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ABSTRACT

The time evolutions of the Bohm sheath and the related pre-sheath are analyzed as an initial value problem. The standard classical fluid
model of a collisionless plasma is used with cold ions and Boltzmann distributed electrons. Numerical solutions of the basic equations show
that a stationary plasma sheath itself is established within a few ion plasma periods. It is demonstrated analytically that for infinitely extended
homogeneous plasmas in one spatial dimension, the only possible pre-sheath solution is dynamic, giving a steady expansion: no stationary
solution exists for this one-dimensional case. The potential and density drops along the dynamic pre-sheath differ notably from the values
found for stationary models suggested in the literature. Collisions give only formal changes to the collisionless results, and their substance
remains the same in one spatial dimension. Cylindrical and spherical geometries, on the other hand, allow for physically acceptable, fully
nonlinear, stationary solutions with analytical results given. These are supported by numerical solutions.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0176287

I. INTRODUCTION

When a conducting surface at some externally applied negative
potential is embedded in a plasma, it will absorb ions and reflect elec-
trons to form a plasma sheath in the vicinity of the surface. The prob-
lem in its basic form is commonly met in laboratory, in industrial
plasmas, and also for a number of space plasma applications. Probes
used for plasma diagnostics offer a particularly important problem.
Ideal collisionless and collision-dominated plasmas represent two lim-
iting cases. The present study is concerned with the classical version of
the plasma sheath conditions where a large negative potential is
applied to a conducting surface facing a collisionless plasma. Based on
the assumption of a stable time-stationary sheath, Bohm’s observation1

states that ions have to arrive at sonic or supersonic velocities at the
sheath edge in order to give a stable sheath solution.2–7 A pre-sheath is
necessary for accelerating ions to this velocity. Here, we address a ques-
tion concerning the length scales of the problem, which can be argued
also by dimensional analysis with arguments substantiated in an
Appendix A (see also Table I). The plasma sheath facing the biased
surface is characterized by a charge imbalance. For the collisionless
case, its width scales with the electron Debye length, while the pre-
sheath is quasi-neutral and has no natural characteristic length scale

(such as the electron Debye length), nor any natural timescale (such as
the electron or ion plasma periods). Length scales can be imposed
through the initial conditions, but step-like or d-function like condi-
tions have no such built-in scales, but are legitimate initial conditions
nonetheless. Without a characteristic length scale, the pre-sheath width
is undetermined,8 see also Appendix A. This ambiguity is resolved by
considering the problem as an initial value problem,9,10 where the
sheath itself is established almost instantaneously, while the pre-sheath
is formed through a steady-state expansion, propagating with the ion
sound speed. The characteristic length scale in physical units thus
becomes LðtÞ ¼ Cs t in terms of the ion sound speed and time t. The
analysis is based on exact analytical solutions of the basic equations
and supplemented by numerical results. We find the potential and
density drops along the dynamic pre-sheath to differ notably from the
values found for stationary models. There is a significant difference
between static and dynamic pre-sheath conditions.

All ions are lost to the negatively biased terminating conducting
plate, and in this sense, the problem has some similarities with expan-
sion of step-like plasma discontinuities11–13 and plasma expansion
into vacuum being a limiting case.14 The self-similar evolution has
been demonstrated also experimentally and numerically.13,15,16
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This problem is interesting also in the present context by the self-
similar solutions found in certain limits.

Introducing collisions with a frequency l into the model gives an
additional length scale Cs=l in the model equations. Also, this case has
an exact analytical solution, but it turns out that this solution is not
accessible from physically acceptable conditions with finite plasma
densities.

Problems in higher dimensions with imposed characteristic length
scales have different properties. Cylindrically and spherically symmet-
ric conditions can differ from the infinite one-dimensional case by hav-
ing a natural length scales such as the radius of the conducting surface.
These cases are analyzed as well in the present study and exact analyti-
cal expressions given for the time-stationary pre-sheath. Introducing
collisions in these problems means that they have two competing
length scales, the Debye length and the collisional mean free path.

The analytical results are supported by numerical solutions of the
basic set of nonlinear equation. For the two- and three-dimensional
cases (with cylindrical and spherical symmetries, respectively), these
numerical results illustrate how the analytically obtained stationary
solutions develop from physically realistic initial conditions. The
emphasis of the analysis is on the properties of the pre-sheath and its
evolution.

II. BASIC EQUATIONS

The basic analytical model used in much of the following is based
on the standard fluid equations for a two-component plasma with cold
ions and isothermally Boltzmann distributed electrons at temperature
Te. Multi-component plasmas, in particular also with charged dust
particles embedded,17 can be interesting as well for both industrial and
space applications, but these are not considered here

@

@t
uþ u � $ð Þu ¼ � e

M
$/; (1)

@

@t
nþ $ � ðnuÞ ¼ 0; (2)

$2/ ¼ e
e0
ðnpee/=Te � nÞ; (3)

where the density and velocity of singly charged ions with mass M are
n and u, the electrostatic potential is /, and Te is the electron tempera-
ture with Boltzmann’s constant j included, while np is a reference elec-
tron density, which is also the plasma density for unperturbed plasmas
with / ¼ 0. Contributions from an ion pressure term are ignored.
For large electron to ion temperature ratios, Te=Ti � 1, this approxi-
mation is justified. Isothermal ion contributions will not give substan-
tial modification of the results. Adiabatic ion dynamics will give a
nonlinear correction, but this will be small for the assumed large tem-
perature ratios. The equations have to be completed by initial and
boundary conditions. We assume externally applied negative potentials
to a solid surface, which can be planar, cylindrical, or spherical, and
consider semi-infinite plasma domains. The conditions (plasma den-
sity, plasma potential, and velocity) are taken to be constant at infinity.
Numerical results will use large but spatially finite systems.

The set of Eqs. (1)–(3) has its limitations, but has been widely used
for discussing the basic properties of sheaths and pre-sheaths. The equa-
tions describe, for instance, the low-frequency collisionless dynamics of
linear as well as nonlinear ion acoustic waves propagating along the
magnetic field lines in Q-machines.18 For unmagnetized double-plasma

(DP) devices19 operated at low neutral pressures with Te � Ti, it is also
possible to ignore collisions for a wide class of low-frequency plasma
problems. The assumption of Boltzmann distributed electrons, in par-
ticular, is widely used3,20–23 in describing low-frequency (below the ion
plasma frequency Xpi) plasma phenomena. The electron inertia terms
are ignored in the electron momentum equation, so the electron pres-
sure term is balanced by the electrostatic forces to give the Boltzmann
equilibrium for isothermal electron conditions. The result is consistent
since a Maxwellian velocity distribution ðm=ð2pTeÞÞ3=2 exp ð�ð12mu2

�e/ðrÞÞ=TeÞ with constant Te is a solution to the collisionless steady-
state electron Vlasov equation for any given /ðrÞ. For the standard ver-
sion of the Bohm sheath problem, all electrons are assumed to be
reflected from the sheath facing a negatively biased conducting surface.
For realistic conditions, the most energetic electrons can overcome the
negative potential to reach the terminating surface and be lost there.
Consequently, the assumed Boltzmann equilibrium is not exact. In the
calculations, we mostly use applied potentials /0 ¼ �2:5Te=e, giving a
fraction of absorbed electrons to be small, 1:267� 10�2. For /0

¼ �5Te=e, the corresponding fraction is even smaller, 7:827� 10�4.
The assumption of isothermal electrons is justified for a negative end-
plate bias /0 � �Te=e, although exceptions can be found around the
transition from sheath to pre-sheath where the dynamic spatial varia-
tions of the electric field are large. For magnetized plasmas (a problem
not considered in the present work), such local deviations from an iso-
thermal Boltzmann electron distribution were argued.24 With total
reflection from the sheath, the electrons are confined. The absorbed
ions are assumed to be replaced from n ! 1. For finite systems, there
have to be internal ion sources. For isothermal electrons and cold ions,
the thermal forces25 does not play any role. For more complex systems,
they may become important.

In the following, we consider the basic equations (1)–(3) for one-,
two-, and three-dimensional problems. A previous study10 addressed
the problem by the method of characteristics. We comment on this
method in an Appendix B, mentioning also some of its limitations.

III. SHEATHS AND PRE-SHEATHS IN ONE SPATIAL
DIMENSION

Here, we assume that a conducting plate is placed at x¼ 0 with
the plasma filling the half-space x> 0. A negative potential is applied
to the plate to attract ions and deflect electrons. In a practical experi-
ment, some of the most energetic electrons in the “tail” of the
Maxwellian distribution will reach the end-plate and be lost, implying
that the assumed isothermal electron distribution cannot be exact. It is
implicitly assumed that the applied potential is sufficiently negative to
make the fraction of lost electrons to be negligible.

Using the ion sound speed Cs, the electron Debye length kD, and
a characteristic perturbation length scale L, the following normaliza-
tions are introduced w ¼ e/=Te; n ¼ x=L; s ¼ Cst=L; v ¼ u=Cs;
n=np ! n, to give the basic equations in the form:

@

@s
vþ v

@

@n
v ¼ � @

@n
w;

! @v
@s

¼ � @H
@n

; H ¼ v2

2
þ w; (4)

@

@s
nþ @

@n
ðnvÞ ¼ 0; (5)
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�
@2

@n2
w ¼ ew � n; � � kD

L

� �2

: (6)

Equations (4) and (5) are rewritten as

@

@s
þ v

@

@n

� �
v ¼ � @w

@n
; (7)

@

@s
þ v

@

@n

� �
ln ew � �

@2w

@n2

( )
¼ � @v

@n
: (8)

The assumption of quasi-neutrality is imposed by setting �¼ 0 in
Eq. (8).

A. Static sheath formation

Static solutions to the basic equations are given by

nv ¼ J ¼ nsvs;
v2

2
þ w ¼ H ¼ v2s

2
þ ws;

nv2 þ ew � �

2
dw
dn

� �2

¼ nsv
2
s þ ews � �

2
dws

dn

� �2

; (9)

where ns ¼ nðnsÞ; vs ¼ vðnsÞ and ws ¼ wðnsÞ are all evaluated at the
sheath edge n ¼ ns. Poisson’s equation now reads

�
d2w

dn2
¼ ew � Jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðH � wÞp ; (10)

which is integrated to give

�

2
dw
dn

� �2

¼ �

2
dw
dn

����
ns

 !2

þ ew

� ews þ J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðH � wÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðH � wsÞ

p� �
; (11)

where the potential is bounded in the region given by

wðnÞ � ws þ
v2s
2
: (12)

The relation (11) shows that stationary sheath solutions are possible
only when v2s 	 1. This is Bohm’s result for a collisionless plasma.

B. Comments on a stationary pre-sheath in one
dimension

The sheath and plasma are supposed to be connected smoothly
to a quasi-neutral pre-sheath. Then, we set �¼ 0 ðn ¼ ewÞ in Eq. (10)
to get

ew ¼ Jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðH � wÞp ¼ nsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2ðw� wsÞ
p ;

! ew�ws ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ðw� wsÞ

p (13)

with a solution given as

wðnÞ ¼ ws; (14)

implying that the potential in the pre-sheath region is constant and
there is no potential drop through the pre-sheath. The ions cannot be

accelerated to the sound speed. This is confirmed as follows. From the
equation of motion and the continuity equation, we have

vðnÞ dvðnÞ
dn

¼ � dwðnÞ
dn

; vðnÞ dwðnÞ
dn

¼ � dvðnÞ
dn

; (15)

combined to give

v2ðnÞ � 1
� 	 dvðnÞ

dn
¼ d

dn
1
3
v3ðnÞ � vðnÞ


 �
¼ 0

! vðnÞ v2ðnÞ � 3
�  ¼ const:; (16)

showing that vðnÞ is constant in the assumed pre-sheath and there is
thus no ion acceleration. Consequently, no such stationary pre-sheath
exists in one spatial dimension. Previous studies9,10 found dynamic
evolutions similar to those described in our work but did not address
the nonexistence of a stationary pre-sheath.

C. Self-similar pre-sheath evolution

By the quasi-neutral condition imposed by setting �¼ 0 in Eq. (8),
there are no characteristic scales length for pre-sheath models. When
such scales are absent also in the initial or boundary conditions, we can
expect a pre-sheath to be described by self-similar solutions. Physically,
a relevant condition will correspond to a sudden disturbance being
applied at a reference position in the present one-dimensional model.
Imposing a negative potential to absorb ions at a conducting surface,
we find a rarefaction wave propagating into the plasma. Such a problem
has been studied also experimentally.9 We can also have step-like initial
conditions in the plasma density11–14 and find self-similar solutions
also for this case. For positive parameters k (not to be confused with
the electron Debye length kD) and v, we find the expressions

vðn; sÞ ¼ w
n
k
;
s
ka

� �
; wðn; sÞ ¼ u

n
v
;
s
vb

� �
; (17)

then we have

@

@s
þ 1

k1�a w
n
k
;
s
ka

� �
@

@n

( )
w

n
k
;
s
ka

� �
¼ � ka

v
@

@n
u

n
v
;
s
vb

� �
; (18)

@

@s
þ 1
v1�b

w
n
k
;
s
ka

� �
@

@n

( )
u

n
k
;
s
ka

� �
¼ � vb

k
@

@n
w

n
k
;
s
ka

� �
; (19)

which have isomorphism with Eqs. (7) and (8) for k ¼ v; a ¼ b ¼ 1.
Putting k ¼ s, and

w ¼ w
n
s
; 1

� �
¼ wðqÞ; u ¼ u

n
s
; 1

� �
¼ uðqÞ; q ¼ n

s
;

then Eqs. (18) and (19) reduce to

@q
@s

þ @q
@n

wðqÞ

 �

dwðqÞ
dq

¼ � @q
@n

duðqÞ
dq

;

@q
@s

þ @q
@n

wðqÞ

 �

duðqÞ
dq

¼ � @q
@n

dwðqÞ
dq

:

Using

@q
@s

¼ � n
s2
;

@q
@n

¼ 1
s
;

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop

Phys. Plasmas 31, 023508 (2024); doi: 10.1063/5.0176287 31, 023508-3

VC Author(s) 2024

 06 August 2024 06:16:25

pubs.aip.org/aip/php


we have

ð�qþ wðqÞÞ dwðqÞ
dq

¼ � duðqÞ
dq

; (20)

ð�qþ wðqÞÞ duðqÞ
dq

¼ � dwðqÞ
dq

; (21)

nðqÞ ¼ euðqÞ (22)

with q being the only independent variable. If � 6¼ 0 is retained in Eq.
(8), this self-similar form is no longer possible. The relations (20)–(22)
are combined to give

ð�qþ wðqÞÞ2 dwðqÞ
dq

¼ dwðqÞ
dq

; ! wðqÞ ¼ q6 1 (23)

and

duðqÞ
dq

¼ 71; ! uðqÞ ¼ 7qþ uð0Þ: (24)

Thus, we have for ns � n � np under the boundary condition vðns; sÞ
¼ �1 and wðns; sÞ, where np and ns are the plasma—pre-sheath
boundary and the sheath edge, respectively,

vðn; sÞ ¼ wðqÞ ¼ q� 1;
wðn; sÞ ¼ uðqÞ ¼ qþ us; and us ¼ uðqsÞ: (25)

With the present variables, the pre-sheath extends from q¼ 0 to
q ¼ qp. In the pre-sheath wðqÞ 6¼ 0, while wðqÞ ¼ 0 in the unper-
turbed plasma where the rarefaction wave has not arrived yet. By this
geometry, we require wðqpÞ ¼ 0 at the moving pre-sheath front where
q ¼ qp. Thus, we have

qp ¼
npðsÞ
s

¼ 1; ! npðsÞ ¼ s: (26)

The potential at the pre-sheath front is given by

uðqpÞ ¼ up ¼ us þ qp ¼ us þ 1: (27)

Therefore, the potential drop along the dynamic, or expanding, pre-
sheath is

us � up ¼ �1: (28)

The freedom to choose an electrostatic reference potential can be used
to take up ¼ 0. The plasma density is given by

nðqÞ ¼ euðqÞ ¼ npe
uðqÞ�up ; (29)

giving the density drop over the dynamic pre-sheath as ns ¼ npe�1.
Now Eqs. (20) and (21) are rewritten as

d
dq

ðwðqÞ � qÞ2
2

þ uðqÞ

 �

¼ q� wðqÞ ¼ 1

! d
dq

ðwðqÞ � qÞ2
2

þ uðqÞ � q


 �
¼ 0; (30)

which gives with (26)

wðqÞ � qð Þ2
2

þ uðqÞ � q ¼ C ¼ 1
2
þ us ¼ up �

1
2
; (31)

where C is a constant determined at the sheath edge and the pre-
sheath front. The last expression in Eq. (31) gives Eq. (28).

The analysis in this and related studies10 have one flaw: the condi-
tion on the velocity at the pre-sheath edge is imposed as a boundary
condition to be the sound speed, whereas all that the Bohm condition
prescribes is that this velocity has to be equal to or greater than Cs. As
demonstrated later, this velocity has to be exactly the sound speed, i.e.,
a more strict condition than the one commonly assumed, see also the
Appendix B. Inclusion of isothermal ion dynamics gives only trivial
modifications to the results.

1. Comments of the potential and density drops
for stationary pre-sheaths in one dimension

In a widely accepted static model, the ion velocity and the poten-
tial are assumed to vanish at the position separating the main plasma
and the pre-sheath (possibly at infinity). Then, the constant C is set to
zero in Eq. (31). The potential at the sheath edge is then given by

us ¼ � 1
2
: (32)

Physically, this means that an ion is accelerated to the sound velocity
by the static potential drop. The corresponding electron density at the
sheath edge is

ns ¼ eus ¼ e�1=2 ¼ 0:61 (33)

to be interpreted as the density reduction in the pre-sheath since
np ¼ 1 (corresponding to up ¼ 0) is the plasma density at the inter-
face between the main plasma and the pre-sheath, the plasma density
variation assumed to be continuous. (This position may be found at
infinity.) However, for C ¼ 0, the potential at the pre-sheath front
position separating it from the main plasma is given from Eq. (31) by
up ¼ 1=2, leading to

np ¼ eup ¼ e1=2 ¼ 1:649 ! ns ¼ npe
�1; (34)

which is nothing but (29). Thus, the result for the density drop in the
pre-sheath given by Eq. (33) in the stationary model is inconsistent
with the dynamic model. Physically, a steady-state model gives the ion
acceleration corresponding to the potential drop, while a dynamic
model has the electric field to vary during the ion transit. The differ-
ence between static and dynamic pre-sheath may appear controversial
and is therefore addressed in more detail in the Appendix C.

IV. BOUNDARY CONDITION FOR THE ION VELOCITY
AT THE SHEATH EDGE

Guided by the results in Sec. III C as well as in previous works,10

we postulate a solution in the form of a normalized electric field,
EðsÞ ¼ gðsÞ, without any length scale, independent of position in
some so far unspecified range 0 < n < n0 but depending on time. We
can expect that the spatial range is time varying, n0 ¼ n0ðsÞ. Both
signs of g have to be possible, depending on the plasma being at half-
space n > 0 or n < 0, the criterion being that ions are accelerated
toward the absorbing end-plate. Insertion of EðsÞ into Poisson’s equa-
tion gives the quasi-neutral solution n ¼ exp ðwÞ. This excludes the
plasma sheath (the inner solution) and the proposed electric field
model does not apply there. The normalized electrostatic potential
derived form EðsÞ is wðn; sÞ ¼ f ðsÞ � n gðsÞ, where f ðsÞ is possibly a
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function of time, unspecified so far. The corresponding normalized
quasi-neutral plasma density is nðs; nÞ ¼ expð f ðsÞ � gðsÞ nÞ. The
assumption of a stationary sheath implies that nðs; 0Þ ¼ constant for
all times, giving f ðsÞ ¼ f0 being a constant. Since a region with charge
imbalance is not accounted for in the present analytical model, we can
take the pre-sheath edge to be n¼ 0, which will correspond to a physi-
cal position x 
 15kD. In the limit of quasi-neutral plasmas, the Debye
length becomes immaterial.5 Since the sheath width scales with kD, the
difference between n¼ 0 and n¼ 15 is of no consequence here. The
sheath formation time � kD=Cs becomes infinitesimal in the present
limit.5

Using the expression for the ion density found before in the con-
tinuity equation, we find an equation for the ion flow velocity

exp ðwÞ @vðn; sÞ
@n

� n g 0ðsÞ � vðn; sÞgðsÞ
� �

¼ 0;

where a common factor exp ðwÞ ¼ exp ðf0 � gðsÞ nÞ cancels. The gen-
eral solution for vðn; sÞ is

vðn; sÞ ¼ AðsÞengðsÞ � g 0ðsÞð1þ n gðsÞÞ
g2ðsÞ (35)

with AðsÞ so far unspecified. Using this result in the ion momentum
equation, we find the constraint on the functions AðsÞ and gðsÞ,

engðsÞA0ðsÞ � ng 00ðsÞ þ 2AðsÞengðsÞg 0ðsÞ
gðsÞ � gðsÞ 1� AðsÞengðsÞ

� �2� �

þ 3g 0ðsÞ2
gðsÞ3 þ 2ng 0ðsÞ2 � g 00ðsÞ

gðsÞ2 ¼ 0: (36)

For this condition to be fulfilled for all n, it is required that
A2ðsÞe2ngðsÞ ¼ 0,

engðsÞ A0ðsÞ � 2AðsÞg 0ðsÞ
gðsÞ

� �
¼ 0

and

n
2g 0ðsÞ2
gðsÞ2 � g 00ðsÞ

gðsÞ

 !
¼ 0;

as well as

3g 0ðsÞ2
gðsÞ3 � gðsÞ � g 00ðsÞ

gðsÞ2 ¼ 0:

The solution of Eq. (36) is found as AðsÞ ¼ 0, and gðsÞ
¼ �1=ðsþ c1Þ, with c1 being a constant. The choice c1 ¼ 0 gives the
self-similar result for the normalized potential wðn; sÞ ¼ f0 þ n=s. By
Eq. (35), the ion velocity becomes vðn; sÞ ¼ �1þ n=s in the spatial
range given for the electric field. This solution is consistent with an ini-
tial condition for the potential being a “step function.” The corre-
sponding ion density becomes nðn; sÞ ¼ exp ðf0 þ n=sÞ in the given
spatial range. We find vð0; sÞ ¼ �1 for s > 0, corresponding to ions
arriving at n¼ 0 with a velocity equal to the sound speed. The observa-
tion is consistent with our numerical results when we identify this
“analytical” boundary position n¼ 0 with the position of the sheath
edge. The velocity condition found here is sufficient to ensure a stable
plasma sheath in the “Bohm sense.”

These results summarized here are exact solutions to the normal-
ized version of the full set of Eqs. (1)–(3) in the assumed spatial inter-
val and fulfill a boundary condition at n¼ 0. The requirement v � 0
limits the spatial range of the solution (and thereby also for the
assumed electric field) to be s 	 n 	 0 in normalized variables so that
n0ðsÞ ¼ s. We consequently complete the expressions for velocity,
potential, and the electric field by introducing Heaviside’s unit step
function Sð1� n=sÞ. The point n=s ¼ 1 is singular in the sense that
the ion velocities and the electric fields are not differentiable there. The
quasi-neutrality assumption breaks down at this position. The singu-
larity in the derivative at n ¼ s arises from the assumed step-like initial
value. For the normalized plasma density, we have nðn ! 1; sÞ ¼ 1
corresponding to the reference density np in physical units, implying
nðn ¼ sÞ ¼ 1. Hereby, we obtain f0 ¼ �1 and the analytical solution
is fully specified giving, in particular, nð0Þ ¼ exp ð�1Þ � 1=e.

The imposed potential and resulting electric field at the terminat-
ing conducting plate is accelerating ions and thereby increasing the ion
kinetic energy. In normalized units, the ion kinetic energy density is
1
2 nv

2 ¼ 1
2 ð1� n=sÞ2 exp ð�1þ n=sÞ for 0 � n � s. The total kinetic

energy per unit area is found as sð1� 5=ð2eÞÞ 
 0:0803 s. The total
ion kinetic energy is unbounded for s ! 1. For realistic physical con-
ditions, the pre-sheath expansion will be arrested by physical bound-
aries at some finite time.

To address conditions like those met in, for instance Q-
machines,18,26 we allow for ion inflow from n ! 1 with a normalized
subsonic velocity—U. In this case, an ion sound wave will propagate in
the positive n direction with a normalized velocity 1� U and the
Heaviside step function introduced before is modified to Sð1� U
�n=sÞ. The normalized potential solution becomes wðn; sÞ ¼ f0 þ n=s
now with f0 ¼ U � 1 giving corresponding modifications of nðn; sÞ,
while vðn; sÞ ¼ �1þ n=s remains unchanged. This problem is only
relevant for the one-dimensional problem, e.g., along the homogeneous
magnetic field in a Q-machine. It does not apply to cylindrically or
spherically symmetric problems where a net unidirectional plasma flow
will break the assumed symmetry.

A. Distributed ion velocities in one spatial dimension

The foregoing analysis demonstrated the absence of a steady-
state pre-sheath in one spatial dimension, assuming cold ions. The fol-
lowing analysis demonstrates that distributed ion velocities do not
change this conclusion. The problem can be approached by taking the
integration constant in Eq. (7) for steady state to be 1

2V
2 with V being

the incoming ion velocity, where V¼ 0 was a special case implied in
the previous result. We can assume that there are several such incom-
ing velocity components with velocities Vj, where j ¼ 1; 2;… is a label
for velocity groups, each with their separate normalized densities nj.
The individual velocity components evolve according to the local col-
lective electric field E ¼ �du=dn. The set of equations for N incoming
ion velocity components becomes

1
2
v2j ðnÞ þ uðnÞ ¼ 1

2
Vj; (37)

found by the ion momentum equation. From the stationary continuity
equation, we have

njðnÞvjðnÞ ¼ Cj: (38)

The quasi-neutrality condition gives
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XN
j

nj ¼ exp ðuÞ: (39)

The integration constant is recognized as Cj ¼ n0jVj with n0j being the
relative density of the incoming velocity component, withPN

j n0j ¼ 1. Proper choice of n0;j for j ¼ 1; 2;… allows modeling of a
velocity distribution, for instance, a Maxwellian.

We can reduce these equations to

expðuÞ ¼
XN
j

n0jVjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
j � 2u

q :

No matter how dense the velocities of incoming ions are, this equation
has no solution in form of a function of n that can serve as a spatially
varying pre-sheath, not even in the limit of a continuum of incoming
ion velocities.27 Ion kinetic effects alone do not suffice to give a station-
ary pre-sheath in one spatial dimension. Ion Landau damping is a
dynamic feature, while collisional friction is effective also for steady-
state flow conditions, so the two effects have different consequences.
The conclusion remains of course also for N¼ 1 confirming the fore-
going result concerning the nonexistence of a stationary pre-sheath on
one spatial dimension. From the results of present section, we can con-
clude that a cold ion model suffices to give the basic elements of the
sheath–pre-sheath problem so it will be used in the following.

V. COLLISIONAL PRE-SHEATH IN ONE SPATIAL
DIMENSION

The basic set of equations in one spatial dimensional is general-
ized by including a standard collision term�lv in the ion momentum
equation,2–4 taking the collision frequency l constant for the moment.
The model accounts for momentum losses of ions due to collisions
with a heavy neutral background gas, for instance. There is no loss or
generation of ions in this model. These latter processes require addi-
tional terms in the ion continuity equation and are not considered
here. This case is fundamentally different from the collisionless prob-
lem since we now have a characteristic length scale in Cs=l. With
the normalizations w ¼ e/=Te; n ¼ x=L; s ¼ Cst=L; v ¼ u=Cs;
n=np ! n, and lL=Cs ! l, the basic equations are rewritten as

@

@s
vþ v

@

@n
v ¼ � @

@n
w� lv; (40)

@

@s
nþ @

@n
ðnvÞ ¼ 0; (41)

�
@2

@n2
w ¼ ew � n; � ¼ kD

L

� �2

; (42)

which are rewritten for a quasi-neutral system (n ¼ ew) as

@

@s
þ v

@

@n

� �
v ¼ � @w

@n
� lv; (43)

@

@s
þ v

@

@n

� �
w ¼ � @v

@n
: (44)

A. Static collisional pre-sheath in one dimension

For a static case, we have

v
dv
dn

¼ � dw
dn

� lv; v
dw
dn

¼ � dv
dn

; (45)

leading to

dv
dn

¼ � 1
v
dw
dn

� l; ! d
dn

vþ 1
v
þ ln

� �
¼ 0; (46)

v
dw
dn

¼ � dv
dn

;! d
dn

wþ 1
2
ln v2

� �
¼ 0; (47)

which, with integration constants C1 and C2, give

vþ 1
v
þ ln ¼ C1 ¼ vs þ 1

vs
þ lns;

wþ 1
2
ln v2 ¼ C2 ¼ ws þ

1
2
ln v2s ;

(48)

where vs ¼ vðnsÞ; ws ¼ wðnsÞ and ns ¼ nðnsÞ are obtained at the
sheath edge n ¼ ns.

Then, we have

vðnÞ ¼ 1
2

�ðln� C1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðln� C1Þ2 � 4

q
 �
;

wðnÞ ¼ C2 � 1
2
ln v2ðnÞ

(49)

with the two constants C1 and C2 being connected by the conditions at
n¼ 0, giving C1 ¼ �ð1þ v2ð0Þ Þ=vð0Þ and C2 ¼ wð0Þ þ 1

2 ln v
2ð0Þ.

We know that vð0Þ ¼ �1 for the collisionless case and expect that
ions are slowed down by the collisions (as supported by numerical
results). Consequently, �1 � vð0Þ < 0 and exp ð�1Þ � wð0Þ < 1.
For the illustrative choice of boundary conditions at the sheath edge
ns ¼ 0 to be vðnsÞ ¼ vs ¼ �1 and wðnsÞ ¼ ws, the integration con-
stants become

C1 ¼ �2; C2 ¼ ws; (50)

giving

vðnÞ ¼ 1
2

�ðlnþ 2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlnþ 2Þ2 � 4

q
 �
;

wðnÞ ¼ ws �
1
2
ln v2ðnÞ; nðnÞ ¼ ewðnÞ;

(51)

where �1 � vðnÞ < 0 follows for the given conditions. Conservation
of flux, nv ¼ constant by the steady-state continuity equation, implies
that the plasma density must diverge when v ! 0 for n ! 1, so the
plasma density n becomes infinite there, irrespective of the applied
velocity condition at the sheath edge. The ion velocity (full line), the
potential (dashed line), and ion density (dash-dotted-line) in the colli-
sional pre-sheath for varying ln are shown in Fig. 1 for the assumed
condition giving vð0Þ ¼ �1. The electrostatic potential vanishes here
for lns ¼ e1=2 þ e�1=2 � 2 
 0:255, and nðnsÞ ¼ 1 there. The poten-
tial is unbounded as ln ! 1, just as the plasma density. The electric
field is negative for all n > 0 but diverging for n ! 0. This divergence
is problematic only if we take the pre-sheath position literally.
In reality, this point is defined only to the accuracy of kD. As a conclu-
sion, we have demonstrated that a steady-state solution exists for the
chosen collision model, but find that this cannot be a global solution
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approached asymptotically by physically acceptable boundary and/or
initial conditions. Just as the collisionless case, also this model has to
be solved as an initial value problem irrespective of the existence of a
stationary solution.

1. Velocity-dependent collision frequencies

The foregoing Sec. V assumed a simple constant collision fre-
quency l, independent of velocity. Albeit simple, it is a physically real-
izable model, at least in a finite velocity range for “Maxwellian
molecules.”28 We there find for a wide particle velocity range the cross
section rðuÞ � 1=u giving lðuÞ � constant.29 This model is widely
used for illustrations of the effects of collisional processes.4 It can
model ion collisions with heavy neutrals, for instance. More detailed
studies are reported in the literature.2,21

More generally, the collision frequency will depend on the
relative velocity u between the scattered and the scattering parti-
cle. Since all ions have the same velocity in the present cold ion
model, the particle velocity will here be the same as the ion fluid
velocity v.

Taking here a more general case with l ¼ lðvÞ, we combine the
expressions (45) and (47) to give the form2

dv
dn

¼ lðvÞv2
1� v2

; (52)

demonstrating that the velocity derivative is singular for v ¼ 61,
which in the present normalized variables correspond to the velocity
being equal to the Bohm velocity

ffiffiffiffiffiffiffiffiffiffiffiffi
Te=M

p ¼ Cs. The spatial velocity
derivative will have a constant sign as long as �1 � v � 1, relevant
here and apply just as well for the case where the plasma is placed at
the negative n side of the conducting surface. An asymptotically con-
stant velocity for n ! 1 cannot be made consistent with Eq. (52),
implying that vðn ! 1Þ ¼ 0 is the only acceptable solution. The con-
sequence of this velocity variation is that the density nðnÞ � 1=vðnÞ is
diverging as n ! 1. This will be so for any lðvÞ 6¼ 0, implying that
the results from the previous Sec. VA are robust. The arguments here
are independent of imposed boundary conditions and will apply also

for finite systems bounded by two surfaces, not necessarily on the
same bias.

Physically, the present results mean that a finite pressure gradient
TednðnÞ=dn is needed at n ! 1 to overcome the frictional drag on
the ions, so they can arrive at the biased end-plate and be absorbed
there. This gradient in density gives rise to the divergence
nðn ! 1Þ ! 1. For an initial value problem with an expending rar-
efaction wave, this problem does not exist in one spatial dimension.

We have not found analytical solutions v ¼ vðnÞ for the present
case. From Eq. (52), we can find an the inverse expression n ¼ nðvÞ in
an integral form for given lðvÞ,

nðvÞ ¼
ðv
�a

1� K2

lðKÞK2
dK; (53)

assuming a boundary condition v ¼ �a for n ¼ 0. The inversion to
give vðnÞ can be made graphically. For special model choices of lðKÞ,
it can be possible to solve (53) analytically. The collisionless case gave
the result v¼�1 at the pre-sheath edge irrespective of the sheath con-
ditions, i.e., applied potentials w0. Collisional friction will slow the ions
down, implying that the collisionless result is approximate and useful
only when Cs=l � kD, i.e., the collisional mean free path is much
larger than the sheath width. The requirement dvðnÞ=dn ¼ 0 imposes
constraints on the numerator of Eq. (53).

The collision model with constant l used in the first part of this
Sec. V is relatively simple. More general models are available,30 with
classical viscosity already mentioned. The present model serves to
demonstrate that a steady-state pre-sheath can be found as soon as a
parameter with dimension length can be formed that determines the
width of a pre-sheath. Such a solution will not, however, necessarily be
physically relevant as a global solution for the present one-dimensional
case.

2. Plasma sources and sinks

We found that the problem with divergences of density and
potential was associated with the continuity equation which in steady
state gives n � 1=v. A more general model with spatially distributed
plasma sources with a constant intensity G has been suggested2 to give
dðnvÞ=dn ¼ G in steady state. This expression is however not consis-
tent with the requirement of a constant ion flux nv at n ! 1. We can
generalize the steady-state ion continuity equation to

dðnvÞ
dn

¼ an� bn2; (54)

with a > 0 and b > 0 being coefficients for ionization and recombina-
tion,2 or alternatively keep G instead of an. The source of ionization in
Eq. (54) is taken to be impact on neutrals by fast electrons31 and pro-
portional to their density ne, which becomes n by the assumption of
quasi-neutrality. The energy lost to ionization has to be replaced by
internal energization. The term accounting for losses is here assumed
to represent 3-body recombination, being proportional to the product
neni, which becomes n2 by quasi-neutrality. There are other models
for sources, e.g., a simple constant,2 while losses can be caused by radi-
ative or by dissociative recombination.31 The asymptotic condition
dðnvÞ=dn ¼ 0 here implies n ¼ a=b by Eq. (54). We have a lengthy
implicit expression for the ion velocity, but this is not given here.
Seemingly, it can only be solved by numerical methods.

FIG. 1. Illustrations of analytical results for the ion velocity (full line), the potential
(dashed line), and ion density (dash-dotted-line) in the collisional pre-sheath for
varying ln for the choice of constants (50). The velocity derivative is singular at
n¼ 0 in agreement with Eq. (52) for the assumed velocity condition at n¼ 0. The
condition was chosen to illustrate the divergence of the velocity derivative for
v¼�1.
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For finite one-dimensional systems with two boundaries or with
internal length scales, it is generally possible to find steady-state solutions
when sources are included to compensate the ion losses to the biased
conducting surfaces. In such cases it is, however, the experimental system
and not the plasma parameters that sets the scale sizes of the pre-sheath.

VI. CYLINDRICAL CO-ORDINATES

In the one-dimensional sheath and pre-sheath model, it is natural
to consider the sheath as well as the biased conducting surface to be a
perfect absorber. The equivalent problem in two or three spatial
dimensions can be interpreted in terms of a biased Langmuir probe in
sheath or in orbit limited conditions.2 For the first one of these, we can
take the sheath to be a perfect absorber, but it imposes restrictions on a
characteristic length, such as the probe radius, as R � kD.

Transform from a rectangular co-ordinate system to a cylindrical
co-ordinate system: ðx; y; zÞ ! ðr; h; zÞ. Keeping here only the radial
variations, the basic equations are found in the form

@vr
@s

þ vr
@vr
@r

¼ � @w
@r

; (55)

@n
@s

þ @nvr
@r

þ nvr
r

¼ 0; (56)

�
1
r
@

@r
r
@

@r

� �
þ @2

@z2


 �
w ¼ ew � n; (57)

to be analyzed in the following, where we let rs be the radius of the con-
ducting surface.

A. Static axisymmetric sheaths

In the following relations, we consider an axisymmetric system:

1
2
@

@r
v2r ¼ � @w

@r
;

1
r
@

@r
ðrnvrÞ ¼ 0;

�
1
r
@

@r
r
@w
@r

� �
¼ ew � n:

Somewhat more general conditions will have the radial forces balanced
by the centrifugal force and the energy gradient in the radial direction.
In the present case, a relation for the ion density is

n ¼ ns
rsvrs
rvr

¼ nsrsvrsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2rsr

2 þ 2r2ðws � wÞp ; (58)

and Poisson’s equation becomes

�
1
r
@

@r
r
@w
@r

� �
¼ ew � nsrsvrsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2rsr
2 þ 2r2ðws � wÞp : (59)

We have then

�
1
r
@

@r
r
@w
@r

� �
¼ ew � nsrsvrs

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2rs þ 2ðws � wÞp

’ ns 1� rs
r

� �
þ v2rs �

rs
r

� �
w� ws

v2rs
þ � � �


 �
; (60)

where ns ¼ ews . The solution is given by a modified Bessel function in
the vicinity of r ’ rs for jvrsj >

ffiffiffiffiffiffiffiffi
rs=r

p � 1, which corresponds to the
Bohm criterion for a stable sheath structure to exist for collisionless
plasmas in a two-dimensional cylindrically symmetric system.

VII. SPHERICAL CO-ORDINATES

We take a three-dimensional case with co-ordinates
ðx; y; zÞ ! ðr; /; hÞ. For a spherically symmetric case with radial
variations only, i.e., @=@h ¼ 0 and @=@/ ¼ 0 and vanishing azimuthal
and poloidal velocities, vh ¼ 0 and v/ ¼ 0, we have

@vr
@s

þ vr
@vr
@r

¼ � @w
@r

; ! @vr
@s

¼ � @

@r
v2r
2
þ w

� �
; (61)

@n
@s

þ 1
r2
@ r2nvrð Þ

@r
¼ 0;

! @

@s
þ vr

@

@r

� �
ln nþ @vr

@r
þ 2vr

r
¼ 0; (62)

�
1
r2

@

@r
r2
@w
@r

� �
¼ ew � n: (63)

The quasi-neutral limit is also here found for �¼ 0. For this case, we
have no expression corresponding to Eq. (60).

A. Combined expressions for cylindrical and spherical
cases

For strictly symmetric cylindrical and spherical symmetries, it is
possible to combine the basic equations to a compact form by intro-
ducing a modified ion density as N � r n and N � r2n, respectively,
for the two cases. These symmetries are restrictive, but relevant since
many plasma probes are constructed with these symmetries.
Introducing the dimensionality of the problem as D, we find with a lit-
tle effort

@vr
@s

¼ � @

@r
v2r
2
þ w

� �
; (64)

@N
@s

þ @ Nvrð Þ
@r

¼ 0; (65)

�
@

@r
rD�1 @w

@r

� �
¼ rD�1ew � N: (66)

For D¼ 1, the expressions include also the spatially one-dimensional
case. This set of equations is particularly useful for solutions for static
pre-sheaths in the two special cases.

B. Static pre-sheaths, analytical results

The steady-state solution, in particular, is found by the set of
equations

1
2
v2ðrÞ þ wðrÞ ¼ C1

NðrÞvðrÞ ¼ C2

NðrÞ ¼ rD�1 exp ðwðrÞÞ;
where N and w can be eliminated to give
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1
2
v2 þ lnC2 � ln v� ðD� 1Þ ln r ¼ C1:

The solution of this expression valid for D ¼ 2; 3 is found in terms of
the “ProductLog” or “Lambert’sW” function as

UðrÞ ¼ 6Re i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W �C2

2 e�2C1 r2�2D
� 	q
 �

; (67)

where the constants C1 and C2 are determined by the conditions at the
surface at r¼ 1 in units normalized by the radius rs of the surface.
Since NðrÞ ¼ rD�1nðrÞ ! 1 at r ! 1, those boundary conditions
are of no use here. For D¼ 1, we have a false solution for v in Eq. (67),
consistent with our previous results for one spatial dimension. The
result (67) is shown in Fig. 2 together with results for density and
potential derived from it. Numerical results for a spherical probe
obtained by assuming isothermal electrons as in the present study
extended by kinetic “particle-in-cell” (PIC) model for the ions23 show
a radial plasma density variation for the pre-sheath similar to our
results.

For the analysis to be meaningful, it was implicitly assumed that
rs � kD so that the spherical surface acts as a sheath limited and not
an orbit limited probe. The velocity v is here a fluid velocity, not an
individual particle velocity. Since the sheath width scales as � kD, it is
here immaterial whether the boundary condition is imposed at a posi-
tion r¼ rs or at r 
 rs þ kD.

The width of a saturated pre-sheath scale linearly with rs. A char-
acteristic time for its establishing is rs=Cs. For short times, a locally
plane approximation is useful and there the one-dimensional dynamic
sheath results apply. The characteristics of the sheath itself are almost
indistinguishable from the one-dimensional case when rs � kD.

As for the one-dimensional case, the electric field induced by the
applied potential accelerates ions also here. Recalling Wðf�nÞ � f�n

for f ! 1, it is readily demonstrated that the total kinetic ion energy

is finite for the spherically symmetric case for all times, and similarly
for the cylindrical case for a segment of unit length along the z axis.

VIII. NUMERICAL RESULTS
A. Time evolution of one-dimensional collisionless
sheaths and pre-sheaths

Early previous studies9 analyzed the expanding sheath by numer-
ical solutions of the basic equations, using the computer resources
available at the time. The present results are obtained by a commer-
cially available program. The spatial length of the systems is usually
taken to be 103kD in physical units. The accuracy of the results has
been confirmed in part by comparison with analytical results when
available, and also by tests using larger spatial domains, e.g., double
size or larger. The figures in the following show only a part of the spa-
tial calculation domain. Concerning the time durations, we usually
show all time-steps obtained. A typical calculation time is 300=Xpi in
physical units. A rarefaction wave excited by the initial condition prop-
agates into the plasma with the ion sound speed Cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Te=M

p
and its

front will reach approximately 1/3 of the calculation domain within a
calculation time. Reflections from the terminating end are not an issue.

After normalizations, the full set of the combined nonlinear equa-
tions (1)–(3) is solved numerically with results shown in Figs. 3–6. The
boundary condition assumes an externally applied normalized poten-
tial w0 at the terminating surface absorbing the ions at n¼ 0. After a
short time where the sheath itself is established, Figs. 3 and 4 show a
steady expansion of the pre-sheath. Based on Figs. 5 and 6, we can con-
clude that for collisionless plasma conditions, the pre-sheath expands
at a constant rate with the ion sound speed. The sheath itself is estab-
lished in a short time, a few ion plasma periods, and remains stationary
from then on. These results have experimental support.9

The sheath is found to be fully developed at a time �10=Xpi with
negligible changes after �50=Xpi. For the collisionless case, the transi-
tion from sheath to pre-sheath can be identified as the point where

FIG. 2. Exact analytical results for the
steady-state collisionless pre-sheath solu-
tions for potential, velocity and density in
the three-dimensional spherically symmet-
ric case (full lines) and the two-
dimensional cylindrical case (dashed
lines). The potential and density drops are
noticeably different from the one-
dimensional dynamic case. The normaliz-
ing constants are here chosen so that
r¼ 1 corresponds to rs � kD.

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop

Phys. Plasmas 31, 023508 (2024); doi: 10.1063/5.0176287 31, 023508-9

VC Author(s) 2024

 06 August 2024 06:16:25

pubs.aip.org/aip/php


quasi-neutrality is reached, here at n 
 15. Other definitions of the
sheath edge have been proposed, however.32 Our arguments for defin-
ing the sheath edge are based on the observation that for a collisionless
system described by our basic equations taken in the quasi-neutral
limit, our analysis demonstrates that the arrival ion velocity at the pre-

sheath edge is exactly the sound speed for the collisionless case. Then, for
the full numerical solution, without the restriction of quasi-neutrality, we
take the separation point to be the position where the velocity takes the
value of the sound speed. By inspection of our figures for collisionless
conditions, this position turns out to be very close to the point we would
have chosen visually without any prior information. The separation point
moves for varying w0, but less than a factor of 2 for the given parameter
range. To a good approximation, the electrostatic potential reaches a
value w 
 �1 at the position of the sheath boundary. It is the same posi-
tion where the ion velocity reaches v 
 �1, i.e., the sound speed. The
numerical solutions demonstrate that the ion velocity at the sheath edge
evolves self-consistently to become vs ¼ �1 in normalized unites, i.e.,
the sound speed, and not imposed as a boundary condition.

To keep the model in its original classical form, we did not include
finite ion thermal effects. Inclusion of isothermal ions at temperature
Ti > 0 is simple, both numerically and analytically. It amounts to a
redefinition of the sound speed to be Cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTe þ TiÞ=M
p

and does
not contribute with anything new. Adiabatic ion models will be impor-
tant for the internal sheath solutions33 and are not considered here. The
analytical results for the pre-sheath are independent of the applied
potential w0, indicating that the main plasma containing the pre-sheath
is completely shielded from the terminating plate. Consequently, the
pre-sheath evolution is expected to be insensitive to slow potential oscil-
lations added to w0. For the oscillations to be “slow,” the period has to
be longer than the� 10=Xpi that it takes to establish the plasma sheath.
This feature is confirmed numerically. For density variations due to
incoming ion sound waves, for instance, the situation is different.

The results shown in Figs. 5 and 6 demonstrate that the pre-
sheath dynamics are to a good approximation independent of the bias
w0 of the terminating conducting plane surface. The sheath width is
seen to increase when the end-plate bias is made more negative.
Calculations assuming adiabatic ions at a large temperature ratio (here
Te=Ti ¼ 10) give results for the pre-sheath that are nearly indiscern-
ible from the corresponding isothermal ion results. Differences are
found in the sheath close to the biased surface. Other studies34 have
indicated that a simple adiabatic ion model can be questionable here.

B. Collisional pre-sheath in one dimension

The ion momentum equation (1) is modified to include colli-
sional effects in the form lv, with l being a normalized collision

FIG. 3. Space–time evolution of the normalized electrostatic potential for w0
¼ �2:5 for the collisionless case in one spatial dimension without quasi-neutrality
assumed. The figure shows the rarefaction wave propagating at the ion sound
speed in the positive n-direction.

FIG. 4. Space–time evolution of the normalized ion velocity for an applied potential
of w0 ¼ �2:5, corresponding to Fig. 3. Different color schemes were used for
potential and velocity to avoid confusion.

FIG. 5. Spatial variation of the normalized electrostatic potential wðn; sÞ for w0
¼ �2:5;�5; and �7.5, shown with full, dashed, and dot-dashed lines for the colli-
sionless case. The results are taken at a time s¼ 100, where the rarefaction wave
has reached the position n¼ 100.

FIG. 6. Spatial variation of the normalized ion velocity vðn; sÞ for w0 ¼ �2:5;
�5:0, and �7.5 taken at a time s¼ 100 as in Fig. 5 with full, dashed, and dot-
dashed lines. Compare with Figs. 4 and 5. The edge of the pre-sheath is here iden-
tified, approximately, as the position where w 
 �1 and simultaneously v 
 �1,
here at n 
 15.
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frequency. It is demonstrated by numerical results in Fig. 7 that this
change gives significant modifications of the collisionless results.35,36

Most important is that for large collision frequencies l, the steady-
state pre-sheath expansion is arrested and the system saturates in a
quasi-stationary configuration, with pre-sheath width scaling as Cs=l.
Note that a classical viscosity term in the form l @2v=@x2, with l being
a kinetic viscosity, has an effect only near the beginning and end
points, n¼ 0 and n0 ¼ s, respectively, of the pre-sheath, since the orig-
inal velocity variation is to a good approximation linear between these
two points. The numerical solutions giving Fig. 7 assume the physically
reasonable reference plasma potential /p ¼ 0 in the unperturbed
plasma. The steady increase in potential for n ! 1 in Fig. 1 is not
found. The change in the plasma parameters induced by changing the
collision frequency is shown in more detail in Fig. 8 for two collision
frequencies. For a small l, there is only little difference from the colli-
sionless case, while strong collisionality gives a pronounced effect on
the spatial variation of velocity and ion density, less for the potential.
In particular, we still have u 
 �1 at the sheath edge. For l > 1=5,
also the potential is affected and its value at the sheath edge will
decrease in absolute value. Recall here that the potential is fixed at the
conducting end-plate by the applied potential w0.

We find that the time evolution follows the collisionless case for a
short time interval, up to � 10=l. After this, the time evolution satu-
rates to give a sheath that is nearly stationary within the computational
time, see Fig. 7 illustrating a case with a moderate collision frequency.
The pre-sheath remains insensitive to changes in the applied potential
w0 as it was for l¼ 0. Due to the collisional drag, the ions here arrive
to the terminating plate at a velocity that is smaller than the value in
the collisionless case, see Fig. 8. The pre-sheath width is approximately
constant at a length � 10Cs=l. The figure illustrates that the ions
arrive the sheath edge as well as the terminating surface at n¼ 0 with a
reduced velocity for increasing collisionality. For Cs=l � kD, implying
that the collisional mean free path is larger than the sheath width, the
reduction in velocity is inconspicuous, however. That ions arrive to the
sheath at a reduced velocity, which makes the definition of the sheath
to pre-sheath transition point ambiguous.

Detailed collisional fluid models have been analyzed,37,38 includ-
ing thermal forces, heat fluxes, and collisional temperature isotropiza-
tion for both electrons and ions. The results were supported by kinetic
simulations. These studies present spatial variations only without time

variations leading to those spatial variations. It is not possible to make
detailed comparisons with our results, but we note that the basic fea-
tures presented there are similar to what we find at late times in our
much simpler models.

C. Time evolution of collisionless sheaths
and pre-sheaths in spherical geometry

Numerical results for initial value conditions are shown in Figs. 9
and 10. The spatial variable is here normalized with kD, and the radius
of the biased conducting sphere is rs ¼ 50kD to have rs � kD.
The sheath thickness is found to be �10kD for this case. Contrary to
the one-dimensional case, we find that after a transient phase, the solu-
tions reach a quasi-stationary limit, which is well accounted for by the
analytical solutions, see Fig. 2. The time evolution in the initial phase,
where the sheath thickness is much less that rs, is well described
rs � kD the one-dimensional model in Sec. III. Here, the sheath can be

FIG. 7. Space–time evolution of the normalized electrostatic potential for a normal-
ized collision frequency l ¼ 1=25 and w0 ¼ �2:5 for the one-dimensional case.
Compare with the collisionless results in Fig. 3.

FIG. 8. Spatial variation of the normalized electrostatic potential, velocity, and ion
density for a normalized collision frequencies l ¼ 1=75 and 1/10, both for a fixed
time s¼ 150 for the one-dimensional case. We have w0 ¼ �2:5. Full black line is
for potential, dot-dashed blue line for velocity, and red dashed line for ion density. A
vertical gray line marked “S” gives the approximate position of the sheath edge.
Compare also with the collisionless results in Fig. 3. The curves for velocity and
potential coincide in the pre-sheath for the collisionless case, l¼ 0.
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seen as a thin layer covering the spherical surface. Conditions are dif-
ferent when rs � kD, which is not covered by the present analysis. The
same arguments apply for the cylindrical case.

The accuracy of the analytical results in Fig. 2 is here illustrated
by a comparison for the velocity, see Fig. 11. There is a small freedom
in merging the two curves at the sheath position, which is not given
exactly. The analytical solution is slightly above the numerical result,
which is taken from a late stage of the dynamical evolution, the

difference accommodated by the time derivative in the evolution equa-
tion. The agreement is fully satisfactory, and similar for potential and
density. Deviations are found at the sheath edge where the analysis
predicts a vertical derivative, where the numerical solutions, as
expected, give a differentiable transition from pre-sheath to sheath.

D. Spherical geometry with ion collisions

Introducing a collision frequency, the steady-state basic equations
become in normalized form

1
2
d
dr

v2ðrÞ ¼ � d
dr

wðrÞ � lvðrÞ (68)

with l being a normalized collision frequency. The continuity equation
becomes

d
dr

ðr2nðrÞvðrÞÞ ¼ 0: (69)

Using these expressions together with the quasi-neutral expression
n ¼ exp ðwÞ, we use Eq. (68) to arrive at a relation with Boltzmann
distributed electrons

1
2
d
dr

v2ðrÞ ¼ � d
dr

ln ðnðrÞÞ � l vðrÞ: (70)

From Eq. (69), we have n ¼ C1=ðr2vðrÞÞ and find
1
2
d
dr

v2ðrÞ ¼ � d
dr

ln
C1

r2vðrÞ
� �

� l vðrÞ: (71)

There seems to be no analytical solution for this equation, but a solu-
tion exists. We can solve the full set of equations where Poisson’s equa-
tion is included, allowing for a charge imbalanced sheath. Results for
the velocity variation are shown in Fig. 12 for a selected collisional
case. For a short time, smaller than the collision time, the velocity
evolves almost like a collisionless case, see Fig. 10, until it asymptoti-
cally approaches a semi-stationary limit.

IX. CONCLUSION

The standard reference model for deriving the Bohm criterion
requires the formation of a pre-sheath needed for accelerating ions to
the sound speed or more at the sheath edge. While the sheath itself
possesses a characteristic length scale, the Debye length, kD, for

FIG. 9. Space–time evolution of the normalized electrostatic potential in spherical
geometry for w0 ¼ �2:5. The spatial variable is here normalized with kD, and the
radius of the biased conducting sphere is rs ¼ 50kD. Only a part of the vertical axis
is shown.

FIG. 10. Space–time evolution of the normalized ion velocity in spherical geometry
for an applied potential of w0 ¼ �2:5, corresponding to Fig. 9. Different color
schemes were used for potential and velocity also here to avoid confusion.

FIG. 11. Comparison of the numerical solution in Fig. 10 for the spherical case,
here sampled at s¼ 200 (full line) and the analytical solution for velocity in Fig. 2
(dashed line). The two curves are merged at the sheath edge, here defines as the
position where v¼�1. The radius of the spherical surface is here R¼ 50. The
agreement is similar for the two-dimensional cylindrical case.

FIG. 12. Space–time evolution of the normalized ion velocity in spherical geometry
for an applied potential of w0 ¼ �2:5 and a normalized collision frequency of
l ¼ 1=50.
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normalization, the quasi-neutral pre-sheath has no characteristic
parameter of dimension length available for normalization. Assuming a
high temperature ratio plasma, Te=Ti � 1, we propose a solution of
this puzzle by considering the sheath evolution as an initial value prob-
lem, giving a steadily expanding pre-sheath, with no characteristic fixed
length scale. The ion flow velocity reaches the ion sound value in a short
time (a few ion plasma periods) after application of the bias. The fact
that it takes a long time (infinitely long, for ideal conditions) for the
pre-sheath to be formed will not have implications for the interpretation
of the current signal to a plasma probe, not even with a slowly varying
bias23 since the ion flow velocity at the sheath edge is constant at the
sound speed after a few ion plasma periods. One conclusion of the pre-
sent analysis, analytical as well as numerical, is that after the pre-sheath
acceleration, the ions arrive at the sheath edge with the sound speed
and not some arbitrary velocity equal to or larger than this value.

The analytical results for the quasi-neutral pre-sheaths in two and
three dimensions show that the spatial derivatives of potential, velocity
and plasma density are diverging at the sheath edge. The electric fields
are infinite at this point. This unphysical result is a consequence of
assigning a precise position for the separation between sheath and
pre-sheath. As seen in the full solutions allowing for deviations from
quasi-neutrality shown in Figs. 3–11, this transition is gradual and the
separation point is determined to the accuracy of kD. This inaccuracy is
localized to a narrow spatial region as seen best in Fig. 11. The analytical
results found for collisionless cylindrical and spherical geometries agree
with those being standard for steady state acceleration potentials.

Conditions in laboratory or in numerical simulations contain a
characteristic length scale, the system size, and this will arrest the
expansion of a one-dimensional pre-sheath. Also, a collisional mean
free path will serve as a characteristic length scale,2,39 as discussed also
in the present Sec. V. In magnetized plasmas, the Larmor radius intro-
duces a new length scale,17,24,40 but these conditions are not considered
here. For experimentally achievable plasma conditions, the electron-
ion temperature ratios will have some finite ratio and Landau damping
will be effective.41 The ion Landau damping of the rarefaction wave
front will be dominating the electron Landau damping for moderate
and small temperature ratios.

The first part of the present analysis was restricted to the classical
version of the Bohm sheath problem with a plane conducting surface
at a constant negative bias, see Sec. III. The conditions are different
from what is found for a floating surface, which is not considered here.
Most experiments in laboratory or in space have a geometry that can
be approximated either by a cylindrical or a spherical geometry. The
radial potential variation will depend of the specific geometry and not
solely by plasma parameters. These problems were addressed in Secs.
VI and VII. Realizable analytical solutions could be found for these
cases. The observations in Sec. VA demonstrated that the mere exis-
tence of an analytical solution does not guarantee that it can be reached
by physically realistic or realizable initial conditions.

It is found that for given imposed conditions the two- and three-
dimensional pre-sheath problems have a static as well as a dynamic
solution, where we presented analytical forms for the static limits and
numerical solutions for the dynamic evolution. These static solutions
form natural limiting or saturated stages for the dynamic evolutions.
The one-dimensional problem has only a dynamic self-similar solution
with a derivation presented here and also argued by dimensional rea-
soning. The potential drop along this time-evolving solution differs

notably from what would be expected for a postulated static solution. It
was explicitly demonstrated that no such static solution exists for this
problem. A previous study10 also arrived at the dynamic solution, but
did not prove that it is the only one. A collisional case in one dimension
was analyzed but found to be peculiar by offering an inaccessible
steady-state analytical solution. The dynamic solution for this case could
be found only by numerical analysis. It is possible that the analytical
steady-state solutions can find use for a finite system bounded by two
biased conducting surfaces. We have not explored this possibility.

The problem can find applications also for fusion experiments: if
we follow a magnetic field line starting from a diverter in a tokamak
geometry, the one-dimensional model can be used as an approxima-
tion.42 Sheaths will develop at the conducting surfaces, and the pre-
sheaths expand until they reached the core plasma where the plasma
losses are compensated by plasma production. This will then be the
characteristic distance determining the length scale of the steady-state
problem. There will be an electric field component along these mag-
netic field lines. Any density perturbation injected in this region by for
instance transport across magnetic field lines will be accelerated, rather
than be dispersing as a sound wave perturbation.

Studies extending the results summarized in this paper can be
based on numerical kinetic plasma simulations as well as complete
plasma transport models.23,37,38 They will provide extensions of our
analysis, but have to contain the results of the present study as a limit-
ing case. Complex conditions with collisional plasmas with excitation
and recombination in inhomogeneous magnetic fields2,43 probably
need to be studied by numerical simulations.
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APPENDIX A: DIMENSIONAL REASONING

The dimension matrix for the present problem is given by Table I.
The density is from the outset normalized everywhere by the reference
density np to form a dimensionless variable, so that np appears explicitly
only through Poisson’s equation. The ion mass is here denoted Mi to
be distinguished from the dimension “mass” given by the letterM.
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If we search a time-stationary solution, we ignore the first col-
umn. Studying a quasi-neutral limit, we discard the column con-
taining e0. In this case, the density can be normalized by np
everywhere, so the reference density np becomes obsolete.
Consequently, we can omit also the corresponding column. For the
present one-dimensional pre-sheath model, there is no length scale
of the problem, and consequently, we omit the column for R.

Any physically acceptable solution of a problem can be written
in the form of a product of a constant having the physically correct
dimension and a dimensionless function of one or more dimension-
less variables.8,44,45 We can, as an example, write for the spatial vari-
ation of the stationary ion velocity U ¼ ½U�FðnÞ, where FðnÞ is a
dimensionless function of a dimensionless spatial variable n ¼ x=L,
while ½U� is some dimensionally correct constant and L is a length
scale. We can choose e/p=Te and /p=/0 as fixed dimensionless con-
stants for the given plasma conditions. Other constants can be
formed, but these are not independent. Given the remaining system
parameters Mi, e, and Te, we can form a quantity having dimension
of velocity, i.e., Cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=Mi

p
the sound speed, but it is not possible

to form any “length,” so FðnÞ cannot be constructed: there is no
steady-state quasi-neutral solution. If the problem has a characteristic
length scale, we retain the column for R in Table I and the system
parameters become Mi, e, Te, and R. We can then form a steady-state
velocity solution like uðrÞ ¼ CsFðr=RÞ, where R can be the radius of a
probe in two or three spatial dimensions, or possibly the length scale of
a finite size system in one spatial dimension. For the steady-state sheath
solution, we have uðrÞ ¼ Cs Fðr=kD; kD=R; e/0=TeÞ, where kD=R and
e/0=Te are dimensionless constants for the problem. In either case
(two or three dimensions), the function F has to be determined by anal-
ysis or by numerical solutions. To account for the full space–time
dynamics in the absence of any length scale, e.g., a one dimensional sys-
tem of infinite extent, the only dimensionally correct combination of
variables and parameters is the self-similar solution for velocity
uðx=tÞ ¼ Cs Fðx=CstÞ discussed in Sec. III. For the present problem,
we found uðx; tÞ ¼ x=t in the interval 0 < x < Cst, i.e., the sound
speed enters through the dynamic boundary conditions.

APPENDIX B: PRE-SHEATH FORMATION DERIVED
BY CHARACTERISTICS

Pre-sheath solutions are given by

@

@s
þ vðn; sÞ @

@n

� �
vðn; sÞ ¼ � @wðn; sÞ

@n
; (B1)

@

@s
þ vðn; sÞ @

@n

� �
wðn; sÞ ¼ � @vðn; sÞ

@n
: (B2)

The expressions (B1) and (B2) are combined to yield

@

@s
þ v

@

@n

� �
v ¼ � @w

@n
; ! @v

@s
þ @w

@n
¼ �v

@v
@n

;

@

@s
þ v

@

@n

� �
w ¼ � @v

@n
; ! @w

@s
þ @v
@n

¼ �v
@w
@n

:

@

@s
þ @

@n

� �
ðvþ wÞ þ v

@

@n
ðvþ wÞ ¼ 0;

! @uþ
@s

þ ðvþ 1Þ @uþ
@n

¼ 0; (B3)

@

@s
� @

@n

� �
ðv� wÞ þ v

@

@n
ðv� wÞ ¼ 0;

! @u�
@s

þ ðv� 1Þ @u�
@n

¼ 0; (B4)

where uþðn; sÞ ¼ vðn; sÞ þ wðn; sÞ, and u�ðn; sÞ ¼ vðn; sÞ
�wðn; sÞ. The two expressions uþðn; sÞ and u�ðn; sÞ are constant
on the characteristics Cþ and C� defined, respectively, by

Cþ :
dn
ds

¼ vðn; sÞ þ 1; nð0Þ ¼ ns;

! nðsÞ ¼ ns þ
ðs
0
fvðnðsÞ; sÞ þ 1gds;

C� :
dn
ds

¼ vðn; sÞ � 1; nð0Þ ¼ ns;

! nðsÞ ¼ ns þ
ðs
0
fvðnðsÞ; sÞ � 1gds;

(B5)

where ns is the position separating sheath and pre-sheath. Noting

uþðnðsÞ; sÞ ¼ vþðn; sÞ þ wþðn; sÞ ¼ uþðns; 0Þ
¼ vþðns; 0Þ þ wþðns; 0Þ; on Cþ;

u�ðnðsÞ; sÞ ¼ v�ðn; sÞ þ w�ðn:sÞ ¼ u�ðns; 0Þ
¼ v�ðns; 0Þ � w�ðns; 0Þ; on C�;

(B6)

we have

vðn; sÞ ¼
vþðns; 0Þ ¼ vþ on Cþ

v�ðns; 0Þ ¼ v� on C�
;

(

wðn; sÞ ¼
wþðns; 0Þ ¼ wþ on Cþ

w�ðns; 0Þ ¼ w� on C�
:

( (B7)

From Eq. (B5), we find with v6 ¼ vðns; 0Þ being the initial condi-
tions at the sheath edge

Cþ : nðsÞ ¼ ns þ ðvþ þ 1Þs;
C� : nðsÞ ¼ ns þ ðv� � 1Þs: (B8)

Then, vðn; sÞ and wðn; sÞ are expressed by the initial condition
vðns; 0Þ as

TABLE I. Temperature Te is given in energy units, incorporating Boltzmann’s con-
stant. The physical parameters of the problem, here with cold ions, are np, Mi, e, e0,
Te, and R together with the externally applied potential /0. By choice of reference,
we have here the plasma potential /p ¼ 0. The dimensions in the first column are
denoted by T(ime), L(ength), M(ass), and A(mpere) for current.

t x u / np Mi e e0 Te R /0

T 1 0 �1 �3 0 0 1 4 �2 0 �3
L 0 1 1 2 �3 0 0 �3 2 1 2
M 0 0 0 1 0 1 0 �1 1 0 1
A 0 0 0 �1 0 0 1 2 0 0 �1
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vðn; sÞ ¼ vðn� ðv� � 1Þs; 0Þ on C�
vðn� ðvþ þ 1Þs; 0Þ on Cþ

;

(

wðn; sÞ¼ wðn� ðv� � 1Þs; 0Þ on C�
wðn� ðvþ þ 1Þs; 0Þ on Cþ

:

(

The slopes of these characteristics are v6 ! 61, and we may
assume vþ þ 1 > v� � 1 for which the solutions are given by

vðn; sÞ ¼

vðn� ðv� � 1Þs; 0Þ;
for n� n0 � ðv� � 1Þs;

vðn� ðvþ þ 1Þs; 0Þ;
for ðvþ þ 1Þs � n� n0;

8>>>><
>>>>:

wðn; sÞ¼

wðn� ðv� � 1Þs; 0Þ;
for n� n0 � ðv� � 1Þs;

wðn� ðvþ þ 1Þs; 0Þ;
for ðvþ þ 1Þs � n� n0:

8>>>><
>>>>:

(B9)

These two characteristics separate in a n� s space, and there
remains a region where the characteristics do not cover, that is,

ðv� � 1Þs < n� n0 � ðvþ þ 1Þs: (B10)

and a smooth function to cover the region has to be obtained, see
Fig. 13. Since the characteristics are linear in a ðn; sÞ space, we may
look for a self-similar solution in a form

vðn; sÞ ¼ w
n
s

� �
¼ wðqÞ;

wðn; sÞ ¼ u
n
s

� �
¼ uðqÞ;

(B11)

then Eqs. (B1) and (B2) reduce to

ð�qþ wðqÞÞ dwðqÞ
dq

¼ � duðqÞ
dq

; (B12)

ð�qþ wðqÞÞ duðqÞ
dq

¼ � dwðqÞ
dq

; (B13)

which are combined to give

ð�qþ wðqÞÞ2 dwðqÞ
dq

¼ dwðqÞ
dq

;

giving : wðqÞ ¼ q61 (B14)

and

duðqÞ
dq

¼ 71; ! uðqÞ ¼ 7qþ us: (B15)

We have for ns � n � np with np being the separation between the
main plasma and the pre-sheath

vðn; sÞ ¼ w
n� ns

s

� �
¼ n� ns

s
� 1;

wðn; sÞ ¼ n� ns
s

þ ws:

(B16)

The ion velocity at the sheath edge thus automatically gives the
Bohm criterion vðns; sÞ ¼ �1. We obtain the solution over all of the
range n0 � n � np as

vðn; sÞ ¼

vðn� ðv� � 1Þs; 0Þ;
for n� n0 � ðv� � 1Þs

n� ns
s

� 1;

for ðv� � 1Þs � n� n0 < ðvþ þ 1Þs
vðn� ðvþ þ 1Þs; 0Þ;

for ðvþ þ 1Þs � n� n0;

8>>>>>>>>>><
>>>>>>>>>>:

(B17)

wðn; sÞ ¼

wðn� ðv� � 1Þs; 0Þ;
for n� n0 � ðv� � 1Þs

n� ns
s

þ ws;

for ðv� � 1Þs � n� n0 < ðvþ þ 1Þs
wðn� ðvþ þ 1Þs; 0Þ;

for ðvþ þ 1Þs � n� n0:

8>>>>>>>>>><
>>>>>>>>>>:

(B18)

The characteristic lines (B8) are shown in Fig. 3.

APPENDIX C: DETAILS ON THE EXPANDING PRE-
SHEATH IN ONE SPATIAL DIMENSION

Here is offered another view on the expanding sheath for one
spatial dimension with particular attention to the density and
potential drops along the dynamic pre-sheath.

Assume that we have a region with an electric field expanding
in the positive n direction with some constant normalized velocity
U> 0. The electric field is assumed to decay in time as � 1=t.
Introducing Heaviside’s unit step function SðxÞ, we can write the
space–time varying electric field in one spatial dimension as

Eðn; sÞ ¼ � E0
s

SðUs� nÞ; (C1)

where E0 > 0 is some field amplitude and n > 0.
Take now an ion representing a small cold plasma fluid ele-

ment placed initially at rest at a position X< 0. Upon the arrival of
the electric field front at time s ¼ X=U , the ion will be accelerated
from then on to have a time evolution of its velocity

FIG. 13. The shaded region (green) is for not covered by characteristics, i.e., self-
similar solution for Eq. (25). Regions with thin lines (blue) are for Cþ : nðsÞ
¼ n0 þ ðvþ þ 1Þs, while (red) is for C� : nðsÞ ¼ n0 þ ðv� � 1Þs for the case of
vþ þ 1 > v� � 1.
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vðsÞ ¼ �E0 log ðsÞ þ E0 log ðX=UÞ
¼ �E0 log ðs=ðX=UÞÞ for s > X=U : (C2)

The position of this ion at times s > X=U will then be

nðsÞ ¼ �E0ð�sþ s log ðsÞ
� s log ðX=UÞ þ X=UÞ þ X;

¼ �E0 �sþ s log
s

X=U

� �
þ X=U

� �
þ X: (C3)

The time s0 where this ion reaches n¼ 0, the edge of the pre-sheath,
is found by nðs ¼ s0Þ ¼ 0. The solution in terms of Lambert’s
W-function is

s0 ¼ � XðU � E0Þ
E0 U W �U � E0

eE0

� � (C4)

with e here being Euler’s number. By Eq. (C2), the magnitude of the
ion velocity at this time, i.e., when it crosses the sheath boundary, is
then in terms of the natural logarithm

jvðs0Þj ¼ E0 log
E0 � U

E0 W E0 � U
eE0

� �0
B@

1
CA (C5)

independent of X, i.e., it does not matter where the ion starts, the
crossing velocity at n¼ 0 will always be the same vðs0Þ.

The two constants E0 and U are so far undetermined.
Concerning U, we note that for large times, the field amplitude
becomes small, so that linear theory applies, giving U¼ 1, i.e., the
ion sound speed in these normalized units. Since we have U to be a
constant, its magnitude has to be the sound speed everywhere.

The plasma is unperturbed for n > Us ¼ s, giving wðn ! 1Þ
¼ 0 by our choice of reference potential. Similarly, we have for the
normalized density nðn ! �1Þ ¼ 1 corresponding to the unper-
turbed physical density np. The expression (C1) for E gives the
potential

wðn; sÞ ¼ f0 � n
s
E0

� �
Sðn� sÞ for n=s 6¼ 1; (C6)

where f0 is a constant. The condition for continuous wðn; sÞ at
n ¼ s gives f0¼ E0 for any finite s. The corresponding normalized
plasma density is nðn; sÞ ¼ exp ðwðn; sÞÞ.

We recall the series expansion of WðzÞ for small z to be
WðzÞ 
 z � z2 þOðz3Þ. Using these expressions, we find that
jvðs0Þj ! 1 for E0 ! 1 as required for a stable sheath according to
the Bohm criterion. All ions arrive at the sheath edge with exactly
the sound speed for E0 ¼ 1. For this case, we find the normalized
potential drop from n ¼ s to n¼ 0 to be Dw ¼ �1. The corre-
sponding normalized density drop becomes Dn ¼ exp ð�1Þ 
 0:37.
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