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S U M M A R Y 

Seismic phase detection and classification using deep learning is so far poorly investigated 

for re gional ev ents since most studies focus on local events and short time windows as 
the input to the detection models. To e v aluate deep learning on regional seismic records, 
we create a data set of events in Nor ther n Europe and the European Arctic. This data set 
consists of about 151 000 three component event waveforms and corresponding phase arri v al 
picks at stations in mainland Norway, Finland and Svalbard. We train several state-of-the- 
art and one ne wl y de veloped deep learning model on this data set to pick P- and S -wave 
arri v als. The ne w method modifies the popular PhaseNet model with new convolutional blocks 
including transformers. This yields more accurate predictions on the long input time windows 
associated with regional e vents. Ev aluated on e vent records not used for training, our new 

method improves the performance of the current state-of-the-art methods when it comes to 

recall, precision and pick time residuals. Finally, we test our new model for continuous mode 
processing on 4 d of single-station data from the ARCES array. Results show that our new 

method outperforms the existing array detector at ARCES. This opens up new opportunities 
to improve automatic array processing with deep learning detectors. 

Key words: Machine learning; Seismology; Earthquake monitoring and test-ban treaty ver- 
ification. 
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1  I N T RO D U C T I O N  

Seismic event detection and phase arrival picking are crucial first 
steps in automatic monitoring pipelines. Reliable picking is required 
for associating phase detections to events and subsequently locating 
them. Traditional phase picking methods are often based on power 
detectors, such as the well-known ST A/LT A (Shor t-Ter m/Long- 
Ter m average) trigger. Fur ther more, more advanced approaches, 
making use of other characteristic functions of the seismic wave- 
form based on various statistical moments and polarization at- 
tributes, as well as autore gressiv e models have been used (Withers 
et al. 1998 ; Bai & Kennett 2000 ). Most of these methods do not 
provide a phase classification and/or do not consider the temporal 
context of an arri v al, for example that it is more likely that a P 

wav e is observ ed if it is followed by an S wave. In recent years, the 
integration of machine learning methods into seismic processing 
pipelines has made huge progress, taking advantage of manually re- 
viewed seismic event catalogues established over decades (Bergen 
et al. 2019 ; Kong et al. 2019 ; Mousavi & Beroza 2023 ). Many deep 
learning methods have been developed and tested for the detection 
of phase arri v als of local e vents (Zhu & Beroza 2018 ; Mousavi et al. 
2020 ; Li et al. 2022 ; Garc ́ıa et al. 2022 ; Park et al. 2024 ). Large
862 
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data sets for training these types of models have been compiled, 
for example the STanford EArthquake Data set (STEAD, Mousavi 
et al. 2019 ), the Italian Seismic Data set For Machine Learning (IN- 
STANCE, Michelini et al. 2021 ), a region-specific data set for the 
Pacific Northwest (Ni et al. 2023 ), and most recently the Curated 
Re gional Earthquake Wav eforms (CREW) data set (Aguilar Suarez 
& Beroza 2024) . STEAD consists of 60-s-long waveforms recorded 
at seismic stations within epicentral distances of 100–350 km. The 
INSTANCE data set consists of 120-s-long waveforms with P - and 
S -arri v al picks from events at up to 600 km distance. Both data sets 
have been used extensi vel y in the validation of phase arri v al picker 
methods. Zhu & Beroza ( 2018 ) adapted the UNet (Ronneberger 
et al. 2015 ) architecture commonly used in image segmentation to 
the task of phase picking. This method is known as PhaseNet and has 
been the de facto baseline for man y studies. Recentl y, fuelled b y ad- 
vances in language processing, the addition of attention (Bahdanau 
et al. 2016 ) and transformers (Vaswani et al. 2017 ) has been added to 
picker models, for example EPick (Li et al. 2022 ) or EQTransformer 
(Mousavi et al. 2020 ). 

So far, few deep learning models have been adapted and tested 
for events at regional and teleseismic distances, that is further than 
a few hundred kilometres from a sensor. Wang et al. ( 2019 ) tested 
ress on behalf of The Royal Astronomical Society. This is an Open Access 
s Attribution License ( https://creati vecommons.org/licenses/b y/4.0/ ), which 
 any medium, provided the original work is properly cited. 
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Figure 1. Map of seismic stations (triangles) and seismic events (circles) in Nor ther n Europe and the Arctic used in this study. 
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 model trained on local data on regional events. M ünchmeyer
t al. ( 2024 ) developed a model specialized for picking teleseis-
ic depth phases. M ünchmeyer et al. ( 2022 ) provided a thorough
 v aluation of dif ferent deep learning phase picking models, in-
luding regional and teleseismic distance ranges, and concluded
hat it is most important to use a training data set from the ap-
ropriate distance range. Fur ther more, Mai et al. ( 2023 ) devel-
ped a framework to customize deep-learning phase pickers by
ransfer learning and fine-tuning, which allows including regional
vents. 

Seismic recordings from regional distances are crucial for re-
ional and global seismic event monitoring as required for ver-
fication of the Comprehensive Nuclear Test Ban Treaty (CTBT,
alinowski & Mialle 2021 ). CTBT verification relies on a global

eismic network which is part of the IMS (International Moni-
oring System of the CTBTO). The treaty restricts verification to
MS stations, hence, man y e v ents are not observ ed at local dis-
ances on this sparse network. Automatic detection algorithms for
egional arri v als are therefore crucial, especiall y when the e vent size
re vents observ ation at teleseismic distances. Observ ations onl y at
egional distances is also a common limitation with other sparse (na-
ional) seismic networks, in particular when monitoring off-shore
egions. 

In this study, we create a data set of seismic waveforms from
e gional ev ents recorded at stations in Nor ther n Europe and the
uropean Arctic (Section 2 ) to train and e v aluate existing, state-
f-the-ar t deep lear ning phase picking methods (Section 3 ). We
urther develop those methods to improve the performance on re-
ional events. The data set includes regional events from re vie wed
ulletins produced in Norway and Finland as well as arri v als from
he International Data Centre Late Event Bulletin (IDC LEB), a
e vie wed bulletin produced by the CTBT O . The phase detection
ethods are e v aluated on the test data sets, and the best-performing
odel is applied to continuous data from selected seismic stations
 i  
o assess the performance of automatic single-station processing
Section 4 ). 

 DATA  S E T  

eismic events in the Nordic countries and the surrounding regions,
ncluding the European Arctic, are included in the bulletins man-
all y re vie wed b y anal ysts at NORSAR, Norw ay, (NORSAR Re-
iewed Bulletin, NRB hereafter, NORSAR 1971a ), at the Institute
f Seismolo gy, Uni versity of Helsinki, Finland (Helsinki Re vie wed
ulletin, HRB hereafter, Veikkolainen et al. 2021 ) and at the IDC

LEB). These bulletins have overlapping content and use arri v als at
ommon stations. Details about spatial coverage of the NRB and
RB can be found in K öhler & Myklebust ( 2023 ). The spatial distri-
ution of epicentre location is shown in Fig. 1 . We use about 151 000
hree-component seismic waveforms including arrivals from these
 vent catalo gues in the period 2000–2022. This corresponds to about
00 000 individual seismic events. We restrict ourselves to mostly
e gional ev ents (up to about 2000 km distance to epicentre) and some
vents approaching near-teleseismic distances (2000–5000 km). Lo-
al events are also included (less than 200 km distance), ho wever ,
ue to our station selection, the regional events dominate. The se-
ected events include earthquakes off-shore Norway, along the Mid-
tlantic ridge and in the Nor ther n Atlantic region around Svalbard.

n Nor ther n and Easter n Scandina via, Finland and the K ola Penin-
ula, frequent seismic signals from mining operations are included.
he magnitude distribution of the events in the data set is shown

n Fig. A1 , and we come back to the epicentre distance distribution
ater. We use waveform data recorded on four IMS primary and aux-
liary seismic stations (Fig. 1 ): ARA0 (central station of ARCES
rray, nor ther n Norway), SPA0 (central station of SPITS array, Sval-
ard), FIA0 (central station of FINES array, southern Finland) and
RA0 (central station of NORES arra y, southern Norwa y). NORES

s not an IMS station but NRA0 is colocated with the IMS station

art/ggae298_f1.eps
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Table 1. Number of picked seismic arri v als in the data set compiled for this 
study. 

Bulletin Station P picks S picks Events 

NRB ARA0 13 401 13 191 12 356 
NRB NRA0 838 648 768 
NRB SPA0 2622 1710 2208 
HRB ARA0 57 200 63 315 64 416 
HRB FIA0 28 855 28 389 28 768 
LEB ARA0 28 223 5848 26 400 
LEB FIA0 14 610 2886 14 816 
LEB SPA0 1450 1 1440 

 

event time window. 
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NC602. The instruments for most stations are CMG-3T broad-band 
sensors. 

We extract 9-min-long waveforms around each event in the cat- 
alogues, starting 4.5 min before the first picked arri v al if there is 
only a single pick. For multiple picks (majority of the waveforms) 
the noise time window before the first pick is shortened by half the 
time difference between the last and first pick, that is if the pick time 
difference is 1 min, the first pick is at 4 min. Later in the process of 
preparing the input data for the deep learning methods, the time win- 
dows are cut randomly to 5 min to help to generalize the prediction 
capability of the models. Table 1 includes the number of events and 
the number of P and S picks at the different stations for the different 
bulletins. Note that some event windows may include multiple P and 
S picks, for example from Pn and Pg arri v als or overlapping events. 
We drop the regional phase labels, and label all arri v als either P or S 
for model training. Lg wave picks are labelled as S waves. The rea- 
soning behind restricting the phase labels to P and S waves is related 
to incomplete phase picking by the analyst, and we come back to 
this in the discussion section. Due to instrument upgrades at FINES 

(2007), SPITS (2014) and NORES (2015), we use only events after 
those years for stations FIA0, SPA0 and NRA0 to ensure identical 
sensor responses. This is also partly why FIA0 and ARA0 arrivals 
dominate the record. The impact this has on model training is dis- 
cussed below. The waveforms are filtered between 2 and 8 Hz. Based 
on experience at the obser vator y at NORSAR, this frequency band is 
the most optimal for regional event monitoring in this study region. 
All stations except SPA0 and NRA0 are sampled at 40 Hz. We down- 
sample SPA0 and NRA0 data to 40 Hz to obtain the same input data 
dimension. 

We decided to not sort out arri v als that are included in more 
than one bulletin, although the random cutting of the 5-min window 

means that it is unlikely there will be exact duplicates. Note that 
the approach to define test and validation data explained below 

ensures that an arri v al included in the test or validation data is not 
part of the training data. The reason for not removing repeated 
arri v als is partl y related to potential issues with the quality and the 
completeness of the used bulletins. For example, we noticed that 
picks may be missing or may have slightly different times in the 
dif ferent catalo gues for the same e vent. Fur ther more, some picks are 
included that show almost no visible signals, where most likely the 
analyst used theoretical arrival times, array beams, or the moveout 
observed on a station network to steer picking of arri v als with low 

signal-to-noise ratio (SNR). Hence, we want to emphasize that our 
data is not a flawless, re-analysed curated data set for benchmarking 
machine-learning models such as STEAD. In general, we trust the 
high quality bulletins generated by trained analysts, but must be 
aware of some shortcomings. Keeping repeating events may partly 
compensate for these issues. 
3  M E T H O D  

This section describes the deep learning methods used for phase 
picking. These are published baseline models and our modifica- 
tion of PhaseNet. Vectors are denoted as x , and matrices (and 
multidimensional tensors) as X . We denote ˆ y as model prediction 
while y is the ground truth label. 

3.1 Training data set preparation 

A three-component waveform, which is the input of each deep 
learning model, is defined as W ∈ R 

T ×3 , where T is the number of 
time samples of the waveform. The true phase labels are created 
from two zero arrays, one array for P and one for S , and a point 
impulse of value one is added at the index closest to the P and 
S times from the catalogues. For EQT ransformer, w e follow the 
definition of the detection label from the original paper (Mousavi 
et al. 2020 ). 

Input data augmentation is a powerful strategy to improve the 
generalization of the models. We follow the augmentation strategies 
of Mousavi et al. ( 2020 ). This includes: 

(i) Addition of noise: We add white noise drawn from a Nor- 
mal distribution N (0 , [ max ( W ) × U (0 . 01 , 0 . 15)] 2 ) to the wave-
form, where variance depends on a factor drawn from the uni- 
form distributions U . Noise is only added if u < p n , with u 

drawn form a uniform distribution U (0 , 1) and p n a preset 
threshold. 

(ii) Addition of secondary e vent: An e vent is drawn from the 
data set, is shifted randomly, and added to the target event with 
a random amplitude scale ( U (0 . 1 , 1) ). An event is only added if 
u < p e , u ∼ U (0 , 1) . 

(iii) Channel dropping: A channel of the three-component wave- 
form is randomly dropped by setting input values to zero. A channel 
is only dropped if u < p d , u ∼ U (0 , 1) . 

(iv) Addition of data gap: A data gap is randomly added to a 
channel of the waveform. This gap is a maximum 10 per cent of the 
total length. A gap is only created if u < p g , u ∼ U (0 , 1) . 

(v) Random cropping: Each waveform is cropped randomly to 5 
min length. This is to ensure that the arri v als are at different points 
every time such that the model does not learn picking arri v als based 
on where in the window they will appear. 

The parameters p n , p e , p d , p g are provided in Table A1 . Note that 
augmentation is only used on the training set. The augmentations 
are applied to each sample and are different for each iteration during 
training (epoch). In addition, all waveforms are normalized by the 
standard deviation of the waveform amplitude across all channels 
and a taper is used to avoid boundary effects. 

The label arrays have the same time dimension size as the input 
waveforms. We use three classes: P -ar rival, S -ar rival and noise. We 
define noise as N = 1 − P − S where P and S are the probabilities 
of P - and S -arri v als for each time sample. As mentioned above, the 
distributions for P and S are originally point impulses (probability 
is one at the picks time and zero otherwise). We apply smoothing 
using a Gaussian filter with a standard deviation of 0 . 275 s to avoid 
harsh punishment of the model, that is to avoid that the model is 
equally penalized when predicting an arri v al one or one-hundred 
time-steps from the correct pick. Note that we add labels of all 
picked arri v als in overlapping e vent time windows, that is a P w ave 
of a subsequent event may be present after the S wave in a given 
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(a) (b)

Figure 2. (a) Generic PhaseNet architecture. The input is normalized waveforms, W ∈ R 

T ×3 ; the entry block increases the feature dimension by convolution 
(i.e. block shown in b without pooling). Each down-sampling block shown in (b) uses convolution and reduces the time dimension by half to extract higher 
level features, while the up-sampling increases the time-dimensionality by two and applies a conv olutional lay er. The skip-connections are concatenated to the 
up-sampled output. Finally, a 1 × 1 conv olutional lay er with three filters is used to create the class probabilities. (b) PhaseNet down-sampling block consisting 
of convolution layer, batch normalization, non-linear acti v ation, dropout, and finally pooling. 
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.2 Phase detector models 

he models used in this work are formulated as a prediction of
oise, P -arri v al and S -arri v al per time step given three-component
aveforms as input, that is 

ˆ 
 = M( W ) , W ∈ R 

T ×3 , Y ∈ (0 , 1) T ×3 , (1) 

here M is the prediction model. The prediction ˆ Y contains
 probability distribution for each time step, for example ˆ y t =
0 . 1 , 0 . 85 , 0 . 05) means that there is an 85 per cent probability for a
 -arri v al at time t . 
Except for EQTransformer (Mousavi et al. 2020 ), all other mod-

ls in this work are based on PhaseNet (Zhu & Beroza 2018 ),
hich is a one-dimensional version of UNet Ronneberger et al.
 2015 ). The PhaseNet architecture is shown in Fig. 2 . PhaseNet
ses a series of blocks that extract features and down-sample the
nput. Each block consists of a convolutional layer, batch normal-
zation, acti v ation and dropout lay er. F inally, a pooling operation
maximum or average) is performed to reduce the time dimension
ize (Fig. 2 b). The output of each block is kept for use in a skip-
onnection during up-sampling. A skip-connection is an element
n the neural network where output features of a lay er/b lock are
opied and concatenated with the output of a later lay er/b lock. The
p-sampling blocks contain an up-sampling layer (duplication of
oints in the time dimension), concatenation with skip-connections
rom the down-sampling b locks, inverse conv olutional lay er, batch
ormalization, acti v ation and dropout. 

The EPick model (Li et al. 2022 ) follows the same architecture as
haseNet, albeit attention is applied as residual connections, that is,
rom input and output of a convolutional block an attention vector
s created (Li et al. 2022 ). Attention is used in Neural Networks to
ntroduce weights for feature vectors (originally developed for the
mbedding of a word in natural language processing models) in the
ontext window (originally a sentence), here the time window being
rocessed. These weights are ‘soft’, meaning they are dependent on
he input features, in contrast to ‘hard’ weights, which are found
nce during training. As the name suggests, attention helps the
odel to focus its attention on what it finds important; in this
ase samples in the time window including potential P and S arri v als.
he attention mechanism is repeated several times in the network,
ach time using the previous layers as input and adding the output
o the up-sampling block (Fig. 3 ). More details about the attention
echanism are given in Appendix B . 
EQT ransformer (Mousa vi et al. 2020 ) is a transformer-based

rchitecture for the task of phase picking and event detection. This
ethod uses similar down-sampling blocks as PhaseNet to encode

he input, followed by residual convolutional blocks, Long Short-
er m Memor y (LSTM) blocks, and transfor mer blocks, the latter
eing a multihead attention mechanism implemented in a particular
ay (Fig. 4 b): The residual connections are added to the output of the

ttention (i.e. a skip-connection as introduced for PhaseNet), and the
esult are normalized. This is then passed to a feed forward network
dense layers with trainable weights), and the residual is added and
ormalized again. The unique feature of EQTransformer is that each
hase ( P and S ), and in addition the event detection probability are
redicted using different decoders (Fig. 4 ). The decoders consist of
 transformer block, and up-sampling blocks similar to PhaseNet.
he final layers predict the probability of a phase or event detection
er time step. Since the event detection probability is trained for
s well, the training data also needs to include examples of pure
oise waveforms which we provide as time windows starting 36
in before each event in the training set, that is about 151 000 time
indows. 
We will compare these three state-of-the-art baseline models with

ur a method which we call TPhaseNet. Inspired by Oktay et al.
 2018 ) and Chen et al. ( 2021 ), we add transformers to PhaseNet.
his results in a model which is similar to PhaseNet, but we use 7
own-sampling blocks rather than 4 down-sampling blocks and we
dd transformers to the last 4 down-sampling blocks (Fig. 5 ). The
umber of up-sampling blocks was also increased accordingly. The
eason for not including transformers in the first 3 down-sampling
locks is memory limitations of the hardware. This modified ar-
hitecture thus includes dif ferent innov ations of pre vious phase

art/ggae298_f2.eps
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Figure 3. EPick architecture. Similar to PhaseNet as seen in Fig. 2 ; ho wever , with attention mechanisms between each of the outputs of the down-sampling 
blocks. The output attention is used as skip-connection rather than the output from each down-sampling block as for PhaseNet. 

(a) (b)

Figure 4. (a) EQTransformer architecture. The input is down-sampled (using N convolutional blocks) similar to PhaseNet before a series of M residual 
conv olutional b locks are applied. Then two Bi(directional)-LSTM lay ers followed by a directional LSTM are used before two transformer blocks are used as 
shown in (b). This constructs the common feature extractor. The network is then split into three branches which use the extracted features to predict detection, 
P-phase and S-phase. An LSTM layer followed by attention is used before the up-sampling layers in the P-phase and S-phase branches. The final layers have a 
single output per time-step and a sigmoid function is applied to get a probability of detection, P-phase, and S-phase. (b) Transformer block. Query ( Q ), Key 
( K ) Value ( V ) are inputs and the output has the same shape as the query. The residual connections from Q are added to the output of the attention, and the 
result is normalized. This is then passed to a feed forward network (dense layers), and the residual is added and normalized again. 
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picker models, that is the proven and powerful PhaseNet architec- 
ture, adding transformers instead of only attention to it (EPick) as 
a well-proven element in, for example natural language processing 
models, and using transformers in a different way than EQTrans- 
former. These modifications are supposed to enhance performance 
when processing long records of re gional ev ents. We arriv ed at 
the final TPhaseNet model through an iterative process of trying 

different model architectures. 
3.3 Model training 

We use events from the years 2000–2020 for training (124 708 wave- 
forms), events of the year 2021 for validation (13 632 waveforms) 
and 2022 for testing (12 832 waveforms). As mentioned above, this 
avoids using the same events during training and validation/testing. 
After each iteration (epoch) during model training, the performance 
(validation loss) is evaluated with respect to the validation data. The 

art/ggae298_f3.eps
art/ggae298_f4.eps
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(a) (b)

Figure 5. (a) TPhaseNet architecture. It is similar to PhaseNet, but with more blocks and the last four down-sampling blocks (TPhaseNet blocks) include 
transformers. For the sake of simplicity of the figure, multiple PhaseNet and TPhaseNet blocks are not drawn, that is 2 × means the block is included twice. 
(b) TPhaseNet block: It includes a version of the PhaseNet down-sampling b lock (F ig. 2 b) and the transformer shown in F ig. 4 (b). F inally, the residual is 
concatenated. 
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est data set is unseen during training and will provide a final unbi-
sed e v aluation of the models. 

Note that we implement all models from scratch in keras (Chol-
et et al. 2015 ) and do not use the published code of previous models
irectly. In that way we ensure comparability and flexibility when
t comes to hyper-parameter setting and retraining, and we can con-
istently assess the models using the same software libraries. This
lso allows us to increase the duration of input waveforms which
s required when re gional ev ents are the main targets. Originally,
revious models were trained on local events. For all our models we
se a 5-min-long time window. 

All models, except EQTransformer, use categorical cross-entropy
s the loss function to optimize during training, 

 C E( Y, ˆ Y ) = − 1 

N T 

N ∑ 

i= 1 

T ∑ 

t= 1 

3 ∑ 

c= 1 
Y i tc log ( ̂  Y i tc ) , (2) 

here N is the number of samples and T is the number of time
teps. ˆ Y holds all predictions, that is ˆ Y ∈ (0 , 1) N×T ×3 . 

EQTransformer uses binary cross-entropy for each of the two
utputs (or three if event detection is used): 

BC E( Y, ̂  Y ) = − 1 

N T 

N ∑ 

i= 1 

T ∑ 

t= 1 
[ Y i t log ( ̂ Y i t ) + (1 − Y i t ) log (1 − ˆ Y i t )] . (3) 

he sum of the losses of all outputs is the final loss. 
All models are trained in the same manner using the same

ropout, optimizer, learning rate, w eight deca y and batch size (Ta-
le A1 ). We use a batch size of 32, maximum epochs of 200, starting
earning rate of 10 −3 and L 1 and L 2 normalization factor of 10 −3 .
he learning rate is reduced by a factor of 

√ 

0 . 1 after seven epochs
f no improvement in the validation loss. We use early stopping
nd the minimum delta of the early stopping is set to 10 −4 . We stop
raining when there is no improvement for 15 epochs in validation
oss. 

The hyper-parameters for each model are described in Ap-
endix A and listed in Table A2 . They where chosen based on
rial and error , ho wever , they were kept similar between all models.
ertain parameters are not shared between models. In this case, we
ased our choices on the original publication or the model size,
hat is hyperparameters are used which achieve similar model sizes
s the other models. All models were trained on a single NVIDIA
40 GPU, with the final PhaseNet model taking 4 hr, TPhaseNet
odel 17 hr, EPick 7 hr and EQTransformer 15.5 hr to converge.
he models including transformers take longer to converge due to
 higher number of weights to be learned. 

.4 Evaluation metrics 

e e v aluate the models using precision P re c , recall Re c and F 1 

etrics for binary prediction for different decision thresholds as
ell as how accurate the models are for picking arri v als times, that

s whether a prediction is close to the analyst pick (residual). The
etrics are defined as follows: 

P re c = 

T P 

T P + F P 

, Re c = 

T P 

T P + F N 

, (4) 

here T P are True Positives, that is number of peaks above the
ecision threshold within a distance ±2 s to a true arri v al pick.
alse Ne gativ es F N is the number of true picks without a peak
bove the decision threshold within that distance. False Positives

F P are those predicted peaks not matching any true arri v al within
 s. An important note must be made for these instances. In our
ata set not all arri v als of an event included are necessarily picked
y the analyst, particularly when multiple regional phase arrivals
re present (Pg, Pn, Sg, Sn). Hence, precision ma y appear low er
han it actually is. We present a more thorough e v aluation in the
ext section, where a manually reviewed continuous time period
s used for testing. Finally, F 1 is the harmonic mean between pre-
ision and recall, that is 2 · P rec · Rec/ ( P rec + Rec) . The mean
nd standard deviations of time residuals are computed for all True
ositives. 

The model could have similar precision and recall but we would
lso like to measure the uncertainty, described by the width of the
robability distribution around each predicted peak. In other words,
e want to use the complete times-series of P and S arri v al proba-
ilities provided by the model output to e v aluate the performance.
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Figure 6. Performance metrics for all the trained models for different decision thresholds shown as number along the curves. The closer the displayed curves 
bend towards the upper-right corner, the better the performance. Optimal thresholds are given. 
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For this we use the Jensen–Shannon divergence (JSD), which is 
a symmetric version of the K ullback–Leibler di vergence (KLD). 
Symmetr y is impor tant here as we would not like the models to 
predict S arri v als in the presence of P arri v als. The KLD does not 
penalize this scenario, while the JSD does. JSD is described as 

J S D( P || S ) = 

K L D( P || M ) + K L D( S|| M ) 

2 
, M = 

P + S 

2 
, (5) 

where KLD is 

K L D( P || S) = 

∑ 

x∈ X 
P ( x ) log 

(
P ( x ) 

S ( x ) 

)
, (6) 

and P and S are two normalized distributions to be compared, here 
the true and predicted probabilities of P or S arri v als. 

4  R E S U LT S  

We will first give a quantitative evaluation by presenting the results 
of applying all trained models to the test data set, which was not 
used for training (events in year 2022). Then, we will show examples 
of individual events to assess the model performance qualitatively. 
Finall y, we appl y the best model to continuous data from selected 
single stations within the ARCES array to e v aluate performance in 
continuous processing. 
4.1 Pr ediction r esults f or test data 

To e v aluate the model performance we first need to find an optimal 
decision threshold for each model and phase type. There is a trade- 
off between precision and recall; a higher threshold will reduce 
False Positives, that is increases precision, but also increases False 
Ne gativ es, that is reduces recall. Fig. 6 illustrates this behaviour 
for all trained models. Finding the optimal decision threshold is 
equi v alent to maximizing the F1 score. The optimal thresholds 
shown in Fig. 6 are used to compute the final performance met- 
rics for each model after predicting on the test data set (Table 2 ). 
Fig. 7 shows a more detailed overview of how model performance 
depends on different seismic stations, bulletins and epicentral dis- 
tance ranges. To facilitate assessment of the results the number of 
phase arri v als in the test data set for each category are shown as 
histograms. 

Based on the computed metrics it is clear that TPhaseNet and 
PhaseNet perform better than both EPick and EQTransformer on 
our data set of regional events. Moreover, adding transformers to 
PhaseNet clearly improves results since TPhaseNet is overall the 
best performing model when it comes to all computed classification 
metrics as well as pick time residuals. The improvement compared 
to PhaseNet is most significant for P wave recall (from 0.8 to 0.88) 
and S wave recall (from 0.81 to 0.86). We observe that precision is 
generally lower than recall, that is false detections are present. This 
result may be related to the already mentioned missing picks in the 
test data set, which we will come back to in the next sections. 
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(a) (b)

(c) (d)

Figure 7. Performance metrics for all trained models for different epicentral distance ranges, seismic stations and event bulletins. H stands for Helsinki (HRB), 
N for NORSAR (NRB) and L for IDC LEB. The optimal decision thresholds are used for each model and phase type (see Fig. 6 ). Number of arri v als in each 
category are shown as grey histograms in the background. Legend below (c) is also valid for (a). Legend below (d) is also valid in (b). 

Table 2. Metrics for optimal decision thresholds. Precision, recall, and F 1 are calculated with a time tolerance of 2 s. Residuals are computed for True Positives 
only. Bold indicates the best metric. Arrows indicate if increasing or decreasing metrics indicate better performance. 

Model Precision (P/S) ↑ Recall (P/S) ↑ F 1 (P/S) ↑ Residual ( μ ± √ 

σ ) (P/S) ↓ JSD (P/S) ↓ 

TPhaseNet 0 . 81 / 0 . 75 0 . 88 / 0 . 86 0 . 84 / 0 . 8 0 . 02s / 0 . 07 s ( ±0 . 46 / 0 . 57 ) 0 . 25 / 0 . 34 
PhaseNet 0 . 81 / 0 . 72 0 . 8 / 0 . 81 0 . 81 / 0 . 76 0 . 06 s/ 0 . 16 s ( ±0 . 49 / 0 . 61) 0 . 29 / 0 . 37 
EPick 0 . 76 / 0 . 66 0 . 71 / 0 . 76 0 . 74 / 0 . 71 0 . 09 s/ − 0 . 16 s ( ±0 . 58 / 0 . 63 0 . 33 / 0 . 36 
EQTransformer 0 . 62 / 0 . 65 0 . 69 / 0 . 46 0 . 65 / 0 . 54 0 . 36 s/ − 0 . 08 s ( ±0 . 66 / 0 . 79) 0 . 46 / 0 . 44 
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The P and S wave residuals of the correctly predicted arrivals
ecrease by more than 50 per cent for both P and S waves when
PhaseNet is used instead of PhaseNet. Ho wever , the residuals of
haseNet are already quite small, that is less than 0.1 s. Fig. A2 (note

ogarithmic scale) shows that the distribution of residuals is
ymmetric for all models except EQTransformer, which tends to
ick too late arri v als. EQTransformer also requires a low decision
hreshold for the best performance, and does not perform well
ompared to the three other models for all metrics. The rea-
on for this is not entirely clear. It may be related to the model
utput of event detection probability in addition to phase probabil-
ties which may not be optimally tuned or suitable for our regional
vents. 

As expected stations with few data samples such as NRA0, and
o some extent also SPA0, perform worst (Fig. 7 ). This mostly
ffects recall, while precision remains more stable. The issue is
herefore mainly missing predictions of true arri v als rather than
alsely predicting noise or mixing P and S labels. This shows that a
hase detection model cannot al wa ys simply be transferred to those
tations which are not well represented during training since each
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(a) (d)

(b) (e)

(c) (f)

Figure 8. P and S wave output probabilities predicted by TPhaseNet for the test data set wavefor ms sor ted by distance and stacked in 10 km bins. White is low 

and black is high probability. Colour scale is saturated at probability = 0.2 to enhance visibility. Time axis represents the reduced traveltime using a velocity of 
7 km s −1 for P (a–c) and 3.5 km s −1 for S waves (d–f). Panels (a) and (d) are the analyst labels for events with a single P- or S -wave pick (Gaussian probability 
distribution around picks). b) and e) are predicted P arri v als for both cases. Panels (c) and (f) are predicted S arri v als for both cases. Text indicates traveltime 
branches. 
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site has its specific characteristics. Fur ther more, there is a clear 
performance drop for underrepresented long distances for S waves, 
as well as for P waves in the 0–100 km distance range. Interestingly, 
S -wave detection seems not to be much affected in the latter range. 
We see also that P wave precision for arrivals at station ARA0 
in the IDC LEB and the NRB are higher than for the HRB (see 
small drop in Fig. 7 c). A possible explanation is that the HRB 

includes a higher number of problematic events, that is arri v als 
with low SNRs that are not picked by the analyst. Those events 
are not routinely considered for inclusion in the IDC LEB and the 
NRB. 

4.2 Identifying missing picks in the training data 

As mentioned above, a possible reason for obtaining low preci- 
sion computed from labels in the test data set, are missing picks in 
the labelled data. In other words, apparent false detections, which 
can in fact be real arri v als, could decrease the precision. As an 
alternative to manual repicking of all events, which is not an op- 
tion here given the large number of events (see Table 1 ) and lack 
of human resources, we suggest a qualitative assessment of this 
issue. For this, we plot the P and S wave output probabilities of 
TPhaseNet versus epicentral distance for those events in the test 
data set which only received a single P wave pick (Figs 8 a–c; 3104 
of 12 594 e vent w aveforms) or a single S -wave pick (Figs 8 d–f; 
2568 of 12 594 event waveforms) from the analyst. Probabilities 
are stacked in distance bins of 10 km. The results for predicted S 
picks in the case of only P labels in Fig. 8 (c), as well as for P 

picks in the case of only S labels in Fig. 8 (e), show branches of 
high probabilities, that is non-vertical lines, corresponding to the 
differences to the expected seismic velocities. Vertical lines corre- 
spond to reduced traveltimes using 7.0 km s −1 for P (Figs 8 a–c) and 
3.5 km s −1 for S waves (Figs 8 d–f). A closer look reveals different 
traveltime branches for the unpicked arri v als. These correspond to 
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Figure 9. Three-component waveform examples filtered between 2 and 8 Hz. TPhaseNet output probabilities for P and S waves are show below. Red ( P wave) 
and blue ( S wave) vertical lines on the waveforms show when the optimal (solid lines) and lower (dashed lines) detection thresholds are e xceeded. Respectiv ely, 
these thresholds are 0.6 and 0.4 for the P wave, and 0.5 and 0.35 for the S wave. The legend is only given in (a) but is valid for all panels. In (c) the vertical 
component P wave beam of the ARCES array is added. (a–c) Nord Stream explosion event. (d–f) Earthquake in Novaya Zemlya region. 
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he regional phases Pg, Pn, Sg and Sn. Depending on their velocity,
hese additional predictions can occur before or after the analyst
icks. The reason for the unlabelled but detected arri v als moving
ut of the detection time window for larger distances (see Figs 8 c
nd e), is that the training and test data waveforms are centred on
he first arri v al if onl y one arri v al is labelled. This will not happen
n continuous processing, which is introduced in the next sections.
ur results give clear indications that many predicted arrivals not
atched by analyst-labelled picks are in fact correctly detected by
PhaseNet. This implies that precision is indeed underestimated in
ur results above. 

.3 Pr ediction r esults f or e vent examples 

n the following, we use TPhaseNet, which is the best performing
odel, gi ven the quantitati ve assessment above. In contrast to the

re vious e v aluation, we now produce the phase detection proba-
ilities by predicting with a sliding time window, that is we use a
egment of continuous data which is longer than the model input (5
in). We use a 15-min-long record centred around each event and

hoose an overlap of 10 s between the 5-min-long time windows.
rom all sliding windows we compute mean, median, standard de-
iation and 25 per cent percentile of the output probabilities for
ach time sample. In the following figures the median probability is
hown, which we found to produce the best results when averaging
he probabilities. None of the examples is included in the training
nd validation data set. 

Fig. 9 shows examples of two seismic events of special inter-
st which a detector should not miss, that is the waveforms of the
 xplosion ev ent at the Nord Stream pipeline in the Baltic Sea on
6.09.2022 recorded on stations NRA0, FIA0 and ARA0 (K öhler
 r  
t al. 2023 ; K öhler & Myklebust 2023 ) and an earthquake in the
ov aya Zeml ya region, the location of a former Soviet nuclear
eapon test site, recorded on stations ARA0, SPA0 and KBS. KBS

s a Global Seismic Network station in Svalbard which is not in-
luded during model training. The output probabilities for P and S
aves are shown, and the time samples above different detection

hresholds are indicated in the waveform panels. We use the opti-
al thresholds derived above and in addition lower thresholds, that

s 0.4 for P waves and 0.35 for S waves. As the following exam-
les will show, although the lower values increase the false detec-
ion rate as expected, we miss a few true arrivals with the higher
hreshold. 

In the case of the explosion event in Figs 9 (a)–(c), P and S waves
re detected for the two closest stations using the low threshold.
nterestingl y, the P w ave is detected also at ARA0 with high proba-
ility, even though it is hardly visible in the single station waveforms.
he ARCES array beam for the P wave on the other hand clearly

eveals the presence of the arrival. In the case of the Novaya Zemlya
arthquake in Figs 9 (d)–(f) again all P and S w ave arri v als are de-
ected with a low threshold setting. The SPITS array as well as KBS
re known for frequent cryogenic seismic events, that is calving
K öhler et al. 2015 , 2022 ) and frost quakes (Romeyn et al. 2022 ),
hich are clearly visible as transient signals in the waveform plots.
otably, TPhaseNet does not pick these ev ents, e xcept of one S pick

t KBS. For KBS the performance is impressi ve, particularl y since
 and S arri v als ha ve low er SNRs than the calving events before
nd after, and KBS data were not used during training of the model.
s for the Nord Stream e vent, howe ver, the optimal threshold we
erived from the test data set must be decreased to detect all arrivals
f the earthquake. 

Figs 10 and 11 show selected events from the NRB and HRB
andomly distributed throughout 2022 and 2023. The events in
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Figure 10. Examples of TPhaseNet results for event waveforms not included in the training data. Examples are shown for FIN0, SPA0 and NRA0. The 
three-component waveforms are filtered between 2 and 8 Hz. 
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Figs 10 (a)–(c) and e observed on stations SPA0 and FIA0 have 
high SNRs. P and S wave are correctly detected using the optimal 
threshold setting. The event in Fig. 10 (d) on station FIA0 is very 
weak but real. Both arri v als are recognized using the optimal thresh- 
old. The same holds for the P -wave arrival in Fig. 10 f. Ho wever , 
here the S wave is hardly visible and not reco gnize b y TPhaseNet. 
Fur ther more, it is not clear why the P wave is missed for the next 
events on station FIA0 (Fig. 10 g). Ho wever , in both cases the prob- 
abilities of the correctly detected phases are high. Fig. 10 (h) shows 
another event with low SNR, this time on station NRA0. The model 
detects the P wave with a low threshold, but misses the S wave, 
although it is visuall y clearer. Finall y, we added an example from 

station NRA0 where the S wave is detected with low probability 
(Fig. 10 i). While the overall performance of the model seems to 
be good, we also conclude that threshold setting is critical and low 

SNR, not surprisingly, makes it more challenging for TPhaseNet to 
detect arri v als. 

Fig. 11 shows onl y e v ents observ ed on station ARA0. The chal- 
lenge at the ARCES array is that often multiple e vents, mostl y 
mining induced events, are observed within the same input time 
window of the phase detection model. First, we therefore focus on 
how TPhaseNet deals with those cases (Figs 11 a–c,e). In Fig. 11 (a) 
two P and two S waves with low SNRs are detected, the phase 
arri v als corresponding to the second event hardly being visible in 
the record of station ARA0. The vertical component beam com- 
puted using back-azimuth and velocity derived for the first P wave, 
clearl y re veals two e vents from a mine in Sweden about 340 km to 
the South of the ARCES array. Although the second event is only 
detected using the low thresholds, this underlines the impressive 
performance of TPhaseNet. If ARA0 would not have been part of 
an array, this event would have most likely been missed by con- 
ventional ST A/LT A detection algorithms because of the low SNR. 
Fig. 11 (b) shows records that include three events. The first one is 
the weakest and TPhaseNet does not detect the P wa ve. How ever, all 
other arri v als are reco gnized with high probability. Multiple, par- 
tiall y overlapping e vents are shown in Fig. 11 (c). Even for an analyst 
it would be a challenging task to associate the P and S waves cor- 
rectly in this case. We observed at least four different events, the first 
two overlapping. When using a low threshold setting, TPhaseNet 
is able to detect all 4 P waves and the S waves of the last two 
e vents. Howe ver, it confuses or misses S waves for the overlapping 
events. In the last example with multiple events in (Fig. 11 e), we are 
able to confirm a detected P wave which follows a clear event with 
P and S arri v als in the middle of the time window. Figs 11 (d) 
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Figure 11. Examples of TPhaseNet results for events recorded at ARA0, which are not included in the training data. In (a) the vertical component P wave 
beam of the ARCES array is added (filtered 3–10 Hz for optimal signal-to-noise ratio). 
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nd (i) show events with high SNRs and high phase detection
robabilities. For events with lower SNR, arrival detection requires
 lower threshold (F ig. 11 f). In F ig. 11 (h) we see an event with even
ower SNR where the S wave arri v al is not detected. Finally, we show
n example of an event where only the visible P wave is detected
nd the S wave is neither detected nor visible within the strong
 wave coda (Fig. 11 g). Overall, we can conclude that TPhaseNet
andles multiple events well, but that, as described above, low SNRs
ake it more challenging for the model to detect arri v als with high

robability. 

.4 Pr ediction r esults f or contin uous data 

ext, w e ha ve a closer look at the TPhaseNet model performance
hen processing longer records of continuous data. The focus is
n recall and precision for all phase arri v als observed at station
RA0 of the ARCES array. We chose this station since a large
ariety of events (earthquake and mining signals) with locations
n the Arctic and down to Southern Scandinavia are observed at
RCES due to its central location in our study region. For the pre-

ision metric it is important not to rel y solel y on the re vie wed e vent
ulletins because weak ev ents observ ed only at the ARCES array
re often not included. Therefore, we do not use bulletin informa-
ion but instead visually screen 4 d of continuous data starting on
anuary 1st in 2023 to manually pick all P and S phase arrivals
ssociated with seismic events. We use individual selected stations
rom the ARCES array as well as the time series of maximum
rra y beampow er to guide the picking. This provides us with a
ompletely labelled data set for testing TPhaseNet. We encounter
an y arri v als coherentl y observed on all array stations which are

ot clearly associated with an event, that is a clearly associated
 –S wave pair. We pick those 367 picks as a third category of un-
nown type in addition to 244 P and 260 S wav es. Ev en though our
odel is only trained with ARA0 data from ARCES (in addition to

tations from other arra ys), w e also apply it to additional station ele-
ents from the array to test the generalization of the model: ARA1

170 m distance from ARA0), ARA2 (146 m distance) and ARC3
290 m distance). 

For further e v aluation, we calculate SNRs for all picked arri v als
 y di viding the maximum absolute amplitude of each arri v al b y
he average absolute noise amplitude just before the arri v al on the
ertical component in two different frequency bands (2.5–10 Hz
nd 5–20 Hz). The maximum SNR of both bands is then used for
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Figure 12. Performance metrics of TPhaseNet at station ARA0 for different decision thresholds (shown as number along the curves), without (a and b) and 
with SNR threshold (c and d). The closer the displayed curves bend towards the upper-right-hand corner, the better the performance. Recall and precision for 
FKX phase detection in operation at ARCES are added as symbols (no detection threshold data available). For each precision and recall pair a second one is 
added where arri v als labelled as ‘unknown’ are counted as either P or S waves for calculating precision. 
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further analysis. Note that many of the picked arrivals have very 
low SNRs, that is 80 per cent have SNRs smaller than 5.0. For 
ARC3 the percentage is even higher since this station has the high- 
est noise level of all ARCES stations in the considered time period. 
Therefore, in addition to computing performance metrics for all 
picked arri v als, we also provide results for using a SNR thresh- 
old of 2.0 to focus only on the clearer signals. As in the previous 
section, we also use different probability thresholds for comput- 
ing the performance metrics and producing the recall-prediction 
curves. In addition, to compare our results with an established 
detector, we compute metrics also for NORSAR’s existing array 
processing at ARCES (Schweitzer et al. 2012 ), which produces 
phase detections from array beams (Detection Processing: DPX), 
measures back-azimuth and apparent velocity, and labels arri v als 
(Signal Attribute Processing or F-K Analysis Processing: FKX). 
Note that we increase the time difference tolerance for match- 
ing predictions and picked arri v als from 2 to 5 s to take into ac- 
count that FKX arri v als may be less accurately picked than manual 
picks. 

Fig. 12 shows a summary of all results for station ARA0, while 
the results for stations ARA1, ARA2 and ARC3 can be found in 
the Appendix (Figs A3 , A4 and A5 ). The blue curves show that 
perfor mance in ter ms of precision when using all detections and 
manual picks is modest. While high recall can be achieved with 
a low detection threshold, the precision lays only between 0.4 and 
0.7, that is a considerable amount of false detections are obtained. 
Ho wever , imposing a low SNR limit on predictions and picks im- 
proves results considerably. We obtain recalls above 0.9 and higher 
precision values above 0.8. Counting the unknown arrival picks as 
P or S w aves, respecti vel y, when computing precision, further im- 
proves performance (orange curves). The reasoning behind the latter 
is that a post-classification for all detected arri v als could be done 
in the case of array processing, correcting for P waves classified 
as S or vice v ersa. Ov erall, TPhaseNet performs very well, given 
the fact that many arrivals have amplitudes just above the noise 
level. 

Interestingl y, TPhaseNet performs similarl y for P w ave detection 
when no SNR threshold is applied, and seems to outperform the ex- 
isting array detector for S waves and higher SNRs (FKX, Figs 12 a 
and b). Ho wever , note that no data for different detection thresholds 
are plotted for the FKX results, since we simply use the output of the 
detector in continuous operation at NORSAR. Hence, only two data 
points are added in each panel of Fig. 12 . For detection thresholds 
achieving similar recall values for TPhaseNet and FKX, the preci- 
sion of TPhaseNet is much higher. Likewise, FKX has a lower recall 
for detection thresholds that achieve similar precision for FKX and 
TPhaseNet. The reason for the latter is that FKX arri v als, although 
correctly detected, are often miss-classified or dismissed due to low 

SNR. Fig. 13 shows an example of a weak seismic event, the P 

w ave hardl y visible on the single station, where P and S waves are 
correctly picked by TPhaseNet with low thresholds (0.4 for P and 
0.35 for S wave) but FKX only detected the S wave. The ARCES 

P wave beam is shown in addition, verifying the presence of a P 

wave, and also a second event shortly after. We confirmed the same 
backazimuth and e xpected v elocities for both e vents b y F-K anal y- 
ses on ARCES. As seen in the output probabilities, both arri v als of 

art/ggae298_f12.eps
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Figure 13. Example of TPhaseNet applied to three-component waveforms from ARA0, filtered between 3 and 8 Hz for optimal signal-to-noise ratio. TPhaseNet 
detection probabilities are shown below the waveforms, with vertical lines showing the P -wave detection (red) and S -wave detection (blue) for thresholds of 
0.4 and 0.35, respecti vel y. For reference, the top panel shows the vertical component P -wave beam from the ARCES array. Only the first S -wave is detected by 
the standard FKX detector for this event. 
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he second event would also have been detected by TPhaseNet with
 lower threshold. 

Performance is more variable for the additional ARCES sta-
ions. Although none of those stations was used during model train-
ng, a significant drop in performance is only observed for ARC3
Fig. A5 ). This is due to the higher noise level at this particular
lement of the ARCES array during the test period. 

 D I S C U S S I O N  

e present results for seismic phase prediction for regional events
sing three state-of-the-art and one ne wl y de veloped machine learn-
ng method. Overall, the new architectures of TPhaseNet outper-
orms the selected baseline models with respect to all performances
etrics, that is recall, precision and pick residuals. This demon-

trates the power of attention and transformer mechanisms which
mprove the already popular PhaseNet model. For our regional data
et, we observe that EQTransformer does not perform as well, that
s we obtained worse performance metric values compared to the
ther models (see Figs 6 , 7 and A2 ). This would indicate that skip-
onnections are highly important for phase picking at regional dis-
ances. Ho wever , it must be emphasized that our model comparison
ere is valid for events in a specific region and for selected sta-
ions. Future studies to establish the best deep learning method for
egional phase picking could include extended data sets such as
he CREW data set (Aguilar Suarez & Beroza 2024) , and modified
ersions or training strategies of the existing baseline models (Park
t al. 2024 ), which could be adapted to regional data. The CREW
ata was not yet available during our study. 
m  
In general, hyperparameters can have a huge impact on the per-
ormance of machine learning models. Ho wever , here we did not
erform an e xtensiv e study of hyperparameter settings, although
e did experiment with different model sizes. We focus on the
ew TPhaseNet architecture, and therefore, we chose the same pa-
ameters for all models. In this wa y, w e do not bias one method
ver another due to imperfect hyper-parameter choices. More
uning studies are however recommended in order to find
he model best suitable for phase picking in regional event
ecords. 

There are multiple approaches to improve our model and to gen-
ralize its applicability which are beyond the scope of this study.
xtension of the model to teleseismic arri v als would be beneficial
ot only for generating global seismicity catalogues, but also for
ncluding these signals in the training data sets for regional mon-
toring. For example, detecting teleseismic P wave arri v als as a
eparate class can help to distinguish those from regional phases.
urating a training data set from global event bulletins, such as the

DC LEB or the ISC Bulletin (International Seismological Centre
024 ), would be required. 

Fur ther more, using all available waveform data from stations
egardless of sensor upgrades or replacements would increase the
raining data set. In our study, this concerns SPA0, NRA0 and FIA0,
here we only use data from the sensors currently in operation, since

hose are most rele v ant for real-time processing. Removing the in-
trument response would be the obvious solution, ho wever , this
ould also increase preparation time of training data. Nevertheless,

ince nor malized wavefor ms are used as model input, a changing
nstrument response is not expected to affect model performance
uch in our case since we filter in a frequency band where the
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response in flat. Fur ther more, ha ving wa veforms of the same sta- 
tion from different sensors may help the model to generalize phase 
picking at unseen stations. 

In this study we focus on using single three-component stations 
from seismic arrays. Increased generalization ability would bene- 
fit from adding more single stations in the region to increase the 
training data set. Ho wever , we want to emphasize that we already 
tested TPhaseNet for stations not used for training with encour- 
aging results (KBS and additional elements of the ARCES array). 
Adding more stations would not solve the issue related to the un- 
balanced data set, that is that some stations (ARA0) dominate the 
training data set. Augmenting training data for underrepresented 
stations is an option to be explored. Here, we only use augmen- 
tation as described above which increases the training data for 
each station by the same percentage. Using station-dependent de- 
tection thresholds may partially compensate for the issue of bad 
performance at underrepresented stations. For regions with low 

seismicity, unbalanced data is a general challenge when training 
regional phase detectors. Hence, future models will most likely 
be trained with combined regional event data sets from different 
globally distributed networks such as the novel CREW data set 
(Aguilar Suarez & Beroza 2024) . 

As discussed in Section 2 , there are shortcomings with the event 
bulletin sources that we used to create the training data set. Ensur- 
ing completeness, that is that all observed phase arri v als are picked, 
is challenging and would require manually reviewing all events, or 
some sort of iterative retraining of the model with verified automatic 
picks from an initial prediction on the training data. We have al- 
ready demonstrated qualitati vel y how unlabelled but real predicted 
arri v als can be identified in the test data. This implies that the actual 
model precision is higher than our computed metrics suggests, and 
increases therefore confidence in the performance of TPhaseNet. 
Wrong picks should be rare in re vie wed b ulletins, b ut cannot be 
excluded. Simply using a SNR threshold before including arri v al 
picks in the training data is one option. Ho wever , doing so intro- 
duces the risk of loosing genuine low SNR arri v als which the model 
needs to be trained on for good performance on new data. Hence, 
incompleteness as mentioned above would again become an issue. 
Again, a complete and curated dateset such as CREW can help to 
overcome these issues in future studies. 

In this study, we decided to pre-filter the waveforms in the fre- 
quency band that we think is most suitable for regional monitoring 
in our study area. The original implementation of PhaseNet for local 
events did not include this preprocessing step, since a convolutional 
network has the ability to learn appropriate filters implicitly. Our 
main reason for pre-filtering the waveform data for training the 
models used in this study is the limited size of the training data set, 
w hich fav ours smaller model sizes. Ho wever , for a future study it 
would be interesting to test the performance of models trained with 
unfiltered data. 

It can be argued that the performance metric values for TPhaseNet 
obtained here should be higher, that is at least above 0.9 for recall 
and precision, so that it can be deployed for operation. Ho wever , we 
showed that the obtained precision is most likely underestimated 
when computed from the event test data set, due to missing labels. 
Fur ther more, we want to emphasize again that we deal with a more 
complex data set than previous studies that focused on local events 
onl y. Regional e vent data in our study area are unbalanced when 
it comes to backazimuth, epicentre distances and station coverage 
(Fig. 1 ). Ov erlapping ev ents and low SNRs are common (see exam- 
ples in Figs 9 –11 ). Established automatic detection methods have 
to deal with the same issues. In this context it is intriguing that we 
have found evidence that the existing array processing for ARCES 
does perform similarly for P waves and worse for S waves compared 
to TPhaseNet for low SNR arri v als. Howe ver, this needs further in- 
v estigation be yond the 4 d of continuous data that were tested, and 
with the changes to the array processing detection threshold also 
e v aluated. 

Since we see the benefit of using machine learning for a sin- 
gle station of an array, the obvious next step is to develop array 
processing including deep learning phase pickers. We expect that 
doing so will improve performance considerably by increasing both 
precision (false signals only detected at a few stations can be elim- 
inated) and recall (SNR can be decreased by beamforming). This 
w ould allo w us to use a lo wer detection probability threshold than 
the optimal threshold suggested by the recall-precision curves, a 
need w e ha ve already seen when e v aluating e v ent e xamples visu- 
ally. We hypothesize that a low threshold will increase the recall, 
and array processing could remove false detections. There is also 
the option to combine the phase detection with a subsequent addi- 
tional machine learning and array data-based phase classification 
step using the method suggested by K öhler & Myklebust ( 2023 ). 
Where no array data are available, sorting out false arri v als can also 
be achie ved b y multiple station processing (phase association), that 
is by identifying detections not associated with an y e v ent observ ed 
on a seismic network. 

Our training data includes analyst picks of Pg/Sg, Pn/Sn or un- 
classified P / S waves. Mai et al. ( 2023 ) provide an option to include 
these regional arri v als as separate classes in the deep learning phase 
picker. Ho wever , in our case, analysts tend to only pick the first 
P arri v al, either the direct or the Moho-refracted head wave. For 
S waves the second arrival (Sg) is often preferably picked, even 
beyond the cross-over distance due to higher SNR. Hence, not all 
arri v als are picked for all events, and it is difficult to provide a 
training data set to classify both categories. For a phase picking 
model to learn to discriminate between regional phase arri v als, it 
needs to be presented with enough event samples with all arrivals 
being picked consistently. A possibility to overcome this issue in 
future could be to add theoretical arri v al time picks. At this point, 
ho wever , our method includes only a two-class model, that is P 

and S waves, where the model tends to detect the first P arri v al 
(either Pg or Pn) and the S wave with higher SNR (Sg or Sn). Nev- 
ertheless, we found examples where P wave probability exhibits 
two peaks, coinciding with Pg and Pn arri v als. This shows that our 
model is not biased towards only allowing a single P wave to be 
picked for each event. In future detection pipelines, distinguishing 
between regional phase types can be done by array processing after 
the initial detector stage (ArrayNet, K öhler & Myklebust 2023 ), 
or by the event association algorithm. In the case of ArrayNet, 
the labelled phase arri v als are independent samples in the train- 
ing data set. Therefore, it does not matter if events exhibit missing 
picks. 

6  C O N C LU S I O N  

We have developed a modified deep learning method based on 
the PhaseNet architecture for seismic phase detection in regional 
e vent w aveforms, a task for which deep learning has yet to be 
applied. We called the method TPhaseNet since it adds transformer 
layers to the neural network. The training data set includes phase 
arri v als obtained from three different reviewed event bulletins. Five- 
min-long three-component waveforms from single stations of four 
seismic arrays are used as input. We e v aluated the performance 
of TPhaseNet and compared it to three state-of-the-art models for 
phase detections. 
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We found that our ne wl y proposed model architecture outper-
orms the baseline models when tested on unseen seismic event
ecords. In a final test, we apply TPhaseNet to continuous data
rom stations of the ARCES array. A comparison of classification
etrics showed that our new method increases detection rate and

ecreases the number of false detections with respect to the existing
rray detector at ARCES. These results were obtained with only 4
 of data, and we therefore suggest more investigations in future
tudies focusing on integrating deep learning into array process-
ng pipelines. This would allow operating TPhaseNet with a lower
etection threshold and let array processing remove false signals.
uture studies should also include more model e v aluation, includ-

ng hyper-parameter tuning as well as retraining with an improved,
hat is larger and more balanced training data set. 

Overall, our study is a successful and crucial first step towards
ntegration of machine learning into the re gional ev ent detection
ipeline at NORSAR, with future implications for other data centres
ncluding the CTBT verification with IMS stations. Fur ther more,
e are confident that phase detection using deep learning models
as the potential to replace the ST A/LT A trigger currently in use in
he automatic array processing. 
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ATA  AVA I L A B I L I T Y  

eismic data processing w as partl y done using Obspy (Beyreuther
t al. 2010 ). Fig. 1 was generated using the Generic Mapping
ools (Wessel & Smith 1995 ). ARCES and SPITS waveform data
re available via IRIS (Albuquerque Seismological Laboratory
ASL)/USGS 1988 ) ( https://doi.org/10.7914/sn/iu ) or the Norwe-
ian EIDA node (Ottem öller et al. 2021 ) ( https://www.orfeus-eu.or
/data/eida/nodes/UIB NORSAR/ ). All data are stored at NORSAR
NORSAR 1971b ) ( https://doi.org/10.21348/d.no.0001 ). Re vie wed
eismic event bulletins are available from the Finnish National Seis-
ic Network (Institute of Seismology 1980a , b ; Veikkolainen et al.

021 ) and from NORSAR (NORSAR 1971a ). All IDC products
waveform data of FINES and IDC LEB) can be requested via the
TBTO vDEC system ( https://www.ctbto.org/specials/vdec/ ). The
ode for model training and application is available at https://github
com/Nor wegianSeismicArr ay/tphasenet . The trained models and
art of the training data set can be downloaded from https://www.
oi.org/10.5281/zenodo.11231543 (K öhler & Myklebust 2024 ). 
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Table A1. Augmentation and global model hyper-parameters. 

Name Value 

Optimizer Adam 

Learning rate 0.001 
Weight decay 0.01 
Early stopping patience 15 
Reduce learning rate patience 7 
Class weights (N, P, S) 0.05,0.40,0.55 
Normalization mode Interchannel 
Normalization type Standard deviation 
Add noise 0.3 
Add event 0.3 
Drop channel 0.2 
Add gap 0.2 
Max gap size 0.1 
Taper 0.01 

Figure A1. Magnitude distribution of seismic events used in this study. 
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A P P E N D I X  A :  H Y P E R - PA R A M E T E R S  

Tables A1 and A2 contain the hyper-parameters used for the train- 
ing and augmentation. Filters denotes the number of convolutional 
Table A2. Model hyperparameters. 

HP PhaseNet EPick 

Parameters 6 . 7 M 17 . 2 M
Filters 64,64,128,128,256,512 64,64,128,128,256
Filter sizes 7,7,7,7,7,7,7 7,7,7,7,7,7,7 
Attention units 0,0,0,32,32,32,6
Residual filters 
Res. filter sizes 
LSTM units 
Transf. units 
Acti v ation swish swish 
filters in each block, for example 8 , 8 , 8 , 8 means that the model 
has four convolutional blocks, all with eight filters. The filter size 
denotes how large the filters are in each block. Most models use a 
default value of 7, but EQTransformer reduces the filter size based 
on depth in the network. We tested the impact on PhaseNet with 
the same filter sizes as EQTransformer and found no differences in 
performance. Attention denotes the size of each head in the multi- 
head attention, in each block. A value of 0 denotes no attention in 
that block. EQTransformer has parameters Residual filters, residual 
filter sizes, LSTM filters and transformer sizes and these are specific 
to the residual blocks, the bidirectional LSTM layers, and the size of 
each head in the multi-head attention and the feed-forward network 
in the transformers. All models use a dropout of 0.4, max pooling 
(size 4, stride 2), and swish acti v ation. 
EQTransformer TPhaseNet 

21 M 10 . 4 M
,512 32,64,64,128,128,256,256 64,64,128,128,256,512 

11,9,7,7,5,5,3 7,7,7,7,7,7,7 
4 

256,256,256,256,256 
3,3,3,2,2 

256,256,256 
256,256 0,0,0,32,32,32,64 
swish swish 
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P P E N D I X  B :  M U LT I - H E A D  

T T E N T I O N  

athematically, attention is expressed as a scaled dot-product
Vaswani et al. 2017 ): 

At t ent ion ( Q, K , V ) = sof tmax 

(
QK 

T 

√ 

d k 

)
V , (B1) 

here Q, K , V are query, key and value matrices, and d k is the
ey dimension. Query is the embedded input sequence, that is a
equence of feature vectors which in natural language processing
an represent a sequence of words (a sentence) and in our case
epresents the event waveform time window. The key is another
equence of feature vectors. The query is then compared to each
eature vector (word or part of seismogram) in the key via dot
roduct to find the most rele v ant part of the sequence (word or part
f seismogram). To enhance the impact of the most important part,
he value matrix is used to compute the final attention vector. In
eneral, key and value are trainable but often self-attention is used
here Q = K = V . In EPick K = V which is the output of the
revious convolutional block (dotted green arrow in Fig. 3 ), while

Q is the output of the current convolutional block (solid green line
n Fig. 3 ). 
igure A2. Pick time residuals with respect to picks of the analysts for test data se
Attention is powerful in itself, but throughout this study, we use
ultihead attention (Vaswani et al. 2017 ). Multihead attention in

eural networks can be understood as having multiple sets of ‘eyes’
r attention mechanisms looking at different aspects of the input
ata simultaneously. By doing this, the model can capture diverse
atterns and relationships within the data, enhancing its ability to
nderstand and represent complex information. Multihead attention
s formulated as 

Multi Head( Q, K , V ) = Conc at( he ad 1 , he ad 2 , . . . , he ad h ) W 0 , (B2) 

here head i = At t ent ion ( QW 

Q 

i , K W 

K 
i , V W 

V 
i ) , (B3) 

here W 

Q 

i ∈ R 

d input ×d k , W 

K 
i ∈ R 

d input ×d k , W 

V 
i ∈ R 

d input ×d v and W 0 ∈
 

hd v ×d input . The value of d k and d v are typically chosen as d input /h ,
eeping the computational cost the same as scaled dot-product at-
ention. 

P P E N D I X  C :  S U P P L E M E N TA RY  P L O T S  

ig. A1 shows the magnitude distribution of seismic events used
n this study. Fig. A2 shows pick time residuals for all tested mod-
ls. Figs A3 , A4 and A5 show TPhaseNet performance for three
ifferent stations of the ARCES array. 
t for all models. 
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Figure A3. Performance metrics of TPhaseNet at station ARA1 for different decision thresholds, without (a and b) and with SNR threshold (c and d). The 
closer the displayed curves bend towards the upper-right corner, the better the performance. Recall and precision for FKX phase detection in operation at 
ARCES are added as symbols (no detection threshold data available). For each precision and recall pair a second one is added where arri v als labelled as 
‘unknown’ are counted as either P or S waves for calculating precision. 
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Figure A4. Same as Fig. A3 , but performance metrics of TPhaseNet at station ARA2 for different decision thresholds. 

Figure A5. Same as Fig. A3 , but performance metrics of TPhaseNet at station ARC3 for different decision thresholds. 
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