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ABSTRACT

A stochastic model for a superposition of uncorrelated pulses with a random distribution of amplitudes, sizes, and velocities is analyzed. The
pulses are assumed to move radially with fixed shape and amplitudes decreasing exponentially in time due to linear damping. The pulse
velocities are taken to be time-independent but randomly distributed. The implications of a broad distribution of pulse amplitudes and veloc-
ities, as well as correlations between these, are investigated. Fast and large-amplitude pulses lead to flattened average radial profiles with order
unity relative fluctuations in the scrape-off layer. For theoretically predicted blob velocity scaling relations, the stochastic model reveals aver-
age radial profiles similar to the case of a degenerate distribution of pulse velocities but with more intermittent fluctuations. The profile e-
folding length is given by the product of the average pulse velocity and the linear damping time due to losses along magnetic field lines. The
model describes numerous common features from experimental measurements and underlines the role of large-amplitude fluctuations for
plasma–wall interactions in magnetically confined fusion plasmas.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0196938

I. INTRODUCTION

One of the main challenges to overcome to achieve economically
efficient fusion energy by magnetic confinement is to control plasma
and heat transport in the scrape-off layer (SOL) and plasma interac-
tions with material surfaces.1–4 A common approach to describe the
cross field transport is based on mixing length estimates, assuming
scale separation, small relative fluctuations and that the fluxes are pro-
portional to local profile gradients.5–11 On this basis, effective diffusiv-
ities, or a combination of effective diffusion and radial convection,
have been used to characterize the cross field transport in the SOL.9–14

Such an approach has been shown to be ill-founded by analysis of
both experimental measurement data and first-principles-based turbu-
lence simulations.15–20 Indeed, turbulence studies indicate that the
cross field transport is dominated by the radial motion of field-aligned
plasma filaments.21–26 It has since become clear that the cross field
transport of particles and heat in the SOL depends on the amplitudes,
sizes, velocities, and frequency of occurrence of such blob-like struc-
tures as well as correlations between these quantities. Therefore, a

statistical approach is required to describe the resulting fluctuations
and transport.27–40

Theoretical investigations of isolated blob-like structures in the
scrape-off layer have revealed the physical mechanism for their radial
motion and the scaling of their velocity with amplitude, size, and
plasma parameters.41–60 Scaling theory, as well as numerical simula-
tions of seeded filament structures, have revealed that the radial blob
velocity increases with the amplitude. In the so-called inertial regime,
there is a linear dependence, while in the sheath-dissipative regime the
velocity scales as the square root of the amplitude. In both regimes,
there is a saturation of the amplitude dependence when the filament
amplitude is much higher than the background level. Such a positive
correlation between filament amplitudes and velocities has also been
identified in experimental measurement data.61

The fluctuating plasma parameters in the SOL can be described
as a superposition of uncorrelated pulses. Such a statistical description,
referred to as a filtered Poisson process, predicts the fluctuations to fol-
low a Gamma distribution with the shape parameter given by the
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degree of pulse overlap, that is, the ratio of the average pulse duration
and waiting times. This model has been found to be an excellent
description of single-point measurements of intermittent fluctuations
at the boundary of magnetically confined plasmas. Detailed analysis of
experimental measurement data has demonstrated that these pulses
have an exponential shape and that the pulse amplitudes are exponen-
tially distributed.61–73 This will accordingly be used as assumptions for
the stochastic modeling presented in this work.

Recently, the filtered Poisson process was extended to describe
the radial motion of blob-like plasma filaments and the resulting radial
plasma profiles.35–40 Analytical expressions have been derived for the
cumulants and the lowest-order statistical moments of the process, elu-
cidating how these depend on the distribution of pulse velocities and
their correlations with the amplitudes.40 When all pulses have the
same velocity, the average radial profile decreases exponentially with
radius with an e-folding length given by the product of the radial
velocity and the parallel loss time. In Ref. 40, closed-form expressions
for the cumulants were obtained for the case of a discrete uniform dis-
tribution of pulse velocities independent of the amplitude distribution.
In the present contribution, these results are extended to broad and
continuous velocity distributions, and correlations between pulse
velocities and amplitudes are investigated. Closed analytical expres-
sions are, in general, not available, so the cumulants and the lowest-
order moments are calculated numerically.

It is here demonstrated that fast and large-amplitude pulses may
lead to nearly flat average radial profiles with order unity relative fluc-
tuations in the scrape-off layer. For theoretically predicted blob veloc-
ity scaling relations, the stochastic model reveals average radial profiles
similar to the case of a degenerate distribution of pulse velocities but
with more frequent large-amplitude fluctuations. This holds for the
velocity scaling relations in both the inertial and sheath-dissipative
regimes. The average profile e-folding length is given by the product of
the average pulse velocity and the linear damping time due to losses
along magnetic field lines, while the relative fluctuation level and the
skewness and flatness moments increase radially outward. The predic-
tions compare favorably with experimental measurements and under-
line the role of large-amplitude fluctuations for plasma–wall
interactions in magnetically confined fusion plasmas.

This paper is organized as follows. In Sec. II, the theoretical veloc-
ity scaling for isolated blob-like filament structures is briefly reviewed,
with particular emphasis on the predicted correlations between pulse
amplitudes and velocities. The stochastic model describing a superpo-
sition of pulses is presented and discussed in Sec. III. In Sec. IV, we
present the profiles obtained for various discrete and continuous veloc-
ity distributions. For all cases presented in this section, the pulse ampli-
tudes are taken to be exponentially distributed and independent of the
velocities. In Sec. V, a correlation between pulse amplitudes and veloci-
ties is investigated using a truncated exponential distribution of pulse
amplitudes. A discussion of the results and the main conclusions are
given in Sec. VI. The change of the pulse amplitude distribution with
radial position is discussed in Appendix A. Finally, the role of a distri-
bution of pulse sizes is discussed in Appendix B.

II. BLOB VELOCITY SCALINGS

The stochastic modeling to be presented in Sec. III includes corre-
lations between the amplitude, size, and velocity of blob-like plasma fil-
aments. This is provided by basic mathematical descriptions of
filament structures in magnetized plasmas, which are reviewed here.

Their evolution is determined by the plasma vorticity equation, which
for a non-uniformly magnetized plasma is given by23,74

b � r � q
dV
dt

� �
¼ BB � r Jk

B

� �
þ 2b � j�rP; (1)

where q is the mass density, V is the fluid velocity, b ¼ B=B is the unit
vector along the magnetic field B, Jk is the B-parallel electric current
density, j ¼ ðb � rÞb is the magnetic curvature vector, and P is the
plasma pressure. In the absence of parallel currents, an order of magni-
tude estimate with r? � 1=‘; d=dt � V=‘; j � 1=R, where R is the
magnetic field radius of curvature, and rP=q � C2

sDn=‘ðN þ DnÞ
immediately gives the inertial velocity scaling41–54

V
Cs

� 2‘
R

Dn
N þ Dn

� �1=2

; (2)

where Cs is the sound speed, ‘ is the cross field blob size, and Dn is the
blob amplitude above the background particle density N. In this
regime, the velocity increases with the square root of the cross field
size. For small relative amplitudes, Dn=N � 1, the velocity has a
square root dependence on the amplitude, V � ðDn=NÞ1=2, while for
large relative amplitudes, Dn=N � 1, there is a saturation and the
velocity becomes independent of the amplitude.

At the divertor targets, the boundary condition for the parallel
electric current density is Jk ¼ enCs½1� expðe/=TeÞ�, where / is the
plasma electric potential relative to the sheath and n is the particle den-
sity. With V � /=B‘, balancing the parallel current and interchange
terms on the right-hand side of Eq. (1) gives the sheath-dissipative
velocity scaling50–60

V
Cs

� 2Lkq2s
R‘2

Dn
N þ Dn

; (3)

where qs is the sound gyroradius and the exponential function in the
sheath dissipation term has been linearized. This scaling holds for
field-aligned filaments that are electrically connected to the target
sheaths. In this regime, the velocity is inversely proportional to the
blob size and scales linearly with the relative amplitude for small
amplitudes.

More generally, in the intermediate regime between the inertial
and sheath-dissipative scalings, an order of magnitude estimate gives a
quadratic equation for the blob velocity51

V2

‘2
� 2Cs

2

‘R
Dn

N þ Dn
þ ‘CsV
Lkqs2

¼ 0; (4)

where scaling prefactors of order unity has been neglected. The posi-
tive root of Eq. (4) is given by

V
V	

¼ 1
2

‘

‘	

� �3

�1þ 1þ 4‘5	
‘5

Dn
N þ Dn

� �1=2
" #

; (5)

where we have defined a characteristic blob size ‘	=qs ¼ ð2L2k=RqsÞ1=5
and a corresponding characteristic blob velocity V	=Cs ¼ ð8q2sLk=
R3Þ1=5. In Ref. 51, Eq. (5) was found to be an excellent parameteriza-
tion of the maximum velocity in numerical simulations of isolated
blob structures. For large blob sizes, ‘=‘	 � 1, the inertial scaling
from Eq. (2) is recovered,
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V
V	

� ‘

‘	

Dn
N þ Dn

� �1=2

: (6)

Due to the absence of sheath currents, which leads to the dissipation of
large-length scales, the velocity increases with the blob size ‘. For small
blob sizes, ‘=‘	 � 1, the sheath dissipative scaling from Eq. (3) is
given as follows:

V
V	

� ‘	
‘

� �2
Dn

N þ Dn
: (7)

The dominating sheath currents lead to strong dissipation of large-
length scales, resulting in a velocity that decreases with increasing size.
These blob velocity scaling regimes appear to accurately describe
experimental measurements in magnetized plasmas, based on both
electric probe measurements and gas puff imaging diagnostics as well
as numerical simulations of SOL filaments and turbulence.75–82 In
Sec. V, these theoretically predicted correlations between blob ampli-
tudes and velocities will be used for the stochastic modeling.

III. STOCHASTIC MODEL

Consider a stochastic process with a random variable UK given
by a superposition of K uncorrelated pulses,

UKðx; tÞ ¼
XKðTÞ
k¼1

/kðx; t � s0kÞ; (8)

where each pulse / has an arrival time s0 at the reference position
x¼ 0 and satisfies the evolution equation

@/
@t

þ v
@/
@x

þ /
sk

¼ 0: (9)

Here and in the following, we suppress the notation of the k-index
except when summation over pulses is explicit. In Eq. (9), v is the pulse
velocity and sk is a constant linear damping time describing drainage
due to particle motion along magnetic field lines in the scrape-off layer.
All pulses are assumed to have the same shape with the initial condi-
tion given by

/ðx; 0Þ ¼ a0u
x
‘

� �
; (10)

where ‘ is the pulse size and a0 is the pulse amplitude at the reference
position x¼ 0. The general solution of Eq. (9) can be written as

/ðx; tÞ ¼ AðtÞu x � vt
‘

� �
; (11)

where the pulse amplitude decreases exponentially in time due to the
linear damping

AðtÞ ¼ a0 exp � t
sk

� �
: (12)

The stochastic process can accordingly be written as

UKðx; tÞ ¼
XKðTÞ
k¼1

a0k exp � t � s0k
sk

� �
u

x � vkðt � s0kÞ
‘k

� �
: (13)

The random variables in this model are as follows:

K: The total number of pulses at the reference position x¼ 0 dur-
ing a time interval of duration T, taken to be Poisson distributed with
average waiting time sw,

PKðK;TÞ ¼ 1
K!

T
sw

� �K

exp � T
sw

� �
: (14)

s: The pulse arrival time s0 at the reference position x¼ 0, which
is uniformly distributed on the time interval ½�T=2;T=2� and, thus,
given by

Ps0ðs0Þ ¼
1
T
: (15)

a0: The pulse amplitude at the reference position x¼ 0, with mar-
ginal probability density function Pa0ða0Þ.

v: The pulse velocity, is assumed to be positive definite and time-
independent with marginal probability density function PvðvÞ.

‘: The pulse size, taken to be the same for all pulses unless other-
wise stated (specifically in Appendix B).

A distribution of pulse sizes does not influence the radial varia-
tion of the cumulants as long as they are not correlated with the pulse
amplitudes or velocities.40

In the following, we will consider a one-sided exponential pulse
function

uðhÞ ¼ Hð�hÞ expðhÞ; (16)

whereH denotes the unit step function,

HðhÞ ¼ 1; h 
 0;

0; h < 0:

(
(17)

The solution of Eq. (9) for an individual pulse can then be written as

/ðx; tÞ ¼ a0 exp � t
sk

� �
exp

x � vt
‘

� �
H � x � vt

‘

� �
; (18)

describing the radial motion of a blob-like structure with a steep front
and a trailing wake.

A pulse / will arrive at position n at time sn ¼ s0 þ n=v. The
superposition of pulses at this position for a general pulse function
uðhÞ can, thus, be written as

UKðn; tÞ ¼
XKðTÞ
k¼1

ank exp � t � snk
sk

� �
u � vkðt � snkÞ

‘k

� �
; (19)

where the pulse amplitudes are given by

an ¼ a0 exp � n
vsk

 !
: (20)

When all pulses have the same velocity, the amplitudes will have the
same probability density function at all radial positions n but with a
mean value that decreases exponentially with radius. When there is a
distribution of pulse velocities, the amplitude distribution will be mod-
ified. This is discussed further in Appendix A.

For the one-sided exponential pulse function defined by Eq. (16),
the process takes a particularly simple form,
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UKðn; tÞ ¼
XKðTÞ
k¼1

anku
t � snk
sk

� �
; (21)

where the pulse duration s is given by the harmonic mean of the linear
damping and radial transit times,

s ¼ sk‘
vsk þ ‘

: (22)

The average pulse duration sd ¼ hsi is obtained by averaging over the
distribution of pulse sizes and velocities. Equation (19) demonstrates
that the process can be regarded as a superposition of pulses with
amplitudes that decrease radially outward due to linear damping.

The lowest-order statistical moments of the process can be
derived from the cumulants, which are the coefficients in the expan-
sion of the logarithm of the characteristic function. In the case of
time-independent velocities and an exponential pulse function, the
cumulants of the processUK become40

jnðxÞ ¼ 1
nsw

an0s exp � nx
vsk

� �* +
: (23)

The averages in this equation are to be performed over the random vari-
ables a0, v, and ‘, which, in general, are described by a joint probability
distribution. When closed-form expressions for the cumulants are not
available, it is straightforward to perform the integrations in Eq. (23)
numerically. However, the presence of slow pulses may lead to issues
with the existence of cumulants andmoments of the process for negative
x. Slow pulses with very long radial transit times will have excessively
large upstream amplitudes. This results in divergence of cumulants if
the velocity probability distribution does not decrease sufficiently fast for
small velocities. For this reason, lower truncated amplitude and velocity
distributions will be considered in Secs. IV and V. Further discussions
on the existence of cumulants are given in Ref. 40.

From the cumulants, we can derive expressions for the lowest-
order moments. Specifically, the mean value is given by the first-order
cumulant, hUi ¼ j1ðxÞ, which has e-folding length LUðxÞ ¼ 1=
ðd ln hUi=dxÞ. The variance is given by the second-order cumulant,
U2

rms ¼ hðU� hUiÞ2i ¼ j2ðxÞ. We further define the skewness and
flatness moments, respectively, by

SUðxÞ ¼ j3ðxÞ
j3=22 ðxÞ

; FUðxÞ ¼ j4ðxÞ
j22ðxÞ

: (24)

For a normally distributed random variable, these two moments van-
ish. In Secs. IV and V, we will use the relative fluctuation level
Urms=hUi and the skewness and flatness moments to quantify the
presence of large-amplitude fluctuations in the process.

A variation in the pulse velocities also implies a distribution of
pulse durations as described by Eq. (22). When all pulses have the same
size, the pulse duration distribution is related to the velocity distribution
by the standard rules for the transformation of random variables,

PsðsÞ ¼ ‘

s2
Pv

‘

s
� ‘

sk

 !
: (25)

Since the pulse duration is inversely proportional to the velocity, the
average duration is dominated by the small velocities in the case of a
random velocity distribution.

When there is a distribution of pulse velocities, the amplitudes
and durations will be correlated downstream even if they are indepen-
dent at the reference position. This is due to their opposite dependence
on pulse velocity, given by Eqs. (20) and (22). Fast pulses have short
radial transit times and less amplitude reduction due to linear damp-
ing. Therefore, an increases with increasing velocity, while s decreases
with increasing velocity. In order to quantify this, we define an effective
pulse duration, which is weighted by the pulse amplitude and, there-
fore, varies with radial position, hansi=hani. Here, the average is to be
taken over the distribution of pulse amplitudes, sizes, and velocities.
Similarly, we can define the normalized effective duration by dividing
by the average duration, hansi=hanisd. This is also a measure of the
linear correlation between the pulse amplitude and duration.

In Secs. IV and V, it will be demonstrated how a distribution of
pulse amplitudes and velocities, and correlations between these, influ-
ence the lowest-order moments of the process. It should be noted that
the cumulants can be written as jn ¼ hannsi=nsw. Thus, the correlation
between pulse amplitudes and durations determines the radial varia-
tion of the cumulants and, therefore, also the moments of the process.

IV. INDEPENDENT AMPLITUDES AND VELOCITIES

In this section, we will investigate the case where pulse velocities
and amplitudes at the reference position are independent but both
have a random distribution. The pulse amplitudes a0 are assumed to
have an exponential distribution, which for a0 > 0 is given by

ha0iPa0ða0Þ ¼ exp � a0
ha0i

� �
; (26)

where ha0i is the average pulse amplitude. For this distribution, the
raw amplitude moments are given by han0i ¼ n!ha0in. In the following,
various pulse velocity distributions will be considered. Pulse sizes are
assumed to have a degenerate distribution, so all pulses have the same
size ‘.

A. Degenerate distribution

In the case of a degenerate distribution, PvðvÞ ¼ dðv � hviÞ, all
pulses have the same velocity hvi. The cumulants given by Eq. (23)
then simplify to

jnðxÞ ¼ c	ðn� 1Þ!ha0in exp � nx
hvisk

� �
; (27)

where we have defined the intermittency parameter

c	 ¼
s	
sw

; (28)

with the pulse duration

s	 ¼
sk‘

hvisk þ ‘
: (29)

The cumulants given by Eq. (27) describe a Gamma distribution with
shape parameter c	 and scale parameter given by the radial pulse
amplitude profile

hai ¼ ha0i exp � x
hvisk

� �
: (30)

The probability density function for positive U is the Gamma
distribution
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haiPUðU; xÞ ¼ 1
Cðc	Þ

U
hai
� �c	�1

exp � U
hai

� �
; (31)

where C denotes the Gamma function. The average radial profile is
then given by35

hUiðxÞ ¼ c	ha0i exp � x
hvisk

� �
; (32)

which has e-folding length LU ¼ hvisk. Moreover, the prefactor for
the profile at the reference position is hUið0Þ ¼ c	ha0i. The lowest-
order normalized moments are in this case radially constant,

Urms

hUi ¼ 1

c1=2	
; SU ¼ 2

c1=2	
; FU ¼ 6

c	
: (33)

The mean value hUi decreases exponentially with radius with an e-
folding length given by the product of the radial pulse velocity hvi and
the linear damping time sk. The prefactor c	ha0i is given by the prod-
uct of the average pulse amplitude at the reference position and the
ratio of the pulse duration and average waiting time. A higher degree
of pulse overlap, or larger c	, increases the mean value of the process
and decreases the relative fluctuation level and intermittency of the
process. This defines the reference case in order to compare with a
broad distribution of pulse velocities.

B. Discrete uniform distribution

The simplest non-degenerate case to consider is a discrete uni-
form distribution of pulse velocities, for which they can take two possi-
ble values with equal probability,40

Pvðv;wÞ ¼ 1
2
dðv � vminÞ þ dðv � vmaxÞ½ �; (34)

where vmin ¼ ð1� wÞhvi; vmax ¼ ð1þ wÞhvi; hvi is the average
pulse velocity and w is the width parameter for the distribution with
values in the range 0 < w < 1. The limit w ! 0 corresponds to the
case of a degenerate distribution of pulse velocities discussed above.
The statistical properties of the process for the discrete uniform dis-
tribution were analyzed in detail in Ref. 40 and are summarized here
in order to compare with continuous velocity distributions in
Subsections IVC and IVD.

For the velocity distribution given by Eq. (34), the pulse duration
also has a discrete uniform distribution,

PsðsÞ ¼ 1
2
dðs� sðvminÞÞ þ dðs� sðvmaxÞÞ½ �; (35)

with the velocity dependent pulse duration sðvÞ given by Eq. (22). The
average pulse duration is given by integration over the discrete
distribution,

sd ¼ 1
2
sðvminÞ þ sðvmaxÞ½ �: (36)

The average pulse duration increases with w since this implies pulses
with lower velocities and correspondingly longer radial transit times
‘=vmin.

The probability density function for the pulse amplitudes a at
position x with the appropriate normalization is for a> 0 given by

Paða; xÞ ¼ 1
2amin

exp � a
amin

� �
þ 1
2amax

exp � a
amax

� �
; (37)

where we have defined the radial amplitude profile for the slow and
fast pulses, respectively, by

aminðxÞ ¼ ha0i exp � x
vminsk

� �
; (38)

amaxðxÞ ¼ ha0i exp � x
vmaxsk

� �
: (39)

The radial profile of the average amplitude given by Eq. (20) is a sum
of two exponential functions,

haiðxÞ ¼ ha0i
2

exp � x
vminsk

� �
þ exp � x

vmaxsk

� �� �
: (40)

More generally, the cumulants for the process are given by

jnðxÞ ¼ han0i
2nsw

sðvminÞ exp � nx
vminsk

� �
þ sðvmaxÞ exp � nx

vmaxsk

� �� �
:

(41)

In this case, the process UKðx; tÞ can be considered as the sum of two
filtered Poisson processes, each Gamma distributed with shape param-
eters smin=2sw and smax=2sw, and scale parameters aminðxÞ and
amaxðxÞ, corresponding, respectively, to the slow and fast pulses.
Accordingly, the probability density function for the summed process
is given by the convolution of the Gamma distributions for the two
sub-processes. At the reference position, the scale parameters for the
two sub-processes are the same and the process is Gamma distributed
with shape parameter sd=sw and scale parameter ha0i. Far down-
stream, the process is dominated entirely by the fast pulses and the
probability density function is a Gamma distribution with shape
parameter sðvmaxÞ=2sw and scale parameter ha0i expð�x=vmaxskÞ.

The discrete uniform velocity distribution is presented in Fig. 1,
which is similar to that presented in Ref. 40, together with the radial
profile of the mean value, its e-folding length, the relative fluctuation
level, and the skewness and flatness moments for various values of the
width parameter w. All of these profiles are normalized by their values
at the reference position x¼ 0 for the reference case of a degenerate
distribution of pulse velocities, discussed in Sec. IVA. The profiles,
therefore, show how these moments are modified by a distribution of
pulse velocities for fixed c	; ha0i, and hvi. In the case of a wide separa-
tion of the pulse velocities, the radial profile of the mean value hUi is
steep at the reference position x¼ 0 and becomes significantly flatter
far downstream compared to the reference case. The relative fluctua-
tion level and the skewness and flatness moments saturate at the level
determined by the fast pulses only, indicated by the dashed lines in
Fig. 1.

C. Continuous uniform distribution

Consider next a continuous uniform distribution of pulse veloci-
ties, which is non-zero only for velocities in the range vmin � v � vmax

and then given by

hviPvðv;wÞ ¼ 1
2w

; (42)
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where vmin ¼ ð1� wÞhvi; vmax ¼ ð1þ wÞhvi and w is the width
parameter for the distribution with values in the range 0 < w < 1.
From Eqs. (25) and (42) follows the probability distribution for the
pulse duration s, which is finite in the interval smin � s � smax and
given by

Psðs;wÞ ¼ ‘

2whvis2 ; (43)

where smin ¼ sk‘=ðvmaxsk þ ‘Þ and smax ¼ sk‘=ðvminsk þ ‘Þ. The
average pulse duration is then given by

sd ¼ ‘

2whvi ln
ð1þ wÞhvisk þ ‘

ð1� wÞhvisk þ ‘

 !
: (44)

As for the discrete case, the average duration increases with the width
parameter w due to the presence of slow pulses with long radial transit
times. The power law scaling of the pulse durations in Eq. (43) signifi-
cantly influences temporal correlations and will result in long-range
dependence for a wide distribution.30,83

The continuous uniform velocity distribution as well as the radial
profile of the lowest-order moments of the process are presented in
Fig. 2. The profiles have the same trend with increasing width parame-
ter w as for the case of a discrete uniform distribution of pulse veloci-
ties, but the radial variation is weaker since there is a continuous range
of allowed velocities. In particular, the mean value decreases nearly
exponentially with radius for large radial positions, close to the case of
a degenerate distribution of pulse velocities. However, there is a grad-
ual increase in the relative fluctuation level and, in particular, the skew-
ness and flatness moments with radius. This again demonstrates that
the fluctuations become more intermittent for a broad distribution of
pulse velocities.

D. Truncated exponential distribution

Finally, we will consider a lower truncated exponential distribu-
tion of pulse velocities, which is non-zero for velocities v 
 vmin

¼ ð1� wÞhvi and then given by

hviPvðv;wÞ ¼ 1
w

exp � v � ð1� wÞhvi
whvi

� �
: (45)

The truncation parameter w is effectively a width parameter, where the
limit w ! 0 corresponds to the case of a degenerate distribution and
w ! 1 corresponds to the standard exponential distribution. The
truncated exponential distribution is presented in Fig. 3(a) for various
values of the width parameter w. The pulse duration distribution is
non-zero for s � smax ¼ sk‘=ðvminsk þ ‘Þ and is then given by

Psðs;wÞ ¼ ‘

whvis2 exp � ‘

whvis
� �

exp
1� w
w

þ ‘

whvisk

 !
: (46)

The average pulse duration is

sd ¼ ‘

whvi exp
ð1� wÞhvisk þ ‘

whvisk

 !
E1

ð1� wÞhvisk þ ‘

whvisk

 !
; (47)

where E1 denotes the exponential integral function. This will be dis-
cussed further in Sec. IVE.

The radial profiles of the lowest-order moments are presented in
Fig. 3 for various values of the width parameter for the truncated expo-
nential velocity distribution. These radial profiles have the same trend
as for the case of a continuous uniform distribution of pulse velocities,
but the radial variation of the mean value deviates more from expo-
nential for a wide distribution due to the abundance of slow pulses.
However, the relative fluctuation level and the skewness and flatness
moments are much higher at large radial positions than for a discrete

FIG. 1. Results for a discrete uniform distribution of pulse velocities and exponentially distributed pulse amplitudes at x¼ 0. Plot panels show (a) velocity distribution, (b) aver-
age value, (c) profile scale length, (d) relative fluctuation level, (e) skewness moment, and (f) flatness moment for various values of the width parameter w for the velocity distri-
bution. All radial profiles are normalized with their values at the reference position x¼ 0 for the case of a degenerate distribution of pulse velocities. For all radial profiles, the
normalized linear damping time is hvisk=‘ ¼ 10. The dashed lines represent the profiles for the process with only the fast pulses in the case w¼ 3/4.
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uniform velocity distribution, demonstrating strong intermittency of
the fluctuations due to fast pulses with short radial transit times.

E. Discussions

As discussed at the end of Sec. III, a distribution of velocities
influences both the amplitude and duration of the pulses, described,
respectively, by Eqs. (20) and (22). The average duration is dominated
by the pulse with small velocities in the case of a wide distribution.

This is demonstrated by the results presented in Fig. 4, which shows
the average duration as a function of the width parameter of the veloc-
ity distribution when this is discrete uniform, continuous uniform and
truncated exponential, corresponding to Eqs. (36), (44), and (47),
respectively.

The 1/2 probability for low pulse velocities in the case of a dis-
crete uniform velocity distribution results in a significant increase in
the average duration with the width parameter. In the limit w ! 1,
this results in nearly stagnant pulses and, in the absence of linear

FIG. 2. Results for a continuous uniform distribution of pulse velocities and exponentially distributed pulse amplitudes at x¼ 0. Plot panels show (a) velocity distribution, (b)
average value, (c) profile scale length, (d) relative fluctuation level, (e) skewness moment, and (f) flatness moment for various values of the width parameter w of the velocity
distribution. All radial profiles are normalized with their values at the reference position x¼ 0 for the case of a degenerate distribution of pulse velocities. For all radial profiles,
the normalized linear damping time is hvisk=‘ ¼ 10.

FIG. 3. Results for a lower truncated exponential distribution of pulse velocities and exponentially distributed pulse amplitudes at x¼ 0. Plot panels show (a) velocity distribu-
tion, and radial profiles of (b) average value, (c) profile scale length, (d) relative fluctuation level, (e) skewness moment, and (f) flatness moment for various values of the width
parameter w of the velocity distribution. All radial profiles are normalized with their values at the reference position x¼ 0 in the case of a degenerate distribution of pulse veloci-
ties. For all radial profiles, the normalized linear damping time is hvisk=‘ ¼ 10.
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damping, the average pulse duration and, therefore, the mean value of
the process diverges.40 For the widest continuous velocity distributions,
the average pulse duration increases by a factor of approximately two.
It is larger for the truncated exponential velocity distribution since this
has a higher probability for low pulse velocities, resulting in longer
radial transit times.

The increase in the average pulse duration with the width param-
eter of the velocity distribution also increases the mean value of the
process at the reference position, which for uncorrelated pulse ampli-
tudes and durations is given by hUið0Þ ¼ ðsd=swÞha0i. Note that in
the profile figures presented above, this is absorbed in the normaliza-
tion. However, with increasing average pulse duration, it is also
expected that the relative fluctuation level as well as the skewness and
flatness moments will be correspondingly reduced at x¼ 0, as indeed
is seen in Figs. 1–3.

A distribution of pulse velocities further leads to a correlation
between pulse amplitudes and durations downstream for the reference
position. In Fig. 5, the radial variation of the normalized effective pulse
duration is presented for various values of the width parameter of the
velocity distribution when this is discrete uniform, continuous uni-
form, and truncated exponential. At the reference position, the ampli-
tudes and durations are independent, and this is unity. The
normalized effective duration decreases radially outward due to the
negative correlation between pulse amplitudes and durations. For all
cases, the broader the velocity distribution, the stronger the correlation
between amplitudes and durations becomes. Accordingly, also the
cumulants decrease with an increasing radial coordinate. Far down-
stream, the process is dominated by the fast pulses, resulting in a short
effective duration and radial increase in the relative fluctuation level
and the skewness and flatness moments, as shown by the profiles pre-
sented above.

V. CORRELATED AMPLITUDES AND VELOCITIES

In this section, we consider the effect of a correlation between
pulse velocities and amplitudes at the reference position, in particular,
cases where these have a linear or square root relationship and an

amplitude saturation, as suggested by the blob velocity scaling esti-
mates presented in Sec. II. Since vanishing pulse velocities are not
allowed in the model, we first describe the effect of truncating the
exponential amplitude distribution given by Eq. (26).

A. Truncated exponential distribution

Consider again the process with a degenerate velocity distribu-
tion, PvðvÞ ¼ dðv � hviÞ, but a lower truncated exponential distribu-
tion of pulse amplitudes, which is nonzero for a0 
 a0min

¼ ð1� wÞha0i and given by

ha0iPa0ða0;wÞ ¼
1
w
exp � a0 � ð1� wÞha0i

wha0i
� �

: (48)

The cumulants for independent pulse amplitudes and velocities can be
calculated analytically and are given by

jnðxÞ ¼ c
n
exp � nx

vsk

� �Xn
i¼0

n!
ðn� iÞ! ð1� wÞhai½ �i whai½ �n�i: (49)

In the limit w ! 1, this corresponds to a standard exponential ampli-
tude distribution, which is the case described in Sec. IVA. In this limit,
the raw amplitude moments are han0i ¼ n!ha0in, and the probability
density function for the process is a Gamma distribution. In the limit
w ! 0, corresponding to a degenerate distribution of pulse ampli-
tudes, the raw amplitude moments are given by han0i ¼ ha0in.
Accordingly, compared to the reference case with an exponential
amplitude distribution, the relative fluctuation level is reduced by a fac-
tor 1=

ffiffiffi
2

p
, the skewness moment by

ffiffiffi
2

p
=3, and the flatness moment

by 1/6. The variation of these moments with the width parameter is
presented in Fig. 6. Each moment is normalized by its value in the case
of an exponential distribution of pulse amplitudes.

The mean value hUi of the process does not vary with the width
parameter w as it only depends on the average amplitude ha0i and the
degree of pulse overlap determined by c	. Note that the net effect of
decreasing the amplitude width parameter is to decrease intermittency,
as is shown by a decrease in all higher-order moments in Fig. 6. This is
simply because there is less randomness in the process. In particular,

FIG. 4. Average pulse duration as a function of the width parameter w for discrete
uniform (red full line), continuous uniform (blue dashed line), and truncated expo-
nential (green dashed-dotted line) distribution of pulse velocities. For all cases, the
normalized linear damping time is hvisk=‘ ¼ 10.

FIG. 5. Radial variation of the linear correlation between pulse amplitudes and dura-
tions for various width parameters w for a discrete uniform (full line), continuous uni-
form (dashed line), and truncated exponential (dashed-dotted line) velocity
distribution. For all cases, the amplitude distribution at the reference position x¼ 0
is exponential and the normalized linear damping time is hvisk=‘ ¼ 10.
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when all pulses have the same amplitude and velocity, only the pulse
arrival times and the number of pulses are randomly distributed.

It is furthermore of interest to consider the case in which pulse
amplitudes and velocities are independent at the reference position
x¼ 0 but both have a lower truncated exponential distribution with
the same width parameter w. This is in contrast to the case in which
pulse amplitudes are lower truncated exponentially distributed and the
velocities are given by a power law dependence on the pulse ampli-
tudes, which will be analyzed in Subsection VB. The resulting profiles
are presented in Fig. 7 for various values of the width parameter. These
only differ from those resulting from a lower truncated exponential
velocity distribution, shown in Fig. 3, by a constant factor. Thus,

similar to the case discussed in Sec. IVD, the radial increase in the rela-
tive fluctuation level and the skewness and flatness moments are much
more pronounced for a wide velocity distribution.

B. Power law dependence

As discussed in Sec. II, blob velocity scaling theories demonstrate
that the blob velocity depends on the amplitude and size. This moti-
vates the study of cases in which the velocity is given by a power law
dependence on the amplitude,

v
hvi ¼ cv

a0
ha0i
� �a

; (50)

where the proportionality factor cv ¼ ha0ia=haa0i depends on the
amplitude distribution. When this is the truncated exponential proba-
bility density in Eq. (48), this is given by

cv ¼ 1
wa

exp �ð1� wÞ=wð Þ
Cð1þ a; ð1� wÞ=wÞ ; (51)

where C here denotes the incomplete Gamma function. In the limit
a ! 0, all pulses have the same velocity and this reduces to the case
discussed in Subsection IVA. When a¼ 1, the pulse amplitudes and
velocities are proportional and both have a truncated exponential
distribution.

From the power law relationship in Eq. (50), it follows that the
velocity distribution is finite for v 
 vmin ¼ cvhviða0min=ha0iÞa and
then given by

hviPvðvÞ ¼ 1
wacv

v
cvhvi
� �1�a

a

exp � 1
w

v
cvhvi
� �1

a � 1� w
w

 !
: (52)

In the limit a ! 1, this becomes the truncated exponential distribution
given by Eq. (45). From the above velocity distribution, the probability
density for the pulse durations follows by use of Eq. (25),

FIG. 6. Relative fluctuation level and skewness and flatness moments of the pro-
cess for a degenerate distribution of pulse velocities and a lower truncated expo-
nential amplitude distribution with minimum amplitude given by amin ¼ ð1� wÞha0i
as a function of the width parameter w. Each moment is normalized by the value for
a full exponential amplitude distribution.

FIG. 7. Results for independent pulse amplitudes and velocities at x¼ 0, both having a lower truncated exponential distribution with the same width parameter w. Plot panels
show (a) velocity distribution, and radial profiles of (b) average value, (c) inverse profile scale length, (d) relative fluctuation level, (e) skewness moment, and (f) flatness moment
for various values of the width parameter w. All radial profiles are normalized with their values at the reference position x¼ 0 in the case of a degenerate distribution of pulse
velocities and an exponential amplitude distribution. For all radial profiles, the normalized linear damping time is hvisk=‘ ¼ 10.
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PsðsÞ¼ ‘

wacvhvis2
‘ðsk �sÞ
cvhvisks

 !1�a
a

exp � 1
w

‘ðsk �sÞ
cvhvisks

 !1
a

�1�w
w

0
@

1
A:

(53)

For a¼ 1 this gives the same average duration as in Eq. (47), which
increases with increasing width parameter for the amplitude distribution. In
the limit a ! 0, all pulses have the same velocity and the pulse duration is
given by Eq. (29), independent of the width of the amplitude distribution.

The marginal velocity probability density function and the radial
profile of the lowest-order moments are presented in Fig. 8 for a ¼ 1=2
and a¼ 1, and for various values of the width parameter for a lower
truncated amplitude distribution. For all cases, the radial variation of the
mean hUi is nearly exponential with an e-folding length close to hvisk,
the same as for the reference case with a degenerate velocity distribution.
The decrease in the mean value due to a wide velocity distribution as
found in Sec. IV is balanced by the strong correlation between pulse
amplitudes and sizes. Thus, fast and large-amplitude pulses result in a
large mean value as well as a high relative fluctuation level and skewness
and flatness moments that increase radially outward.

C. Amplitude saturation

The blob velocity scaling theory suggests a saturation of the veloc-
ity dependence on pulse amplitude when these become large compared
to any background level, as described by Eq. (5). In order to investigate
this, we finally consider the scaling relationship

v
hvi ¼ cv

a0
ha0i þ a0

� �a

; (54)

and a truncated exponential distribution for the pulse amplitudes a0.
The marginal velocity probability density function and the radial pro-
file of the lowest-order moments are presented in Fig. 9 for a ¼ 1=2

and a¼ 1, and for various values of the width parameter. Again we
observe that for all cases, the radial variation of the mean hUi is nearly
exponential and similar to the reference case where all pulses have the
same velocity. Thus, the e-folding length is determined by the average
pulse velocity and has a weak dependence on the width of the distribu-
tion. The relative fluctuation level as well as the skewness and flatness
moments increase radially outward but not as strongly as for the power
law scaling v � aa0 due to the saturation for large pulse amplitudes
described by Eq. (54).

D. Discussions

As discussed in Sec. IVE, the pulse amplitudes and durations
become correlated downstream from the reference position x¼ 0.
With a power law relationship between pulse amplitudes and velocities
as discussed above, there is an initial correlation between these at the
reference position. This can be calculated analytically for the power
law scaling given by Eq. (50), which at the reference position for a¼ 1
gives

ha0si ¼ ‘ha0i
hvi 1� sd

sk

� �
; (55)

where the average pulse duration is given by Eq. (47). In Fig. 10, the
radial variation of the normalized effective pulse duration is presented
for the power law scaling given by Eq. (50) and various values of the
width parameter w. At the reference position, the correlation becomes
stronger with increasing width parameter for the amplitude distribu-
tion. This should be compared to Fig. 5, which shows the effective
duration in the case of uncorrelated pulse amplitudes and velocities at
the reference position. In both cases, the normalized effective pulse
duration decreases radially outward, being increasingly dominated by
large-amplitude, fast pulses.

FIG. 8. Results for correlated pulse amplitudes and velocities, v � ða0=ha0iÞa, with a ¼ 1=2 (broken lines) and a¼ 1 (full lines), for a lower truncated exponential amplitude
distribution with width parameter w at x¼ 0. Plot panels show (a) marginal velocity distribution and radial profiles of (b) average value, (c) profile scale length, (d) relative fluctu-
ation level, (e) skewness moment, and (f) flatness moment for various values of the width parameter w. All radial profiles are normalized with their values at the reference posi-
tion x¼ 0 in the reference case of a degenerate distribution of pulse velocities and an exponential amplitude distribution. For all radial profiles, the normalized linear damping
time is hvisk=‘ ¼ 10.

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop

Phys. Plasmas 31, 042514 (2024); doi: 10.1063/5.0196938 31, 042514-10

VC Author(s) 2024

 06 August 2024 06:17:24

pubs.aip.org/aip/php


In conclusion, there are several mechanisms which modify the
cumulants and moments and their variation with radial position. First,
a distribution of pulse velocities increases the average pulse duration,
which is dominated by slow pulses. Second, since pulse amplitudes
and durations have opposite dependence on pulse velocity, a distribu-
tion of velocities leads to a negative correlation of these and a radial
increase in the relative fluctuation level and the skewness and flatness
moments. Third, an initial correlation between amplitudes and veloci-
ties further reduces the cumulants and moments. Finally, a distribution
of pulse velocities will also change the downstream amplitude distribu-
tion. This mechanism is discussed in Appendix A.

VI. DISCUSSION AND CONCLUSIONS

Experimental measurements at the boundary of magnetically
confined plasmas have demonstrated that the particle density profile
in the SOL has a shoulder-like structure.84–99 In the near SOL, close to
the magnetic separatrix, the profile is steep and has moderate fluctua-
tion levels. Further out in the far SOL, the profile has an exponential
decay with a much longer scale length and an order unity relative fluc-
tuation level. As the empirical discharge density limit is approached,
the break point between the near and the far SOL regions moves radi-
ally inward and the far SOL profile becomes flatter. This change in the
profile is generally attributed to radial transport caused by blob-like fil-
ament structures in the far SOL. Thus, understanding and predicting
profile broadening and flattening, and the associated enhanced plas-
mas–surface interactions, requires a detailed investigation of these
fluctuations.

The stochastic modeling presented here shows that an exponential
average profile follows from a superposition of uncorrelated pulses which
all have the same radial velocity, hUiðxÞ ¼ c	ha0i expð�x=hviskÞ. In
this reference case, the profile e-folding length is given by the product of
the radial pulse velocity and the linear damping time due to particle
motion along magnetic field lines in the SOL. Accordingly, faster blobs
and a longer magnetic connection length result in a flatter far SOL profile,
in agreement with experimental measurement. Higher core plasma den-
sity or longer connection length leads to higher collisionality in the SOL,
and the blob velocity scaling regime is expected to transition from sheath
dissipative to inertial, resulting in higher radial velocities and thereby a
flatter profile. This is believed to be a dominant mechanism for shoulder
formation, large relative fluctuations and enhanced plasma wall–interac-
tions at the outboard midplane of toroidal plasmas.

At the reference position, the prefactor for the profile is given by
the product of the average pulse amplitude and the ratio of the pulse
duration and average waiting time. The process is strongly intermittent

FIG. 9. Results for correlated pulse amplitudes and velocities, v � ½a0=ðha0i þ a0Þ�a, with a ¼ 1=2 (broken lines) and a¼ 1 (full lines), for a lower truncated exponential
amplitude distribution with width parameter w at x¼ 0. Plot panels show (a) marginal velocity distribution and radial profiles of (b) average value, (c) profile scale length, (d) rel-
ative fluctuation level, (e) skewness moment, and (f) flatness moment for various values of the width parameter w. All radial profiles are normalized with their values at the refer-
ence position x¼ 0 in the reference case of a degenerate distribution of pulse velocities and an exponential amplitude distribution. For all radial profiles, the normalized linear
damping time is hvisk=‘ ¼ 10.

FIG. 10. Radial variation of the linear correlation between pulse amplitudes and
durations for the power law scaling v � aa with a ¼ 1=2 (broken lines) and a¼ 1
(full lines) for a truncated exponential amplitude distribution with width parameter w.
The normalized linear damping time is hvisk=‘ ¼ 10.
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with large relative fluctuations when the latter ratio is small, implying lit-
tle overlap of pulses. When the amplitudes are exponentially distributed,
the process has a Gamma probability density with the mean amplitude
as the scale parameter and the ratio of the pulse duration and the aver-
age waiting time as the shape parameter. From this, it follows that the
relative fluctuation level and the skewness and flatness moments are
radially constant. The present understanding of the blob formation pro-
cess is limited, and there are no first-principles based predictions for the
average pulse waiting time or the average amplitude. However, it is
anticipated that the blob structures are formed at the transition region
from the near to the far SOL; thus, their average amplitude will increase
as the far SOL profile broadens and flattens. This again leads to higher
velocities, further contributing to profile flattening and broadening.

A random distribution of pulse velocities significantly modifies
the stochastic process. It leads to longer average pulse durations,
thereby increasing the degree of pulse overlap and the mean value of
the process. The relative fluctuation level and the skewness and flatness
moments are reduced close to the reference position due to longer
pulse durations, as seen in Figs. 1–3 and 7–9. However, there will also
be a negative correlation between pulse amplitudes and durations
downstream from the reference position. This results in a shorter effec-
tive pulse duration and the process becomes dominated by the fast
pulses, which have short radial transit times and undergo less linear
damping due to parallel transport. As a result, the relative fluctuation
level and the skewness and flatness moments increase radially outward.
In the simplest case of a discrete uniform velocity distribution, the
average profile has a bi-exponential shape, as shown in Fig. 1, resem-
bling the near and far SOL regions typically measured at the boundary
of magnetically confined plasmas.

For pulse velocities with a continuous distribution but indepen-
dent of pulse amplitudes, as discussed in Sec. IV, the average profile is,
in general, non-exponential with a shorter e-folding length than the
reference case with a degenerate velocity distribution. However, the
relative fluctuation level and the skewness and flatness moments are
generally higher and increase radially outward. The intermittency of
the process is further amplified when there is a correlation between
pulse amplitudes and velocities. The blob velocity scaling theory pre-
sented in Sec. II suggests that the pulse velocity depends linearly on the
amplitude in the inertial regime or as the square root of the amplitude
in the sheath dissipative regime. Moreover, there is a saturation of the
amplitude dependence for large relative amplitudes. However, in all
these cases and for any width parameter of the amplitude distribution,
the average radial profile is close to that of the reference case where all
pulses have the same velocity, as shown in Sec. V. The high average
plasma density, long profile scale length and high relative fluctuation
level in the SOL underline the importance of blob-like plasma fila-
ments for profile flattening and plasma contact with limiter structures
and the main chamber walls.

The stochastic model presented here provides a unique statistical
framework for analyzing and interpreting fluctuation measurements
from the boundary region of magnetically confined plasmas.27–40 It
should be noted that there is no background or equilibrium plasma in
the SOL according to the model. The mean value is entirely due to
blob-like filament structures moving radially outward. Numerous
investigations have demonstrated that both the underlying assump-
tions of the model as well as its predictions are in excellent agreement
with experimental measurements from single-point recordings.61–73

This includes pulses arriving according to a Poisson process with an
exponential distribution of pulse waiting times, an exponential pulse
function, and an exponential distribution of pulse amplitudes.
Similarly, the stochastic model can be used for validation of first
principles-based turbulence simulations of the boundary region.100

There are numerous other applications of the stochastic model for
analysis of transport phenomena in the SOL. This includes the treat-
ment of time-dependent pulse velocities, which are proportional to the
instantaneous amplitudes, coupling to a two-point model to address
the role of large-amplitude fluctuations for parallel transport, extension
to two spatial dimensions and optimization of time delay estimates of
blob velocities, and adding interactions with neutral particles to inves-
tigate the impact of filament structures on ionization and recombina-
tion processes in the SOL. This will lead to a deeper understanding of
plasma dynamics and transport in the SOL, guiding and improving
transport modeling efforts which use effective diffusivities and convec-
tion to describe radial profiles and plasma–surface interactions in mag-
netically confined plasmas.
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APPENDIX A: AMPLITUDE DISTRIBUTION

The dominant mechanism for radial variation of the relative
fluctuation level and the skewness and flatness moments is the cor-
relation between pulse amplitudes and durations when there is a
broad distribution of pulse velocities. However, the change in the
amplitude distribution with radial position will also influence the
moments of the process.

The pulse amplitude at any position n is given by Eq. (20). In
the case of a random distribution of pulse velocities v, the
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amplitudes an at position n are given by the product of two random
variables. The probability density of the product of two indepen-
dent, non-negative random variables is given by the Mellin convolu-
tion of the two corresponding densities. Assuming there is no
correlation between amplitudes and velocities, the distribution of an
is, thus, given by

Pan ðanÞ ¼
ð1
0

da0
a0

Pa0ða0ÞPu
an
a0

� �
; (A1)

where Pu is the probability distribution of the random variable
u ¼ expð�n=vskÞ.

As an example, consider an exponential distribution for the
pulse amplitudes a0 given by Eq. (26) and a truncated exponential
distribution of pulse velocities. The exponential transform of the
scaled reciprocal random variable �n=vsk results in a new random
variable u, which for n > 0 has the probability density

PuðuÞ ¼ n
whvisk

1

u ln2u
exp

ð1� wÞhvi þ n=sk ln u
whvi

 !
; (A2)

for u in the range umin � u < 1, where

umin ¼ exp � n
skð1� wÞhvi

 !
: (A3)

Accordingly, the lower integration limit on a0 in Eq. (A1) is an the
upper limit is an=umin. As the distributions Pa0 and Pu are known,
we can determine Pan at the radial position n.

The amplitude probability distribution function Pan is pre-
sented in Fig. 11 for various radial positions n for the truncated
exponential velocity distribution with width parameter w¼ 3/4. At
n¼ 0, the distribution is by definition exponential. The downstream
amplitude distribution is peaked for small amplitudes since slow
pulses have long radial transit times and are strongly depleted by
linear damping. Far downstream, the distribution is well described
by a Gamma distribution with a shape parameter a < 1,

haniPanðanÞ ¼
1

CðaÞ
an
hani
� �a�1

exp � an
hani

� �
; (A4)

where the average amplitude hani at the position n is the scale
parameter of the distribution. For this probability density, the
amplitude moments are given by hanni ¼ haniaCðnþ aÞ=CðaÞ.

In order to quantify how the strongly peaked amplitude distri-
bution modifies the process, consider a superposition of uncorre-
lated, exponential pulses30

WKðtÞ ¼
XKðTÞ
k¼1

ankw
t � sk
sd

� �
; (A5)

with Gamma distributed amplitudes given by Eq. (A4) and an expo-
nential pulse function w with fixed duration sd. The lowest-order
moments for this process are readily calculated as33

hWi ¼ cahani; (A6a)

W2
rms ¼

1
2
cað1þ aÞha2ni; (A6b)

SW ¼ 23=2

3c1=2
aþ 2

að1þ aÞ½ �1=2
; (A6c)

FW ¼ 1
c
ð2þ aÞð3þ aÞ

að1þ aÞ : (A6d)

When the shape parameter a is small, the relative fluctuation level
and the skewness and flatness moments are very high due to the
occasional appearance of large-amplitude pulses. In fact, in the limit
a ! 0, the shape parameter has the same influence on these
moments as the intermittency parameter c that determines the
degree of pulse overlap. However, as discussed in Sec. III, the main
mechanism for the radial increase in relative fluctuation level and
the skewness and flatness moments is the correlation between pulse
amplitudes and durations. In Ref. 40, this was explicitly demon-
strated for a discrete uniform velocity distribution.

APPENDIX B: SIZE DISTRIBUTION

A random distribution of pulse sizes with modify the pulse
durations and lead to more randomness in the process. Consider
truncated exponentially distributed amplitudes with width parame-
ter 3/4, continuous uniformly distributed sizes ‘ in the range
‘min � ‘ � ‘max,

h‘iP‘ð‘;wÞ ¼ 1
2w

; (B1)

where ‘min ¼ ð1� wÞh‘i and ‘max ¼ ð1þ wÞh‘i, and pulse veloci-
ties given by Eq. (5),

v
hvi ¼

cv
2

‘3

h‘i3 �1þ 1þ 4h‘i5
‘5

a0
ha0i þ a0

 !1=2
2
4

3
5; (B2)

where cv is a normalization constant. The velocity distribution and
resulting profiles of the lowest-order moments are presented in
Fig. 12. Compared to Fig. 9, the velocity distribution is broader for a
wide amplitude distribution. As a result, the e-folding length for the

FIG. 11. Probability density function of the pulse amplitudes for a truncated expo-
nential distribution of pulse velocities with width parameter w¼ 3/4 at various radial
positions in the case hvisk=‘ ¼ 10. The dashed line shows a Gamma distribution
with shape parameter a ¼ 1=2.
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profile is shorter and the mean value lower than for the reference
case with a degenerate velocity distribution. However, the high
velocity pulses result in larger fluctuation amplitudes and higher
skewness and flatness moments for a wide size distribution.
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