologists have contributed to the ongoing foundational
discussion on the ontological status of natural information, and its mode of description
in biology. For recent overviews see Floridi (2016, chap. 22–23) and Godfrey-Smith
and Sterelny (2016). We will return to this question in the discussion part of our
paper.

Systems with codes and causation (Sect. 2.4) generate correlations between entities
that are closely related to natural information, with a distinction that they need not refer
tomindless, lawlike procedures.An invertible code generates a sender-transmitter rela-
tion that corresponds to Dretske’s original definition of natural information, whereby
the left-hand side of the above equation is 1. That is, if an invertible code translates
s to r , a receiver that observes r � G without error knows with certainty that F was
translated (and not any other value of s). Note however that the genetic code is not
invertible, since several codons code for the same amino acid. It still corresponds to
natural information in the wider sense. Indeed, a received amino acid r � G orig-
inates from a particular codon F that translates to G, with a probability that equals
one divided by the number of codons that code for G. This probability, which cor-
responds to the left-hand side of the above equation, is larger than the probability
that a randomly chosen codon equals F , that is, the right-hand side of the equa-
tion.
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2.6 Instructive, blueprint, and hereditary information

Living organisms are unique because they are suitably structured and arranged in
precise forms. All these structures, their composition and configuration, are at the
centre of developmental and evolutionary biology: ‘Developmental biology can be
seen as the study of how information in the genome is translated into adult structure,
and evolutionary biology of how the information came to be there in the first place’
(Szathmáry & Maynard Smith, 1995). An obvious question is what the nature and
characteristics of this extensive use of the concept of information are. According to
Shea (2013), some aspects of an organism’s development can be seen as reading
information carried by its genome.

Biologists also recognise the crucial importance and usefulness of information
notions in the account of life and its origin. Nobel Prize winner and origin-of-life
researcherManfredEigen equated the problemof life’s originwith uncovering ‘the ori-
gin of information’ (Eigen, 1992). This relates to a common understanding of genetic
information as a blueprint (an Aristotelian formal cause) for making the molecular
elements that are responsible for the complexity and functionality at all levels of life,
from DNA to the whole organism. Such a blueprint definition of genetic information
is based on the fact that DNA is expressed in various ways. Griffiths (2017) has argued
that it is common policy to consider the characteristics of chromosomes and genes
as the expression and transmission of information, and he emphasises the prevailing
challenge of capitalising on this in strict, scientific terms.

Much of modern genetics is a science of hereditary information, and the survival of
each species is discussed in terms of transmission of genetic material from generation
to generation in the unique informational narrative of living systems. For instance,
Monod (1971) identified hereditary information with the structural morphology of
organisms that are reproduced from one generation to the next.

These instructive, blueprint and hereditary notions of information are closely related
in the sense that genomic information is transferred, either to a developmental structure,
tomolecular elements of a cell, or to genomic information of the next generation.When
quantified, these three concepts of information are conceptually related to natural
information (Sect. 2.5) where genomic information s is transferred to some structure r
(either developmental, molecular element or next generation genomics). Such a gene-
centred approach has been criticized though by Developmental Systems Theorists,
who argue that environmental factors should also be considered as part of the causal
determinants s (Griffiths, 2001). Adherents of teleosemantics have similarly argued
that the gene-centred approach is too narrow, and that evolutionary causes of the
genome should be included in the information concept as well (Bergström & Rosvall,
2011; Shea, 2013). Notice however that it is possible to use the analogy with natural
information in order to combine environmental and/or evolutionary factors with a
gene-centred view. Indeed, it is possible that these environmental/evolutionary factors
lower the probability that s equals F , given the observed structure r and background
knowledge k. As long as this probability remains larger than the conditional probability
that s equals F , given only background knowledge k, it is still the case that r carries
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information about s equals F . Alternatively, environmental/evolutionary factors can
be put into the background knowledge k, in the definition of natural information.

2.7 Specified and functional information

A structure is specified if it involves some events or feature that cannot be defined
only in terms of the units that make up the feature. Such a feature represents specified
information (Dembski, 1998), for instance some function that the structure possesses
or is able to perform. The feature is independent of the structure itself, in the sense
that it corresponds to an external property or pattern of functional expression.

An important aspect of information within the cell is the fact that proteins exhibit
such specificity, both 1D arrays and 3D geometries. The folding of proteins with their
specific 3D shapes requires highly specific amino acid sequences. Within the set of
possible sequences, only a very few will produce a set of functional and cooperative
proteins in the cell (Axe, 2004; Bowie & Sauer, 1989; Tokuriki & Tawfik, 2009). Since
the physicochemical properties of the amino acids allow a huge set of combinatorically
possible arrangements, any particular sequence will necessarily be very improbable
and rich in information load. These sequences are not only improbable but also func-
tionally specific. The small set of functionally effective sequences reduces the larger
set of possible combinations. Furthermore, this smaller set establishes an independent
feature because it divides functional sequences fromnon-functional sequences. Hence,
any actual amino acid sequence that meets such requirements is both highly improba-
ble and specified about that independent new feature. Accordingly, the coding protein
sequence possesses both syntactic and specified information (Meyer, 2003, p. 237).

Furthermore, the coding sequences are highly specific to the overall functional
requirements of the cellular and intracellular networks. The cell transmits resources
back and forth through its membranes, controls metabolism, and performs many other
specific tasks. Each of these functional requirements, in turn, needs specific molecular
elements, molecular machines (mostly made of proteins), and logistics systems to be
realized.

The question arises whether specified information of a structure is sufficient for this
structure having semantic information (Sect. 2.2) as well. If ‘semantic information’
is defined as ‘subjectively meaningful information that is expressed syntactically as a
string of characters and is understood by a conscious, epistemic agent’ (Sect. 2.1), then
clearly only real language carries conscious meaning. By this definition, it may seem
at first that the information in proteins does not qualify as semantic information. But
proteins function similarly as a software algorithm (Sect. 2.9), instructing effective
processes within a complex material system via complex yet highly specified strings.
In the same way as the precise sequencing of two bits (0 and 1) in a software procedure
can perform a function within a technical environment, so too can the specific pattern
of the 20 amino acids perform a functionwithin the cell. Genetic information therefore
uncovers its meaning not only through codes, causation and syntax (Sect. 2.4), but also
through instruction or the actual production of formal biofunctions (which a conscious
agent observes and recognizes), and this is a central issue penetrating much of biology
(Newman, 2022). Similar to software and machine codes, the sequence specificity of
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proteins occurs within the syntactic domain of an operative amino acid string. Thus,
proteins possess both syntactic and specified information and, in this way, they carry
meaning. In Fig. 1, we denote this process as an algorithm (cf. Sect. 2.9), since an
algorithm has a syntax, and it is typically also functionally effective (the specification).

Twenty years ago, Jack Szostak published a paper in Nature that paved an impor-
tant notion of specific information. Szostak argued that the meaning or functionality
of a message is essential in molecular biology (Szostak, 2003). Since conventional
information theory does not distinguish between functionality and non-functionality,
Szostak pointed out the need for a new measure of information, which he called func-
tional information. Together with his colleagues he introduced functional information
in terms of a finite gene string as−log2 of the fraction of functional sequences that have
fitness values (activity of a biopolymer) greater than a given value (Hazen et al., 2007).
Szostak’s definition was motivated by imagining a conic pile of protein molecules of
all possible sequences sorted by a certain activity with the most active at the top. A
horizontal plane across the conic pile signifies a given level of activity. As the plane
gets higher, fewer sequences remain above it. The functional information needed to
quantify that activity is −log2 of the fraction of sequences above the plane. This pro-
vides an immediate and quantitativemeasure of the difficulty of a task.More functional
information is involved to specify molecules that perform more complicated tasks.

Functional information in the sense of Hazen et al. (2007) can be seen as a special
case of specified information, where fitness (biopolymer activity) is used to specify
a protein. This observation suggests that specified information of an observed object
can also be defined in other contexts than functionality. Suppose we are dealing with
some type of specification (such as function, degree of organization, or algorithmic
complexity) that can be quantified. As shown in Appendix Appendix A, it is possible
then to give a quantitative definition of specified information as−log2 of the fraction of
objects that are at least as specified as the observed object’s specification. An instance
of such a specification is Werner Gitt’s five levels of information (statistics, syntax,
semantics, action, purpose) assigned to written text (Gitt, 1989). If these five levels
are coded as 0, 1, 2, 3, 4, the numbers serve to quantify the degree of specification of
a text. As shown in Appendix A.1, the higher the information level of a text is, the
more specified information it has.

In Sects. 2.8 and 2.9 we will treat cybernetics and algorithms as two other special
cases of specified information (cf. Appendix A.1).

2.8 Cybernetics

Cybernetics is the study of systems with circular causal processes, such as feedback
loops (Wiener, 1948). In biology, feedback loops are important. Negative feedback
loops (such as the regulation of body temperature) allow systems to remain in home-
ostasis. An example of a positive feedback occurs at the onset of contractions in
childbirth. When contraction occurs, oxytocin is released into the body stimulating
more contractions. On the molecular level, positive and negative feedback loops occur
to decrease or increase the expression of genes. Since a circular causal process is
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a specification of a system, cybernetic information can be seen as a special case of
specified information (see Appendix A.1).

Suppose we widen the definition of cybernetics to the degree of organization of a
system. Then Eigen’s statement that explaining the origin of life boils down to explain-
ing the origin of information, can be interpreted as explaining cybernetic information
of a cell or an organism, in terms of a genetic blueprint information (cf. Sect. 2.6).

2.9 Algorithms and algorithmic information

The concept of algorithm has existed since antiquity (Chabert, 2012). An algorithm is
an effective procedure, a way of performing something in a limited number of stages.
Originally introduced in mathematics, it denotes a process leading to future utility
that terminates after a finite number of steps. There are many detailed definitions for
describing such algorithms.We restrict the definitions to those thatmost closely refer to
algorithms used in information science. Therefore, an algorithm is understood as a set
of steps or procedures that precisely define a finite sequence of operations (D’Onofrio
et al., 2012). Starting from an initial state, the instructions of the algorithm describe
a stepwise process that, when executed, proceeds through a finite number of succes-
sive states, eventually terminating at the final ending state. Such algorithms can be
expressed with many types of notation, including natural languages, flowcharts, pseu-
docodes or programming languages. If the end state of the algorithm is seen as its goal
or specification, we will show in Sect. 4.2 and Appendix A.1 that Kolmogorov algo-
rithmic information is a special case of specified information, as defined in Sect. 2.7.
This notion of algorithmic information can also be seen as a special case of practical
information (Sect. 2.1), when the end product of a series of instructions is effective
(achieves its goal).

This understanding of algorithms is defined from a computer science perspective,
owing to the discrete nature of genetic systems and operations. Life is largely governed
by algorithmic processes, much in the same way as linear digital programs, that is, a
sequential string represented by command characters. Digital here refers to something
discrete and definite. A simple computer program, for example, is directed by such a
linear digital string of well-chosen binary commands represented by either ‘1’ or ‘0’.
The sequencing or syntax of these purposeful commands supports a growing functional
hierarchy. An example of a highly complicated algorithm is the 3D folding of protein
sequences. We already found Sect. 2.7 that fold itself is specified, since only a small
fraction of amino acid sequenceswill generate functional proteins. The folding process
is only based on the underlying physical principles of the amino acids in the sequence
and the chemical context of the cell. Prediction of protein folds from the knowledge
of the amino acid sequence remains an important challenge in the post-genomic era.
This requires understanding of the folding pathway. The algorithm that folds proteins
each and every time is the algorithm that nature employs. Equal amino acid sequences
normally fold into the same 3D structure. Folding is rapid (within milliseconds to
seconds). The pathway is also crucial, as some mutants that are stable in the native
state will not fold because the folding pathway is blocked by the mutation. Protein
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structure prediction has been studied using several algorithmic approaches (Hutson,
2019).

Moreover, genes and proteins are different from inorganic molecules not only
because they have different functions and structures but also because they are ini-
tially generated in an entirely different way. Inorganic molecules are produced by
self-assembly, and their shapes are determined by internal factors. Instead, genes and
proteins are produced using molecular machines that physically combine their sub-
units with external templates. This means that genes and proteins are built based on
external instructions, making them very different from conventional molecules. Thus,
genes and proteins contain algorithmic information whereas inorganic molecules do
not. Indeed, there seems to be no such algorithms with external instructions in the
dead nature (Penrose, 1989), while genetics is filled with these kinds of algorithms.
Life is a system with its own inherent set of biological instructions and algorithmic
processing of information. Hubert Yockey made the following observation: ‘There is
nothing in the physico-chemical world that remotely resembles reactions being deter-
mined by a sequence and codes between sequences. The existence of a genome and
the genetic code divides living organisms from non-living matter’ (Yockey, 2000). In
contrast to cells, chemical systems are not considered as being able to process infor-
mation. Biological informational architectures distinguish them from other complex
physical systems that do not display the same informational attributes. Life exhibits
formalisms that cannot be generated or explained by physicodynamics alone, includ-
ing its numerous biofunctional goals of staying alive (Abel, 2012). Matter, energy,
cause-and-effect determinism, and the positive and negative feedback mechanisms
of nature’s order cannot foster formalisms such as a language with symbol systems,
coding, decoding, logic, organisation (not to be confused with mere self-ordering),
and succeeding functionality. These invariant markers of life are formal, not physical.

In 2016, the Royal Society of England published a special issue on regarding DNA
as information (Wills, 2016). In these papers, it is emphasised that the biological DNA
code not only transmits information but also translates it, and that the genetically
encoded information even includes how to produce new transmitters and receivers.
This special issue also mentions the programming aspects of DNA, which is not just
a linear instruction but a program of algorithms, subroutines, feedback loops, and all
the complexities that this entails. Genes are dynamic algorithms that, together with
the environment in the cell, contribute to the growth, development, and control of the
organism. Biological information can be used to specifymolecular systems right down
to the atomic level.

It is therefore reasonable to give the concept of instructional or algorithmic infor-
mation a fundamental role in genetics as information can be seen as a basic concept
of the general understanding of life, in line with fundamental concepts such as mat-
ter, time, and space. This is a well-motivated approach for a deeper understanding of
genetics.
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2.10 Active information

A passive perspective on genetic information is incomplete, as genetic information is
active, not merely passive facts. If a structure has features brought in by an external
agent as exogenous information, we say that the structure possesses active information
(Dembski & Marks, 2009a, 2009b).

The concept of active information was originally introduced in the context of com-
puter search, but we argue it has bearing on semantic information in biology as well, in
order to discuss the cause of information. Recall from Sect. 2.7 that semantics requires
more than the internal/syntactic definition meaning of Sect. 2.4, between objects that
are connected through a code. It also requires structures that are meaningful, for
instance an effective algorithm. This meaning is typically some external specification
(Sect. 2.7). If an external agent actively causes this external specification, the semantic
information is also active information. In Appendix A.3 we illustrate active informa-
tion in the context of Werner Gitt’s five hierarchical levels of information (Gitt, 1989),
defined in Sect. 2.7. Semantic information is the third level, whereas the two highest
levels originate from an active and conscious sender. The latter two levels typically
correspond to a positive active information, since the sender desires some action of the
receiver or has some purpose with the sent message. However, it is important to note
that the concept of active information is applicable whether the agent is conscious or
some lawlike behaviour brought in from outside. It is described in Appendix A.3 how
active information may be associated with natural information (Sect. 2.5).

2.11 Summary of information concepts

To summarize Sect. 2.1–2.10, we have found that Shannon’s concept of information
relies on statistical properties alone, syntactic information additionally requires data
that obeys some syntax, and semantic information (on top of syntax) additionally
requires some type of meaning.

For many notions of information, one structure carries information about another
(the two structures are correlated). For instance, a received signal carries natural infor-
mation about the state of a system, if it makes this system more likely, given the
background knowledge that is at hand (Sect. 2.5).Mathematically this is closely related
to the information that one object brings about another, given that a code between
them exists (Sect. 2.4). The notions of instructive, blueprint or hereditary information
(Sect. 2.6) are related to natural information as well. In order for these notions of
information to convey more than internal meaning within the system (Sect. 2.4), there
must be some external specification of the two correlated structures. That is, semantic
information (Sects. 2.2 and 2.7) not only requires syntactic information, and/or cor-
relation between structures, but also specified information (Sect. 2.7), such as objects
of a coded system that produce some effect. If the system can be recognized to carry
meaning by an external agent (the receiver, cf. Section 2.1), such as intentionality or
functionality, the semantic information is epistemic as well. If the specified feature of
a structure is actively brought in from outside by an agent (the sender), the structure
also has active information (Sect. 2.10).
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Although meaning is mainly a qualitative aspect, it can sometimes be quantified as
degree of specification. If so, it is possible to compute specified information (Appendix
A) for a structure conveyingmeaning. Functional information, for instance, is a special
case of this notion of specified information, with degree of functionality (reaction rate)
used as specification.

3 Floridi’s conceptual model

Semantic information was discussed in Sects. 2.2 and 2.7.When we focus on semantic
information, we may consider the different types and distinctions that take part in the
complicated interaction and flow of information. Luciano Floridi, at Yale University
and the University of Bologna, is one of the most well-known information theorists.
He has proposed a model for this interaction, as illustrated in Fig. 1 and Table 1.

Floridi clearly distinguished between data and well-formed data in his model. The
idea is that data can be utterly meaningless signals and they will not be well-formed
unless they meet certain syntactic requirements (Sect. 2.4). In addition, data becomes
semantic information when there is also a code used, and an external specification, to
make themmeaningful, either as instructional information (i.e., instructions on how to
do something, cf. Sect. 2.9) or factual information (i.e., ontologically how something
is in reality, cf. Sect. 2.1). Furthermore, it appears from the model that the factual
information is either true or false. Factual semantic content is the most common way
to understand information and it is also one of themost important, because information
as true semantic content is a necessary condition for learning as well as for knowledge

Fig. 1 Extended version of Luciano Floridi’s general map of the information spectrum (Floridi, 2010). The
extensions presented in the present paper are in bold. ‘Well-formed’ means that the data are composed
in line with the rules (syntax) governing the system in question. Knowledge corresponds to acquaintance
knowledge or knowledge how (Sect. 2.1). If the word instructional is replaced by skills of a conscious agent,
and these skills are either ineffective or effective, then effective skills correspond to knowledge-how rather
than know-how
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Table 1 Concepts from Floridis’ conceptual model of information (Fig. 1), and their relevance to some of
the notions of information outlined in Sect. 2. Note that semantic information, in the sense of Sect. 2.2, is
a slightly wider concept than in Floridis’ model, since it also incorporates environmental information that
corresponds to effective instructions (algorithms)

Concept from Floridis’ model Relation to notions of information in Sect. 2

Well-formed data Data with a syntax (syntactic information, Sect. 2.4). The syntax
eliminates some possible data sets, those that are not well
formed (Sect. 2.3).

Environmental information Data with a syntax, which brings information about something
(natural information, Sect. 2.5). If this information is actively
infused by an external agent, it is also an instance of active
information (Sect. 2.10).

Instructional information The data, with a syntax, are instructions for reality (practical
information, Sect. 2.1). A closely related concept is cybernetic
information (Sect. 2.8), since causal feedback loops (just as
instructions) can either be effective or ineffective.

Ineffective instructional information The instructions do not achieve any goal, with no specified
information (Sect. 2.7).

Effective instructional information The instructions achieve a goal (algorithmic information,
Sect. 2.9). This goal is a specification of the algorithm
(specified information, Sect. 2.7) and it provides a meaning
(semantic information, Sect. 2.2).

Semantic information Data with a syntax that involves a code. This code serves as a
specification (specified information, Sect. 2.7) and it provides
meaning (semantic information, Sect. 2.2). The code
eliminates some possible well-formed data (Sect. 2.3). If the
code is intentionally brought in by an external agent, it
corresponds to active information (Sect. 2.10).

Factual information Data with a syntax and a code, with details of how something is
in reality (ontological information, Sect. 2.1).

Untrue factual information Misinformation about reality (Sect. 2.1).

True factual information An epistemic agent who learns about a true statement acquires
epistemic information (Sect. 2.1). If the agent can justify what
he learns, he has also acquired knowledge-that (Sect. 2.1).

acquisition of an epistemic agent (Sect. 2.1). This idea has been elaborated by Hössjer
et al. (2022) in order to define a mathematical model for learning and knowledge
acquisition.

Floridi also introduces another important type of information, or another way in
which we regularly use the term ‘information’. ‘Environmental information’ of the
type often found in nature is included in his model. For example, smoke that is prop-
erly decoded provides information about fire. This type of natural information deals
with how one thing can bring information about another thing in a system when there
is a clear correlation between them, as outlined in Sect. 2.5. Strictly speaking, envi-
ronmental information does not need to be naturally caused though, such as when a
car engineer builds a red-light indicator signalling a low battery (Floridi, 2010, p. 32).
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Concerning Floridi´s model, it should be noted that information science tradition-
ally relates to semantic information, whereas environmental information is not part
of information science. Floridi has much to say about semantic information, and less
to say about environmental information. Floridi adopts a qualitative view of informa-
tion as well-formed, true, and meaningful content. He does not adopt a quantitative
measure.

A significant example is the genetic information in a cell’s DNA and protein sys-
tems. Stegmann (2005) introduced the term instructional information to describe the
type of information found in the genes in ourDNAsystem, andFloridi applied the same
term (Floridi, 2010, chap. 6).Asmentioned in Sect. 2.1, genetic information is practical
information, i.e., instructional information for something (in this case, the construc-
tion and maintenance of life), not just about something. This means that ‘the medium
(the genes) is the message’. The genes carry important chemical information about
their own proper interpretation (metalanguage). In a way, they are self-interpretive,
although the right context (cell environment) is also essential in the interpretation
process. It seems natural to expand Floridi’s model because information in genes can
be informational sources in different ways. For instance, genetic information can be
instructive, blueprint, hereditary (Sect. 2.6) or algorithmic (Sect. 2.9). It includes both
software (formulation level) and hardware (execution level). Broken or damaged genes
are examples of ineffective instructional information.

But since the abovementioned hardware is effective, there is also semantic informa-
tion in gene instructions programs (Sect. 2.2). They have an external specification in
terms of function for the proteins that the genes code for (Sect. 2.7). When processed,
the effective information produces a nontrivial formal function. Merely describing
a gene does not prescribe or produce results. Hence, mere description needs to be
dichotomised from instruction, as instructional (or practical/algorithmic) informa-
tion does far more than describe. The processing of genetic information is just as
formal as the information it processes. Effective instructional information provides
‘how-to’ information, by prescribing, steering, and controlling physical interactions.
It ‘breathes fire into the equations andmakes a universe for them to govern’ (Hawking,
1988, p. 174). Know-how differs from knowledge-how in the sense that instructions
(not the skills of conscious agent) are effective, and it differs from knowledge that in
the sense that it does not relate to factual statements.

We should also mention that Floridi has expanded his understanding of genetic
information over the years, although he has always classified it as instructional infor-
mation. In a 2010 publication (Floridi, 2010, chap. 6), he classifies genetic information
as environmental information because he considers it less demanding than a semantic
interpretation, and in danger of losing its useful and concrete procedural sense. He
also stressed that environmental information might be meaningful independently of
an intelligent producer/informer. In the same publication, he drew a line between envi-
ronmental and instructional information, as shown in Fig. 1. However, this line was
omitted in another publication five years later (Floridi, 2015). Although this line was
absent in his 2015 publication, he confirmed that he wanted to prioritise the diagram
with the line (personal communication, 7 December 2020), as shown in Fig. 1. As
we see it, there is no reason to deny that structures in nature, as long as they have
an external specification, can be both meaningful and instructional, corresponding to
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semantic information. This, of course, raises the question of how a structure obtains
meaning and even instructional function. This presumably relates to basic theories
and discussions on one of the hardest problems in semantics: ‘The data grounding
problem’ – How can data acquire their meaning? (Crnkovic & Hofkirchner, 2011).
Meaningful data may be an ontological concept embedded in information carriers.
Meaning is not only an epistemic concept, in the mind of the user (Sect. 2.1).

4 Defining and quantifying genetic information

Natural science is largely concernedwith quantification andmeasurement, and consid-
erable effort has been invested in finding a general measure of information, although
some researchers have expressed doubts about the possibility of measuring informa-
tion in a fully satisfactory manner. What is said (that is, information) is not necessarily
the same as being able to quantify howmuch it is said. There may be no direct quantifi-
able framework for mathematical biology in the same manner as such a framework is
well-established in mathematical physics (Chaitin, 1979). Genetic information cannot
at present be measured in a general manner, and the same is true for genetic meaning.

However, in genetics, as in any science, introducingmeasurable quantities is central
to how we study subjects and frame our theories. And as argued in Sect. 2.2, under
certain circumstances it possible to use such quantities to quantify genetic informa-
tion with a syntactic or semantic element. These measures of information involve
presumptions or specifications regarding signs, observers, and reference states that
require careful consideration of the basic aspects of the system.

In this section we will give some examples of how to measure genetic information,
that form a bridge between quantitative and qualitative information (Sect. 2.2). The
most common representation of information is a linear sequence of symbols. A protein
sequence of length L is described as a discrete random variable X � (X1, . . . , XL ),
where X j , j � 1, . . . , L is the amino acid of site j . Such protein sequences can be
directly inferred from DNA sequences through the genetic code.

The biochemical function of a protein or a protein family is determined by direct
empirical experimentation, and links information content to functionality (Adami &
Nitash, 2022). Function is an objective feature because it is the same for all observers.
In categorical terms, genetic function is possibly the best nominal depiction of the
cellular ‘meaning’ of a sequence (cf. Section 2.7). Itmay be interpretated as an instance
of instructional information in Floridi’s general map (Fig. 1). This is also semantic
information, since on top of instructions or syntax, the function is a type of specification
that conveys meaning to an external observer.

As shown in Table 2, Barbieri (2016) has altogether portrayed five properties of
genetic sequences. Originally Barbieri defined these five properties of a single genetic
sequence X , but it may be generalised to a family ( f ) alignment of sequences gathered
into a matrixX f . In the following sections we will discuss how these five properties
of Table 2 possibly can be operationalised and measured within genetics.
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Table 2 An overview of five distinct characteristics of protein sequences X (Barbieri, 2016; Thorvaldsen &
Hössjer, 2023) and their scale of statistical measurement

Property of genes Scientific framework Statistical measure
level

Section

Probability Self-information: I(X) Metric scale (bits)
4.1

Complexity Algorithmic information: length Metric scale (bits)
4.2

Distance Relative distance: D(X1, X2) Metric scale (bits)
4.3

Organic information Function F in the context of a cell:
joint variable [X, F]

Joint [scale (bits),
nominal] 4.3

Organic meaning Cellular and intracellular networks,
logistics in a living system

Joint nominals
(categories) 4.4

Organic information and meaning are usually considered non-numerical entities but are objective observ-
ables in genetics and hence fundamental nominal data type. However, function F can be viewed as a
specification of X that makes it possible to define its functional information as a type of specified informa-
tion (Sects. 2.7 and 4.3 and Appendix A). Together with the instructions carried by X this makes it possible
to quantify a notion of genetic information of X which has a semantic element (Sects. 2.1, 2.9 and 4.3). On
the other hand, it is more challenging to quantify genetic information for cellular networks (Sect. 4.4)

4.1 Self-information of amino acid sequences

Let X � (X1, . . . , XL ), where X j , j � 1, . . . , L is the amino acid of site j , be
a protein sequence of length L . What is commonly referred to as self-information
(corresponding to the first property of Table 2) in information theory may be applied
to measure the information content, or ‘surprisal’, to each of the 20 amino acids x :

I (x)
def� log2

1

px
� −log2(px ), x � 1,2, . . . 20,

where px is the probability of each amino acid, x . The use of logs to measure infor-
mation goes back to Hartley (1928). Consider a large pool of N amino acids, with
frequencies p1, . . . , p20, and assume that one of these N amino acids is drawn ran-
domly. Then I (x) quantifies howmuch the number of possibilities (about which amino
acid from the pool that was sampled) decreases after observing x , due to the fact that
other possibilities are eliminated (Sect. 2.3). As stated by Dretske (1981, p.529),
self-information reflects the fundamental intuition behind information. The expected
(mean) self-information per amino acid

E(I ) �
∑20

x�1
px I (x)

is equivalent to the classical Shannon formula for entropy (or Shannon uncertainty).
The measure of self-information for an entire sequence X of amino acids is positive
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and additive if the components of X are independent. The unit of the self-information
is ‘bit’, since base two is used in the formula for the logarithm.

An orthologue protein family f is commonly represented by the alignment of its
sequences. Let L be the length of the alignment of M sequences. This can be repre-
sented as a matrix X f � (Xmj ) with M rows and L columns, where Xmj refers to the
amino acid of protein m at site j , or a gap. The (vertical) column vector X j contains
the amino acids at a single site j along a multiple sequence alignment of a protein
family. We will define measures of information for protein families X f in Sect. 4.3.

4.2 Algorithmic information of amino acid sequences

Algorithmic information uses the notion of algorithm to measure the amount of infor-
mation. As discussed in Sect. 2.9, since algorithms contains instructions with an effect
(an external specification), this type of information can be viewed as an instance of
specified information (Sect. 2.7). And since a program is also effective, this external
specification adds a semantic element to algorithmic information.

Formally, Kolmogorov algorithmic information, or complexity, of a finite string
X of bits is the length of the shortest computer program that generates string X and
stops (Kolmogorov, 1965). According to this measure (which corresponds to the sec-
ond property of Table 2), the amount of information contained in data is equal to the
shortest program that can reproduce it. This establishes an inverse connection between
informativeness and predictability. Kolmogorov complexity is related to the compres-
sion of data and is sometimes called descriptional complexity. A nontrivial string may
be incompressible and requires an algorithm or instruction set of complexity, such as
the system it describes. Whereas algorithmic information theory uses the notion of a
universal computer, and the resources required to reproduce data on that computer, it
does not represent contingencies in terms of probabilities. Shannon’s theory on infor-
mation, on the other hand, is founded on the concept of probability, and its relation to
contingency. This is true for the definition of specified information in Sect. 2.7 as well.
It is shown in Appendix A.1 that Kolmogorov complexity is a special case of specified
information, in spite of the fact that the latter uses probabilities for its definition.

By stating that Kolmogorov complexity measures the amount of information in a
given string, one does not mean that it is actually possible to perform such a mea-
surement. Numerous programs will generate X, but the exact Kolmogorov measure
of complexity has a disadvantage of being algorithmically unknowable, as there is no
general method to compute it (Cover & Thomas, 2006). The notion of Kolmogorov
complexity is primarily theoretical. However, it is possible to obtain an upper bound
for it, and accordingly, it is bounded without being computed exactly. Several protein
compression methods have been proposed in the literature. For a review we refer to
Hosseini et al. (2016). Interestingly, the Kolmogorov complexity of X may be esti-
mated from its output frequency distribution (Soler-Toscano et. al 2014).
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4.3 Extending the Shannonmeasure of information to protein families

Yockey (1977) pioneered the application of information theory to protein sequences
by estimating amino acid variability at each position in the primary sequence of the
protein family cytochrome c. He found the information per amino acid to be 2.953
bits.

In a recent paper Thorvaldsen and Hössjer (2023) have demonstrated how variants
of the Shannon information measure can be applied to molecular sequence data sets of
protein families. This constitutes a series of very specific analyses, constrained by the
assumptions about the underlying probability distributions of sequences from which
data have been obtained. The reference distribution p � (p1, . . . , p20) on the set of
amino acids is derived directly from the genetic code, where each amino acid x is
assigned a prior probability px � nx/61 proportionally to its constituting number nx
of codons (between 1 and 6), with corresponding a self-information −log2(nx/61)
between 5.93 and 3.35 bits. This distribution assigns the same probability to each of
the 61 non stop codons of the genetic code. It corresponds to a non-informative prior on
the set of codons and hence is a natural starting point, from ‘first principles’ thinking,
to model maximal ignorance about the codon distribution before any data has been
analysed. It relies on using the Principle of Insufficient Reason (Bernoulli, 1713), or
the principle of maximum entropy (Jaynes, 2003) for the prior codon distribution.

The concept of self-information is of relevance for quantifying natural information
(Sect. 2.5). Suppose an amino acid r � x has been observed, and we want to find out
which codon s that was translated into r . Consider a particular codon F that translates
to r . Observing an amino acid r � x conveys information about the statement s � F ,
since the probability of this event increases from 1/61 to 1/nx � 1/

(
61px

)
. Indeed,

after having observed r � x , the statement s � F make us less surprised, correspond-
ing to a decrease log2(61) − log2(61px ) � I (x) of self-information. Consequently,
I (x) quantifies the amount of natural information carried by x .

Based on self-information it is also possible to estimate the information content of
various protein domains and families X f in different ways. Table 3 gives an overview
of three such information content quantities, and it summarises some of their properties
(see Thorvaldsen & Hössjer, 2023 for more details).

As described in Table 3, a conditional version of the commonly usedMutual infor-
mation from information theory may be applied to sites of aligned sequences. Mutual
information captures all dependencies between two randomvariables. It measures how
much the Shannon uncertainty for one random variable (which in our context is an
amino acid sequence with a prior distribution) is expected to decrease when knowl-
edge of another random variable (which in our context is an amino acid sequence with
marginal distributions at all sites in agreement with the empirical distributions of the
observed amino acid sequence) is taken into account. High mutual information indi-
cates a large reduction in uncertainty. The conditional mutual information quantifies
the corresponding observed (not expected) reduction in Shannon entropy.

Durston et al. (2007) applied conditional mutual information to compute the infor-
mation content based on a uniform prior distribution p with px � 1/20 for each
amino acid x . The sum of the contributions at each position of the alignment leads
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Table 3 Three different quantities for measuring bits of information I (X f ) for a protein family X f of

M amino acid sequences of length L , with p � (p1, . . . , p20) the prior distribution of amino acids,
q j � (q1 j , . . . , q20, j ) the observed empirical distribution of amino acids at site j of the protein family,

whereas r j � (r1 j , . . . , r20, j ) contains the probabilities rx j of not rejecting an amino acid x , when such
an amino acid is sampled from a large reservoir of amino acids (distributed according to the prior p) in
order to build up site j of the protein family

Quantity Estimate of I (X f ) Per site
range [min,
max]

Value at site
with
conserved
amino acid x

Conditional
mutual
information

−L p · log2 p +
L∑
j�1

q j · log2q j
[− 0.18,
4.14]

4.14

Expected active
information −

L∑
j�1

q j · log2 p +
L∑
j�1

q j · log2q j
[0, 5.93] −log2 px

Functional
information −

L∑
j�1

log2( p · r j ) � −log2
∏L

j�1 p · r j ,

where

rx j � qx j /px
max

(
q1 j /p1, ..., q20, j /p20

)

[0, 5.93] −log2 px

Note that I (X f ) � ∑L
j�1 I (X j ) is additive over sites, for all three quantities. The two rightmost columns

depict, for each quantity, the range of values I (X j ) can take per site j , and the value of I (X j ) at sites j for

which x is conserved (qx j � 1), respectively. The models are elaborated further in the text

to the conditional mutual information of the entire protein family. They examined the
lower bounds for the conditional mutual information (in units of bits) for 35 protein
families, with lengths L ranging between 33 and 949 amino acids, and computed an
information content between 46 and 2416 bits. An improved approach is to apply the
reference distribution defined in the beginning of Sect. 4.3 as prior (Thorvaldsen &
Hössjer, 2023).

As mentioned in Sect. 2.10, Active information, I + was introduced by Dembski
and Marks to handle infusion of knowledge in random search algorithms (Dembski
& Marks, 2009a, 2009b). It was later applied to population genetics by Díaz-Pachón
and Marks (2020). A general statistical framework for estimating active information
is provided by Díaz-Pachón and Hössjer (2022).

In our context, I +j (x) � log2
(
qx j/px

)
is the active information associated with a

change of frequency of amino acid x at site j from the prior probability px to the
observed relative frequency qx j in the protein family. Analogously, a change in the
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frequency of an amino acid distribution from p to q j at site j corresponds to the
expected active information

E
(
I +j

(
X j

)) � E (p)
q j − E

(q j )
q j � −q j · log2 p + q j · log2q j

�
20∑

x�1

qx j log2
qx j
px

� DKL
(
q j || p

)
,

where expectation is over q j � (
q1 j , . . . , q20, j

)
, the observed empirical distribution

of amino acids at site j (cf. Table 3), whereas · refers to the dot product between two
vectors of equal length. Hence, the expected active information at site j is equivalent to
the information-based Kullback–Leibler divergence DKL between p to q j (Kullback
& Leibler, 1951). Motivated by continuity, we define 0·log 0 � 0. It follows that the
expression for the expected active information in Table 3 equals the total Kullback-
–Leibler divergence

∑L
j�1DKL

(
q j || p

)
between the prior and posterior distributions

p and q j , summed over all sites. Each term of this expression is always non-negative
and quantifies the directed ‘distance’, or relative information, between two probability
distributions over the same sample space, with DKL � 0 being the most similar (the
probability vectors p and q j are identical). However, despite its many useful proper-
ties, the Kullback–Leibler divergence is still an asymmetric measure and thus does not
qualify as a common metric of spread; it also does not satisfy the triangle inequality
(Cover & Thomas, 2006). Consequently, when active information is employed, the
Kullback–Leibler divergence gives rise to a relative distance (the third property of
Table 2) D

(
X , X j

) � DKL
(
q j || p

)
between two amino acid sequences X and X j ,

with amino acid distributions p and q j respectively, that does not satisfy the triangle
inequality.

The thirdmodel inTable 3 isFunctional information. This notionof informationwas
introduced inSect. 2.7. Theversionof functional information inTable 3 is approximate,
since it does notmake direct use of the empirically observed function F from the fourth
property of Barbieri’s Table 2 (see Appendix A.2 for more details). It rather applies an
indirect method inspired from rejection sampling (Wells et al., 2004), with a proposal
distribution p and a target distribution q j at site j . This sampling procedure is repeated
independently for all sites j � 1, . . . , L . It is hypothetically assumed that the M
sequences of the protein family have been obtained through a sampling procedure with
censoring (or rejection). Amino acid sequences are generated independently between
sequences and sites from a large reservoir X R of amino acids with distribution p, and
an amino acid x at site j is retained (not censored) with probability rx j . The censoring
mechanism gives rise to the measure of information expressed in Table 3, with the
non-censoring probability viewed as an approximation of the fraction of functional
amino acid sequences (Thorvaldsen & Hössjer, 2023).

The same expression also corresponds to the functional information as introduced
by Jack Szostak in his important paper in Nature (Szostak, 2003) and subsequently
studied in Hazen et al. (2007). As mentioned in Sect. 2.7, Szostak and colleagues
specified functional information in terms of a gene string as −log2 of the tiny fraction
of functional sequences that have fitness values (activity of a biopolymer) greater than
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a specified value (Hazen et al., 2007).1 For the approximate version of functional
information of Table 3, the non-censored sequences are defined as functional (F), so
that this fraction is the probability that a random sequence will not be censored.

The approximate measure of functional information of Table 3 also satisfies the
triangle inequality (Thorvaldsen &Hössjer, 2023), but it does not qualify as a standard
distance measure (it is not symmetric). In the mathematical literature such spaces are
often named a quasi-metric space, or a “mountainous” space, since the effort of going
upward to the top of a mountain is not the same as descending downhill to the starting
point (Khamsi, 2015). This corresponds to using a non-symmetric relative distance
(the third property of Table 2) D(X , X j ) � −log2( p · r j ) between two amino acid
sequences X and X j with amino acid distributions p and q j respectively, where q j
is obtained from p and r j as described in Table 3.

The models with expected active information and functional information have the
advantage of being non-negative, and the latter quantity additionally approximates
the functional information specified by Szostak. Expected active information does not
meet the usual criteria of a distance measure, because it is both asymmetric and path-
dependent. In contrast to the functional information, it does not satisfy the triangle
inequality. On the other hand, the conditional mutual information quantity needs no
correction for random sequences to have approximately zero information, whereas
both the expected active information and functional information quantities will need
such a correction term, as derived by Thorvaldsen and Hössjer (2023). The functional
information and the conditional mutual information have successfully been applied
on large multiple sequence alignment data derived from the Cath (Sillitoe et al., 2021)
and Pfam (Mistry et al., 2021) databases (Thorvaldsen & Hössjer, 2023; Thorvaldsen
et al., 2010).

4.4 Cellular and intracellular networks and logistics

Genes are not merely epistemic descriptions. These epistemic features only constitute
a subset of the overall properties of genes, and although they are very useful, they are
limited and inadequate for addressingmany forms of instruction and control. Genes are
also prescriptions formetabolic success.Abel (2009, 2012) issued the termprescriptive
information to describe the sources and nature of coding controls, regulations, and
algorithmic processing (cf. Sects. 2.4, 2.8 and 2.9). Such prescriptions are universally
instantiated in all the known living cells. Prescriptive information instructs genetic
functions in such a way as to realize a prescribed set of logic gate programming
choices (Abel, 2009; D’Onofrio, 2012). Without such steering of physicochemical
interactions, metabolic pathways and cycles would be unattainable to merge into a
cooperative and holistic metabolism of a cell, where a non-trivial formal organisation
is achieved.

1 The definition of I+(A) � log2[Q(A)/P(A)] of active information, for a set A of amino acid sequences
of length L and prior distribution P , can also be viewed upon as a generalization of specified information,
(which corresponds to the special case Q(A) � 1, with A the set of specified states), if an external agent
actively caused A to happen with certainty (Q(A) � 1). Cf. Díaz-Pachón and Hössjer (2022) and Appendix
A for further details.
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The functionality of the expressed genes is strongly context dependent. Only a
very small subset of these molecules is at work (i.e., meaningful) at a given moment
in the big intercellular network, whose functioning is dependent on preconditions
of temperature, salinity, and pH. That milieu also involves other expressed proteins.
Biological functionality is subject to informational control and feedback, so that the
rules may change dynamically with time in a manner that is a function of the current
state of the organism. Information of biological systems is not only a way to describe
states but also an integrated property of the whole system. It has also causal efficacy
(Walker & Davies, 2013, see also Sect. 2.4). A statistical framework to capture and
measure the interactions of a cellular networkwill be exceedingly complex and remains
one of the challenges of system biology. For instance, the functional information of
such an interaction network would correspond to −log2 of the fraction of states of the
system that correspond to a functioning network (cf. Sects. 2.7 and 4.3). However,
the main challenge is firstly to define exactly what a functioning network means, and
secondly to define a probability distribution on the set of possible states of networks
in order to approximate the fraction of functional states (in a certain environment, at
a specific time).

Although it is difficult to define the information of a whole network, it is sometimes
possible to define the specified information of some of its subcomponents. Biological
information of such a component can occur in both analogue and digital forms. An
example of digital information is binary functionality (a component that either func-
tions or not, cf. Appendix A.2). An example of analogue information is morphogens,
where patterns of electric membrane potentials serve as morphological templates in
3D space (Levin, 2017). In either case, as long as the degree of specification of the
component can be quantified, it is also possible to quantify its specified information
(Sect. 2.7 and Appendix A).

Accordingly, a whole living system has a large informational narrative. It includes
genes and gene products that are joined in an immensely organised network of informa-
tion flow through the cell. Researching the protein interaction networks of all proteins
in an organism is one of the crucial challenges in biology and a crucial part of systems
biology. We may also describe this as process information or logistics of cellular and
intracellular networks, corresponding to the fifth property of Table 2.

5 Discussion and concluding remarks

In this article we have reviewed the use of qualitative and quantitative notions of infor-
mation within biology, as a first step towards developing a taxonomy of information of
biology. In particular, we analysed information measures as applied to distinct dimen-
sions of the genomic machinery by distinguishing their statistical and epistemological
merits. We have argued that semantic information can be accessed for protein fami-
lies, since they involve codes (the syntactic part) and exhibit function (the specification
part). As we observed in Sect. 4.3, an asymmetric measure of functional information
exists for protein families as a proxy for semantic information, while no similar mea-
sure exists at present for cellular and intracellular networks (Sect. 4.4). Under certain
conditions the asymmetry of the functional information measure may be given a nice
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interpretation, as the probability of acquiring information is typically less than the
probability of losing information. For instance, deleterious mutations tend to erode
information of protein families, and they are much more frequent than benign muta-
tions, that correspond to a gain of information. We also found that protein families are
defined both by a qualitative epistemology together with their quantitative measures
in bits, whereas cellular networks are at present only described by their epistemic
merits. This observation is interesting and may generally be reflecting scientific work
in progress.

The quantification of functional information for a given (observed) protein family
employs all recognised sequences of this family. Our approximation of functional
information in Sect. 4.3 treats function as a binary feature, where protein families
are sampled and the non-censored protein families are regarded as functional. The
original functional information definition in Szostak (2003) rather treats functionality
as a continuous feature, corresponding to degree of biofunction (e.g., the reaction rate).
This more general definition of functional information is essentially equivalent to the
definition of specified information in Sect. 2.7, regarding degree of functionality as
the specification (see Appendix A).

Genes may have similar biochemical functions, without any noticeable sequence
similarity. These isoenzymes vary in sequence, but catalyse the same reaction (Guzzi
et al., 2012). Semantic similaritymeasures havebeendeveloped and applied as biomed-
ical ontologies, and are used to connect genes and proteins based on the similarity of
their functions rather than on their sequence resemblance. However, since the meth-
ods used in Sect. 4.3 are based on sequence similarity, they only work for orthologue
sequences andmust handle isoenzymes as separate groups. Thesemethods can be used
though to estimate (and compare) the information content of each ortholog group.

5.1 Is the reference to information in genetics just a metaphor?

Various objections have been raised to implementing informational concepts in
physico-chemical areas of biology, like in genetics. There are two main positions
on the ontological status of information in genetics (Kim et al., 2015), which relate to
the basic discussion we mentioned in the introduction: Is the reference to information
in genetics just a metaphor (the first position) or is it not (the second position)? This
debate is possibly one of the deeply dividing issues in modern science, and here we
only briefly review and discuss a few aspects of the arguments.

Although most molecular biologists would see no serious controversy in character-
isingDNA and proteins as ‘information-bearing’molecules, and thereby using notions
from information science, some philosophers of biology have challenged this strategy.
The first position, that information in biology and genetics is a metaphor, is known
as ‘the physicalist thesis’. It has been held by a number of scientists and philoso-
phers (Chargaff, 1963; Sarkar, 1996, 2000; Mahner & Bunge, 1997; Griffith, 2001;
Boniolo, 2003; Levy, 2011). Adherents of the first position argue that while infor-
mation is undoubtedly a useful metaphor to describe genetic systems, in the end, all
biological complexity is, at least in principle, reducible to basic physics and chemistry.
Scholars supporting this view consider the description of genes as content-bearing a
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thin one, and they are skeptical about strong notions and ascription of intentional
properties.

For instance, Stuart (1985, p. 441 ff) suggested that the description of biological
processes in terms of informational transfer is treated as ‘a metaphor with deeply
anthropomorphic content’, and that we, for this reason, should look for another (non-
anthropomorphic) approach. Kay (2000) described the application of information
theory to biology as mistaken, mainly because Shannon’s theory lacks the idea of
meaning. She contended that the term "information", as applied in biology, is just
a metaphor since the term designates nothing real. Kay explained the origin of the
use of the term information within biology because of various social forces that were
operating within the techno-culture of the time (1994, 2000).

Similarly, Sarkar (1996, 2003) reasoned that the concept of information has limited
theoretical relevance in biology, because it lacks explanatory or predictive power.
Like Kay, he seems to regard the concept of information as a redundant metaphor
that lacks ontological substance and empirical references. Sarkar calls his account of
genetic information ‘deflationary’ (2003). However, Stegmann (2009) argues that the
deflationary theory does not capture four essential features of the ordinary concept
of genetic information: intentionality, exclusiveness, asymmetry (DNA to proteins
and other developmental outcomes, but not vice versa), and causal relevance. The
deflationary definition of genetic information is therefore disconnected from what is
customarily meant by genetic information.

Levy (2011) argues that the most reasonable interpretation of informational notions
in biology is fictional—metaphors rather than descriptions that are based on genuine
semantic properties of macromolecules and cells. However, he also argues that appeals
to information bear theoretical weight by allowing us to reason via a fiction about real
causal properties. According to this view, invocations of information in biology are
non-literal descriptions playing a genuine role in biological understanding. Informa-
tional language is what Levy call a liminal metaphor—one that operates near the
threshold of the noticeable.

In an interesting chapter on ‘Evolution, Theology and Biosemiotics’, Robinson
(2010, pp. 179–219) has argued that the philosophical critique of ‘naive uses of infor-
mation terminology in biology’ is well founded. On the other hand, Robinson also
points out (in linewith the second position,whereby information is not just ametaphor)
that itmight be amistake to eliminate all semiotic concepts from theoretical biology.He
asks: ‘In particular, has the seductiveness of the mathematical theory of information
diverted attention from the possible relevance of semantic information—‘meaning’
informatio—to the origin of life?’ (2010, p. 196). This is exactly the point suggested
in Peircean biosemiotics that semiotic concepts and ideas are needed to obtain a satis-
factory understanding of life. This mainly calls for the use of the qualitative aspects of
information, with the implication that information in biology is more than a metaphor.

Even though Shannon’s information theory has a limited application in describing
biological systems, it has been successful in quantitatively assessing the complexity
of biomolecules. We may define information in the general sense as ‘all that which
is communicated’, and hence, the information within a living cell is much greater
than its protein sequences. All parts of the cell, including the DNA, RNA, protein
molecules, lipids and carbohydrates are in steady communication with each other.
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Thousands of different types of interactions take place within the cell. Although we
briefly treated cellular networks in Sect. 4.4, in the present paper we mainly study
biological information in the limited context of the array of information encoded
within a cell’s proteins (Sect. 4.3). Information carried by a gene in a living cell
is instructional in the sense that it guides the production of a specific protein. The
gene opens up some possibilities and excludes others (Sect. 2.3). In this way, the
gene indicates which of the logically possible worlds could or could not be actual.
This corresponds well with the qualitative aspects of semantic, syntactic, specific, and
algorithmic information, discussed in Sects. 2.2, 2.4, 2.7 and 2.9.

For instance, experimental work has established the functional specificity of the
sequences of nucleotides in DNA and amino acids in proteins. Thus, the term infor-
mation used in genetics refers not only to syntactic but also to functional properties of
living systems. As Crick explained shortly after their discovery of the molecular struc-
ture of DNA, ‘By information I mean the specification of the amino acid sequence in
protein’ (Crick, 1958, p. 144), and ‘Information means here the precise determination
of sequence, either of bases in the nucleic acid or of amino acid residues in the protein’
(Crick, 1958, p. 153). This ‘specification’ and ‘precise determination’ can be associ-
ated not only with codes and syntax (Sect. 2.4), but also with functional properties of
proteins, as quantified by functional information (Sects. 2.7 and 4.3).

Adherents of the abovementioned second position on the ontological status of infor-
mation in genetics, consider information as intrinsic to the process of living systems. If
this is correct, life has to be classified as distinct from other types of physical systems,
as we know of no other category of physical systems where information is mandatory
to specify its state and process (Walker & Davies, 2013). Since Mendel’s time, when
scientists began to search severely for what would be involved in explaining the mech-
anism of heredity, biologists have anticipated the need for some substance or feature
in living organisms possessing such properties (Alberts et al., 1983, p. 21). Davies has
argued that the ‘specific randomness’ of DNA base sequences constitutes the basic
secret on the nature and origin of life (Davies, 1998, p. 120). Once an informational
framework (such as syntactic and specified information, cf. Sections 2.4 and 2.7) is in
place, it allows us to capture properties of the objects and processes in question. In this
way the informational language serves as a way of pointing to the real (literally true)
causal roles of those elements in terms of codes and specifications that an external
epistemic agent recognizes (Sect. 2.1). Metaphoric language may just be reflecting
the preliminary state of art of scientific work in progress, until more is learnt about
the real cause and quantification of these specifications. By studying the informational
architecture of cellular networks, Kim et al. (2015) concluded (along the lines of the
second point of view) that information is definitely intrinsic to life and they argued
that there is increasingly strong support for this viewpoint. This suggests that infor-
mational architecture is necessary to account for life, and even for the emergence of
life.

Today it is commonly accepted by many eminent biologists that the sense of infor-
mation rendered by Shannon’smathematical information theory is legitimate, relevant,
and useful in several parts of biology. The analysis of genetics in terms of information
causes a deeper understanding beyond mathematics, which may reveal several other
important characteristics. Some have drawn on the teleosemantic theory in philosophy
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to make sense of this kind of approach, extending Shannon’s theory of information to
the semantic notions of information discussed in Sect. 2.2. A minority tradition has
argued that the enthusiasm for information in biology has been a theoretical wrong
turn, and that it fosters naive distortions of our understanding of the roles of interacting
causes within biology, with an implicitly dualist ontology. However, the support for
this skeptical response is fading, as a plausible relationship between the qualitative
and quantitative notions of information based on scientific measurements is being
established, as described in Sect. 4 and Appendix A.

5.2 Concluding remarks

Genes accommodate instructions, which are a type of procedural information (or
practical information, as explained in Sect. 2.1). In this sense, genes represent proper
informational entities. This interpretation of genetic information is compatible with,
but still goes beyond, Shannon’s probabilistic theory of information, yet being less
demanding than a full semantic interpretation, which also requires external specifica-
tion of the effects of the instructions, in terms of an effective algorithm (Sect. 2.9).
Informational concepts, beyond Shannon’s probabilistic definition, therefore, have
robust application at the level of genes. The explicit introduction of functional informa-
tion is one way of quantifying specified information.We have argued that functionality
not only is an external specification, but that it also provides meaning (Sect. 2.7).
Functional information therefore serves to bridge the quantitative and semantic infor-
mation concepts (Sect. 2.2) and it also brings about a statistical framework and testable
hypotheses on the role of information in genes and genetic systems. But more gener-
ally, the basic division between syntactic and semantic information still requires better
coupling and coherent understanding to develop a synthetic theory of information for
genetic systems (Sect. 4.4). One way forward is to interpret semantics (for instance
function) as a higher degree of specification than syntax, along the lines of Gitt’s five
levels of information (cf. Sects. 2.7 and 2.10).

The idea that genetic sequences are a type of molecularly coded information is
already well accepted in current research. In the present study, the algorithmic nature
of genes was applied in Sect. 3 to classify genetic information, making use of the
functional categories of Fig. 1, as is commonly performed in biology. Each category
of Fig. 1 may be analysed further using a quantitative measure of self-information
(Sect. 4.1). Information measured in this manner, merely by the reduction of the
relevant uncertainty within a given category of Fig. 1, compared to another larger
frame of Fig. 1 that includes this category, is an important, albeit restricted, notion of
information (Sect. 2.3). It does not cover the full range of information concepts. As
discussed in Sects. 2.2–2.3, 2.7 and 2.9, self-information does not cover, for instance,
the common-sense conception of information in human cognition and communication
or algorithmic information theory. But as mentioned in Sects. 2.2, 2.4, 2.5 and 2.7,
probability-based information concepts can still be used to discern other types of
information, in terms of uncertainty reduction, when the discernment mechanism is
related to codes or function.
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Functional information is a joint concept, whose definition involves a probability-
based self-information as well as a specification based on function (cf. the fourth
property of Table 2). It is therefore a valuable approach for quantifying information in
the context of genetics. This approach was elaborated in Sects. 2.7, 4.3 and Appendix
A, and Fig. 2 shows how this relation connects to, and may provide a deeper under-
standing of, genetic information. The crucial parts of Fig. 2 are the two dashed lines,
which demonstrate how various ways of quantifying information to the left, are also
used to quantify some information with a semantic context (such as function) to the
right.

As noted in Sect. 4.4, grand unified theory of biological information may be long
ahead, perhaps even fundamentally unreachable, given the uncontained use of the term.
There is much more information present in a biological system than can be counted
by simple, direct observation; therefore, its quantification by observing frequencies of
DNA or amino acid variants only amounts to gross bias by discarding. The biological
organisms exist within a set of hierarchical levels from DNA to ecology (Farnsworth
et al., 2012; Griffiths, 2017). The flow and representation of information in ecological

Fig. 2 An illustration of the relation between quantitative and qualitative information. As in Fig. 1 ‘well-
formed’ means that the data (or patterns) are composed in line with the rules (syntax) governing the system
in question. Left part: For data with syntactic as well as quantitative information, the data have some
statistical properties that convey information beyond the syntax itself. Note that this is not the same thing
as Shannon information, since the latter only involves probabilities, not codes and syntax. Right part: For
data with semantic information some type of specification is required beyond syntax, such as an entity
that functions, an algorithm that is effective and achieves something when executed, or some message that
conveys meaning beyond the syntax itself. The dashed lines between ‘quantitative (syntactic) information’
and ‘semantical information’ signify that quantitative information is typically used in semantic information
(both instructional and factual), and that semantic information may itself be quantified (such as estimating
the probability of obtaining by chance a given sentence with meaning). This holds for information in nature
as well as for information in technology and human communication (T&C)
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systems is information processing, which integrates information in multiple forms
(O’Connor et al. 2019). Developing methods for observing, tracing, and quantifying
information remains an object of research across disciplines. We hope that the present
paper may serve to expand the common understanding of biological information, and
be part of the process of creating a taxonomy for biological information.

A taxonomy of biological information is important, not the least since information
is a conceptual key to a proper understanding of reality. Despite the large body of
evidence that information plays a vital role in genetic systems, information handling
and esteemdoes not yet occupymuch space inmainstream theories and textbooks. This
inconsistence is problematic and separates genetics from other exact sciences where
quantitative techniques are widely implemented. But new scientific and philosophical
thinking and work may eventually lead to a full recognition of a ternary informational
“domain” that exists alongside the domains of spacetime and energy/matter.

As emphasized in Sects. 2–4, biological information has both a probabilistic, lin-
guistic/syntactic, semantic and algorithmic dimension over an observable dataset.
Through the representation and pragmatic assessment of these features of data, there
is substantial justification for considering and discussing basic aspects of biology in
terms, fundamental notions and ideas well-known from information theory (particu-
larly in the area of technology and human communication, T&C) that go well beyond
Shannon information. In this paper, we have presented some recent advances in the
measurement of genetic information as a joint variable of function and sequence data
(the fourth property of Table 2), and connected this approach to Floridi’s general map
of information. Functionality is a natural informational concept to use in T&C, and we
have argued that it is important in biology as well. As summarized in Fig. 2, notions
of information known from the study of T&C have so far turned out to be useful in
biology. If there is a need for introducing a completely new and different information
notion to deal with problems in genetics, it still has to be shown. The burden of proof
falls on anyone who claims that there is such a need. Without such a demonstration
it must be obvious to apply the principle of Ockham’s razor assuming that the notion
of information being developed within the study of T&C is also highly appropriate to
deal with the informational questions and problems in genetics. Not as a metaphor,
but as a truly inherent property of life.

Appendix A: Mathematical treatment of specified information
and related quantities

The purpose of this appendix is to give a more mathematical treatment of specified
information in order to show that several other notions of information, treated in this
paper, are either special cases or at least closely related to specified information. To
this end, let X be a sample space, P a probability measure for generating random
outcomes X on this sample space and f : X → R a real-valued specificity function
(Montañez, 2018), with f (x) telling how specified outcome x is. For each x ∈ X we
let

Ax � { y ∈ X ; f ( y) ≥ f (x)}
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be the set of outcomes at least as specified as each x. The specified information

Ix � −log2P(Ax) � −log2P( f (X) ≥ f (x)) (1)

of x is defined as the self-information of Ax . Equation (1) is consistent with the
original definition of specified information (Dembski, 1998), that a feature x has
specified information if i) it is unlikely to occur by chance and ii) it has an independent
specification. Indeed,whenever Ix is large, property i) is satisfied since P(Ax) is small,
whereas ii) is satisfied since Ax is constructed from the specificity function f . Formula
(1) is essentially used in Thorvaldsen andHössjer (2020) andDíaz-Pachón andHössjer
(2022) as a definition of specified information.

A.1: Special cases of specified information

A number of special cases of (1) can be inferred. For instance, if X is the set of
polymers of a certain length L and f (x) is the degree of biofunction of x, then (1)
reduces to the definition of functional information given in Szostak (2003).

If X is the set of text strings of given length L , and f (x) ∈ {0,1, 2,3, 4} refers to
the level of information of x according to the hierarchical taxonomy of Gitt (1989),
described in Sect. 2.7, then Ix quantifies the amount of information associated with
hierarchy f (x). Indeed, the higher level of information x conveys (the larger f (x) is),
the larger is Ix .

If X is the set of systems of a certain type, and f (x) either refers to the amount
of circular causality of x, or the degree of organization of x, then Ix quantifies the
amount of cybernetic information (Sect. 2.8) of x.

Suppose X is a countably infinite space of all sequences, from a given alphabet,
of finite length. For each x ∈ X let f (x) ∈ Z+ refer to the shortest binary computer
program able to produce x as an output (or end state/goal). Assuming that each finite
binary string corresponds to a computer program that produces an output in X , it
follows that P({x}) � 2−2 f (x) defines a probability measure onX . It can then be seen
that Ix equals the Kolmogorov complexity f (x) of x minus 1. This follows by taking
−log2 of the identity

2−Ix � P (X ≥ x) �
∑

y; f ( y)≥ f (x)

2−2 f (y)

�
∞∑

n� f (x)

∑

y; f ( y)�n

2−2 f (y) �
∞∑

n� f (x)

2n · 2−2n � 21− f (x).

Hence algorithmic complexity (Sect. 2.9) is formally a special case of specified
information. However, as mentioned in Sect. 2.9, the specificity function f is not
computable, and moreover the random measure P involves f .

123



Synthese (2024) 204 :15 Page 33 of 38 15

A.2: Functional information with a deterministic or random, binary-valued
specification

LetX refer to the set of amino acid sequences of a given length L ,whereas f (x) ∈ {0,1}
tells whether x � (x1, . . . , xL) corresponds to a functioning protein (1) or not (0).
Define the probability measure P on through

P({x}) �
L∏

j�1

px j ,

where p � (p1, . . . , p20) is the vector of prior amino acid probabilities defined in
Sect. 4.3. Then

I � −log2P

(
∑

x∈A

P({x})
)

� −log2P(A) (2)

refers to the amount of functional information associated with the set of amino acid
sequences

A � {x ∈ X ; f (x) � 1}

that correspond to a functioning protein. Note that (2) is a special case of the functional
information definition (1) of Szostak (2003), for binary-valued specificity functions.
Let us now consider the case of a random and binary-valued specificity function, with

rx � P(x is functioning) � P( f (X) � 1|X � x) �
L∏

j�1

rx j j ,

where r j � (r1 j , . . . , r20 j ) contains the non-censoring probabilities of Table 3 from
site j . Let X � (X1, . . . , XL) ∼ P refer to a randomly chosen amino acid sequence.
Then

I � −log2P(X is functioning) � −log2

L∏

j�1

p · r j (3)

is equivalent to the functional information of Table 3.
Note that (2) is a special case of (3) when the specificity function is deterministic,

that is, when rx � 1(x ∈ A). Equation (2) is more appropriate to use when it is
possible to determine empirically whether a structure x functions or not, whereas
(3) is applicable when functionality cannot be determined empirically, but only the
probability rx of x functioning.
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A.3: Active and natural information

Suppose we have a second probability measure Q on X , and let A ⊂ X be a subset
of the sample space. Define

I +(A) � log2
Q(A)

P(A)
, (4)

when Q refers to the probability distribution of an external agent who brings about an
outcome in X , then I +(A) is the active information of A (Sects. 2.10 and 4.3). In the
context of Werner Gitt’s five levels of information, X may be taken as the set of text
strings from a certain alphabet of length L , whereas A � {x ∈ X ; f (x) ≥ 3} are those
text strings for which the sender requires an action, possibly also having a purposewith
the message. If P corresponds to a randomly produced text, whereas Q designates
a text generated by such an external and conscious agent, then I +(A) quantifies the
amount of external information this agent brings about in order to produce a text that
mediates action or purpose.

However, (4) can also be associated with natural information (Sect. 2.5), whenX is
the space of possible source signals s, whereas P(A) � Prob(s is in A|k) and Q(A) �
Prob(s is in A|r isG&k) refer to the conditional probabilities of the source s belonging
to A, given only background knowledge k, or given background knowledge k as well
as an observation r in state G. According the weaker definition of natural information
of Sect. 2.5, given background knowledge k, r isG conveys natural information about
the event s is in A if and only if I +(A) > 0. As mentioned in Sects. 2.5 and 2.6,
this definition of natural information includes codes, as well as instructive, blueprint,
and hereditary information. The main difference between the natural information and
active information interpretations of (4) is that typically, for natural information, no
external agent is associated with producing the received signal r , whereas for active
information, such an agent produces an outcome with distribution Q.
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