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Abstract
Microclimate—proximal	 climatic	variation	at	 scales	of	metres	and	minutes—can	exac-
erbate or mitigate the impacts of climate change on biodiversity. However, most mi-
croclimate studies are temperature centric, and do not consider meteorological factors 
such	as	sunshine,	hail	and	snow.	Meanwhile,	remote	cameras	have	become	a	primary	
tool	to	monitor	wild	plants	and	animals,	even	at	micro-	scales,	and	deep	learning	tools	
rapidly convert images into ecological data. However, deep learning applications for 
wildlife	imagery	have	focused	exclusively	on	living	subjects.	Here,	we	identify	an	over-
looked	opportunity	to	extract	latent,	ecologically	relevant	meteorological	information.	
We	produce	an	annotated	image	dataset	of	micrometeorological	conditions	across	49	
wildlife	cameras	in	South	Africa's	Maloti-	Drakensberg	and	the	Swiss	Alps.	We	train	en-
semble deep learning models to classify conditions as overcast, sunshine, hail or snow. 
We	achieve	91.7%	accuracy	on	test	cameras	not	seen	during	training.	Furthermore,	we	
show	how	effective	accuracy	is	raised	to	96%	by	disregarding	14.1%	of	classifications	
where	ensemble	member	models	did	not	reach	a	consensus.	For	two-	class	weather	clas-
sification	 (overcast	vs.	 sunshine)	 in	a	novel	 location	 in	Svalbard,	Norway,	we	achieve	
79.3%	accuracy	(93.9%	consensus	accuracy),	outperforming	a	benchmark	model	from	
the	computer	vision	literature	(75.5%	accuracy).	Our	model	rapidly	classifies	sunshine,	
snow	 and	 hail	 in	 almost	 2 million	 unlabelled	 images.	 Resulting	 micrometeorological	
data illustrated common seasonal patterns of summer hailstorms and autumn snow-
falls across mountains in the northern and southern hemispheres. However, daily pat-
terns of sunshine and shade diverged between sites, impacting daily temperature cycles. 
Crucially,	we	leverage	micrometeorological	data	to	demonstrate	that	(1)	experimental	
warming	using	open-	top	chambers	shortens	early	snow	events	in	autumn,	and	(2)	image-	
derived	sunshine	marginally	outperforms	sensor-	derived	temperature	when	predicting	
bumblebee foraging. These methods generate novel micrometeorological variables in 
synchrony with biological recordings, enabling new insights from an increasingly global 
network	of	wildlife	cameras.
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1  |  INTRODUC TION

Climate change is redistributing species in space and time, with 
profound impacts on ecosystem function and human wellbeing 
(Pecl et al., 2017).	 While	 biodiversity	 impacts	 of	 climate	 change	
are usually reported at coarse spatial resolutions across large spa-
tial	extents	(Lenoir	et	al.,	2020),	species	often	respond	to	climate	at	
much finer scales (Lembrechts et al., 2019;	Maclean	&	Early,	2023; 
Potter et al., 2013).	 Furthermore,	 studies	 of	 the	 biodiversity	 im-
pacts	of	climate	change	are	traditionally	temperature	centric	(Antão	
et al., 2020).	As	the	study	of	microclimate	has	expanded,	this	tem-
perature	centricity	has	remained	(Maclean	et	al.,	2021),	due	in	part	
to	 the	availability	of	 inexpensive	and	easy-	to-	use	temperature	 log-
gers (Lembrechts et al., 2020).	Still,	non-	temperature	aspects	of	cli-
mate	and	meteorology	have	profound,	fine-	scale	impacts	on	species	
and	communities.	Solar	 radiation	 (i.e.	 sunshine)	not	only	underpins	
ambient temperature, but also directly impacts plant growth and 
animal	behaviour	(Möhl	et	al.,	2020; Roales et al., 2013; Valladares 
et al., 2016).	Furthermore,	snow	cover	severely	constrains	the	onset	
of	plants'	growing	and	flowering	seasons	(Möhl	et	al.,	2022),	impact-
ing plant–pollinator interactions (Gillespie et al., 2016;	 Gillespie	 &	
Cooper, 2022).	 Hail	 receives	 very	 little	 attention	 in	 ecological	 re-
search, yet presents a direct physical threat that can devastate poorly 
adapted plant species (Fernandes et al., 2011).	As	the	frequency	of	
extreme	weather	events	increases	(IPCC,	2023),	it	is	vital	that	sensor	
networks	 capture	not	 only	 temperature,	 but	 also	 a	 range	of	 other	
fine-	scale	meteorological	variables.

Meanwhile,	novel	technology	is	revolutionizing	the	monitoring	
of ecological communities, generating data with unprecedented 
temporal	 continuity	 and	 resolution	 (August	 et	 al.,	 2015; Besson 
et al., 2022).	Wildlife	 cameras—in	 situ	 autonomous	 cameras	 that	
record	 wildlife—are	 particularly	 promising.	 Camera	 traps	 are	 an	
established method to monitor large animals (Burton et al., 2015),	
but wildlife cameras are now regularly deployed to study small 
mammals	and	birds	(Ortmann	&	Johnson,	2021),	insects	and	other	
arthropods	(Høye	et	al.,	2021)	and	plants	(Katal	et	al.,	2022).	For	
vegetation, the ‘PhenoCam’ approach has gained traction, cap-
turing	community-	level	characteristics	such	as	plant	productivity	
(Brown et al., 2016).	 However,	 the	 volume	 of	 images	 from	wild-
life cameras has proven difficult to manage, so algorithms are 
being	 developed	 to	 automatically	 extract	 ecological	 data	 (Høye	
et al., 2021; Tuia et al., 2022).	Deep	learning	models	are	a	preva-
lent	family	of	algorithms	used	to	detect,	classify	and	track	animals	
in	images	(Norouzzadeh	et	al.,	2018).	For	plants,	algorithms	can	be	
trained to flag phenological events such as the onset of budburst 

or	flowering	 (Katal	et	al.,	2022),	or	to	detect	and	track	 individual	
flowers	(Mann	et	al.,	2022).

The	consistency	of	 image-	based	monitoring	allows	 for	 incidental	
recording	of	non-	target	biota,	known	as	‘by-	catch’.	For	example,	a	cam-
era	trap	network	intended	to	study	the	Eurasian	lynx	in	the	Swiss	Jura	
mountains	has	proven	useful	to	explore	habitat	use	by	wild	boar	and	
roe deer (Wevers et al., 2021).	However,	it	is	increasingly	recognized	
that	wildlife	cameras	also	capture	non-	target	abiotic	 information,	 in-
cluding meteorological conditions not easily captured with alternative 
sensors (Hofmeester et al., 2020).	Furthermore,	capturing	both	biotic	
and abiotic data with a single sensor ensures that they are measured 
simultaneously, at equivalent spatial and temporal scales. Several stud-
ies	have	manually	extracted	the	presence,	cover	or	depth	of	snow	in	
ecological imagery (Lumbrazo et al., 2022).	Furthermore,	some	stud-
ies automate the quantification of snow in PhenoCam images (Caparó 
Bellido	&	Rundquist,	2021;	Julitta	et	al.,	2014),	or	the	classification	of	
frost	 (Noh	et	 al.,	2021).	Many	 computer	 vision	 studies	 have	 trained	
models to classify weather phenomena in domains outside of wildlife 
cameras (Ibrahim et al., 2019;	Jacobs	et	al.,	2009; Lu et al., 2014, 2017; 
Xiao et al., 2021).	However,	such	models	have	not	been	tested	in	eco-
logical	contexts,	and	the	use	of	a	single,	efficient	classifier	to	simulta-
neously detect sunshine and frozen precipitation in wildlife images has 
not	been	explored.

Working	 with	 wildlife	 imagery	 from	 matching	 experimental	
sites	in	mountains	in	the	northern	(Switzerland;	CH)	and	southern	
(South	Africa;	ZA)	hemispheres,	we	train	ensemble	deep	learning	
models to detect micrometeorological conditions of sunshine, 
hail	 and	 snow.	Our	 objectives	 are	 as	 follows:	 (1)	 Build	 a	 dataset	
and train deep learning classifiers to derive micrometeorological 
conditions	in	images;	(2)	evaluate	different	models,	data-	splitting	
and	ensemble	approaches	to	maximize	performance	with	out-	of-	
sample	(same	sites,	different	cameras)	and	out-	of-	distribution	(dif-
ferent	sites,	different	cameras)	test	datasets;	and	(3)	demonstrate	
the	 application	 of	 image-	derived	 micrometeorological	 variables	
for ecological research. For this last objective, we classify condi-
tions	in	almost	2	million	unlabelled	images	in	CH	and	ZA.	Then	we	
(i)	use	snow	in	ZA	images	to	determine	the	effects	of	experimental	
warming	on	snow	melt,	and	(ii)	use	sunshine	in	CH	images	to	ex-
plore the relative importance of sunshine and ambient tempera-
ture for bumblebees foraging at high elevations. Our approach 
efficiently attaches micrometeorological data to remote biodi-
versity observations. This is particularly useful for biodiversity 
monitoring in mountains, which are characterized by high levels of 
endemism,	complex	 topography	and	microclimatic	heterogeneity	
(Spehn	&	Körner,	2005).

Förderung	der	Wissenschaftlichen	
Forschung,	Grant/Award	Number:	
20BD21_193809
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2  |  METHODS

2.1  |  Study area

Imaging	was	carried	out	over	49	1 × 1 m	montane	grassland	plots	
across	four	replicated	experimental	field	sites.	In	the	Calanda	mas-
sif	in	the	Alps	in	Switzerland	(CH),	24	plots	were	imaged	from	June	
2021 to October 2021, of which eight were located at a low el-
evation	site	(46.869266° N	9.490098° E;	1440 m	elevation)	and	12	
were	 located	at	a	high-	elevation	site	 (46.887824° N	9.489510° E;	
2000 m).	 In	 the	 Sentinel	 region	 of	 the	 Maloti-	Drakensberg	 in	
South	Africa	(ZA),	25	subplots	were	imaged	from	November	2021	
to	April	2022,	of	which	 five	were	 located	at	a	 low	elevation	site	
(28.679532° S	 28.894816° E;	 2200 m)	 and	 20	 were	 located	 at	 a	
high-	elevation	 site	 (28.754951° S	 28.866981° E;	 3060 m).	 The	
grassland plots we imaged comprised native vegetation, but half of 
the plots additionally had small plant specimens, of species typical 
of lower elevations, introduced within them. Half of the high site 
plots	in	ZA	were	also	exposed	to	open-	top	chamber	(OTC)	warm-
ing	of	approximately	2°C.

2.2  |  Sensor deployment

A	Wingscapes	 TimelapseCam	 Pro	 camera	 (with	 LED	 flash)	 was	
mounted	 on	 a	 steel	 frame	 over	 each	 plot,	 ca.	 62 cm	 from	 the	
ground, pointing towards the ground. Each camera captured an 
area	 of	 ca.	 30 × 17 cm.	 All	 cameras	 were	 ‘continuous’,	 recording	
images	day	 and	night	 at	5-	min	 intervals,	 except	 for	16	 ‘focused’	
cameras	in	CH	which	recorded	at	1-	min	intervals	between	12.00–
15.00	and	01.00–03.00	(Alison	et	al.,	2022).	Each	camera	required	
eight	AA	lithium	batteries	and	a	128 GB	SD	card,	replaced	approxi-
mately	every	2 months.

All	cameras	were	equipped	with	on-	board	temperature	sensors,	
recording	temperature	at	ca.	62 cm	above	ground	with	every	photo-
graph	(either	at	5-		or	1-	min	intervals	depending	on	the	camera).	At	
the	high-	elevation	sites,	we	also	deployed	TMS4	microclimate	log-
gers	to	record	temperature	every	15 min	at	−8,	0	and	15 cm	above	
ground.	We	deployed	loggers	 in	blocks	of	six,	with	three	blocks	at	
the	CH	high	site	and	one	block	at	 the	ZA	high	site.	Each	block	 in-
cluded two loggers in vegetated plots with OTC warming, two in 
vegetated plots without warming and one each in bare soil plots with 
and without OTC warming. Loggers were not targeted to the same 
plots as cameras, though some of the same plots were sampled by 
coincidence.

2.3  |  Image labelling

We	 sorted	 a	 total	 of	 8953	 images	 into	 four	 classes	 based	 on	mi-
crometeorological conditions: overcast, sunshine, hail or snow 
(Figure 1;	 further	details	 in	Appendix	S1).	First,	 to	generate	 train-
ing data representing the entire recording period, we labelled a 

systematic sample of 6205 images. We sampled one image per hour 
in	both	ZA	and	CH,	cycling	through	the	continuous	cameras.	In	CH,	
we included an additional one image per hour cycling through all 
focused	cameras	(5 h	per	day).	The	systematic	sample	yielded	1320	
sunshine,	110	snow,	39	hail	and	4736	overcast	images.	Second,	to	
generate adequate training data and improve detection of snow and 
hail,	we	took	a	strategic	sample	of	2748	images	that	was	informed	
by the systematic sample. The strategic sampling protocol had three 
tiers, such that the rarest meteorological events were sampled more 
intensively (i.e. oversampled; Table S1).	The	strategic	sample	yielded	
an	additional	set	of	266	sunshine,	923	snow,	803	hail	and	756	over-
cast	images.	CH	images	were	labelled	by	JA,	and	ZA	images	by	SP,	
using	VGG	Image	Annotator	 (VIA	v2.0.11;	https://	www.	robots.	ox.	
ac.	uk/	~ vgg/ softw are/ via/ ).

2.4  |  Model training

We	trained	convolutional	neural	networks	(CNNs)	to	classify	condi-
tions in images as overcast, sunshine, hail or snow using the Keras 
python library (Chollet, 2015).	 Specifically,	 we	 fine-	tuned	 the	
MobileNet	network	(Howard	et	al.,	2017)	pretrained	on	ImageNet	
(Russakovsky	et	al.,	2015),	representing	a	lightweight	and	efficient	
family	of	CNNs	that	has	been	shown	to	perform	well	for	image	clas-
sification in ecology (Besson et al., 2022; Schneider et al., 2022).	
To adapt the model to predict just four classes, we removed the 
top	 layer	of	 the	network	and	added	a	custom	softmax	activation	
layer with a flattened input. Training images were rescaled to 
224 × 224 px	and	put	through	an	augmentation	pipeline	to	reduce	
overfitting.	Augmentation	 involved	 random	vertical	 or	 horizontal	
flipping	and	up	to	45°	random	rotation	in	any	direction.	Following	
preliminary	tests,	we	trained	the	entire	network	in	two	stages	using	
the	Adam	optimizer	and	a	batch	size	of	128.	First,	we	trained	for	
five epochs specifying a learning rate of 0.001, to bring models rap-
idly	towards	a	solution.	Second,	we	trained	the	entire	network	for	
up to 200 epochs, specifying a learning rate of 0.0001. The change 
in learning rate allowed models to reach an optimal solution while 
minimizing	 spurious	 fluctuations	 in	 validation	 loss.	 Appendix	 S2 
gives	a	primer	on	CNN	parameters	and	concepts.

2.5  |  Model validation

We used model validation with early stopping to minimize overfit-
ting to the training data. We stopped training if validation perfor-
mance did not improve for 30 epochs and saved the model from the 
epoch	with	the	best	validation	performance	(concepts	explained	in	
Appendix	S2).	To	account	 for	variance	 related	 to	data	splitting	 for	
validation,	we	 used	 cross-	validation.	 Specifically,	we	 carried	 out	 a	
fivefold	cross-	validation	in	which	each	of	five	mutually	exclusive	data	
folds is iteratively treated as the validation dataset (e.g. Figure S1, 
inner	validation	loop).	Additionally,	we	compared	two	data-	splitting	
methods: ‘Cis’ and ‘Trans’ (Beery et al., 2018, 2020).	Cis	validation	
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involves random splitting of images from all cameras. Trans valida-
tion splits cameras rather than images, such that images from one 
camera are always constrained to a single fold (Figure S1).	With	the	
Cis validation method, the effective size of the training set is larger, 
because more camera positions are seen during training. However, 
the Trans validation method ensures that images from the same 
camera are not represented in both training and validation data. For 
both Cis and Trans validation, folds were stratified with respect to 
the	four	study	sites	(Wieczorek	et	al.,	2022).

2.6  |  Model aggregation

We produced ensembles of sets of five ‘member models’, represent-
ing the five iterations of each fivefold validation loop, in a procedure 
called	cross-	validation	aggregation	(crogging;	Barrow	&	Crone,	2013; 
see	 Appendix	 S3	 for	 further	 details).	 The	 crogging	 procedure	 pro-
duces ensemble models in which each observation contributes to both 
model	 training	 (in	all	but	one	member	model)	 and	model	validation	

by	early	stopping	 (in	one	member	model).	Averaging	across	models	
which use distinct data folds for validation can improve generaliza-
tion	performance	and	model	stability	(Barrow	&	Crone,	2016;	Krogh	&	
Vedelsby, 1994).	Ensemble	models	were	produced	under	both	Cis	and	
Trans validation methods. For each fivefold validation loop, five Cis 
member models and five Trans member models were aggregated into 
ensembles	by	unweighted	averaging	of	output	softmax	probabilities.

2.7  |  Model testing and deployment

We	aimed	for	models	that	would	transfer	to	(1)	novel	camera	posi-
tions	within	our	sites	and	(2)	novel	sites	with	a	similar	recording	pro-
tocol. To test transferability to novel positions within our sites, each 
fivefold	validation	loop	was	nested	within	an	outer	sixfold	test	loop	
(e.g. Figure S1).	In	other	words,	we	used	a	nested	cross-	validation	or	
‘double-	cross’	to	obtain	a	robust	and	unbiased	measure	of	model	gen-
eralization	 (Cawley	&	Talbot,	2010).	We	randomly	split	49	cameras	
into	 six	 folds	 that	were	 stratified	 across	 the	 four	 sites	 (Wieczorek	

F I G U R E  1 Examples	of	the	four	classes	of	micrometeorological	conditions	in	two	representative	high-	elevation	plots	in	Switzerland	(CH)	
and	South	Africa	(ZA).	Total	numbers	of	labelled	images	(n)	are	shown	across	classes	and	regions	(including	high	and	low	elevation	sites).	The	
breakdown	of	labels	across	the	systematic	sample	(n1)	and	the	strategic	sample	(n2)	is	also	shown,	as	is	the	representation	of	each	condition	
within	the	systematic	sample	for	a	given	region	(pct).

 13652486, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17078 by A

rctic U
niversity of N

orw
ay - U

IT
 T

rom
so, W

iley O
nline L

ibrary on [06/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  5 of 13ALISON et al.

et al., 2022).	During	each	test	loop	iteration,	one	of	sixfold	was	with-
held	 as	 a	 test	 dataset.	We	 compared	model	 accuracy	 and	 macro-
	F1	 (the	 mean	 of	 class	 F1	 scores)	 following	 Equations 1–4 where: 
TP = true	positives;	TN = true	negatives;	FP = false	positives;	FN = false	
negatives; Pr = class	precision;	 and	Re = class	 recall.	Class	F1	 scores	
represent	class-	level	performance,	and	macro-	F1	represents	overall	
model performance while accounting for class imbalance.

To test model transferability to novel sites, we trained two pro-
duction models by incorporating the test data for training and valida-
tion.	Specifically,	we	trained	a	sixfold	Trans	ensemble	and	a	sixfold	Cis	
ensemble.	Novel	site	performance	was	then	tested	using	images	from	
Svalbard,	Norway.	 In	a	separate	study	of	pollination	of	Silene acau-
lis,	six	plots	in	Bjørndalen	(78.21660° N	15.33280° E;	40 m	elevation)	
were	imaged	at	1-	min	intervals	in	June	and	July	2020	using	the	same	
imaging methods. However, some images were cropped slightly to 
zoom in on S. acaulis during annotation. The first 11 images of every 
hour of every day were labelled for sunshine (n = 957)	and	overcast	
(n = 6222)	 conditions	by	MH.	To	compare	model	performance	with	
an	existing	benchmark,	we	also	classified	the	Svalbard	images	using	
a	two-	class	weather	classification	model	published	by	Lu	et	al.	(2014, 
2017, https://	jiaya.	me/	proje	cts/	weath	ercla	ssify/		index.	htm)	 and	 de-
ployed	 in	 MatLab	 (The	 MathWorks	 Inc.,	 2023).	 Data,	 models	 and	
code to train and deploy deep learning models are openly available 
on Zenodo at https:// doi. org/ 10. 5281/ zenodo. 10137731.

Finally, we deployed our production Trans ensemble model 
to predict micrometeorological conditions across the full set of 
1,934,044	 images	 taken	 across	 all	 four	 sites	 in	 CH	 and	 ZA.	 We	

validated our time series of micrometeorological conditions against 
temperature	data	from	TMS4	loggers	(Wild	et	al.,	2019).	We	then	an-
alysed	micrometeorological	conditions	to	explore	(1)	effects	of	OTC	
warmed	 and	 unwarmed	 treatments	 on	 snow	 cover	 in	 ZA,	 and	 (2)	
effects	of	sensor-	derived	temperature	and	image-	derived	sunshine	
on Bombus visitation to Trifolium pratense in CH (using data previ-
ously	published	by	Alison	et	al.,	2022).	For	(2),	we	calculated	the	day-
time	degree	days	recorded	by	on-	board	temperature	sensors	 (sum	
of	mean	daily	temperatures	above	0°C)	and	sunshine	days	(sum	of	
mean	daily	proportional	sunshine)	during	flowering	of	each	inflores-
cence.	We	compared	AIC	of	 linear	models	predicting	 ln(number	of	
visits)	of	each	inflorescence.	Furthermore,	to	investigate	mismatch	in	
the microclimatic niches of T. pratense and its primary pollinators, we 
calculated mean temperature and proportional sunshine within an 
hour either side of each Bombus flower visit. This was overlaid on the 
distribution of temperature and sunshine during daytime hours in 
which 32 T. pratense inflorescences were flowering. Statistical analy-
ses were carried out using R (R Core Team, 2023).

3  |  RESULTS AND DISCUSSION

Wildlife	 cameras	 capture	 details	 about	 species'	 abiotic	 environ-
ments, and not just their behaviours, life cycles and interactions 
(Hofmeester et al., 2020).	We	find	that	conditions	such	as	sunshine,	
snow	and	hail	can	be	readily	and	automatically	extracted	from	wild-
life imagery. Furthermore, we show how such micrometeorological 
data	are	complementary	to	sensor-	derived	temperature	data.

3.1  |  Model performance

Ensemble models were highly transferable to novel camera posi-
tions,	 consistently	 achieving	 higher	 accuracy	 and	 macro-	F1	 than	
member models (Table 1).	Ensemble	models	also	outperformed	full	
models, which used all data for training and none for validation, by 
around	1%.	Beyond	performance	benefits,	member	models	within	a	
given	ensemble	disagree	on	13%–14%	of	predictions	 (Table 1)	and	

(1)Accuracy =
TP + TN

TP + FP + TN + FN
.

(2)Pr =
TP

TP + FP
.

(3)Re =
TP

TP + FN
.

(4)Class F1 = 2
Pr × Re

Pr + Re
.

TA B L E  1 Mean	(±SD)	performance	of	full	models	(n = 6),	ensemble	models	(n = 6)	and	member	models	(n = 5 × 6 = 30)	in	classification	of	
micrometeorological	conditions	in	out-	of-	sample	test	images	(same	sites,	different	cameras).

Validation split method Model type Macro- F1 (%) Accuracy (%)
Consensus accuracy 
(%)

Rate of consensus 
(%)

Cis Ensemble 89.25 (2.02) 91.63 (1.96) 95.89 (1.69) 87.13 (1.92)

Member 88.02 (1.59) 90.72 (1.67)

Trans Ensemble 88.82 (3.33) 91.70 (2.02) 96.00 (1.55) 85.90 (3.33)

Member 87.22 (3.02) 90.41 (2.13)

None Full 88.00 (2.61) 90.94 (2.21)

Note:	Performance	metrics	include	macro-	F1,	accuracy	and	consensus	accuracy	for	ensemble	models.	Ensemble	models	are	compared	to	member	
models under two validation data split methods: ‘Cis’ and ‘Trans’ (see Figure S1).	The	consensus	accuracy	of	ensemble	models	is	the	accuracy	of	
predictions on which all five member models agree. Rate of consensus is the percentage of test images for which all five member models agree. 
Maxima	for	macro-	F1,	accuracy	and	concensus	accuracy	are	displayed	in	bold.
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this disagreement forms a useful measure of uncertainty; by omit-
ting	 non-	consensus	 predictions	 as	 uncertain,	we	 raised	 the	 effec-
tive	 accuracy	of	our	most	 accurate	ensemble	 to	96%.	Differences	
between models trained using the Cis and Trans validation meth-
ods	 were	 negligible,	 while	 cross-	validation	 revealed	 considerable	
variation when models of the same type were trained and tested 
on different folds of the data (Table 1,	see	Appendix	S3 for further 
discussion	on	 validation	 approaches	 and	 ensembling).	Our	models	
classified overcast and sunshine conditions more successfully than 
snow or hail (Figure 2; Figure S2),	perhaps	reflecting	the	oversam-
pling of snow and hail events. Our ensemble model based on a Trans 
validation	method	misclassified	29%	of	hail	images	as	overcast,	12%	
of	sunshine	as	overcast	and	3%	of	overcast	as	sunshine	(Figure 2).	
The apparent bias of the model towards overcast conditions could 
relate not only to the high variability of that class, but also the over-
representation of overcast images in the training data.

The	real-	world	utility	of	deep	learning	models	hinges	on	generaliza-
tion performance, including transferability to novel sites and conditions. 
When classifying images of S. acaulis	across	six	cameras	from	a	totally	
independent	site	in	Svalbard,	Norway,	ensemble	models	using	Cis	and	
Trans validation methods distinguished sunshine from overcast condi-
tions	with	79.3%	and	72.8%	accuracy	 respectively	 (model	F1:	70.9%	
and	65.0%).	Our	best	model	thus	outperformed	a	benchmark	model	for	
two-	class	weather	classification,	trained	on	10,000	images	from	a	vari-
ety	of	outdoor	contexts	(Lu	et	al.,	2014, 2017),	which	achieved	75.5%	
accuracy	 on	 Svalbard	 images.	 Furthermore,	 omitting	 non-	consensus	
predictions	as	uncertain,	we	raised	the	effective	accuracy	to	94%	and	
88.4%	respectively.	Contrary	to	expectations,	when	classifying	images	
from Svalbard, ensemble models based on the Cis validation method 
outperformed those based on the Trans method. This suggests that 
the reduced overfitting of the Trans ensemble was offset by the re-
duction in training data seen by each member model. Still, the reported 

generalization	 performance	 is	 impressive	 given	 that	 the	 out-	of-	
distribution images came from a site >1000 km	away,	at	>1000 m	lower	
elevation, with different height and width compared to training images. 
For detection of sunshine in images, our models show clear potential to 
generalize to novel sites with a similar recording protocol.

3.2  |  Extensive prediction of 
micrometeorological data

We predicted micrometeorological conditions in almost 2 million im-
ages	across	CH	and	ZA	sites.	Those	images	were	classified	by	a	mem-
ber	model	in	around	20 h	on	an	Intel	Xeon	E5-	2697A	v4	processor	with	
8 CPUs @ ~2.6 GHz.	Much	faster	times	would	be	expected	if	using	a	
GPU.	A	consensus	prediction	emerged	for	87.7%	of	images,	and	these	
predictions were averaged across cameras over time to generate 
seasonal (Figure 3)	 and	 diel	 (Figure 4)	 micrometeorological	 profiles.	
Seasonal profiles revealed a common seasonal pattern of summer hail-
storms and autumn snow across mountains in the northern and south-
ern hemispheres (Figure 3).	As	expected,	during	the	day	there	was	a	
striking	match	 between	 image-	derived	 sunshine	 and	 sensor-	derived	
temperatures (Figure 3).	 However,	 nighttime	 temperatures	 also	 ap-
peared warmer following periods of high daytime cloud cover (i.e. low 
sunshine before nightfall; Figure 3),	as	expected	under	longwave	cloud	
forcing (Ramanathan et al., 1989).	Furthermore,	diel	sunshine	profiles	
revealed	that	the	ZA	high-	elevation	site	was	characterized	by	morning	
sunshine and afternoon shade, with subtle impacts on the diel tem-
perature profile (Figure 4).	Such	insights	would	be	difficult	to	obtain	
without	using	the	meteorological	by-	catch	of	wildlife	cameras.

3.3  |  Effects of experimental warming on 
snow melt

We found clear impacts of OTCs on the prevalence and duration of 
snow cover (Figure 5).	During	the	first	(and	longest)	recorded	snow-
fall,	 the	 snow	melted	completely	 after	 around	2.5 days	 in	warmed	
plots. This contrasted with unwarmed plots, where snow persisted 
for	up	to	4 days	(Figure 5).	Beyond	temporal	variation,	we	also	cap-
tured	fine-	scale	spatial	variation	in	retention	of	snow	cover—espe-
cially among warmed plots (Figure 5a).	Sensor-	derived	temperatures	
showed evidence of warming within OTCs, especially during pro-
longed sunshine, which probably contributed to advanced snow 
melt. However, snow was often less prevalent across warmed plots 
even immediately after snowfall (Figure 5).	This	suggests	that	OTCs	
also	intercept	a	fraction	of	falling	snow,	which	could	delay	snowpack	
formation.

Few studies have reported effects of OTCs on snow cover in 
autumn. Several studies have reported effects on snow depth in 
winter and snow melt in spring, although observations are often in-
frequent	or	anecdotal	 (Bokhorst	et	al.,	2013;	Wipf	&	Rixen,	2010).	
Heavy	snows	are	known	to	accumulate	in	OTCs	over	winter,	increas-
ing snow depth and insulating plants and soil (Hollister et al., 2023; 

F I G U R E  2 Confusion	matrix	of	predicted	micrometeorological	
conditions	across	8953	images.	Six	ensemble	deep	learning	models	
were	used	to	classify	images	in	six	distinct	folds	of	hold-	out	test	
cameras	in	a	cross-	validation	process.	Data	splitting	for	validation	
of these models was done using the Trans validation method (see 
text	and	Figure S1	for	explanation).
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    |  7 of 13ALISON et al.

F I G U R E  3 Sunshine	(yellow),	hail	(black)	and	snow	(blue)	detected	in	images	throughout	summer	solstice	(top	pair),	early	autumn	(middle	
pair)	and	late	autumn	(bottom	pair)	across	two	mountain	sites.	Distinct	time	series	from	the	northern	hemisphere	(top	of	each	pair)	and	
the	southern	hemisphere	(bottom	of	each	pair)	are	aligned	based	on	summer	solstice	dates	of	21	June	2021	in	Switzerland	(CH)	and	21	
December	in	South	Africa	(ZA).	Conditions	were	classified	in	all	images	from	continuous	cameras	at	the	two	high-	elevation	sites,	using	a	
deep	learning	ensemble	trained	using	the	full	set	of	8953	labelled	images.	Data	are	displayed	with	a	resolution	of	1.2 h	(20	time	slices	per	
day).	We	also	present	mean	air	temperatures	from	on-	board	sensors	on	cameras,	measuring	air	temperature	every	5 min	at	62 cm	above	
ground	(red	lines),	and	TMS4	loggers,	measuring	air	temperature	every	15 min	at	15 cm	above	ground	(dark	red	lines).	Data	in	the	grey	box	
(bottom-	right)	are	more	closely	explored	in	Figure 5.
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8 of 13  |     ALISON et al.

Rixen	et	al.,	2022);	the	resulting	winter	warming	of	OTCs	often	ex-
ceeds	their	spring	and	summer	warming	effects	(Aerts	et	al.,	2004; 
Bjorkman	 et	 al.,	 2015).	 Such	 snow	 accumulation	 leads	 to	 unpre-
dictable effects of OTCs on snow melt; it may remain unchanged, 

be	 delayed	 by	 a	 week	 or	 be	 advanced	 by	 several	 weeks	 (Aerts	
et al., 2004;	Marion	et	al.,	1997;	Wipf	&	Rixen,	2010).	Here	we	show	
that	in	early	autumn,	experimental	warming	can	reduce	the	duration	
of	snow	cover—although	this	may	partly	result	from	interception	of	
snowfall by OTCs. Furthermore, we demonstrate how to efficiently 
quantify persistence of snow at high spatiotemporal resolutions. 
This is a vital contribution given the impacts of snow cover on plant 
and	soil	ecosystem	processes	(Möhl	et	al.,	2022),	and	the	prevalence	
of	OTCs	in	climate	change	research	(Bjorkman	et	al.,	2015; Hollister 
et al., 2023;	Rixen	et	al.,	2022).

3.4  |  Effects of sunshine on bumblebee foraging

Sunshine is a vital factor affecting the activity of flower visiting insects, 
especially in alpine environments (Bergman et al., 1996).	Our	data	dem-
onstrate not only how sunshine drives fluctuations in ambient tempera-
ture at our site (Figure 3),	but	also	the	cumulative	daytime	temperatures	
experienced	by	individual	T. pratense inflorescences (Figure 6a).	We	also	
observe	a	strong	effect	of	sunshine	exposure	on	the	number	of	Bombus 
foraging visits to each inflorescence (Figure 6b),	probably	partly	medi-
ated by ambient temperatures. However, we found that sunshine days 
marginally outperformed degree days when predicting the number of 
Bombus visits to an inflorescence (ΔAIC = −0.98).	As	such,	we	suggest	
that sunshine also has direct effects on Bombus	foraging	activity.	For	ex-
ample, solar radiation can directly raise thoracic temperatures of bees, 
relieving a major constraint on flight behaviour (Corbet et al., 1993).

We overlaid the density of Bombus foraging events with the density 
of flowering T. pratense	on	a	two-	dimensional	surface	of	sunshine	and	
temperature. Even though Bombus visits are contingent on the pres-
ence of flowering T. pratense, we found evidence of microclimatic and 
micrometeorological mismatch. Trifolium pratense inflorescences were 

F I G U R E  4 Average	diel	profiles	of	image-	derived	sunshine	
(yellow	shading	and	grey	lines)	across	high-	elevation	sites	in	
Switzerland	(CH,	dashed	lines)	and	South	Africa	(ZA,	solid	lines)	
for	120 days	following	summer	solstice.	We	also	present	mean	air	
temperatures	from	on-	board	sensors	on	cameras,	measuring	air	
temperature	every	5 min	at	62 cm	above	ground	(red	lines).	Data	are	
displayed	with	a	resolution	of	0.1 h	(240	time	slices	per	day).	The	
ZA	site	is	characterized	by	early	morning	sunshine	and	afternoon	
shade. Sunshine was classified using a deep learning ensemble 
trained	using	the	full	set	of	8953	labelled	images.

F I G U R E  5 (a)	Duration	of	snow,	derived	from	images,	across	unwarmed	plots	and	open-	top	chamber	(OTC)	warmed	plots	at	the	high-	
elevation	site	in	South	Africa.	Boxes	capture	the	median	and	interquartile	range,	while	whiskers	capture	the	range	of	the	data.	Three	
cameras	failed	before	the	snows	and	are	excluded	here.	(b)	Proportion	of	snow	over	time	across	unwarmed	(dark	blue)	and	warmed	(light	
blue)	plots.	Snow	events	were	often	shortened	or	dampened	within	OTCs.	Furthermore,	during	periods	of	sunshine	(yellow),	temperature	
spikes	recorded	by	TMS4	loggers	were	more	intense	in	warmed	plots	(dashed	red	line)	than	unwarmed	plots	(solid	red	line).	Small	
proportions	of	snow	images	were	misclassified	as	hail	(black),	and	this	was	often	due	to	fog.	Weather	conditions	were	classified	using	a	deep	
learning	ensemble	trained	using	the	full	set	of	8953	labelled	images.
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    |  9 of 13ALISON et al.

most available at ~10°C	with	little	or	no	sunshine,	with	a	secondary	peak	
at ~21°C	during	constant	sunshine	(Figure 6c).	However,	Bombus forag-
ing	events	were	completely	absent	below	10°C,	and	disproportionately	
prevalent	 during	 intermittent	 sunshine	 or	 extremely	warm	 tempera-
tures.	Camera-	based	monitoring,	with	automated	extraction	of	meteo-
rological	by-	catch,	allows	us	to	quantify	the	constraints	and	preferences	
of species at unprecedented spatial and temporal resolutions.

3.5  |  Applications and future development

Micrometeorological	variables	extracted	from	images	are	highly	com-
plementary to those recorded by affordable microclimatic sensors. 
Unlike	 temperature	 and	moisture,	 solar	 radiation	 is	 expensive	 and	
difficult to measure at high temporal resolution (Roales et al., 2013).	
Furthermore,	cameras	are	perhaps	the	only	in-	field	sensors	that	can	
record	the	prevalence	of	snow	(Caparó	Bellido	&	Rundquist,	2021)	and	
hail at fine spatiotemporal resolutions. Crucially, the impacts of sun-
shine, snow and hail on the abundance and phenology of wild species 
are	significant,	but	rarely	explored	and	poorly	understood	(Fernandes	
et al., 2011;	 Möhl	 et	 al.,	 2020, 2022; Valladares et al., 2016).	
Furthermore, cameras can capture variation in micrometeorology 

and organismal activity at very small spatial scales. This creates op-
portunities	 to	 study	 fine-	scale	microclimatic	 refugia,	 such	 as	 areas	
protected from sunshine or snow, which may be vital for species per-
sistence	in	extreme	environments	(von	Oppen	et	al.,	2022).	Cameras	
also record continuously at high temporal resolution, allowing the 
analysis of phenological mismatches not only across days of the year, 
but	also	hours	of	the	day	(Alison	et	al.,	2022).	Finally,	cameras	gener-
ate biological and meteorological data that are tethered in both space 
and	time.	This	is	a	particularly	useful	property	to	explore	behavioural	
adaptations to micrometeorological conditions.

Previous	studies	have	automated	the	extraction	of	snow-	covered	
regions	 of	 phenocam	 images	 (Caparó	 Bellido	 &	 Rundquist,	 2021; 
Julitta	et	al.,	2014).	Our	approach	of	classifying	entire	images	is	sim-
pler, and thus broader in application. Our model rapidly identifies 
not only images with snow, but also those with sunshine or hail. 
Unlike	previous	models,	 ours	 is	 shown	 to	perform	well	 on	 images	
from novel camera placements and even a distant site in Svalbard. 
Above	all,	we	present	a	dataset	and	methods	to	train	future	mod-
els	 that	will	 be	even	more	 transferable.	Future	work	 should	 focus	
on the assembly of larger training datasets, representing a greater 
diversity	of	backgrounds,	 conditions	and	wildlife	 camera	domains.	
There	is	potential	for	deep	learning	models	to	extract	hydrological	

F I G U R E  6 (a)	The	cumulative	daytime	temperatures	experienced	by	Trifolium pratense inflorescences, derived from temperature sensors, 
are	highly	positively	correlated	with	sunshine	exposure,	derived	from	images.	(b)	Sunshine	exposure	of	an	inflorescence	increases	the	
number of recorded Bombus	foraging	events.	The	pink	line	represents	a	linear	model	that	effectively	predicts	the	natural	log	of	the	number	
of Bombus	foraging	events	based	on	the	number	of	days	of	sunshine	received	by	an	inflorescence.	(c)	Microclimatic	and	micrometeorological	
niche overlap between flowering Trifolium pratense	(pink)	and	Bombus	bee	pollinators	(black	contour	lines	derived	from	black	crosses).	The	
density of flowering T. pratense	is	representative	of	the	underlying	distributions	of	image-	derived	sunshine	and	sensor-	derived	temperature,	
which are strongly bimodal. In contrast, Bombus	visits	are	more	concentrated	during	intermediate	sunshine	or	extremely	warm	temperatures.	
Image crops corresponding to three Bombus foraging events are shown above the plot.
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10 of 13  |     ALISON et al.

information	from	images,	for	example	rainfall	or	even	rare	cryogenic	
processes (Grab et al., 2021).	 Presenting	 future	models	with	 con-
textual	 information,	for	example	the	location,	time	or	temperature	
during image capture, could improve accuracy across a wide range of 
meteorological conditions (Terry et al., 2020).	Still,	we	show	that	an	
existing	model,	trained	on	diverse	and	independent	outdoor	images,	
distinguished sunny and overcast images from wildlife cameras with 
surprising accuracy (Lu et al., 2014, 2017).	As	such,	the	roll-	out	of	
new	and	existing	weather	classification	models	to	extract	meteoro-
logical	by-	catch	from	phenocams	for	vegetation	(Brown	et	al.,	2016)	
or camera traps for large animals (Hofmeester et al., 2020)	is	a	very	
exciting	 prospect.	 The	 extraction	 of	 latent	 meteorological	 infor-
mation	 from	existing	wildlife	camera	network	datasets,	containing	
millions	of	labelled	organisms	(Norouzzadeh	et	al.,	2018),	could	gen-
erate new insights into the ecology of a huge variety of animal and 
plant species worldwide.
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