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Abstract: The interfacial transition zone (ITZ) is the weakest phase in concrete, characterised by higher
porosity and being prone to microcrack formation. Additionally, the ITZ is created when dispersed
fibre reinforcement is present. Although fibres improve flexural strength, they can negatively impact
other properties. This research investigates the ITZ of fibre-reinforced concrete where macro-basalt
fibres (BFs) and oil shale ash (OSA), as an SCM, were used with the aim of modifying the properties of
concrete, enhancing the ITZ, and reducing its carbon footprint. Six different concrete mixes with OSA
doses between 10% and 30% and a constant BF dose of 8.0 kg per 1 m3 of concrete were prepared and
tested. The ITZ was analysed with SEM images and verified through its mechanical properties. The
results showed that the presence of OSA improved bonding and densified the microstructure of the
paste, especially in the ITZ, resulting in a nearly constant flexural strength at up to a 20% replacement
and only a 6.7% decrease in compressive strength while reducing the global warming potential by
19.24 kg CO2 equivalent in the mix with 10% OSA replacement. Higher replacement ratios had a
negative impact on the mechanical properties, as the OSA had not reacted entirely and served partly
as an inert filler.

Keywords: interfacial transition zone (ITZ); fibre–paste transition zone; basalt fibres (BFs); oil shale ash
(OSA); supplementary cementitious materials (SCMs); microstructure analysis; mechanical properties

1. Introduction

Concrete, the most widely used construction material, continually undergoes improve-
ments to enhance its strength, durability, and overall performance [1]. One significant
area of focus is the interfacial transition zone (ITZ), which forms between the paste and
aggregates [2]. The paste–aggregate ITZ is considered the weakest phase of concrete due
to the higher porosity and larger crystalline phases in this zone compared with the bulk
paste. It is also the zone where the cracks initiate, further propagating and damaging
the concrete when the maximum loading is reached. Therefore, microcracking, which
frequently initiates and propagates within the ITZ, leads to the perception that the ITZ is
the weakest phase in concrete [3].

Fibres have gained importance as a valuable addition to concrete mixtures since they
govern the flexural strength and other mechanical characteristics of the concrete [4]. Fibres
enhance bonds by mechanically interlocking the matrix and aggregates, reducing the
potential for debonding and improving load transfer across the ITZ [5]. Moreover, fibres
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act as reinforcement within concrete, mitigating crack propagation and improving the
overall durability of the structure [6]. Despite the positive influence of fibres, a fibre–paste
ITZ is formed similar to the paste–aggregate ITZ [7]. A study on high-performance fibre-
reinforced concrete revealed similar hardness values in the ITZ between the aggregate and
the paste as in the ITZ between the steel fibres and the paste [8]. The formation of the ITZ
occurs as small binder particles exhibit a lower packing density when they encounter a
large surface area, such as that of fibres, creating a “wall effect”. This leads to increased
porosity and an increase in the frequency of phases with low moduli, including pores
and low-density calcium silicate hydrate (CSH) near the fibres. Furthermore, an elevated
content of well-grown crystals of calcium hydroxide (CH) is a distinguishing characteristic
of the ITZ. The wall effect can be eliminated through several mixing modifications. These
include w/c ratio reduction and the use of a well-graded binder with a combination of
cement and microsilica or other SCMs.

The incorporation of supplementary cementitious materials (SCMs) has been widely
explored to reduce the CO2 footprint of concrete, address the weakness of the ITZ, and
further optimise it. SCMs such as fly ash, slag, silica fume, and metakaolin possess particle
sizes and chemical compositions that can enhance packing density and provide additional
reactivity delay within the ITZ [9]. By filling voids, providing additional cementitious
gel, and optimising the curing conditions, SCMs reduce porosity and enhance the ITZ’s
strength and durability.

Fibres are vital for enhancing concrete’s performance, providing benefits such as
improved crack control, durability, and structural integrity [10]. They distribute stresses,
reducing crack propagation and brittle failure. Fibres enhance tensile strength, toughness,
and resistance to impact, cyclic loading, and shrinkage cracking [10]. With their versatility
in form and material, fibres offer an effective way of extending service life and ensuring
the long-term durability of concrete structures.

This article investigates the synergistic effects of macro-basalt fibres (BFs) and oil shale
ash (OSA) on concrete properties, with a focus on the fibre–paste ITZ of the concrete. The
targeted use of designed concrete types is carried out in hazardous waste management, in
particular, storage packaging for low-level radioactive waste (LRW), where low-strength
concrete is utilised for the encapsulation of LRW, which is further placed in larger containers.
A thorough understanding of the ITZ is essential for ensuring the radiation shielding
performance of the complete packaging. This experimental investigation uses OSA as an
SCM with varying percentages of cement replacement, with a constant amount of BFs in the
concrete mix, and analyses the microstructure of the mixtures. To this end, the mechanical
properties of fresh and hardened concrete mixes containing BFs and OSA are investigated
in correlation with the observed SEM images of the samples’ cross-sections. Furthermore,
the environmental benefits of the application of OSA in concrete are highlighted via the
calculation of the global warming potential.

1.1. Basalt Fibres

BFs have emerged as promising fibrous reinforcement materials for concrete due to
their exceptional mechanical properties and resistance to chemical degradation [11].

The manufacturing process for BFs includes melting basalt volcanic rocks at
1400–1450 ◦C and extrusion through small nozzles to produce continuous filaments with
7–20 µm diameters. The three main manufacturing techniques for BFs are centrifugal
blowing, centrifugal multirolling, and die-blowing. Even so, similar to the production of
glass fibres, the BF production process is more environmentally friendly, energy-efficient,
and cost-effective. This joint impact is created because glass fibre production involves
using additives [12], such as boric acid, and causes direct emissions of heavy metals, such
as SO2 and NOx [13], which do not happen during BF production. BFs are produced as
monofilaments with diameters in the range of 7–20 µm. They can be used as microfibres or
further processed into bundles and fabrics. Basalt microfibres used for concrete are pro-
duced from bundles of various numbers of filaments and coated in resin, which provides
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additional protection and improved alkali resistivity. The helical structure of BFs improves
their cohesion and helps anchor the fibres in the concrete matrix. BFs are environmentally
safe and non-toxic and possess high stability and resistance to low temperatures [14].

A study was conducted by Biradar et al. [15] using various BF proportions (0.1%, 0.3%,
and 0.5% of the total concrete volume) in M40-grade concrete, in which it was observed
that although the increase in fibre content reduced the workability, the mechanical strength
increased significantly. A trend was noticed with the addition of BFs; the ratios of strengths
(compressive and bending) compared to the control concrete were significantly higher after
3 days and gradually reduced as the concrete aged. Tests revealed that a 0.3% BF content
gave rise to the highest strengths, with values of 48.63 MPa, 4.73 MPa, and 7.32 MPa,
resulting in strength ratios of 9.82%, 36.70%, and 18.83% compared to the control sample
for the compressive, tensile, and flexural strengths after 28 days, respectively. Arslan [16]
conducted a comparative study between BFs and chopped glass fibres, with four fibre
contents (0.5, 1, 2, and 3 kg per m3 of concrete). The diameter varied from 13 to 20 µm for
the BFs and 10 to 17 µm for the glass fibres, while the length was kept constant at 24 mm for
both types of fibres. The results showed that the addition of fibres, regardless of the type,
contributed to improvements in mechanical strength compared to the reference concrete.
The compressive strength, splitting tensile strength, flexural strength, fracture energy, and
modulus of elasticity increased with the inclusion of fibres. It was observed that for the
glass fibres, the optimum fibre content was 1 kg per m3, with increases of 4.20%, 9.32%,
and 25.92% compared to the control concrete. As for the BFs, the highest compressive
strength (7.26% higher than the control concrete) was observed with 3 kg per m3 fibre
content, while the splitting tensile and flexural strengths were lower than those observed
with the glass fibres. Branston et al. [17] evaluated the mechanical behaviour of basalt fibre-
reinforced concrete. Basalt fibres were introduced in the concrete as bundled fibres and as
minibars. The study showed that higher fibre dosages (more than 12 kg/m3 of bundles
and 40 kg/m3 of minibars) led to difficulties in handling, placing, and consolidating fresh
concrete. However, it should be noted that the first-crack strength increased with increasing
fibre dosage. In a study by Meyyappan et al. [4], BFs were incorporated into concrete in
concentrations of 0.5, 1, 1.5, 2, 2.5, and 3 vol.% and tested for compressive and split tensile
strengths. The results indicated that 1 vol.% of BFs showed an optimal enhancement of
strength properties, while a further increase in the volume fraction of BFs gave rise to a
decreasing trend in a drastic manner. All the listed results lead to the common conclusion
that an excess of BFs impacts the overall concrete performance negatively, which can be
explained by the significant enlargement of the ITZ in concrete. Individual fibres, regardless
of their dimensions or material, introduce an additional ITZ between fibres and paste with
similar weaknesses to the ITZ between aggregates and paste. Understanding the properties
of the fibre ITZ can lead to better optimisation of fibre dosage and consequent concrete
performance towards defined requirements.

1.2. Interfacial Transition Zone (ITZ) of Concrete

In cement-based composites, each aggregate is surrounded by an ITZ varying from
10 µm to 50 µm [18] in thickness, based on its origin. Due to the way it is formed, the ITZ is
not a defined zone but a region which can move or vary in thickness [2]. The ITZ is formed
around aggregate grains during concrete curing, which implies that the water content in
this area dictates ITZ formation. Vibrating fresh concrete moves the aggregate grains and
forms areas with a much higher w/c ratio. Furthermore, aggregates express high initial
sorption, subsequently releasing absorbed water. Since aggregates have higher levels of
water absorption, they can change the conditions in the ITZ, leading to the formation of
different hydration products. Also, it must be considered that some cement particles or
SCMs may show delayed hydration in the space between large crystals of CH formed in
the surplus water.

Compared to bulk paste regions, the ITZ is structurally inferior [19] due to its higher
average porosity, CH content, and ettringite content (
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tration of cement particles, such as low-density CSH, as shown in Figure 1. The ITZ is
often believed to facilitate the ingress of harmful substances such as moisture, chemicals,
or aggressive agents into concrete, as its increased porosity suggests higher local transport
properties compared to the bulk paste [19]. In concrete types with a high aggregate content,
adjacent ITZs can overlap and interconnect, creating a continuous porous pathway that
spans the sample and acts as a shortcut for the penetration of harmful agents from the
surface into the concrete’s inner section.
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While the distinction between the ITZ and bulk paste is evident, the precise mechanism
by which the ITZ operates remains elusive since evaluating the ITZ’s mechanical properties
within the overall concrete structure proves to be challenging. In-depth analyses conducted
by Hashin and Monteiro [21] revealed that the elastic modulus of the ITZ is approximately
50% lower than that of the bulk paste, making it more susceptible to cracking. This
formation of cracks leads to a reduction in the overall strength of the concrete. Hence,
fibre reinforcement is beneficial, as the main feature of fibres is to prevent crack formations
and their further propagation [22,23]. However, another complexity occurs because the
inclusion of fibres in the concrete matrix leads to the development of additional ITZs
between the fibres and the paste.

1.3. Fibre–Paste Interfacial Transition Zone

The addition of fibres in concrete has been ongoing due to their ability to control cracks
and increase the toughness of concrete [10]; however, they introduce additional ITZs and
modify the microstructure of concrete. As shown in Figure 2, each fibre is encircled by an
ITZ, which exhibits similar microstructure to the paste–aggregate ITZ and is chemically
and mechanically distinct from the bulk paste [4]. Initially, a fibre ITZ was observed when
concrete was reinforced with macrofibres like steel fibres [24,25]. However, it has been
reported that a similar fibre ITZ also exists on microfibres, such as polyethylene fibres [25].
Furthermore, in terms of microstructure, both the paste-aggregate ITZ and the fibre–paste
ITZ are quite similar, as both have high porosity with higher proportions of CH [4,26,27].
In a fresh state, local bleeding around the fibres causes the dispersion of cement or SCMs
in an abundance of water, thus providing space for the growth of larger crystals of CH,
ettringite, and low-density CSH. Bentur and Mindess [28] determined the depth of the ITZ
to be between 20 and 50 µm using scanning electron microscope observations, while Li and
Stang [29] found the depth to be between 40 and 70 µm.
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Numerous studies have been conducted to characterise the microstructure/ microstruc-
tural gradients of the ITZ in concrete using different tools, such as scanning electron mi-
croscopy (SEM) and energy-dispersive X-rays (EDXs) [31]. From the SEM images [16]
in Figure 3a, a well-bonded, partially coated ITZ between the BFs and paste is visible,
which contributes to increased flexural and splitting tensile strengths. Furthermore, it
was observed that the high tensile strength of BFs could be the reason for the fibre rup-
ture restriction. The glass fibres (Figure 3b), on the other hand, exhibited agglomeration
tendencies, suggesting the need for careful production to prevent agglomeration in glass
fibre-reinforced concrete mixtures. No agglomeration was observed in the BF-reinforced
concrete mixtures [16].
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glass fibre-reinforced concrete test specimens [16].

Since each fibre has its own ITZ, with an excessive number of fibres or a non-uniform
distribution of fibres, the fibre ITZs have the potential to overlap and interconnect, forming
a continuous porous pathway that extends across the sample. This pathway could allow
for the penetration of aggressive agents into the inner sections (bulk paste) of the con-
crete, impacting its durability and thus rendering the fibres more harmful to the concrete
than beneficial.
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The weakness of the fibre ITZs could potentially be addressed by incorporating a
suitable SCM. SCMs undergo pozzolanic or latent hydraulic reactions with delays, thus
reducing the CH content and promoting the formation of denser hydration products in
the ITZs. The fine particle sizes of SCMs improve the packing density, which reduces the
porosity. SCMs also contribute to improved delayed curing and hydration, enhancing the
bond strength in available spaces (pores, spaces between large crystals or CSH layers),
predominantly in the ITZs. These changes are assumed to contribute to creating a more
compact and refined ITZ, leading to improved durability and reduced permeability in
concrete structures. Oil shale ash is one such SCM which has the potential to induce
changes in the microstructure of fibre–paste ITZs.

1.4. Oil Shale Ash (OSA)

Oil shale is a sedimentary rock containing solid organic content that can produce
liquid oil-like hydrocarbons when heated. It is found in numerous deposits worldwide, but
only a few countries have economically viable deposits. The extraction of shale oil from the
oil shale is still under development, with the global supply estimated at 5 trillion barrels.
The extraction process generates significant amounts of waste fly ash, which is known as
OSA. OSA is reused in various applications, such as in agriculture [32] (it helps increase
the yield through the neutralisation of acidic soils and improves arable and grassland soils)
and the construction industry [33] (as a cementitious material or admixture for the mass
stabilisation of soft soils and for groundwork for roads, railways, and pipelines), as well
as being used as a filler in the plastics industry [34]. Furthermore, it has been found [35]
that calcium extracted from OSA can form calcium carbonite after CO2 is injected into its
solution. This calcium carbonite is then used in the paper and plastics industries [35]. The
utilisation of OSA as a cementitious material is currently limited, but it has high potential
as it can partially replace cement and thus reduce the carbon footprint of concrete.

Liu et al. [36] conducted an extensive study on calcinated OSA residue used as an
SCM in doses varying from 10% to 50% by wt. of cement. The results showed that the
OSA residue contained kaolinite, montmorillonite, and illite, which were activated by
calcining at 500, 600, and 700 ◦C to improve pozzolanic reactivity. It was determined
that the 10% OSA residue calcined at 600 ◦C was optimal, as it increased the compressive
strength by 8% (3 days) and 11% (28 days). Another study was conducted to explore the
feasibility of utilising OSA (0%, 10%, 20%, 30%, and 40%) as an SCM in roller-compacted
concrete [37]. The results demonstrated that the mechanical properties of roller-compacted
concrete mixes decreased with increasing OSA content but still met the compressive stress
requirements according to the American Concrete Institute’s standards. Based on these
findings, incorporating OSA at up to a 30% replacement level in roller-compacted concrete
production is feasible, providing a potential solution for utilising abundant OSA deposits in
Jordan while maintaining acceptable concrete performance. Murad et al. [38] investigated
the feasibility of using Jordanian OSA (30%, 50%, and 100%) as a partial or complete
replacement for cement. The concrete samples were exposed to a temperature of 720 ◦C
for 2 h to evaluate the impact of heat on the mechanical properties of OSA concrete. The
results revealed that OSA can be effectively recycled in low-strength concrete, with the
optimal replacement percentage found to be 30% of the cement weight. The addition of
30% OSA as a partial replacement for cement increased the flexural strength by 50% but
led to decreases in the compressive and tensile strengths of 33% and 44%, respectively. The
mineralogy of OSA can vary based on its origin, for example, the addition of biomass in
combustion. Kalpokaitė-Dičkuvienė et al. [39] reported that the addition of biomass during
combustion reduces the anhydrite content by more than 50% in comparison to pure OSA
combustion. A higher content of anhydrite resulted in a higher formation of ettringite in
the test paste. Furthermore, the porosity of OSA is greatly dependent on its origin.

This paper presents a research study that focuses on the use of OSA in fibre concrete.
The authors are motivated by the vision of reducing abundant deposits of OSA in Estonia
through its utilisation in fibre concrete used in hazardous waste management. This investi-
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gation uses the hypothesis that the ITZ can be densified through the delayed formation of
additional hydration products formed by pozzolanic reactions between OSA and existing
compounds in the ITZ. This study serves as a preparatory work for the utilisation of special
basalt boron fibres with enhanced neutron shielding properties. A compact fibre–paste ITZ
would ensure the full potential of basalt boron fibres is met.

2. Methodology

For the analyses of the fibre–paste ITZ, concrete mixes were prepared with a constant
fibre dose of 8.0 kg per m3 of concrete and a variable dose of OSA, ranging from 10 to 30%
by cement weight. The materials used were Portland limestone cement (PLC) CEM II/A-
LL 42.5 N from Schwenk cement Latvia, dolomite powder and fine aggregates obtained
from Saulkane, Latvia, and OSA obtained from Eesti Power Plant, Estonia, where oil
shale is burned without any addition of biomass. The chemical composition of the OSA
was determined on Li2B4O7-LiBO2-LiI + sample-fused glasses through X-ray fluorescence
spectroscopy (XRF) using a Rigaku Primus II spectrometer and PLC provided by the
producer, and it is shown in Table 1. Though OSA has been classified as a pozzolanic
material in the literature, the chemical composition of this OSA indicates otherwise, as it is
4% short of pozzolanic oxides to fulfil the requirement to be classed as a class C pozzolan
material according to ASTM C618-22 [40]. The average D50 particle size of the OSA was
26.9 µm. This type of OSA has a high content of anhydrite, approx. 14.57 wt%, and approx.
11.61 wt% of amorphous phase [39]. As OSA is waste, its properties, such as mineralogy
and particle size distribution, can vary from batch to batch.

Table 1. Chemical compositions of the OSA and PLC (wt.%).

Oxides SiO2 Al2O3 Fe2O3 TiO2 CaO MgO Na2O K2O MnO SO3 P2O5 LOI *

OSA 33.20 8.09 4.44 0.53 37.06 3.07 0.26 3.84 0.05 5.45 0.16 3.85

PLC 19.11 4.79 2.85 0.33 61.69 3.17 0.08 1.99 0.12 2.02 0.51 2.61

* LOI—loss on ignition.

The coated–chopped composite BFs from Deutsche Basalt Faser GmbH have a rectan-
gular cross-section with average dimensions of 0.55 mm to 0.36 mm and are composed of
filaments with a diameter of 13 ± 1 µm, a length of 24 mm, and a density of 1.9 g/cm3. The
properties of the OSA and BFs are presented in Figure 4.
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Figure 4. Samples of (a) OSA [32] and (b) BFs [41] and (c) details of BFs (magnification: 202.7).

A reference concrete mix (C) without OSA was designed with a target compressive
strength of 15 MPa after 28 days. Mixes with OSA in replacement ratios of 10, 15, 20, 25,
and 30% by weight of cement were produced in a laboratory mixer. The proportions of
all six mixes are given in Table 2, and they were designed in such a manner as to provide
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enough paste for fibre dispersion and anchoring. Furthermore, the concrete mixes were
designed to be used for low-level hazardous waste storage, where they serve as filling
and shielding agents. Those concrete types commonly have low strength and workable
consistency, so the low-level hazardous waste can be blended and poured into a steel drum.

Table 2. Mix designs.

Mix
PLC
(kg)

OSA
(kg)

DP
(kg)

MS
(kg)

Aggregates (kg) Water
(kg)

SP
(kg)

Fibre
(kg)0–1.0 mm 0.3–2.5 mm 4–8 mm

C 250.0 0.0 218.2 13.6 572.7 954.6 54.6 227.3 6.36 8.0

OSA10 225.0 25.0 218.2 13.6 572.7 954.6 54.6 227.3 6.36 8.0

OSA15 212.5 37.5 218.2 13.6 572.7 954.6 54.6 227.3 6.36 8.0

OSA20 200.0 50.0 218.2 13.6 572.7 954.6 54.6 227.3 6.36 8.0

OSA25 187.5 62.5 218.2 13.6 572.7 954.6 54.6 227.3 6.36 8.0

OSA30 175.0 75.0 218.2 13.6 572.7 954.6 54.6 227.3 6.36 8.0

PLC = Portland limestone cement; OSA = Oil shale ash; DP = dolomite powder; MS = microsilica; and
SP = superplasticiser.

The proportions of PLC and OSA change in relation to the particle size distribution
(PSD) of the individual mixes. The suitable proportion of individual materials can influence
the packing density, and therefore, the PSDs of the individual powder materials, except
microsilica, were analysed, and the grading curves are provided in Figure 5. Figure 5 shows
that with increasing content of OSA, the overall PSD of the individual mixes changes only
slightly. Since OSA shows a PSD of a similar order of magnitude as cement, it is expected
that it would directly replace cement in terms of particle packing.
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The flow of the experimental work is shown in Figure 6. The mixing of concrete was
carried out in a tilting drum mixer. The required materials were pre-weighted as per mix
proportion and mixed as follows: (1) half of the cement, powders, and aggregates were dry
mixed; (2) half of the water was poured into the mixer; (3) the remaining cement, powders,
and aggregates were added; (4) the remaining water and SP were then added to reach the
targeted workability; and (5) BFs were spread into the rotating mixer so that a uniform
distribution of fibres was achieved. The fresh concrete’s consistency was measured by a
slump test with a target slump of 220–250 mm. The concrete was cast into moulds and,
after 24 h of initial curing under cover, moved to the water storage tank. Compressive and
flexural strengths were evaluated on the 28-day-old samples. To understand the fibre–paste
ITZ of the concrete, a microstructural analysis was conducted using SEM.
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3. Results and Discussion

The obtained results are first discussed on the microscale through a detailed investi-
gation of fibre–paste ITZ via SEM images. An assessment of the mechanical performance
of the concrete then follows, showing the results of the slump as well as compression and
bending tests. The discussion is concluded with the results of the global warming potential
of the concrete mixes with OSA replacement, which shows the additional benefit of using
this SCM.

3.1. Analysis of Fibre–Paste ITZ

The SEM images in Figure 7 show that several basalt filaments are embedded in the
concrete matrix, and it seems that the resin of the BFs is disrupted. Each individual BF has
its own ITZ surrounding it [2,42], with the diameter of each BF’s own ITZ being difficult to
determine. Nonetheless, the individual ITZs of the fibres contribute to the overall fibre–
paste ITZ network by combining and overlapping with each other. When the destruction of
the paste begins due to external loading, the fibres provide strength to the paste to a certain
extent. The SEM sample is cut out of a larger sample with the aim of having the BFs visible
on the analysed surface. Some fibres can fracture due to the sample preparation, as can
be observed in Figure 7. Furthermore, there are visible gaps between fibres where neither
the resin nor cementitious paste penetrated and poorly formed binder hydration products
between and around the individual basalt filaments.

From Figure 7, it is visible that the resin coating of the individual basalt microfibres
is damaged, and the binder of the analysed concrete is directly in contact with the basalt
microfibres where the fibre ITZs are formed. Upon closer examination, the main hydration
products, CSH, CH, and ettringite, are present in the fibre ITZs, as seen in Figures 7 and 8.
The OSA used in this study contains 5.45 wt.% of SO3, as determined by XRF analyses,
and XRD showed that it contains 14.5% anhydrite [39], and therefore, more ettringite and
formations containing sulphur are formed, especially in the ITZs with greater amounts
of water and space available. According to the chemical composition given in Table 1,
the weight percentage of SO3 in the OSA is slightly higher than that required for SCMs
according to EN 450-1 [43] and ASTM C618-22 [40,44]. Ettringite formation is dependent
on the presence of sufficient sulphate ions in the solution. Once gypsum is exhausted,
ettringite will continue to react with the remaining C3A, resulting in the formation of



Buildings 2024, 14, 1952 10 of 15

monosulphoaluminate hydrate [45]. Due to the excessive presence of sulphur from the
OSA, not all ettringite is converted into monosulphoaluminate hydrate; see Figure 8.
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Figure 8. SEM image of the sample containing BFs and OSA showing densely formed ITZs.

High-density CSH is predominantly present in the bulk paste, and low-density CSH
with a larger distance between layers filled with water molecules is likely to be present in
the ITZs. Additional CSH is formed by the reaction between the alkaline binder and silicates
from the BFs that are not sufficiently coated by the macro-BF resin. The BF surface indicates
some level of interaction and chemical bonding between the fibres and the paste [46],
leading to improved fibre–paste interface properties. It should be noted that the CSH
products on the surface of the BFs could be attributed to a phenomenon called secondary
deposition or precipitation. Secondary deposition may occur if the silica-rich BFs lose
their coating and are directly exposed to the alkaline environment of the cement paste,
instigating a reaction which results in the formation of a thin layer of CSH on the fibre
surface [47–49]. The described phenomena can be observed in the SEM image in Figure 9.
However, if the reaction continues, it could completely degrade the BFs and compromise
the benefits of BF application [50].
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3.2. Mechanical Properties of Concrete Mixtures

A detailed analysis of the concrete paste containing exclusively cement and OSA led
to the conclusion to use additional SCMs, particularly microsilica. Furthermore, dolomite
powder was used to provide a higher volume of paste to facilitate BFs. As this testing
served as a pre-study for the utilisation of BFs, lower-strength concrete mixes were designed
and tested. The fresh concrete’s workability and the hardened concrete’s properties, namely
compressive and flexural strengths, are given in Table 3.

Table 3. Properties of fresh and hardened concrete mixtures.

Mix Slump (mm) Compressive Strength (MPa) Flexural Strength (MPa)

C 225 13.4 3.7

OSA10 230 12.5 3.8

OSA15 220 11.9 3.6

OSA20 180 10.8 3.7

OSA25 220 10.7 3.3

OSA30 230 9.1 2.9

The workability of the prepared mixes ranged from 180 to 230 mm, with most of the
mixes having a slump at 220 mm. All the mixes except OSA20 satisfied the target slump
of 220–250 mm. Sufficient workability was ensured by a water/binder ratio of 0.47 and
a rather high SP dose of 6.36 kg per m3. The total binder weight was 481.83 kg per m3,
which is 20.9% of the total mix weight. The grading of the binder due to the replacement of
cement by OSA was not significant and varied mainly for particle sizes between 1.65 µm
and 12.7 µm (Figure 5).

The results of the compressive and flexural strength tests are presented in Table 3 and
Figure 10. The flexural strength of the tested concretes with a constant BF dose showed
stable performance for up to 20% OSA replacement. Higher replacement ratios led to a
significant reduction in the flexural strength by 21.6% in the case of OSA30; see Figure 10.
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Figure 10. Compressive and flexural strengths of the concrete mixes.

The compressive test results indicate that the addition of OSA to the fibre concrete
mixture resulted in a progressive decrease in the compressive strength with the increase
in OSA in the mix. Hence, it is considered that OSA contributed as an inert filler rather
than as a binder. The impact of OSA on compressive strength is more significant than on
flexural strength, where BFs play an important role. A cement replacement of 10% reduced
the compressive strength by 6.7%, which might still be relevant for a reduction in global
warming potential by 19.24 kg CO2 equivalent per 1 m3 of concrete. Strength tests were
performed at 28 days of age, which might be too early to reach the full potential of OSA as
an SCM with delayed reaction. The mix with 15% OSA had an 11.2% lower compressive
strength than the reference mix but only 4.5% lower compared to OSA10, while the OSA20
mix had a 19.4% lower compressive strength compared to the reference mix. Therefore, the
OSA15 mix might still be promising after additional testing with a prolonged curing time.

However, for the mixes containing higher OSA contents, the strength could be hin-
dered due to several reasons. Firstly, it is possible that OSA remained unhydrated in the
concrete, thus serving only as a filler. Next, the dilution effect, which delays pozzolanic
activity or hydration due to the lack of CH supply, could cause a reduction in the overall
amount of hydration products. Finally, there is a possibility that these mixes require better
compaction to avoid the formation of voids, which cause lower concrete strength.

3.3. Environmental Benefits of Using OSA

Since OSA is a waste material, its environmental impact is quantified to show its
additional benefits. OSA significantly reduced the carbon footprint of the prepared mixes,
as shown in Figure 11. The global warming potential (GWP) was calculated for the
individual mixes without fibres to prove the positive impact. For the calculation, the
Norwegian platform for the Environmental Product Declaration (EPD) calculation provided
by LCA.no [51] was used, considering only raw materials (Section A1). It can be observed
in Figure 6 how the carbon footprint decreases with the replacement of PLC with OSA in
the concrete mix.
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4. Conclusions

An experimental programme was conducted to evaluate the microstructure of the
concrete mixes, namely fibre–paste ITZs, containing various doses of OSA as a partial
replacement for cement and a constant dose of BFs. Moreover, the subsequent effect of the
changes in the microstructure on the mechanical properties was evaluated. Based on the
results of the strength and SEM observations, the following conclusions can be drawn.

1. Considering the influence of OSA replacement:

a. The presence of OSA reduces the EPD/carbon footprint of concrete composites.
b. OSA replacement increases the presence of ettringite in fibre ITZs.
c. Further testing of strength at higher ages, such as 56 and 90 days, is essential to

establish the influence of OSA on concrete’s microstructure.
d. Paste ITZs seem adequate for concrete with OSA at a dose of up to 10%. Higher

percentages of replacement reduce the compressive strength and provide poor
ITZs, with no expectation of additional delayed reactions between hydration
products and the OSA.

It may be concluded that replacing cement with OSA by up to 10% provides concrete
with acceptable properties, while higher replacement with OSA is relevant for applications
where strength is not decisive, such as the encapsulation of low-level radiative waste in
steel drums. In such a case, high OSA replacement ratios would be additionally beneficial
due to low GWP.

2. Considering the presence of BFs in the mix:

a. It has been observed that the coating of BFs becomes damaged during the
mixing process, and individual basalt microfibres are directly in contact with
the concrete matrix.

b. The presence of a thin layer of CSH on the surface of BFs is a result of the
alkaline exposure of BFs.

c. Flexural strengths are relatively constant for mixes with up to 20% OSA replace-
ment in the concrete mix.

d. If the compressive strength is the decisive factor for concrete application, 10%
OSA replacement in the mix is assessed as sufficient for the utilisation of BFs.
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