
Science of the Total Environment 927 (2024) 172278

Available online 5 April 2024
0048-9697/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

A quanta-independent approach for the assessment of strategies to reduce 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• A novel method independent of quanta 
load variations for any given virus is 
proposed. 

• Determining local extremes of the Wells- 
Riley function allows comparing infec
tion risk. 

• Only input required is the removal rates 
before and after implementing 
measures. 

• The application is demonstrated for 
different viruses and infection control 
methods.  
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A B S T R A C T   

The Wells-Riley model is extensively used for retrospective and prospective modelling of the risk of airborne 
transmission of infection in indoor spaces. It is also used when examining the efficacy of various removal and 
deactivation methods for airborne infectious aerosols in the indoor environment, which is crucial when selecting 
the most effective infection control technologies. The problem is that the large variation in viral load between 
individuals makes the Wells-Riley model output very sensitive to the input parameters and may yield a flawed 
prediction of risk. The absolute infection risk estimated with this model can range from nearly 0 % to 100 % 
depending on the viral load, even when all other factors, such as removal mechanisms and room geometry, 
remain unchanged. We therefore propose a novel method that removes this sensitivity to viral load. We define a 
quanta-independent maximum absolute before-after difference in infection risk that is independent of quanta 
factors like viral load, physical activity, or the dose-response relationships. The input data needed for a non- 
steady-state calculation are just the removal rates, room volume, and occupancy duration. Under steady-state 
conditions the approach provides an elegant solution that is only dependent on removal mechanisms before 
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and after applying infection control measures. We applied this method to compare the impact of relative hu
midity, ventilation rate and its effectiveness, filtering efficiency, and the use of ultraviolet germicidal irradiation 
on the infection risk. The results demonstrate that the method provides a comprehensive understanding of the 
impact of infection control strategies on the risk of airborne infection, enabling rational decisions to be made 
regarding the most effective strategies in a specific context. The proposed method thus provides a practical tool 
for mitigation of airborne infection risk.   

1. Introduction 

1.1. Airborne infection control strategies in the built environment 

The main lesson from the COVID-19 pandemic is that the very real 
risk of even more lethal and infective respiratory viruses that may occur 
in the future makes it imperative to develop protocols for the reduction 
of cross-infection in indoor environments (Morens et al., 2023; Hodson, 
2022). Effective infection control and prevention strategies must be 
developed. Additionally, because the primary route for cross-infection 
has been found to be airborne transmission (Tan et al., 2023; Rayegan 
et al., 2023), the focus should be on the solutions and technologies that 
specifically reduce airborne transmission. Airborne transmission is un
derstood as the transmission of diseases caused by the direct inhalation 
of virus-carrying respiratory droplets and/or aerosols which can vary in 
size, small aerosols remaining suspended in the air for extended periods 
(Wang et al., 2021). Depending on the airflow field, such aerosols can 
potentially travel distances longer than 1 to 2 m away from the infected 
individual(s) (Xie et al., 2007; Bourouiba et al., 2014). Combined with a 
relatively slow virus inactivation rate (Dabisch et al., 2021), the 
airborne route of transmission of infectious aerosols can therefore create 
a significant health risk throughout an entire indoor volume. 

Even before airborne transmission was acknowledged by the World 
Health Organization (WHO) as the major mode of SARS-COV-2 spread 
(Lewis, 2022), we had seen a re-emergence of airflow supply and dis
tribution methods as the preferred engineering means for controlling 
airborne infection. Supplying clean outdoor air, highly efficient 

filtration of recirculated air and installing portable air cleaners have all 
been considered as effective methods for reducing cross-infection 
because they remove or dilute virus-laden aerosols and droplets. Deac
tivation methods for aerosolized viruses have also been considered. 
They comprise adjusting air temperature and relative humidity (RH) 
(Dabisch et al., 2021) and using ultraviolet (UV) light (Biasin et al., 
2021). As a result of new research (Luo et al., 2023), lowering the pH 
value of the air is now additionally being considered for virus 
deactivation. 

Numerical studies using validated computational fluid dynamic 
(CFD) simulations have demonstrated that higher ventilation rates 
dilute infectious aerosols and reduce the risk of cross-infection (Mota
medi et al., 2022; Mariam et al., 2021). WHO recommends ventilation 
rates corresponding to at least 10 L/s per person in buildings (WHO, 
2021). In May 2023, the US Center for Disease Control and Prevention 
(CDC) announced recommendations regarding ventilation rate aimed at 
reducing indoor transmission of the SARS-CoV-2 virus and set the rate at 
5 air changes per hour (h-1) (Furlow, 2023). They were subsequently 
followed by the American Society of Heating, Refrigerating and Air- 
Conditioning Engineers (ASHRAE) who published Standard 241 in 
which equivalent outdoor air supply rates for infection control are 
prescribed for different types of spaces, to ensure a low risk of cross- 
infection (ASHRAE Standard 241, 2023). In addition to that, other 
guidelines for post-COVID target ventilation rates have been issued by 
the Federation of European Heating, Ventilation and Air Conditioning 
Associations (REHVA) (Nordic Ventilation Group, 2022) and the Lancet 
COVID-19 Commission (The Lancet COVID-19 Commission Task Force 
on Safe Work, Safe School, and Safe Travel, 2023). The effective use of 
ventilation requires not only the definition of airflow rates but also of 
proper air distribution that ensures high ventilation efficiency (Izadyar 
and Miller, 2022); this issue is among others addressed by Standard 241 
(ASHRAE Standard 241, 2023). This standard and other documents 
provide additional recommendations on the use of air purifiers, ultra
violet light and/or the filtration of recirculated air to achieve reduced 
cross-infection (WHO, 2021; ASHRAE Standard 241, 2023; The Lancet 
COVID-19 Commission Task Force on Safe Work, Safe School, and Safe 
Travel, 2023). 

The effective use of the control strategies mentioned must be shown 
to reduce the risk of cross-infection. To achieve this goal, a model is 
needed for risk estimation and evaluation, so that they can be compared 
in terms of how well they achieve this goal. The most frequently used 
model for this purpose is the Wells-Riley model (Sze To GN and Chao, 
2010). The model is used to estimate the absolute risk of cross-infection 
when knowing in principle how much virus is emitted and what removal 
methods are being applied, including engineering control methods. 
Unfortunately, the Wells-Riley model is very sensitive to input param
eters, particularly the viral load. Considering the large variation in the 
virus emitted by infected individuals even when they are engaged in the 
same physical and vocal activity, and the variability of the viral load that 
will lead to cross-infection, the model provides a very unreliable esti
mate of the absolute infection risk (P) because the same removal 
mechanism can provide different risk reduction in two identical building 
typologies. This drawback greatly reduces the ability of the model to 
identify the most effective solutions for reducing the risk of cross- 
infection. The variation in viral load can be substantial, potentially 
differing by several orders of magnitude. According to some studies, the 
calculated absolute infection risk using the Wells-Riley model can range 
from nearly 0 % to 100 % even when other factors such as removal 

Nomenclature 

C CO2 concentration in the space [ppm]

ci the quanta-response relationship 
[quanta

RNA
]

cv viral load in the respiratory tract 
[RNA

mL
]

C0 CO2 concentration in the outdoor air [ppm]

ΔPabs. maximum absolute infection risk difference [%]

Gp CO2 generation per person 
[

L
persons•min

]

IR inhalation rate 
[

m3

h

]

λdec biological decay rate 
[1

h
]

λdep gravitational deposition rate 
[1

h
]

λvent ventilation rate 
[1

h
]

∑
λn sum of total removal rates 

[1
h
]

N inhaled dose of fictious quantas [quanta]
n(t) quanta concentration at time t 

[quanta
m3

]

np number of persons in the space [–]
S quanta emission source rate 

[quanta
h
]

SCO2 CO2 emission rate [ppm]

t exposure time [h]
V room volume 

[
m3]

Vexh the total volume of respiratory fluid exhaled per unit of 
time, 

[ml
h
]
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mechanisms and room geometry remain constant (Aganovic et al., 
2021). As a result, estimates of the risk of cross-infection that use 
different assumptions regarding input variables, especially viral load, 
will lead to very different estimates of the absolute infection risk (Jones 
et al., n.d.), making it difficult to reliably compare the effectiveness of 
different engineering solutions. 

In view of the above limitations of the Wells-Riley model, the pri
mary purpose of the present work was to amend it by developing a 
method that would allow the model estimates to remain independent of 
assumptions regarding viral load. This amendment would enable the 
users of the model to avoid drawing flawed conclusions. To achieve this 
objective, a method is proposed in which the relative impact of different 
inactivation and infection control mechanisms over the entire range of 
source emission rates (viral loads) is calculated. 

1.2. Theoretical (modelling) background 

Almost all web-based tools for predicting airborne transmission risk 
in indoor environments during the COVID-19 pandemic used the Wells- 
Riley model (de Oliveira et al., 2021; Mikszewski et al., 2021a; Aganovic 
et al., 2023; Harmon and Lau, 2022; Chatoutsidou and Lazaridis, 2019; 
Peng et al., 2022) as a basis for calculations. The Wells-Riley model is 
based on a simple exponential dose-response model in the following 
form: 

P = 1 − e− N(%) (1)  

where N is the inhaled dose of fictitious quantas of virus, where one 
quanta (N = 1) corresponds to the number of TCID50 (50 % Tissue 
Culture Infectious Dose) doses which cause infection among P = 1 −

e− 1 = 63.2 % of susceptible individuals. 
The airborne transmission of respiratory viruses in the form of 

aerosols over long distances makes it possible to represent the dynamics 
of quanta concentration using mass balance equations. Two main as
sumptions allow the calculation of the concentration of quanta in an 
indoor space using the mass balance equation: i) immediate dilution of 
the expelled virus from the source (the infected person); and ii) the 
uniform spatial distribution of virus-carrying aerosols. The time- 
dependent quanta concentration n(t) in the air can then be determined 
by solving a non-steady-state first-order mass balance equation: 

V •
dn(t)

dt
= S − V • n(t) •

∑
λ => n(t)

= n0 • e−
∑

λ•t +
S

V •
∑

λ
•
(

1 − e−
∑

λ•t
)

(2)  

given that the quanta removal mechanisms 
∑

λ 
[1

h
]

and the quanta 
emission source rate S 

[quanta
h
]

are known. Furthermore, given the sus
ceptible person’s inhalation rate IR (m3/h), the total number of quanta 
inhaled n in an exposure time t is (n0 = 0) (Jones et al., 2021): 

N = IR •

∫ t

0
n(t) dt = IR •

S
V •

∑
λ
•

(

t+
e−
∑

λ•t − 1
∑

λ

)

(3) 

The final form of the mass-balance equation coupled with the 
exponential dose-response model, also known as the Wells-Riley equa
tion, has the following form: 

P = 1 − e
− S• IR

V•
∑

λ
•

(

t+e
−

∑
λ•t

− 1∑
λ

)

(%) (4) 

As we can see from Eq. (2) the airborne virus concentration within a 
space is dependent on the quanta emission rate S defined as: 

S = cv • ci • Vexh (5) 

ci – the quanta-response relationship is defined as the ratio between 
one infectious quantum and the infectious dose expressed in viral copies, 

i.e., the number of viral RNA copies required to infect at least 63.21 % of 
susceptible persons, 

[quanta
RNA

]

The variation in the viral load presented as a probability density 
function based on a log-normal distribution is shown in Fig. 1 for 
different viruses). 

The variability in the emission rate of virus depending on physical 
and vocal activity cannot be precisely estimated as it depends to a large 
extent on an individual and on his/her disease status. Because of this 
high variability, the calculated infection risk will have high output 
variation. This variation is shown in Fig. 2 for a simple case of a standing 
and speaking infected individual in a 150 m3 room after 2 h of exposure. 
The figure shows that even though the total volume of respiratory fluid 
exhaled Vexh was assumed to be constant, which is unrealistic, the 
calculated risk ranged from 0 to 100 % in the case of SARS-CoV-2 and 
Adenovirus. 

The quanta-response relationship ci differs for various virus strains. 
During the COVID-19 pandemic, due to the lack of data for SARS-CoV-2, 
many of the papers based the quanta-viral copies relationship on the 
dose-response model for SARS-CoV-1developed by Watanabe et al. 
(Watanabe et al., 2010). Even though more data became available as the 
pandemic progressed (Aganovic and Kadric, 2023), the exact dose- 
response relationship for SARS-CoV-2 is still regarded as unknown. 

These dose-response relationships are difficult to derive not only 
because of a lack of human challenge data but also because they vary 
between different virus variants. This means that the dose-response 
relationship, or more specifically the quanta-RNA copies relationship 
for the original SARS-CoV-2 Wuhan strain, is not the same as for the 
other variants of the SARS-CoV-2 virus. It follows that the infection risk 
will differ for other types of respiratory viruses. Consequently, a high 
infection risk due to exposure to a high spatial concentration of RNA 
copies of one virus strain does not necessarily translate to a high infec
tion risk for another virus variant or type. 

Taking the above into account, the present work proposes the use of 
the Wells-Riley equation for estimating the risk of cross-infection and 
thereby comparing infection control strategies independently of the 
quanta estimation rate parameters, namely cv, ci and Vexh. The approach 
compares how various removal methods relatively affect the absolute 
infection risk for constant source and room geometry conditions. This is 
done by comparing the absolute infection risks using Eq. (1) when 
increasing or decreasing the removal mechanism, while accounting for 
the diverse range of quanta estimation rates as shown in Fig. 3. This 
method makes it possible to compare different ventilation rates or virus 
inactivation methods, such as altering the room’s relative humidity, or 
the influence of UV lighting for the same boundary conditions. 

In simpler terms, the aim is to determine the maximum value of the 

Fig. 1. The probability density function for an assumed log-normal distribution 
of the viral load cv (RNA/Ml) (extracted from Iddon et al. (Iddon et al., 2022)) 
for certain airborne respiratory viruses (extracted from Iddon et al. (Iddon 
et al., 2022)). 
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absolute difference function ΔPabs.max = 100% •

⃒
⃒
⃒P∑ λ2

− P∑ λ1

⃒
⃒
⃒ for the 

quanta estimation rate range Smin ≤ S ≤ Smax. 

2. Methods 

The time-dependent quanta concentration n(t) can be solved using 
the non-steady-state mass balance Eq. (2) in a room of volume V and at a 
certain time interval t. The quanta removal mechanism from Eq. (2) can 
be simplified as follows: 
∑

λ = λvent + λdep + λdec (6) 

For a given quanta emission rate S, the absolute infection risk dif
ference when changing the removal mechanism rate from 

∑
λ1 to 

∑
λ2 

is then given by: 

ΔPabs. = P1 − P2 = e
− S• IR

V•
∑

λ2
•

(

t+e
−

∑
λ2•t

− 1∑
λ2

)

− e
− S• IR

V•
∑

λ1
•

(

t+e
−

∑
λ1•t

− 1∑
λ1

)

(7) 

When planning the use of engineering control measures for airborne 
transmission risk, it is important to define the applicable range of the 
source rates considered. This range can be determined by calculating the 
local extremes of the source function, Eq. (5), defining quanta emission 
rate or viral load. We thus need to define the maximum of the ΔPabs.max as 
a function of the quanta emission rate S. To do so, the function ΔPabs., Eq. 
(7), can be defined as follows: 

ΔPabs. = f1(S) = e− a•S − e− b•S,

where the source rate range is defined as follows: 

Fig. 2. Infection risk P (%) distributions for standing and speaking infected individuals in a 150 m3 room after 2 h of exposure. Boxes span the interquartile ranges, 
while whiskers depict the 1st-99th percentile outliers and the 50th percentile denoted by the vertical line in each box. The infection risk variations are due only to 
variations in the viral load cv, as Vexh and ci were kept constant. 

Fig. 3. The change in the infection risk distribution P(%) as a function of viral load cv when changing the total removal mechanism
∑

λn. Increasing 
∑

λn is depicted 
by blue arrow lines, while decreasing 

∑
λn is shown by red arrow lines. 
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Smin ≤ S ≤ Smax and > 0&b > 0&a < b. 
The local maximum can be found by solving for the following de

rivative: 

f′
1(S) = − a • e− a•S + b • e− b•S = 0 

This yields a solution that f1(S) will reach its extreme value for 

Sextreme =
ln(b

a)
b− a . 

The local minimum can be then defined for the lower value of 
f1(Smin) or f1(Smax).

If min(ΔPabs.(Smin) ,ΔPabs.(Smax) )→0%then the absolute change in 
cross-infection risk will have the following range (as illustrated in 
Fig. 4): 

0% < ΔPabs.(S) ≤ ΔPabs.

⎛

⎜
⎜
⎝

ln
(

b
a

)

b − a

⎞

⎟
⎟
⎠ (8) 

In other words, the maximum absolute difference between two sce
narios with different removal mechanisms will occur for: 

ΔPabs.max = ΔPabs.

⎛

⎜
⎜
⎝

ln
(

b
a

)

b − a

⎞

⎟
⎟
⎠ (9)  

where for the non-steady-state solutions: 

a =
IR

V •
∑

λ2
•

(

t+
e−
∑

λ2•t − 1
∑

λ2

)

(10)  

b =
IR

V •
∑

λ1
•

(

t+
e−
∑

λ1•t − 1
∑

λ1

)

(11)  

and for the steady-state solutions: 

a =
IR • t

V •
∑

λ2
(12)  

b =
IR • t

V •
∑

λ1
(13) 

Inserting a and b into ΔPabs. = e− a•S − e− b•S results in a solution which 
has the following form for the steady-state condition: 

ΔPabs.max = e
−

∑
λ1 ln

∑
λ2∑
λ1∑

λ2 −
∑

λ1 − e
−

∑
λ2 ln

∑
λ2

λ1∑
λ2 − λ1 (14) 

If ΔPabs.max > 0 then there is a relative decrease in infection risk after 

applying infection risk measures. 
The Sextreme for steady-state conditions can be back-calculated as 

Sextreme = − ln

(

1 − e−
λ2 ln

λ2
λ1

λ2 − λ1

)

• V • λ1 (15)  

or 

Sextreme = − ln

(

1 − e−
λ1 ln

λ2
λ1

λ2 − λ1

)

• V • λ2 (16) 

Eq. (9) should be used with caution because Sextreme =
ln(b

a)
b− a may be 

outside the range for quanta estimation outliers for a given virus 
(Mikszewski et al., 2021b). In the present method, the range will be 
defined by the 99th percentile of the range for the quanta estimation 
rates based on a normal distribution of the viral load cv as provided by 
Mikszewski et al. (Mikszewski et al., 2021b) and as shown in Table 1. So, 

Smin = 0%(no infected persons present) and Smax = S99%. 

If the Sextreme =
ln(b

a)
b− a lies outside the range defined by the the 99th 

percentile (S99%) then the absolute difference can be defined as follows: 

If ln(
b
a)

b− a > S99% then ΔPabs.max = ΔPabs.(S99%). 

The main reason we chose the absolute difference 100% •

⃒
⃒
⃒P∑ λ2

−

P∑ λ1

⃒
⃒
⃒ rather than the relative difference 100% •

⃒
⃒
⃒
⃒
⃒

P∑
λ2
− P∑

λ1

P∑
λ1

⃒
⃒
⃒
⃒
⃒
is that the 

absolute difference is specific only for one quanta value while the 
relative is not. Decreasing the infection risk from 50 % to 10 % and from 
0.05 % to 0.01 % for different source input values will result in the same 
relative decrease of 80 %, but the absolute difference will differ sub
stantially, by 40 % and 0.04 % respectively. In other words, the absolute 
comparison is a better representation of reducing the maximum poten
tial airborne infection threat than the relative comparison. 

In the proposed methodology, the gravitational deposition rate was 
approximated at λdep = 0.24 h− 1 (Chatoutsidou and Lazaridis, 2019) 
while the biological decay (h− 1) was assumed to depend on the virus 
type and variant and indoor environmental conditions including relative 
humidity and temperature. Assuming that relative humidity has a 
negligible effect on the size change and thus on the deposition rate of 
aerosols in the range of 20 % to 70 % (Aganovic et al., 2022a), then any 
relative changes in quanta concentrations for a given quanta/viral load 
source will depend only on changes in ventilation rate λvent and/or the 
biological decay rate, λdec, ventilation being an engineering infection 
control measure. Removal by ventilation can be based on recent rec
ommendations (WHO, 2021; Furlow, 2023; ASHRAE Standard 241, 
2023; Nordic Ventilation Group, 2022; The Lancet COVID-19 Commis
sion Task Force on Safe Work, Safe School, and Safe Travel, 2023). It can 
also be proxied by the CO2 mass balance model but the same boundary 
and time-step conditions as used for the quanta mass balance model 
must be used. The concentration of CO2 above background level (ΔC =

C − C0) and virus concentration in air n(t) can be solved using the non- 
steady-state mass balance equation taking the same room volume V (as 

Fig. 4. An example of how to determine the maximum absolute difference for 
the exponential (Wells-Riley) infection risk probability. 

Table 1 

The 50th (S50%), and 99th (S99%) percentile of quanta emission rates S 
[quanta

h

]

as a function of the expiratory activity and activity level, presented in the table 
as S50% [S99%].

Virus Resting, oral 
breathing 

Standing, 
Speaking 

Light activity, speaking 
loudly 

Adenovirus 0.78 [126] 3.9 [629.79] 66.0 [1.07•104] 
Influenza 0.035 [3.15] 0.17 [15.69] 3.0 [265.74] 
Measles 3.1 [1.64•104] 15 [8.17•104] 260 [1.38•106] 
Rhinovirus 0.21 [17.70] 1.0 [88.17] 18 [1493.56] 
SARS-CoV- 

2 
0.55 [339.42] 2.7 [1690] 46 [2.86•104]  
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for the quanta mass balance) and identical time. Then the ventilation 
removal mechanism can be defined as λvent = λvent− CO2 = V̇

V where V̇ is 
the virus-free supply airflow rate to the room (m3/h) needed to reach the 
desired CO2 level (corresponding to the effect obtained by ventilation 
with outdoor air) using the non-steady-state mass balance equation as 
follows: 

V •
dΔC(t)

dt
= SCO2 − V • ΔC(t) •

∑
λCO2 => ΔC(t)

= ΔC0 • e−
∑

λvent− CO2 •t +
SCO2

V •
∑

λCO2

•
(

1 − e−
∑

λvent− CO2 •t
)

(17)  

Where ΔC = C − C0 is the difference between the CO2 concentration in 
the space C (ppm) and C0 is the background concentration. Further, the 
CO2 source rate SCO2 in Eq. (2) can be calculated as: 

SCO2 = np • Gp (18) 

The only parameter is the age- and activity-level-specific Gp and this 
can be calculated according to Battermann as a function of metabolic 
rate (activity level) and skin area (Batterman, 2017); these equations are 
omitted in the present paper and can be found in Battermann et al. 
(Batterman, 2017). In the case when the room was initially unoccupied, 
i.e., n0 = 0 and ΔC0 = 0, Eq. (2) becomes: 

n(t) =
Sn

V •
(
λvent− CO2 + λdep + λdec

) •
(

1 − e− (λvent− CO2 +λdep+λdec)•t
)

(19)  

3. Results 

An application of the proposed methodology will now be described. 
It is assumed that by using infection control measures the total removal 
rate increases from 

∑
λ1 = 2.0 h− 1 to 

∑
λ2 = 4.0 h− 1; for simplification 

it is assumed that the total removal rate is the same for all viruses in the 
room volume of V = 150 m3. The infection risk and the absolute dif
ference in the infection risk is calculated for the 1st, 5th, 50th, 95th, and 
99.9th percentile of quanta emission rates for steady-state conditions in 
the case of the following respiratory viruses: (i) Adenovirus; (ii) Influ
enza; (iii) Measles; (iv) Rhinovirus; and (v) SARS-CoV-2. The quanta 
emission rate for each virus at different confidence intervals is derived 
from Mikszewski et al. (Mikszewski et al., 2021b) and Aganovic et al. 
(Aganovic et al., 2023). By using the difference between the absolute 
valuesΔPabs = P1 − P2 calculated by using Eq. (4) and the ΔPabs.max 
calculated for steady state using Eq. (9), the difference in infection risks 
before (at a removal rate of 2 h− 1) and after (at a removal rate of 4 h− 1) 
taking the infection control measure are calculated and shown in 
Table 2: 

In the example presented in Table 2 we show that by deriving the 
absolute infection risk difference 0 < ΔPabs. ≤ 25.0% using Eq. (9) we 
narrow down the range of possibilities for reducing infection risk when 
considering different inactivation mechanisms. In other words, the 

maximum absolute probability decrease that can be achieved by 
increasing the removal rate from 2.0 to 4.0 ACH is 25.0 % for a quanta 
rate of 415.8 quanta

h .; the removal rate can also be the deactivation rate 
corresponding to the effects defined by the removal rate range. 

Table 2 shows that absolute difference varies for different virus types 
and quanta percentile values. It shows that even for the wide range of 
quanta rate conditions, the maximum absolute infection risk will be the 
same for all viruses, as defined by ΔPabs.max,and will not be higher than 
the maximum (in Table 2 the maximum difference in the risk infection 
was 24.9 % for different quanta which is lower than the maximum ab
solute risk difference). The proposed absolute infection risk difference 
thus allows accurate estimation of the range of the effect on the infection 
risk when comparing two removal mechanisms. The approach illus
trated in Table 2 is independent of the person’s activity, viral load, or 
even virus strain. 

The application of the methodology can also be demonstrated by 
comparing different infection control measures in a hypothetical class
room. These measures include: (i) relative humidity; (ii) ventilation rate; 
(iii) ventilation effectiveness; (iv) filtration efficiency of recirculated air 
(100 % recirculation); and (v) upper room ultraviolet germicidal irra
diation (UVGI). The same room is considered as in the previous scenario 
(V = 150 m3) but different inactivation rates λdec are considered for the 
various viruses based on the data derived from experimental studies 
(Aganovic et al., 2022b). The five measures listed (

∑
λ2) are compared 

to the reference scenario (
∑

λ1) using ΔPabs.max, i.e., Eq. (9) for steady 
state conditions. The reference scenario is RH = 50–55 % for all 
considered viruses except for Measles (RH = 68–70 %), a ventilation rate 
of 0.5 h1 except for the relative humidity and UVGI when the ventilation 
rate is set to keep the CO2 concentration ≤ 1000 ppm (λvent = 2.87 h− 1), 
ventilation effectiveness εv = 1 with no recirculation and no UVGI. In 
the case of recirculation, a MERV 5 filter is assumed in the reference 
scenario. The ΔPabs.max for the five measures are shown in Table 3. 

The absolute ΔPabs.max shows the opportunities and limits when 
implementing the specific infection control measure. It depends on the 
virus types and they have different inactivation rates. 

In the case of RH, humidification may decrease the cross-infection 
risk by up to 8.3 % for influenza and up to 5.4 % for SARS-CoV-2, 
while increase the absolute difference risk for up to 66.32 % for rhino
virus and almost 11 % for adenovirus, which is similar to what has been 
observed before (Aganovic et al., 2021; Aganovic et al., 2022a). The 
effect on immunological response of changing RH is not considered here. 

Ventilation decreases the risk regardless of the virus type. The rela
tive impact depends on the inactivation rate of the virus considered: the 
highest impact can be observed for SARS-CoV-2 (λdec = 0.48 h− 1) and the 
lowest for Rhinovirus (λdec = 23.96 h− 1). It is interesting to note that 
although the differences between the assumed inactivation rates for 
SARS-CoV-2 and Influenza are almost negligible (λdec = 0.485 h− 1), the 

calculated value ln(
b
a)

b− a > S99% for Influenza so ΔPabs.(S99%) was used rather 

than ΔPabs.

(
ln(b

a)
b− a

)

, resulting in lower maximum absolute differences for 

Table 2 
The absolute difference in infection risk ΔPabs = P1 − P2 (S) by changing the removal rate from 2 h− 1 to 4 h− 1. S is the quanta emission rate (quanta/h)  

Virus ΔPabs = P1 − P2 (S) 
(Eq. (4)) 

ΔPabs.max (Smax) 
(Eq. (9)) 

0.1 % 5 % 50 % 95 % 99.9 % 

Adenovirus <0.0 % 
(8.0•10− 2) 

− 0.3 % 
(1.8) 

− 9.3 % 
(66.0) 

− 1.8 % 
(2400.0) 

<0.0 % 
(5.7•104) 

− 25.0 % 
(415.8) 

Influenza <0.0 % 
(8.2•10− 3) 

<0.0 % 
(0.1) 

− 0.5 % 
(3.0) 

− 10.0 % 
(72.0) 

− 12.3 % 
(1164.5) 

Measles <0.0 % 
(3.0•10− 3) 

− 0.1 % 
(0.6) 

− 22.8 % 
(260.0) 

<0.0 % 
(1.1•105) 

<0.0 % 
(5.7•107) 

Rhinovirus <0.0 % 
(0.0) 

− 0.1 % 
(0.8) 

− 2.9 % 
(18.0) 

− 24.9 % 
(420.0) 

<0.0 % 
(6.4•103) 

SARS-CoV-2 <0.0 % 
(9.1•10− 3) 

<0.0 % 
(2.0•10− 2) 

− 0.4 % 
(2.4) 

− 21.4 % 
(222.2) 

<0.0 % 
(1.2•104)  
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Influenza. 
Increasing and decreasing ventilation effectiveness is shown to have 

effects similar to those of ventilation rate but results in different 
magnitude of the effects for different viruses. Improving ventilation 
effectiveness is shown to reduce the risk while decreasing ventilation 
effectiveness is predicted to considerably increase the infection risk for 
SARS-COV-2, Influenza, and Adenovirus. 

We also calculated ΔPabs.max when implementing increasing ventila
tion rate, ventilation efficiency, filtration, and UVGI irradiation at the 
same time. Table 3 shows that the absolute effects are not additive. 
Adding one more strategy will decrease the absolute risk ΔPabs.max but 
the combined effect of different measures was lower than the sum Δ 
Pabs.max of the reductions obtained by taking each measure individually. 

4. Discussion 

Throughout the last pandemic, the risk of infection was estimated 
mainly using the Wells-Riley model for airborne infection. For instance, 
Kurnitski et al. (Kurnitski et al., 2023) proposed a ventilation design 
method based on quanta emission rate at median viral load, allowing the 
calculated target ventilation rate to be a function of the number of oc
cupants, room volume, and ventilation effectiveness. However, this 
approach, which combines a mass balance equation with the concept of 
quanta in the Wells-Riley model, depends on the assumptions regarding 
quanta emission rate which is highly influenced by an infected person’s 
viral load and physical activity, which may vary by several orders of 
magnitude. This variation can be the source of bias and serious error. 
Consequently, the variability in viral loads among individuals and across 
different respiratory viruses, coupled with the variability between in
dividuals in terms of their physical activities, introduces a significant 
fragility to the Wells-Riley model. The resulting infection risk output is 
highly sensitive to the input conditions, which can result in a broad 
range of calculated risks even when other environmental parameters 
remain unchanged. Application of the Wells-Riley model can easily bias 
estimation of effectiveness when comparing different control measures 
effectiveness at a fixed quanta emission rate. 

While our method builds upon prior research in quanta-independent 
infection risk modelling, including the work of Jones et al. (Jones et al., 
2021) and Peng and Jimenez (Peng and Jimenez, 2021), we propose an 
alternative approach to address a specific limitation of the Wells-Riley 
model. Previous research has indeed considered relative infection risk 
assessment (percentage change) independent of quanta estimation rates 
under steady-state assumptions and assuming that the infection risk 
equals the quanta concentration, as highlighted by Jones et al. (Jones 
et al., n.d.) and Iddon et al. (Iddon et al., 2022). The novelty of our 
approach is that we do not rely on these assumptions. Instead, we 
introduce the concept of absolute difference risk (percentage-point 
changes), which is valid for both steady-state and non-steady-state so
lutions, and assume the infection risk can be calculated using the 
exponential Wells-Riley model. 

The proposed method is summarized in Fig. 5; it is independent of 
variables such as viral load, droplet emission rate, and physical activity. 

In the proposed method, a reference scenario of the worst possible 
removal rate, i.e., low ventilation rate and effectiveness, no other 
removal mechanisms, can be established for the rooms in question. By 
applying infection risk control measures for the reference scenario, it is 
easy to calculate how much the infection risk can be reduced and to 
select the most effective measures. Input data needed for this calculation 
are just the removal rates, room volume, and occupancy duration. 
Furthermore, the steady-state condition results in a more elegant solu
tion, dependent only on removal mechanisms before (

∑
λ1) and after 

(
∑

λ2) applying the infection control measures: 

ΔPabs.max = e
−

∑
λ1 ln

∑
λ2∑
λ1∑

λ2 −
∑

λ1 − e
−

∑
λ2 ln

∑
λ2

λ1∑
λ2 − λ1 

Table 3 
ΔPabs.max calculated using Eq. (9) for various engineering infection control 
strategies for five different airborne viruses at the steady state conditions. (+) =
relative increase in infection risk & (− ) = relative decrease in infection risk.   

ΔPabs.max 
(Eq. (9)) 

SARS- 
CoV-2 

Influenza Rhinovirus Measles Adenovirus 

Relative humidity (RH) [34]a 

Increasing RH 50 
% → 65 % 

N/A − 8.3 % N/A N/A N/A 

Increasing RH 50 
% → 70 % 

− 5.4 % N/A N/A N/A N/A 

Increasing RH 50 
% → 80 % 

N/A N/A + 66.3 % N/A +10.9 % 

Decreasing RH 
50 % → 30 % 

N/A N/A ≈0.0 % N/A N/A 

Decreasing RH 
50 % → 20 % 

− 1.2 % +3.6 % N/A N/A +0.9 %  

Ventilation (outdoor air)b 

Increasing 0.5 
h− 1 → 2.0 h− 1 

− 28.7 
% 

− 28.7 % − 2.2 % − 6.0 % − 17.2 % 

Increasing 2.0 
h− 1 → 6.0 h− 1 

− 32.1 
% 

− 24.6 % − 5.2 % − 12.3 
% 

− 25.1 % 

Increasing 0.5 
h− 1 → 6.0 h− 1 

− 56.0 
% 

− 53.4 % − 7.4 % − 18.2 
% 

− 40.7 %  

Ventilation effectivenessc 

Decreasing εv =

1.0 → 0.3 
(2.0 h− 1) 

+ 25.9 
% 

+ 25.9 % + 2.0 % + 5.6 % + 15.6 % 

Decreasing εv =

1.0 → 0.3 
(6.0 h− 1) 

+ 34.4 
% 

+ 27.2 % + 5.5 % +13.1 
% 

+ 26.8 % 

Increasing εv =

1.0 → 2.0 
(0.5 h− 1) 

− 12.5 
% 

− 12.3 % − 0.7 % − 2.1 % − 6.7 % 

Increasing εv =

1.0 → 2.0 
(2.0 h− 1) 

− 19.8 
% 

− 16.5 % − 2.7 % − 6.7 % − 14.8 %  

Filtration efficiency (100 % recirculation)a,d 

MERV 5 → MERV 
10 

− 21.0 
% 

− 20.8 % − 1.4 % − 3.9 % − 11.9 % 

MERV 10 → 
MERV 13 

− 15.6 
% 

− 14.4 % − 1.6 % − 4.2 % − 10.6 % 

MERV 5 → HEPA − 37.9 
% 

− 37.6 % − 3.3 % − 9.0 % − 24.1 % 

MERV 10 → 
HEPA 

− 18.2 
% 

− 16.8 % − 2.0 % − 5.1 % − 12.6 % 

MERV 13 → 
HEPA 

− 2.8 % − 2.3 % − 0.3 % − 0.9 % − 2.0 % 

Upper room UVGI (Aganovic et al., 2023; McDevitt et al., 2010)a,b,d 

None → Low − 6.3 % − 4.9 % − 0.9 % − 2.2 % − 4.8 % 
None → Medium − 11.7 

% 
− 8.8 % − 1.8 % − 4.3 % − 9.0 % 

None → High − 20.4 
% 

− 14.4 % − 3.5 % − 8.2 % − 16.2 %  

Combined measures 
Increasing 0.5 

h− 1 → 2.0 h− 1 

+ Increasing εv 

= 1.0 → 2.0 

− 46.2 
% 

− 45.2 % − 4.87 % − 12.65 
% 

− 31.4 % 

Increasing 2.0 
h− 1 → 6.0 h− 1 

+ Increasing εv 

= 1.0 → 2.0 

− 51.7 
% 

− 34.7 % − 11.8 % − 25.0 
% 

− 43.8 % 

Increasing 2.0 
h− 1 → 6.0 h− 1 

+ Increasing εv 

= 1.0 → 2.0 +

− 59.6 
% 

− 57.8 % − 7.6 % − 18.9 
% 

− 42.7 % 

(continued on next page) 
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The quanta-independent infection risk assessment method illustrated 
in Table 3 is expected to be a useful tool for public health, infection 
control and engineering experts who must compare the maximum effect 
of different mitigation strategies in terms of how well they reduce the 
airborne cross-infection risk. 

It is also possible to use the Wells-Riley-based design approach 
(Kurnitski et al., 2023) to assess some measures whose effectiveness can 
be compared with a reference scenario using this new method. There
fore, the proposed quanta-independent approach can provide solid ar
guments, as it is based on the absolute difference, for the selection of 
relevant measures and can be applied together with quanta-based 
methods. Future research could investigate which emission rates in
terventions exert the most significant change and compare this range to 

the total possible emission rates. This analysis would reveal the pro
portion of emissions that fall within the optimal range for maximum 
impact of removal mechanisms. This aligns with the concept of the 
“goldilocks zone” discussed by Iddon et al. (Iddon et al., 2022), indi
cating the narrow window within which interventions are most 
successful. 

It must be noted that all the limitations related to the Wells-Riley 
model assumptions still apply, as summarized in previous studies 
(Aganovic et al., 2021; Aganovic et al., 2022b). While our method fo
cuses on overcoming uncertainty surrounding quanta emission rate 
estimation, it is important to acknowledge that the uncertainty of 
removal rates for biological and deposition processes was not explicitly 
considered in this study. In addition, our study primarily focuses on 
scenarios where one or more occupants are infected, as our method aims 
to address infection risk estimation in situations where viral trans
mission is possible. This focus allows for a clear demonstration of our 
method’s applicability in scenarios with varying levels of infection 
prevalence. However, it is important to note that our method does not 
explicitly consider scenarios where no individuals are infected. Future 
research should aim to incorporate these additional sources of uncer
tainty in the model to provide a more comprehensive understanding of 
infection risk dynamics in indoor environments. 

5. Conclusions 

We proposed a method for calculating the impact of airborne infec
tion control strategies in a shared indoor volume. The method is inde
pendent of viral load, droplet emission rate, and the dose-response 
relationship for a given virus and is based on the Wells-Riley model. The 
method estimates the maximum possible absolute difference ΔPabs. =

P1 − P2 between infection risks before (P1) and after (P2) applying given 
control measures. For non-steady-state conditions, the method requires 
input information on the room volume, exposure time, inhalation rate, 
and removal rates before and after applying the infection control stra
tegies. For steady-state conditions, the only input the model requires are 
the total removal rates before and after implementing control measures. 
We have demonstrated the application of the method for different vi
ruses and infection control methods. We also showed that combining the 
different methods will not additively reduce the potential absolute risk 
reduction. The method offers decision-makers a more robust tool for 
creating safer and more cost-effective indoor environments. 
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Table 3 (continued )  

ΔPabs.max 
(Eq. (9)) 

SARS- 
CoV-2 

Influenza Rhinovirus Measles Adenovirus 

MERV 5 → 
HEPA 

Increasing 2.0 
h− 1 → 6.0 h− 1 

+ Increasing εv 

= 1.0 → 2.0 +
UVGI (high) 

− 56.8 
% 

− 36.9 % − 14.4 % − 29.4 
% 

− 48.6 %  

a Considered for the same classroom in Example 1 with the ventilation rate set 
to keep CO2 concentration ≤ 1000 ppm, i.e., the ventilation rate is λvent = 2.87 
h− 1. 

b Inactivation rate is kept constant λdec = 0.48 h− 1 for SARS-CoV-2, λdec =

0.485 h− 1 for Influenza, λdec = 23.96 h− 1 for rhinovirus and λdec = 1.741 h− 1 for 
Adenovirus for the range RH = 50–55 % (Aganovic et al., 2022b) and λdec =

7.736 h− 1 at RH = 68–70 %. 
c Ventilation effectiveness εv = 1 at a constant ventilation rate (fully mixed 

conditions). 
d Particle removal efficiency ηfilt values used for filters: ηMERV5=17 %; 

ηMERV10=50 %; ηMERV13=90 %; ηHEPA=99.9 %. N/A -not available inactivation 
rates at given RH values. Based on different upper room susceptibility constant 
ZUP (m2/J) values (Aganovic et al., 2023), λUVGI,low = 0.67 h− 1, λUVGI,med = 1.35 
h− 1, λUVGI,high = 2.71 h− 1.  

Fig. 5. The method proposed in this paper that improves the application of the 
Wells-Riley infection risk model. The method defines the absolute difference 
independent of quanta emission rate and thus independent of viral load, 
physical activity and virus type. 

A. Aganovic et al.                                                                                                                                                                                                                               



Science of the Total Environment 927 (2024) 172278

9

References 

Aganovic, A., Kadric, E., 2023. Does the exponential Wells-Riley model provide a good fit 
for human coronavirus and rhinovirus? A comparison of four dose-response models 
based on human challenge data [published online ahead of print, 2023 Jun 15]. Risk 
Anal. https://doi.org/10.1111/risa.14178. 

Aganovic, A., Bi, Y., Cao, G., Drangsholt, F., Kurnitski, J., Wargocki, P., 2021. Estimating 
the impact of indoor relative humidity on SARS-CoV-2 airborne transmission risk 
using a new modification of the Wells-Riley model. Build. Environ. 205, 108278 
https://doi.org/10.1016/j.buildenv.2021.108278. 

Aganovic A, Bi Y, Cao G, Kurnitski J, Wargocki P. Modeling the impact of indoor relative 
humidity on the infection risk of five respiratory airborne viruses. Sci. Rep. 2022a;12 
(1):11481. Published 2022 Jul 7. doi:https://doi.org/10.1038/s41598-022-15703-8. 

Aganovic, A., Bi, Y., Cao, G., Kurnitski, J., Wargocki, P., 2022b. Modeling the impact of 
indoor relative humidity on the infection risk of five respiratory airborne viruses. Sci. 
Rep. 12 (1), 11481. Published 2022 Jul 7. https://doi.org/10.1038/s41598-022 
-15703-8. 

Aganovic, A., Cao, G., Kurnitski, J., Wargocki, P., 2023. New dose-response model and 
SARS-CoV-2 quanta emission rates for calculating the long-range airborne infection 
risk. Build. Environ. 228, 109924 https://doi.org/10.1016/j.buildenv.2022.109924. 

ASHRAE Standard 241, 2023. Control of Infectious Aerosols. ASHRAE. 
Batterman, S., 2017. Review and extension of CO₂-based methods to determine 

ventilation rates with application to school classrooms. Int. J. Environ. Res. Public 
Health 14(2):145. https://doi.org/10.3390/ijerph14020145. Published 2017 Feb 4.  

Biasin, M., Bianco, A., Pareschi, G., et al., 2021. UV-C irradiation is highly effective in 
inactivating SARS-CoV-2 replication. Sci. Rep. 11(1):6260 https://doi.org/10.1038/ 
s41598-021-85425-w. Published 2021 Mar 18.  

Bourouiba, L., Dehandschoewercker, E., Bush, J.W.M., 2014. Violent expiratory events: 
on coughing and sneezing. J. Fluid Mech. 745, 537–563. https://doi.org/10.1017/ 
jfm.2014.88. 

Chatoutsidou, S.E., Lazaridis, M., 2019. Assessment of the impact of particulate dry 
deposition on soiling of indoor cultural heritage objects found in churches and 
museums/librariesJ. Cult. Heritage 39, 221–228. https://doi.org/10.1016/j. 
culher.2019.02.017. 

Dabisch, P., Schuit, M., Herzog, A., et al., 2021. The influence of temperature, humidity, 
and simulated sunlight on the infectivity of SARS-CoV-2 in aerosols. Aerosol Sci. 
Technol. 55 (2), 142–153. https://doi.org/10.1080/02786826.2020.1829536. 

Furlow, B., 2023. US CDC announces indoor air guidance for COVID-19 after 3 years. 
Lancet Respir. Med. 11 (7), 587. https://doi.org/10.1016/S2213-2600(23)00229-1. 

Harmon, M., Lau, J., 2022. The Facility Infection Risk EstimatorTM: a web application 
tool for comparing indoor risk mitigation strategies by estimating airborne 
transmission risk. Indoor and Built Environment. 31 (5), 1339–1362. https://doi. 
org/10.1177/1420326X211039544. 

Hodson, R., 2022. Preparing the world for the next pandemic. Nature 610 (7933), S33. 
https://doi.org/10.1038/d41586-022-03353-9. 

Iddon, C., Jones, B., Sharpe, P., Cevik, M., Fitzgerald, S., 2022. A population framework 
for predicting the proportion of people infected by the far-field airborne transmission 
of SARS-CoV-2 indoors. Build. Environ. 221, 109309. 

Izadyar, N., Miller, W., 2022. Ventilation strategies and design impacts on indoor 
airborne transmission: a review. Build. Environ. 218, 109158 https://doi.org/ 
10.1016/j.buildenv.2022.109158. 

Jones, B., Sharpe, P., Iddon, C., Hathway, E.A., Noakes, C.J., Fitzgerald, S., 2021. 
Modelling uncertainty in the relative risk of exposure to the SARS-CoV-2 virus by 
airborne aerosol transmission in well mixed indoor air. Build. Environ. 191, 107617 
https://doi.org/10.1016/j.buildenv.2021.107617. 

Jones, Benjamin and Iddon, Christopher and Sherman, Max Howard, Quantifying 
Quanta: Why We Can’t Be Certain About the Risks of Long-range Airborne Infection. 
Available at SSRN: https://ssrn.com/abstract=4595141 or https://doi.org/10.2139/ 
ssrn.4595141. 
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