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ABSTRACT: Herein, we report the direct carboxylation of unactivated secondary alkyl bromides enabled by the merger of
photoredox and nickel catalysis, a previously inaccessible endeavor in the carboxylation arena. Site-selectivity is dictated by a
kinetically controlled insertion of CO2 at the initial C(sp3)−Br site by the rapid formation of Ni(I)−alkyl species, thus avoiding
undesired β-hydride elimination and chain-walking processes. Preliminary mechanistic experiments reveal the subtleties of
stereoelectronic effects for guiding the reactivity and site-selectivity.

Ni-catalyzed reductive carboxylation reactions with CO2
have recently offered innovative replacements to existing

protocols for preparing carboxylic acids,1 which are privileged
motifs in a myriad of biologically relevant molecules.2 While
these techniques have received considerable echo,1 the
utilization of secondary alkyl halides invariably results in
carboxylation at distal C(sp3)−H sites via chain walking
irrespective of the position of the halide atom (Scheme 1, path

a).3 This is likely due to a particularly problematic CO2
insertion at the initially generated C(sp3)−Ni bond with site-
selectivity of chain walking being dictated by a subtle interplay
between electronic and steric effects. This observation has
contributed to the perception that a catalytic direct
carboxylation of unactivated secondary alkyl halides might
represent a chimera, yet a worthwhile endeavor for chemical
invention (path b).
In our continuing interest in Ni-catalyzed carboxylations,4,5

we wondered whether it would be possible to design a de novo
catalytic carboxylation of unactivated secondary alkyl halides.
Recent mechanistic studies have shown that CO2 insertion
predominantly occurs at well-defined Ni(I) centers.6 We
anticipated that accessing alkyl−Ni(I) species from unactivated
secondary alkyl halides and low-valent NiLn would be
problematic with commonly employed heterogeneous metal
reductants given (a) the low rates at which these entities
promote single-electron transfer en route to alkyl−Ni(I)7 and
(b) the propensity of alkyl−Ni(II) species toward β-hydride

elimination.8 If successful, however, a study aimed at designing
a retained Ni-catalyzed carboxylation of secondary alkyl halides
would not only offer new opportunities in the carboxylation
arena1 but also a starting point for understanding the
intricacies of Ni speciation in cross-couplings of sp3 electro-
philes.9,10 Herein, we report the successful realization of this
goal, which culminates in the development of a light-induced
Ni-catalyzed retained carboxylation that operates under mild
conditions and with excellent chemo- and site-selectivity
profiles (Scheme 2, right).
We began our study by conducting the Ni-catalyzed

carboxylation of 1a with CO2 (1 bar). Traces of 2a, if any,
were detected under previously reported Ni-catalyzed carbox-
ylations of alkyl halides,3,4 thus reinforcing the notion that a

Received: October 10, 2023
Revised: December 19, 2023
Accepted: December 20, 2023
Published: January 9, 2024

Scheme 1. Carboxylation of Secondary Alkyl Halides

Scheme 2. Site-Selectivity Guided by Ni Speciation
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retained C(sp3) carboxylation would be particularly problem-
atic. After some experimentation,11 a protocol utilizing L1, 4-
CzIPN as photocatalyst, Cs2CO3, and Hantzch ester (HEH) in
N-methyl-2-pyrrolidone (NMP) under blue LED irradiation at
15 °C provided the best results and afforded 2a in 81% yield
with excellent selectivity (99:1). Under these conditions,
negligible CO2 insertion at distal sp3 C−H sites via chain
walking was found in the crude reaction mixtures. As shown in
entries 2−6, substituents at the 2,2′-bipyridine core exerted a
profound influence in both reactivity and selectivity.
Interestingly, low reactivities and selectivities were found at
lower concentrations of 4-CzIPN, thus suggesting the
importance for accessing alkyl−Ni(I) species prior to CO2
insertion (entry 7).12 In addition, bases and solvents other than
Cs2CO3 and NMP resulted in low yields and selectivities
(entries 8 and 9). Notably, the utilization of Mn or DMAP-
OED13 as reductants in lieu of 4-CzIPN/HEH resulted in little
conversion, if any, to 2a or lower branched selectivities,11 thus
confirming the significant influence exerted by photoredox-
promoted electron transfer processes (entries 10 and 11).
Control experiments revealed that all the reaction parameters
were critical for success (entries 12 and 13), whereas no
reaction took place with secondary alkyl iodides (1a-I),
chlorides (1a-Cl), or tosylates (1a-OTs; see Scheme S7).
With the optimized conditions in hand, we set out to explore

the generality of our retained carboxylation of unactivated
secondary alkyl bromides. As shown in Table 1, our protocol
turned out to be widely applicable. While low selectivities were
found for secondary alkyl bromides possessing substituents

other than methyl groups, this observation could be alleviated
at higher concentrations of 4-CzIPN to obtain the targeted
products with excellent branched selectivity (2h, 2s−x).
Notably, the inclusion of branched substituents or aromatic
rings in the vicinity did not interfere with productive C(sp3)
carboxylation reaction (2d, 2k−n).4,10 The chemoselectivity of
our method was further illustrated by the presence of esters
(2j, 2s, 2w), amides (2u), unprotected alcohols (2t),
heterocycles (2f, 2ah) or nitriles (2p). Although one might
argue that the presence of primary alkyl chlorides could lead to
competitive carboxylation at the C(sp3)−Cl site,14 this was not
the case, and 2o was isolated in good yields. Note, however,
that alkyl side chains possessing both a primary and secondary
alkyl bromide led to complex mixtures of products.11 In
addition, no chain-walking carboxylation was observed with
secondary alkyl halides decorated with esters or amides on the
alkyl side chain.4a,15 Along the same lines, no carboxylation
adjacent to the nitrogen atom was observed when utilizing
nitrogen- or oxygen-containing heterocycles (2y−aa, 2ab,
2ae).16 As shown for 2ag−ai, our method could also be
utilized for accessing aliphatic carboxylic acids deriving from
nabumetone (2ag), hymecromone (2ah), or epiandrosterone
(2ai) in good yields and site-selectivities. In addition, valproic
acid 2ad was within reach in a high yield and site-selectivity.
Next, we turned our attention to studying the underpinnings

of our carboxylation reaction (Scheme 3). To this end, we
evaluated the reactivities of (L1)2Ni(0) and L1Ni(I)Br. While
the former was easily synthesized by simple exposure of
L1NiBr2 to Mg, comproportionation of Ni(COD)2 and

Table 1. Scope of the Ni-Catalyzed Carboxylation of Secondary Alkyl Bromidesa

aConditions: same as for Table 2. Isolated yields, average of at least two independent runs; branched/linear selectivities for 2a−2ai rank from 8:1
to 99:1; see the Supporting Information for details. b4-CzIPN (10 mol %). c4-CzIPN (8 mol %). dReaction ran at 10 °C. eReaction conducted for
48 h. fHEH (3 equiv).
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L1NiBr2 was utilized to access the latter.11 The structures of
these compounds were unambiguously determined by X-ray
diffraction (Scheme 3, bottom). Interestingly, the reaction of
(L1)2Ni(0) with 1a under CO2 (1 bar) did not give rise to 2a
(Scheme 3, top right). An otherwise identical reaction using
L1Ni(I)Br led to trans-2-heptene as the major product. In
contrast with an elegant report by Diao et al., this reaction also
resulted in L1NiBr2 instead of radical homocoupling.17 Likely,
this divergent reactivity originates from L1Ni(I)Br or L1Ni-
(II)Br2 being able to readily intercept alkyl radicals prior to β-
hydride elimination.18 The means to generate discrete alkyl−
Ni species was assessed by conducting an otherwise identical
experiment with Mn or under a 4-CzIPN/HEH regime; while
not even traces of 2a were detected in the former, significant
amounts of retained carboxylation were found in the latter,
thus illustrating the non-negligible influence exerted by
homogeneous reductants in both reactivity and selectivity
(Scheme 3, top left). As anticipated for a mechanism consisting
of radical intermediates, we observed a loss of stereochemical
integrity when subjecting (S)-1b (94.5% ee) under a Ni/L1
regime.
Aiming at understanding the intricacies of these processes at

the molecular level, we turned our attention to DFT [PBE0-
D3BJ,IEFPCM] calculations (Scheme 4). The reducing
environment of our reaction conditions together with the
tetrahedral center displayed for L1Ni(II)Br2 and the preferred
tetrahedral geometry of the four-coordinate Ni(I) species�
imposed by the high-lying antibonding orbital dx2−y2�
strongly suggests that the formation of Ni(I) may easily
occur during the course of the catalytic carboxylation
event.19,20 Our theoretical calculations confirmed that single-
electron transfer from the reduced photocatalyst to L1Ni(II)-
Br2 has a low barrier of 12.6 kcal/mol according to the Marcus
equation.21,22 Within the limitations from the solvent model
employed, bromide dissociation from an in situ generated
anionic Ni(I) complex was found to be downhill,23 thus

making the overall conversion from precatalyst L1Ni(II)Br2
(II) to L1Ni(I)Br (I) exergonic by 0.4 kcal/mol.24

Subsequently, the latter might react with alkyl bromide 1a
via bromide transfer, hence giving rise to L1Ni(II)Br2 (II) and
free radical III with a computed cost of only 0.6 kcal/mol
(Scheme 4). Unfortunately, we did not locate a transition state
for this process; at the DFT level, it seems this step might
constitute a monotonous process without a potential energy
barrier and, consequently, it might be diffusion-controlled. The
loss of stereochemical information found for (S)−1b (Scheme
3, middle) is consistent with a pathway where radical III
escapes the solvent cage. Interception of such species by a
newly formed I was found to be strongly exergonic by 12.4
kcal/mol relative to I (Scheme 4).25 The resulting L1Ni(II)-
(alkyl)Br (IV) is particularly stable when compared with other
Ni complexes within the catalytic cycle, thus suggesting that IV
might represent the resting state. A barrier of 18.2 kcal/mol
relative to IV was computed for single-electron transfer en
route to V (Scheme 4). In analogy with recent literature data
on alkyl−Ni(I) complexes,6d CO2 insertion into V occurs with
a low activation barrier (11.6 kcal/mol relative to V, Scheme 4
and Figure 1), thus giving a back-reaction barrier of 37.0 kcal/

Scheme 3. Preliminary Mechanistic Experiments Scheme 4. Mechanistic Rationale and Isotope Labeling

Figure 1. CO2 insertion at alkyl−Ni(I)L1.
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mol which makes the carboxylation step irreversible.
Regeneration of the catalytically active I might involve
transmetalation of VI to CsBr while forming a cesium
carboxylate.26

Given the subtleties exerted by the ligand on the reaction
outcome, we next focused our attention on understanding the
erosion in selectivity observed with L2 (Table 2, entry 2).

Initially, we conducted deuterium-labeling experiments with
1a-d3 (Scheme 4, bottom). An erosion in deuterium content at
C1 was expected for a mechanism consisting of a series of β-
hydride elimination/migratory insertion, whereas preservation
of the CD3 fragment was anticipated for a rapid insertion of
CO2 at an in situ generated alkyl−Ni(I) species. As shown, 2a-
d3 was obtained as the only observable product with L1
(Scheme 4, bottom right), whereas an otherwise identical
experiment with L2 resulted in deuterium scrambling over the
alkyl chain (2a′-d3, bottom left), which confirms the striking
influence of the 2,2′-bipyridyl core on site-selectivity.11
Taking into consideration the proclivity of alkyl radical

intermediates to undergo intramolecular hydrogen atom
transfer (HAT) at proximal C(sp3)−H bonds,27 one might
argue whether such a pathway could be responsible for the
observable deuterium scrambling when promoting the
carboxylation of 1a-d3 under a Ni/L2 regime (Scheme 4).
Given that III diffuses away and re-enters the catalytic cycle at
later stages to form IV and that the recombination of III with I
might be diffusion-controlled (Scheme 4),28 we turned our
attention to DFT calculations for evaluating the viability of
enabling HAT processes from the alkyl radical arising from 1a
(Scheme 5). While our results indicated that a 1,5- or 1,6-HAT
from III could be within reach, the computed barriers are
significantly larger than the expected barrier for recombination
of III with Ni(I).28 Indeed, neither 3 nor 4 were detected in
the crude mixtures, thus arguing against the intermediacy of
1,5 or 1,6-HAT processes. While deuterium scrambling in the
carboxylation of 1a-d3 could also be rationalized by a formal

1,2-HAT, the high barriers found for such a pathway (42.1
kcal/mol, Scheme 5) indicate otherwise. Although a base-
mediated deprotonation from alkyl−Ni(III) species was also
considered,29 it is highly unlikely that such intermediates might
be formed under strongly reducing conditions. Putting all these
observations into consideration, the formation of 2a′-d3 can be
interpreted on the basis of a ligand-dependent β-hydride
elimination event (for details, see the Supporting Information,
Figure S8 and Table S5). With IV as the branching point, the
reaction can evolve either via single-electron transfer en route
to V or via β-hydride elimination arising from an initial loss of
a bromide ion. Our data indirectly suggests that the steric bulk
exerted by the substituents at the 6,6′-position in L1 might
disfavor the latter pathway, whereas a balanced situation
between these pathways might occur with less-sterically
encumbered L2.
In summary, we describe the successful implementation of a

dual-photoredox, Ni-catalyzed direct carboxylation of unac-
tivated secondary alkyl bromides, which is a previously
inaccessible endeavor in the catalytic carboxylation arena.
Experimental studies and theoretical calculations reveal an
intriguing role exerted by the ligand backbone, which
minimizes undesired β-hydride elimination events that might
otherwise result in chain-walking scenarios while facilitating
CO2 insertion at alkyl−Ni(I) species. The method is
characterized by its mild conditions, exquisite selectivity, and
wide scope, including challenging substrate classes.
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Computationally optimized structures (XYZ)
Experimental procedures and spectral and crystallo-
graphic data (PDF)

Accession Codes
CCDC 2250012−2250013 and 2250024 contain the supple-
mentary crystallographic data for this paper. These data can be
obtained free of charge via www.ccdc.cam.ac.uk/data_request/
cif, or by emailing data_request@ccdc.cam.ac.uk, or by

Table 2. Optimization of the Reaction Conditionsa

aConditions: 1a (0.25 mmol), NiBr2L1 (10 mol %), 4-CzIPN (5 mol
%), HEH (0.5 mmol), Cs2CO3 (0.5 mmol), CO2 (1 bar), and NMP
(0.08 M) at 15 °C for 24 h under blue LED irradiation. bOther
isomers were detected in negligible amounts; GC yields were
obtained using anisole as an internal standard. cIsolated yield.

Scheme 5. Evaluation of Competitive HAT Processesa

aThe barriers were computed with 1a.
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