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Abstract
A full-F, isothermal, electromagnetic, gyro-fluid model is used to simulate plasma turbulence in
a COMPASS-sized, diverted tokamak. A parameter scan covering three orders of magnitude of
plasma resistivity and two values for the ion to electron temperature ratio with otherwise fixed
parameters is setup and analysed. Two transport regimes for high and low plasma resistivities
are revealed. Beyond a critical resistivity the mass and energy confinement reduces with
increasing resistivity. Further, for high plasma resistivity the direction of parallel acceleration is
swapped compared to low resistivity.

Three-dimensional visualisations using ray tracing techniques are displayed and discussed.
The field-alignment of turbulent fluctuations in density and parallel current becomes evident.
Relative density fluctuation amplitudes increase from below 1% in the core to 15% in the edge
and up to 40% in the scrape-off layer.

Finally, the integration of exact conservation laws over the closed field line region allows for
an identification of numerical errors within the simulations. The electron force balance and
energy conservation show relative errors on the order of 10−3 while the particle conservation
and ion momentum balance show errors on the order of 10−2.

All simulations are performed with a new version of the FELTOR code, which is fully
parallelized on GPUs. Each simulation covers a couple of milliseconds of turbulence.
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1. Introduction

Turbulence in the edge and scrape-off layer (SOL) regions
of magnetically confined plasmas displays very efficient (and
mostly unwelcome) transport properties [1, 2]. In fact, the
observed levels of transport of particles and thermal energy
out of the confined region by far exceed the ones predicted by
collisional transport theory [3, 4] even if neoclassical effects
from the magnetic field geometry are taken into account. This
has led to the alternative denomination of turbulent transport as
‘anomalous’ transport. Since particle and energy confinement
are the goal of magnetic confinement fusion devices, plasma
turbulence is subject to intensive research.

Numerous challenges exist when modelling plasma
turbulence. For example, it is observed that relative dens-
ity fluctuation levels increase from the edge into the SOL
and may approach and even exceed order unity [5–9]. This
was recently also found close to the X-point region [10]. This
means that a linearisation of equations around a background
profile is inadmissible in modelling. Avoiding such a separ-
ation between stationary profile and dynamic fluctuations in
models has the additional advantage that a profile can inter-
act with turbulence and evolve self-consistently in time. The
profile is then an output of the model rather than a given
input.

Furthermore, it is observed that the ratio of ion-temperature
relative to electron temperature is above one in the edge
and scrape-off layer regions [11–13]. Turbulent eddies in
the edge and in blobs in the scrape-off layer are of
the size ρs =

√
Temi/(eB0) where Te and mi are elec-

tron temperature and ion mass respectively, e is unit
charge and B0 is the reference magnetic field strength.
With ρi =

√
Timi/(eB0)≈ ρs (with Ti the ion temperature)

this leads to finite Larmor radius and polarization effects
being important for the dynamics of turbulent eddies and
blobs [14–16].

Full-F gyro-fluid models are able to evolve large fluctu-
ation amplitudes, steep background profiles and include finite
Larmor radius effects [14, 16–19]. Gyro-fluid models in gen-
eral result from taking velocity space moments over an under-
lying gyro-kinetic model and share many of its advantages:
finite Larmor radius corrections, consistent particle drifts, an
energy and momentum theorem based on variational methods
in the underlying gyro-kinetic model and an inherent sym-
metry in moment equations with regards to multiple ion spe-
cies. These advantages are absent from so-called drift-fluid
models that result from a drift-expansion of the Braginskii
equations [20–24]. A downside of gyro-fluid models is that
closed expressions for scattering collisions and plasma neut-
ral interactions remain an open issue, despite recent formu-
lations in the long wavelength limit [25]. Compared to gyro-
kinetic models, gyro-fluid models invoke a closure scheme
that can be tailored to specific physical regimes of interest,
e.g. the collisional regime. Such closures can be adopted
at the chosen number of moments, which emerge typically
from a Hermite–Laguerre expansion in velocity space of the
gyro-averaged gyro-centre distribution function [17, 19]. The

number of moment equations is usually small (2 in the present
work) and the associated reduced velocity space resolution
translates to a corresponding saving in computational cost
over gyro-kinetic models. This implies that gyro-fluid mod-
els are more computationally efficient for parameter scans
or for resolving larger plasma volumes than gyro-kinetic
models.

Further challenges arise in numerical approaches to plasma
turbulence. The dynamics of a magnetized plasma is highly
anisotropic with respect to b̂, the magnetic unit vector.
Fluctuations along b̂ typically have a much larger exten-
sion L∥ than fluctuations perpendicular to it L⊥ ≪ L∥. In a
numerical simulation the use of field-aligned coordinates, in
particular flux-tube coordinate systems thus seems appropri-
ate. The field alignment translates to a low spatial resolu-
tion requirement along the field line following coordinate [26–
28]. However, field aligned coordinate systems cannot include
X-points in the geometry. This is a major downside as one
or more X-points in the magnetic field equilibrium are a cru-
cial ingredient to current tokamak design and in particular
ITER [29]. The X-point is connected to the construction of
a divertor, which separates the plasma-wall interactions from
the confined plasma region [1]. Further, it plays a crucial
role in and at least facilitates the transition to the high con-
finement mode [30–32]. Correct modelling of magnetic field
equilibria that include one or even several X-points is thus
critical.

Two solutions to the problem exist to date.With the increase
in computational resources it is possible to directly discretize
and simulate model equations on non field-aligned coordin-
ate systems [33, 34]. This allows simulations including X-
points as exemplified by the GBS [35], STORM [36] or
TOKAM-3X [37] codes. However, such an approach does
not exploit the field-aligned character of turbulence and can
thus only be used for small to medium sized tokamaks due
to both strong numerical diffusion and extreme computational
cost [38, 39]. An alternative approach is the so-called flux-
coordinate independent approach [38, 40–42]. Here, the grid
is not field-aligned while at the same time the toroidal dir-
ection is resolved by only a few points. Turbulence simula-
tions of AUG were successfully performed with the GRILLIX
code [43, 44].

For the verification of codes the method of manufactured
solution is often used [33, 35, 37, 45]. This method tests if the
numerical solution produced by an implementation converges
with the expected order to a manufactured solution. In this
way (coding) mistakes of the type that prevent convergence
can be found. Of course, this does not necessarily guarantee
that any given simulation is indeed converged or free from
any other systematic errors. An instructive counter-example
is applying an explicit Euler method to the Kepler problem as
outlined in [46]. While the method is convergent, the numer-
ical energy theorem is not fulfilled and the solution is qual-
itatively wrong. Another problem is convergence in a turbu-
lent system. Consider that even in two-dimensional turbulence
simulations numerical errors on the order of machine precision
exponentially increase to order one within a short period of

2



Plasma Phys. Control. Fusion 66 (2024) 065003 M Wiesenberger and M Held

time [47]. This is fundamentally due to the turbulent nature
of the underlying model and not an issue of the numerical
implementation. Thus, turbulence simulations due to their very
nature cannot reach pointwise convergence after sufficiently
long simulation time. We thus advocate to not only consider
convergence of a numerical scheme. Properties like structure,
volume or energy preservation may be equally important and
help ascertain that an obtained numerical solution is indeed
physical.

In this contribution we address the above challenges in a
new version of the simulation code FELTOR [47, 48]. As
opposed to the drift-fluid models discretized in the mentioned
GRILLIX, TOKAM-3X, GBS and STORM codes FELTOR
discretizes a full-F gyro-fluid model and thus benefits from
finite Larmor radius effects, an exact energy conservation law
and consistent particle drifts. Polarization effects are taken
in the long wavelength limit in order to avoid inversion of
an operator function [16, 49]. Similar to the GRILLIX code
FELTOR uses an FCI scheme for its parallel dynamics but in a
recently upgraded finite volume FCI formulation [42] that has
significantly improved conservation properties compared to
previous versions [38, 40, 41]. For the perpendicular dynam-
ics FELTOR chooses discontinuous Galerkin methods [50, 51]
in contrast to the above codes, which rely on finite differ-
ence methods. FELTOR is the only code among the mentioned
ones that is fully ported to GPUs using a platform independent
MPI+X implementation. Recently, all the above codes includ-
ing FELTOR were part of a validation effort in TORPEX and
TCV [52, 53].

FELTOR allows stable simulations encompassing several
milliseconds of turbulent dynamics. In a parameter scan
with 12 simulations we vary the plasma resistivity and the
ion to electron temperature ratio. We present techniques for
three-dimensional visualisations using ray-tracing in order
to gain visual intuition of the magnetic field, the density
and the parallel current. In particular the field-alignment
of turbulent fluctuations with L∥ ≪ L⊥ is visible. In order
to quantitatively analyse the simulation data we introduce
the flux-surface averages and integration. Numerically, these
are accurately computed by transforming on a flux-aligned
grid [42]. We discuss flux-surface averaged density and fluc-
tuation profiles. Afterwards, we focus on an error analysis
of the implementation. Specifically, we quantify errors in
exact analytical conservation laws. These include mass, par-
allel momentum and energy conservation as well as the elec-
tron force balance. We suggest to use volume and time
integration to define a numerical error of simulation results.
At the same time we are able to identify the largest and
most important terms in each of the mentioned conserva-
tion equations and further in the total parallel momentum
balance. Applied to the mass and energy conservation, we
can compute and discuss the mass and energy confinement
times. The latter relate back to our initial statement of con-
finement being an important goal for the magnetic fusion
devices.

This work is structured as follows. In section 2 we present
the gyro-fluid model including resistivity and diffusive terms,
the density source and boundary conditions as well as a
description of the magnetic field. A parameter scan over
plasma resistivity and ion temperature is setup for model sim-
ulations of the COMPASS tokamak in section 3 discussing the
COMPASS magnetic field and the exact physical parameters
in use. Further, we present computational performance meas-
urements of our GPU implementation. In section 4 we present
the results. We discuss three-dimensional visualisations and
density and fluctuation profiles. In particular, here we show
the numerical errors of mass, energy, ion momentum and par-
allel force balance. Finally, we discuss particle and energy con-
finement times computed from previously analysed terms in
the mass and energy conservation equations. We conclude in
section 5.

2. The model

In the following we denote ϕ as the electric potential, A∥
the parallel magnetic potential, m the species mass, q the
species charge, T the constant species temperature, N the
gyro-centre density, U∥ the gyro-centre parallel velocity,

b̂ the magnetic unit vector field and B the magnetic field
strength. Note that all species dependent quantities m, q,
N, U∥, T have an implied species index s that we omit
in the notation. We define two magnetic field curvature
vectors

K∇×b̂ :=
1
B
(∇× b̂), (1)

K∇B :=
1
B
(b̂×∇ lnB), (2)

as well as perpendicular and parallel derivatives

∇⊥ :=− b̂× (b̂×∇), ∆⊥ :=∇ ·∇⊥, (3)

∇∥ :=b̂ ·∇, ∆∥ :=∇ · b̂b̂ ·∇. (4)

Notice the formulary in appendix A and the supplementary
material in appendix B, which includes code documentation
showing further details of the model.

2.1. Gyro-fluid moment equations

The gyro-centre continuity and parallel momentum conserva-
tion equations read for each species [17, 19, 54, 55] (omitting
the species label)

∂

∂t
N+∇ · JN = ΛN+ SN, (5)

∂

∂t

(
mNU∥

)
+ qN

∂

∂t
A∥ +∇ · JmNU

= FmNU,∇B+FmNU,ψ +R∥ +ΛmNU. (6)
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The model is isothermal with constant temperature T for each
species. The system is closed by the parallel Ampere law

−µ0∆⊥A∥ =
∑
s

qNU∥ (7)

and the polarisation equation∑
s

[
qΓ1N+∇ ·

(
mN
B2

∇⊥ϕ

)]
= 0, (8)

where we sum over all species. We have the density current

JN : = NU∥(b̂+ b⊥)+N
b̂×∇ψ

B

+
NT+mNU2

∥

q
K∇×b̂+

NT
q
K∇B, (9)

momentum current

JmNU : = (mNU2
∥ +NT)(b̂+ b⊥)

+mNU∥
b̂×∇ψ

B

+m
3U∥NT+mNU3

∥

q
K∇×b̂

+m
U∥NT

q
K∇B (10)

and the electric and mirror force terms

FmNU,ψ =− qN(b̂+ b⊥) ·∇ψ

−mNU∥K∇×b̂ ·∇ψ , (11)

FmNU,∇B =−NT(b̂+ b⊥) ·∇ lnB

−m
U∥NT

q
K∇×b̂ ·∇ lnB. (12)

The definition of the diffusive terms ΛN and ΛmNU and the res-
istivity R∥ are shown in section 2.2 while the gyro-centre dens-
ity source term SN is defined in section 2.3. No source is added
in the parallel momentum equation. We use

Γ1 :=

(
1− ρ20

2
∆⊥

)−1

, ρ20 :=
mT

q2B2
0

, (13)

b⊥ :=
∇×A∥b̂

B
= A∥K∇×b̂+

∇A∥ × b̂

B
, (14)

ψ :=Γ1 (ϕ)−
m

2qB2
|∇⊥ϕ|2. (15)

These are the Padé approximated gyro-average operator Γ1

with thermal gyro-radius ρ0, the perpendicular magnetic field
perturbation b⊥, the gyro-centre potential ψ and temperature
T.

We keep a 2nd order accurate gyro-averaging operator Γ1

independent of particle position that closely mimics an expo-
nential to arbitrary order [19]. The polarisation in the second
term in equation (8) is taken in a long wavelength limit. Finite

Larmor radius effects in the parallel magnetic potential A∥ can
be neglected [56].

In equation (9) we can identify the density flux parallel to
the magnetic field b̂ perturbed by magnetic fluctuations b⊥,
followed by the E×B, the curvature and the grad-B drifts.

The first term in the momentum current equation (10) con-
sists of the parallel momentum current quadratic in the parallel
velocity U∥. This term is an expression of Burger’s term and
can lead to shocks if no parallel viscosity was added to the
system. The term ∇ · (NT(b̂+ b⊥)) stemming from ∇ · JmNU
with JmNU from equation (10) can be combined with the mir-
ror force NT(b̂+ b⊥) ·∇ lnB in equation (12) to yield the
familiar pressure gradient (b̂+ b⊥) ·∇(NT) with the identity
∇ · (b̂+ b⊥) =−(b̂+ b⊥) ·∇ lnB. Further, in equation (10)
we have the E×B and curvature drift transport of parallel
momentum. In the parallel electric force equation (11) we have
the parallel and perturbed gradients of the gyro-centre elec-
tric potential ψ together with a correction due to the magnetic
curvature. Even though the latter term is small it must be kept
to guarantee energetic consistency. The equivalent correction
also appears in the mirror force term equation (12).

2.1.1. Electron-ion plasma. Even though themodel is formu-
lated inherently as a multi-species model we here only treat an
electron-ion plasma, specifically with Deuteron ions (qi = e,
mi ≈ 2mp with mp the proton mass). The model can also be
used to simulate electron–positron plasmas [57].Multi-species
gyro-fluid simulations were presented in [58, 59].

We take the electron gyro-radius to be zero ρ0,e = 0 and
thus have [14, 15]

Γ1,e = 1, ψe = ϕ. (16)

This is combined with neglecting the electron mass in the
polarisation equation, which thus reads

−ene+ qΓ1,iNi +∇ ·
(
miNi
B2

∇⊥ϕ

)
= 0. (17)

Note here that we denote the electron gyro-centre density as ne
and gyro-centre parallel velocity as u∥,e (as opposed to Ne and
U∥,e) to signify that these quantities coincide with the actual
fluid particle density and parallel particle velocity.

2.1.2. Toroidal field line approximation. First, we employ
cylindrical coordinates (R,Z,φ), with φ anti directed to the
geometric toroidal angle (clockwise if viewed from above) to
obtain a right handed system.We denote êφ as the toroidal unit
vector. We then approximate b̂≈±êφ in all terms that relate
to the perpendicular dynamics, (i.e. all terms involving a cross
product e.g. terms of the form ∇ · ( f b̂× v), ∆⊥f, curvature
operators, etc), which we denote as the toroidal field approx-
imation [54, 55]. We retain b̂ in all terms relating to the paral-
lel dynamics (∇ · (b̂f),−T∇∥N,∆∥f, etc). Note that we allow

the negative sign b̂≈−êφ for the case bφ < 0. This approx-
imation effectively renders the drift-planes equal to planes of
constant toroidal angle φ.
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Technically, the approximation is justified by using the
flute-mode ordering k∥ ≪ k⊥ [2] as well as neglecting terms
that are second order in the magnetic field pitch angle ϑ

b̂ · êφ =:±cos(ϑ) . (18)

where the negative sign applies if bφ < 0. We have

êφ =± 1
cos(ϑ)

(
b̂− bRêR− bZêZ

)
(19)

therefore

êφ ·∇f =±
(
−bR∂R f − bZ∂Z f

)
+O

(
ϑ2,k∥/k⊥

)
. (20)

Note that (bR)2 +(bZ)2 = sin2(ϑ). In this way one can determ-
ine derivatives in a locally aligned coordinate system êR,
êZ, b̂ and proceed to neglecting terms of order O(ϑ2) and
O(k∥/k⊥). For example we have terms of the form

∇ ·

(
g
b̂×∇f
B

)
= gK ·∇f +

b̂×∇f
B

·∇g

for functions f and g and K :=∇× (b̂/B) = K∇×b̂+K∇B.
Starting with the exact formula equation (A.9) we can insert
the above expressions (19) and (20) and obtain in our ordering

b̂×∇f ·∇g≈± 1
R

(
∂f
∂R

∂g
∂Z

− ∂f
∂Z

∂g
∂R

)
=±êφ ×∇f ·∇g=±êφ · (∇f ×∇g) (21)

with higher order corrections in ϑ2 and k∥/k⊥. Similarly in the
same ordering we have

∆⊥f ≈
1
R
∂

∂R

(
R
∂f
∂R

)
+

∂

∂Z

(
∂f
∂Z

)
. (22)

The curl of b̂ reduces to∇× b̂≈−±1
R êZ. The curvature oper-

ators are simplified to:

K∇×b̂ ≈−±1
BR

êZ,

K∇B ≈−±1
B2

∂B
∂Z

êR+
±1
B2

∂B
∂R

êZ (23)

and

∇ ·K∇×b̂ =
±1
RB2

∂B
∂Z

=−∇ ·K∇B, (24)

which maintains a vanishing divergence of the total curvature
∇ ·K= 0. As is pointed out in [54, 55] this quality is important
to maintain energetic consistency in the model.

The toroidal field approximation is motivated computa-
tionally. The unapproximated terms (see appendix A) contain
derivatives in the φ direction. From equation (20) we see that
in flute mode ordering we have kφ ∼ kR,kZ. This means that in
order to accurately compute the φ derivative, the φ direction
must have a similar resolution as the R and Z direction, which

is highly undesirable because it is computationally expensive.
In the given ordering all derivatives are in R and Z only, inde-
pendent of the resolution in φ. Importantly, the φ direction
can then be trivially parallelized in an implementation of the
model. In fact, this is very similar to why a direct discretiza-
tion of ∇∥f = b̂ ·∇f = bR∂Rf + bZ∂Zf + bφ ∂φ f is inferior to
using an aligned scheme like FCI. Computing ∂φ requires a
very high resolution in φ, which the FCI scheme avoids [38,
39, 42].

2.2. Resistivity and diffusive terms

Here, we discuss the terms ΛN in equation (5) and ΛmNU , R∥
in equation (6). These terms take the form

ΛN : =−µN,⊥ (−∆⊥)
2N+µN,∥∆∥N≡−∇ · jN,ν , (25)

with jN,ν :=−µN,⊥∇⊥(−∆⊥N)−µN,∥b̂∇∥N,

ΛmNU : =−µU,⊥ (−∆⊥)
2U∥ +µ∥∆∥U∥

−∇ ·
(
mU∥ jN,ν

)
, (26)

and

R∥ :=− η∥eqne
(
NiU∥,i− neu∥,e

)
. (27)

We first notice that the diffusion terms have the form
of total divergences ΛN =−∇ · jN,ν and ΛmNU =:−∇ ·
(̄jmNU,ν +mU∥jN,ν). Under volume integration these terms
vanish modulo surface terms, which is important for mass
and momentum conservation. Second, we notice the term
−∇ · (mUjν,N) in the momentum diffusion (26) has the form
of a velocity convection. This is a correction term that prevents
energy from being generated by mass diffusion as we will see
explicitly in section 4.3.2 and was suggested by for example
[42, 60].

The consistent treatment of the diffusive terms is partic-
ularly important for the parallel ion momentum equation.
The alternative variant ΛmNU,∥ := µ∥∆∥U∥ +µN,∥mU∥∆∥N
has the advantage that in velocity formulation ΛU,∥ =
µ∥∆∥U∥/(mN) simplifies [43]. However, in this formulation
the term µN,∥mU∥∆∥N unphysically generates momentum,
leading to artificial toroidal rotation after a long enough simu-
lation time. Other works on drift-fluid models completely neg-
lect the parallel ion and electron viscosities [35–37].

In equations (25) and (26), µN,⊥ and µU,⊥ are ad-hoc artifi-
cial numerical diffusion coefficients that are added to stabilize
perpendicular advection and are thought to be small. In the
same sense µN,∥ represents artificial parallel diffusion neces-
sary to stabilize the parallel advection [42].

The parallel velocity difference u∥,i− u∥,e := (NiU∥,i−
neu∥,e)/ne determines the parallel resistive term R∥ in
equation (27). The term is positive for electrons with qe =−e
and negative for ions with qi = e. This form both conserves
parallel momentum and vanishes for zero current but leads to a
quadratic energy dissipation term only in the long-wavelength
limit as we discuss in section 4.3.2.
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For the parallel viscosity µ∥ and the parallel res-
istivity η∥ we use the parallel resistive and vis-
cous terms from the Braginskii fluid equations [20].
The electron-ion and ion-ion collision frequencies
are given by νei =

√
2z2e4 lnΛne/(12π3/2√meϵ

2
0T

3/2
e ),

νee = νei/
√
2 and νii = z4e4 lnΛni /(12π3/2√miϵ

2
0T

3/2
i ) =

νei
√
me/mi/((Ti/Te)3/2

√
2). We define with the parallel

Spitzer resistivity η∥ := 0.51meνei
nee2

and the parallel electron

and ion viscosities µ∥,e := 0.73 neTeνei
and µ∥,i = 0.96 niTiνii [20]

the dimensionless parameter

η :=
en0η∥
B0

= 0.51
νei,0
Ωe0

= 8.45 · 10−5 lnλ
( n0
1019 m3

)( Te
eV

)−3/2(B0

T

)−1

, (28)

with νei,0 := νei(n0,Te) as well as

ν∥,e :=
µ∥,e

men0ρ2sΩi0
= 0.73

Ωe0

νei,0
=

0.37
η
, (29)

ν∥,i :=
µ∥,i

mi n0ρ2sΩi0
= 0.96

Ωi0

νii,0
=

(
Ti
Te

)3/2√me

mi

0.69
η
, (30)

with lnλ≈ 10, Ωi0 = eB0/mi the ion gyro-frequency and
Ωe0 = eB0/me the electron gyro-frequency. Finally, in order
to prevent unreasonably small simulation timestep we need to
impose a maximum and minimum on ν∥,e and ν∥,i:

ν∥,e =min

(
0.37
η
,
0.37
10−4

)
, (31a)

ν∥,i =min

(
max

(√
me

mi

0.69
10−4

,

(
Ti
Te

)3/2√me

mi

0.69
η

)
,

0.37
10−4

)
. (31b)

We emphasize that this restriction is numericallymotivated.
The physical implications of equation (31) are discussed in
section 4.

2.3. Sources

We provide a constant (in time), toroidally symmetric influx
of particles. For electrons the source term SN in equation (5)
becomes

Sne (R,Z) = ωsns (R,Z) , (32)

where ωs is the source strength parameter (with unit 1/s) and
ns(R,Z) is an in principle arbitrary toroidally symmetric pro-
file, which we discuss further in section 3.2. In order to not
generate potential with the source term the ion gyro-centre

source needs to fulfill Sne = Γ1,iSNi +∇ ·
(
mi SNi
eB2 ∇⊥ϕ

)
for

given particle source Sne and potential ϕ, which follows from
a time derivative of equation (8). We were unable to invert this

equation numerically. Only in the long wavelength limit can it
be inverted to yield the approximation [25]

SNi ≈
(
1− 1

2
ρ20i∆⊥

)
Sne −∇ ·

(
mi Sne
eB2

∇⊥ϕ

)
. (33)

The long wavelength limit should be well-fulfilled for the
source strengths we use in this work since the amplitude ωs
is typically quite small. Note that the additional terms besides
Sne in equation (33) are total divergences, whichmeans they do
not contribute to the volume integrated total particle number
created by the source

´
dVSNi =

´
dVSne , where we integrate

over the entire simulation volume. The surface terms are zero
assuming that Sne vanishes on the surface.

A second task of the source SN is to globally ensure a min-
imum density. This is required since through sheath dissipa-
tion the density can in principle become arbitrarily close to
zero. This is, however, both detrimental to the stability of the
simulation as well as the CFL condition (and thus the allowed
time step) of the simulation and in reality also never hap-
pens due to e.g. wall-recycling. For both electrons and ions
we choose the additional source term

SN,min =−ωmin (N− nmin)Hα/2 (nmin −α/2−N) , (34)

where Hα(x) is a continuously differentiable approximation
to the Heaviside function with width α. The Heaviside func-
tion ensures that this source term only acts when the dens-
ity is below the lower limit. In our simulations we choose
ωmin =Ωi0, nmin = 0.2n0, α= 0.05n0.

2.4. Boundary conditions

Following [43] we setup boundary conditions with the
immersed boundary method using volume penalization [61].
In order to do this we first formally define a wall function

χw (x) =

{
1 for x ∈ Ωw

0 else
, (35)

where Ωw is the wall domain. Analogously, a sheath function
χs can be defined using a sheath domain Ωs. Both χw and χs
are further specified in section 3.1. We have Ωs ∩Ωw = ∅. We
can then enforce boundary conditions on the wall and sheath
by

∂

∂t
N= FN (1−χs−χw)−ωsχs (N−Nsh)

−ωwχw (N−Nw) , (36a)

∂

∂t

(
mU∥ + qA∥

)
=
mFmNU−mU∥FN

N
(1−χs−χw)

−mωsχs
(
U∥ −U∥,sh

)
−mωwχw

(
U∥ −U∥,w

)
, (36b)

where FN :=−∇ · jN−∇ · JN+ΛN+ SN follows from
equation (5) and FmNU =−∇ · JmNU+FmNU,∇B+FmNU,ψ +
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R∥ +ΛmNU follows from equation (6). We choose ωs = 5 and
ωw = 0.01. The polarization equation is penalized according
to the immersed boundary method

−∇ ·
(
Ni
B2

∇⊥ϕ

)
= (Γ1,iNi − ne)(1−χw−χs) . (37)

We do not penalize the parallel Ampere law due to numerical
stability.

We choose the wall conditions Nw = 0.2n0 and U∥,w = 0.
Further, we have ϕw = 0 and∇⊥A∥,w = 0 for the electric and
magnetic potential. The latter two are however only enforced
at the domain boundaries rather than through a penalization
method. We have the insulating sheath boundary conditions

U∥,i,sh =±
√
Te+Ti
mi

, u∥,e,sh = U∥,i,shNi/ne. (38)

Nsh is chosen such that∇∥N|sh = 0 for both electrons and ions.
We remind the reader that Te and Ti are constants in our model.

2.5. The magnetic field

This section discusses FELTOR’s general capabilities to rep-
resent toroidally symmetric magnetic fields. The specific mag-
netic field used for the main physical discussion in section 4 is
presented in section 3.1.

In cylindrical coordinates the general axisymmetric mag-
netic field obeying anMHD equilibrium (µ0 j=∇×B,∇p=
j×B) can be written as [62]

B=
1
R

[
I(ψp) êφ+

∂ψp
∂Z

êR−
∂ψp
∂R

êZ

]
. (39)

Here, ψp is the poloidal flux function and I(ψp) is the current
stream function. For the sake of clarity we define the poloidal

magnetic fieldBp = 1
R

(
∂ψp

∂Z êR−
∂ψp

∂R êZ
)
and the toroidal mag-

netic field Bt = I
R êφ.

Note that with a typically convex function ψp (second
derivative is positive), I(ψp)> 0 and the previously defined
coordinate system the field line winding is a left handed screw
in the positive êφ-direction. Also note that thenB×∇B points
down, which for a lower single null configuration is towards
the magnetic X-point, and we have the favourable drift dir-
ection (in experiments H-mode is reached more easily in this
configuration [32, 63, 64]).

We have the contravariant components of B

BR =
1
R
∂ψp
∂Z

, BZ =− 1
R
∂ψp
∂R

, Bφ =
I
R2

(40)

and the covariant components BR = BR, BZ = BZ and Bφ =
R2Bφ. By construction we have ∂φB= 0 with

B=
1
R

√
I2 + |∇ψp|2. (41)

In FELTOR we have various ways to represent the flux func-
tion ψp and its derivatives. In this work we use a general solu-
tion to the Grad-Shafranov equation using Solov’ev pressure
and current profiles [65, 66]

ψp (R,Z) = PψB0R
2
0

[
A

(
1
2
R̄2 ln R̄− 1

8
R̄4

)
+

1
8
R̄4

+
12∑
i=1

ciψ̄pi (R̄, Z̄)

]
, (42a)

I(ψp) = PIB0R0

√
−2A

ψp
PψB0R2

0

+ 1, (42b)

with A, Pψ free constants, PI =±Pψ for A ̸= 0 and PI arbit-
rary for A= 0 (purely toroidal equilibrium current). We intro-
duce R̄≡ R/R0 and Z̄≡ Z/R0 where R0 is the major radius and
B0 is a reference magnetic field strength. The dimensionless
base functions ψ̄pi are listed in [65].

Since equations (42) are given in terms of analytical base
functions we can numerically evaluate ψp(R,Z) and I(ψp)
and all their derivatives at arbitrary points to machine pre-
cision, which is simple to implement and fast to execute.
This translates to an exact representation of the magnetic field
and related quantities, for example curvature (23), in code. In
particular, the X-point(s) and O-point can be determined to
machine precision via a few Newton iterations.

The choice of the coefficients ci andA determines the actual
form of the magnetic field. We can for example represent
single and asymmetric double X-point configurations, force-
free states, field reversed configurations and low and high beta
tokamak equilibria [65, 66]. The scaling factors Pψ and PI are
mainly introduced to maximize the flexibility e.g. to adapt the
solution to experimental equilibria or to reverse the sign of the
magnetic field. If one or more X-points are present, we choose
c1 such that ψp(RX,ZX) = 0 for the X-point closest to the O-
point that is the separatrix is given by ψp(R,Z) = 0.

3. Simulation setup

3.1. The magnetic flux, the wall and the sheath

The first step in setting up a simulation with FELTOR is
to choose an appropriate magnetic field. In this work we
choose to model the COMPASS tokamak and fit the mag-
netic flux function described in [67] with a Solov’ev equilib-
rium described in equation (42). One X-point is situated at
RX = 460 mm, ZX =−330 mm with ψp(RX,ZX) = 0 and the
O-point is situated at RO = 568.78 mm, ZO = 32.69 mm with
ψp,O := ψp(RO,ZO) =−18.76ρsR0B0 (found with a few itera-
tions of a Newton solver). In figure 1(a) we plot the normalized
poloidal flux

ρp =

√
ψp,O−ψp
ψp,O

. (43)

In figure 1(b) we plot the chosen wall and sheath func-
tions χw and χs, which signify the penalization regions
for the immersed boundary conditions in equation (36) and
equation (37). The wall region is given simply as a flux aligned

7
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Figure 1. Calibration of the simulation box. The normalized magnetic flux ρp =
√

(ψp,O−ψp)/ψp,O on the left and the wall and sheath
regions on the right. The magnetic flux ψp is modified to a constant inside the wall region. On the right plot colours range linearly from 0 to
1. Two contour lines indicating the wall at ρp = 0.97 in the private flux region and ρp = 1.15 in the scrape-off layer region are plotted in
solid black lines. The separatrix ρp = 1 and the boundary of the source region at ρp = 0.55 in the core are plotted in black dashed lines.

region

χw (R,Z) =


1 if ρp (R,Z)> ρw∨

(ρp (R,Z)< ρF ∧Z< ZX)

0 else

. (44)

Here we choose ρw = 1.15 for the scrape-off layer and the
private flux region at ρF = 0.97. For the sheath region we first
define an angular distanceφw of each point (R,Z) to the bound-
ing box via the integration of

dR
dφ

=
bR

bφ
,

dZ
dφ

=
bZ

bφ
, (45)

with initial condition (R,Z) until R((φw),Z(φw)) intersects the
bounding box. The intersection can be found with a bisection
algorithm. The sheath is then given by

χs (R,Z) :=

{
1 if φw (R,Z)< φs

0 else
, (46)

where we choose φs = 14π/32. Note that for numerical reas-
ons we implement a continuously differentiable transition at
the boundary of the regions Ωw and Ωs.

Both plots in figure 1 show the numerical simulation
domain in the R-Z region as [R0,R1]× [Z0,Z1].

3.2. Initial profiles and sources

To initialize our simulation we choose

N(R,Z,φ,0) = nprof (R,Z)

:= (npeak − nsep)
ψp (R,Z)
ψp,O

+ nsep, (47)

equal for both electrons and ions such that the profile given
in [67] is approximately reproduced with a peak density of
npeak = 8.5 · 1019 m−3 and a separatrix density of nsep = 1019

m−3. In the SOL the profile exponentially decreases to the
background density of nmin = 0.2 · 1019 m−3.

The initial parallel velocity for both electrons and ions is
zero everywhere except in the scrape-off layer where it var-
ies linearly between ±

√
(Te+Ti)/mi with the sheath angle

coordinate φw defined in equation (45). This is to conform to
the sheath boundary conditions in equation (38).

The velocity profile is initially symmetric in φ while the
toroidally symmetric density profile is perturbed by small fluc-
tuations in order to trigger turbulence.

We define the source profile in equation (32) as

ns (R,Z) : = nprof (R,Z)D(R,Z) ,

D(R,Z) : = Hα (ρp,b− ρp (R,Z))

H(Z−ZX) . (48)

We choose ρp,b = 0.55 for the source region, which is depicted
as a dashed line figure 1. This form for the source is mainly
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intended to keep a fixed profile in the core region of our simu-
lations and keep the total particle number inside the confined
region constant.

3.3. The q-profile

We follow the methods presented in [68] and define the geo-
metric poloidal angle Θ as the field-line following parameter
around the O-point

Θ=

{
+arccos [(R−RO)/r] for Z⩾ ZO
−arccos [(R−RO)/r] for Z< ZO

,

with r2 := (R−RO)2 +(Z−ZO)2. Θ increases anti-
clockwise. We then have with B given by equation (39)
BΘ = B ·∇Θ=−(ψR(R−RO)+ψZ(Z−ZO))/(r2R). We
can then directly integrate any field-line as

dR
dΘ

=
BR

BΘ
,

dZ
dΘ

=
BZ

BΘ
,

dφ
dΘ

=
Bφ

BΘ
,

from Θ= 0 to Θ= 2π. The safety factor results via

q≡ 1
2π

˛
Bφ

BΘ
dΘ. (49)

With our chosen orientation of the Θ and φ angles the
safety factor is positive for a right-handed field winding and
negative for left-handed winding [62]. Figure 2 shows the
(absolute) q-profile of the chosen equilibrium. As expected
the q-profile diverges at the separatrix situated at ρp = 1.
This is because BΘ = 0 at the X-point and thus the integra-
tion in equation (49) diverges. At the O-point around ρp =
0 the q-profile converges to a finite value q≈ 1.9. In the
domain between ρp = 0.4 and ρp = 0.9 the value of q lies
between 2 and 3.

3.4. A parameter scan

A dimensional analysis of our equations outlined in section 2
shows that (disregarding numerical diffusion parameters)
there are 6 free physical parameters: major radius R0, electron
temperature Te, ion temperature Ti, reference density n0, ref-
erence magnetic field strength B0, and ion massmi that map to
only 5 dimensionless parameters: τ = Te/Ti, η (as defined in
equation (28)), µ= me/mi, β = n0Te/µ0B2

0, and R̄0 = R0/ρs.
A priori, each simulation thus represents a one-dimensional
set of physical parameters, however, the map can be made
invertible by fixing the major radius (R0 = 0.545 m in our
work).

We setup parameters for in total 12 simulations as two
sets of 6 simulations each. The first set uses Ti = 0 while
the second set uses Ti = Te. The 6 simulations within each
set vary the dimensionless plasma resistivity η equation (28),
while keeping the plasma density n0 = 1019 m−3 and ρs =
1 mm constant (as well as major radius R0 = 0.545 m and ion
mass mi = 2mp, the mass of the Deuteron). This is achieved
by changing the electron temperature Te (to set η) and the

Figure 2. The (absolute) q-profile as a function of the normalized
poloidal flux ρp (43). q diverges at it approaches ρp = 1 (the
separatrix) but converges to a finite value q≈ 1.9 at ρp = 0 (the
O-point).

magnetic field strength B0 (to keep ρs ∝
√
Te/B0 constant)

as shown in table 1. This results in a constant value for the
plasma beta β := n0Te/(B2/(2µ0)) = 10−4. Note that with a
magnetic field strength between 0.8 T and 2.1 T and typical
temperature profiles between 20 eV in the SOL and 100 eV
in the edge, the COMPASS experimental values for resistivity
lie somewhere in the range 4 · 10−7 < ηexp < 1.2 · 10−5 [67].
The source strength parameter ωs in equation (32) is constant
for the duration of each simulation and chosen (differently
for each simulation) such that the volume integrated source
roughly matches the total density flux out of the last closed
flux-surface.

We set the dimensionless parallel density diffusion neces-
sary for numerical stability of the FCI scheme to a constant
value ν∥,N = 500. The perpendicular hyper-diffusion coeffi-
cients are set to ν⊥,N = ν⊥,U = 10−3.

The simulation domain is a rectangle in the R-Z plane
chosen such that the closed field line region as well as the SOL,
wall and sheath regions are captured as displayed in figure 1.
It is important for the stability of the FCI scheme that the
boundary of the wall region does not intersect the boundary
of the simulation domain except at the sheath region. This is
because boundaries that are neither perpendicular nor parallel
to b̂ are difficult to resolve for the FCI scheme and a primary
source of instability in the code such that we would like to
avoid them as much as possible. The domain is symmetric in
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Table 1. Parameters corresponding to varying the dimensionless plasma resistivity η equation (28) while keeping n0 = 1019 m−3 and
ρs = 1 mm constant. This results in constant β = 10−4 and various B0 and Te values. The source strength parameter ω0

s in equation (32)
corresponds to Ti = 0 simulations while ω1

s corresponds to Ti = Te simulations. We select B0 ∝ η−1/4 and Te ∝ η−1/2.

η B0/T Te/eV ω0
s /kHz ω1

s /kHz

1.00× 10−6 1.27 77.76 1.53 1.53
3.00× 10−6 0.97 44.90 1.39 1.39
1.00× 10−5 0.72 24.59 1.20 1.20
3.00× 10−5 0.54 14.20 1.30 1.30
1.00× 10−4 0.40 7.78 1.35 1.93
3.00× 10−4 0.31 4.49 2.35 2.93

Table 2. Simulation end times in units of Ω−1
i0 and in physical units reached after an equal amount of simulation time for all parameters.

Simulations are run on 16 NVidia V100 GPUs.

Ti = 0 Ti = Te

η tend/Ω
−1
i0 tend/ms tend/Ω

−1
i0 tend/ms

1.00× 10−6 110 400 1.81 111 800 1.83
3.00× 10−6 110 200 2.38 111 200 2.40
1.00× 10−5 97 500 2.84 88 800 2.59
3.00× 10−5 100 000 3.83 100 000 3.83
1.00× 10−4 89 165 4.62 100 000 5.18
3.00× 10−4 100 000 6.82 99 800 6.80

the φ direction. The resolution is chosen as 192 cells in R and
336 cells in Z direction with 3 polynomial coefficients in each
cell in both R and Z. The number ratio NR/NZ corresponds
approximately to the aspect ratio of the simulation domain
such that the grid cells are square in R-Z and the distance
between neighbouring points is h≈ 0.8ρs. In φ we choose
32 planes. In total we thus have 576 · 1008 · 32≈ 2 · 107 grid
points. Each simulation is run to roughly the same end time of
100000 Ω−1

i0 with exact values displayed in table 2. The value
100000 is chosen as a compromise between a short simulation
wall time (of about a week) and a long enough, i.e. statistic-
ally significant, time series for our analysis in the following
section 4. The end-time in units of ms is however different for
each simulation and depends on the magnetic field strength
corresponding to the chosen resistivity as depicted in table 1.
Since we keep ρs ∝

√
Te/B0 constant, changing the elec-

tron temperature Te yields a corresponding change in B0 and
thus Ωi0.

3.5. Performance observations

The given resolution of 2 · 107 grid points corresponds to an
array size of 150 MB for each of the density, velocity and
potential variables.With simulation data written to file at every
150 Ω−1

i0 the total file size of one simulation is about 500
GB. The grid size is of similar order of magnitude as other
fluid-type simulation runs [35, 44] but is a factor 10 larger
than the spatial grid size of some of the largest (computation-
ally) gyro-kinetic runs [69, 70]. We assume that a gyro-fluid
model does not differ much in the spatial resolution require-
ment from its underlying gyro-kinetic model. At the same time

Table 3. Average computational time per Ω−1
i0 in seconds. A

runtime of 6 s per Ω−1
i0 corresponds to a total simulation time of 7

days for 100000 Ω−1
i0 .

η tcomp(Ti = 0)/s tcomp(Ti = Te)/s

1.00× 10−6 5.3 ± 0.7 5.3 ± 0.2
3.00× 10−6 5.3 ± 0.8 5.3 ± 0.2
1.00× 10−5 5.6 ± 1.0 6.6 ± 0.3
3.00× 10−5 7.2 ± 0.2 7.4 ± 0.6
1.00× 10−4 4.6 ± 0.6 5.4 ± 0.4
3.00× 10−4 6.1 ± 0.4 8.3 ± 0.2

the velocity space resolution of a gyro-kinetic code is about
103 grid points [69]. A hypothetical gyro-kinetic code con-
taining our model as a limit would thus require a resolution
of 2 · 1010 grid points to repeat simulations presented here.
The expense in computational resources would likewise be
about 1000 times higher compared to what is used in this work
underlining the computational advantage of the gyro-fluid
approach.

Our simulations were run on 16 NVidia V100 GPUs (equi-
valent to 4 nodes on the M100 GPU cluster). In table 3 we
present the average runtime in seconds per Ω−1

i0 for each sim-
ulation with the error being the standard deviation. These tim-
ings include the times for input/output and diagnostics but
exclude the times for initialization and restarting of the code.
Typically, we achieve a computation time of 6± 1 s per Ω−1

i0
but outliers at 4.6± 0.6 s and 8.3± 0.2 s exist. This corres-
ponds to a total simulation time of 7± 1 days for 100000Ω−1

i0 .
The differences may be due to slightly different viscosity
parameters that we chose to stabilize some simulations and
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subsequent smaller or larger simulation time steps. The evalu-
ation of a single right hand side of equations (5) and (6) includ-
ing solutions of all elliptic equations and evaluation of the par-
allel advection-diffusion terms takes about 0.20–0.25 s in all
simulations. The polarization equation (8) is solved in typic-
ally 0.05 s and less than 0.1 s. The right hand side on aver-
age has to be evaluated 24± 4 times per Ω−1

i0 in all simula-
tions corresponding to about (2.4± 0.4) · 106 evaluations per
simulation.

As pointed out in our performance study [47] the observed
code performance is bound by memory bandwidth and
memory latencies. We emphasize that due to our structured
grid approach our matrix-vector multiplications are almost
as fast as vector additions since the matrix elements can
be kept in cache. This and the major reduction in memory
requirements that comes with it are the major benefits over
unstructured grids. Of the total peak performance of 14400
GB s−1 our implementation (of vector addition, matrix-
vector multiplication, scalar products) reaches on average
70%. We can compare this to the conventional Skylake par-
tition on the Marconi cluster where one node has a theor-
etical peak bandwidth of 256 GB s−1 of which our imple-
mentation on average (vector addition, matrix-vector multi-
plications, scalar products) achieves 183 GB s−1. With 16
nodes we thus have an available throughput of 4096 GB
s−1, which is a factor 3.5 less than what is available on
4 nodes on the M100 cluster. We see about a factor 3 in
practice, i.e. a runtime of 15 s per Ω−1

i0 for the η = 10−4

simulations and approximately 0.7 s per right hand side
evaluation.

4. A study of resistivity and temperature

In this section we analyse the simulations previously setup in
section 3. In section 4.1 we show selected three-dimensional
renderings of the magnetic field, plasma density and parallel
current. Following this we establish the flux surface average
in section 4.2 as a diagnostics tool for a numerical error ana-
lysis of the simulations in section 4.3. We focus on the parallel
acceleration in section 4.4 and mass and energy confinement
in section 4.5.

4.1. Three-dimensional visualisations

Here, we present three-dimensional renderings of the mag-
netic field and the density and parallel current of the η = 10−4,
Ti = Te simulation. The ParaView visualisation toolkit [71] is
used and all results are rendered on a NVidia RTX3090 card.
Specifically, we use ray-tracing based on the OptiX path tracer
using 1000 progressive passes for each image.

In order to render the φ direction smoothly we face a chal-
lenge due to the low resolution of only 32 toroidal planes. To
solve the issue we temporarily extend the available data to
384 toroidal planes by interpolating along the magnetic field
lines with the methods presented in [68]. This allows for a
smooth visualisation of the field-line following structures but

the reader should keep in mind that the displayed data has been
extended in this way. After the visualisation is complete we
can free the used memory such that the memory consumption
remains negligible towards the total size of the simulation data.

4.1.1. Magnetic field. We begin by showing a three-
dimensional rendering of the magnetic streamlines in figure 3.
We use the streamline tracer module in ParaView [71] to integ-
rate magnetic field lines of equation (39). A low-opacity iso-
contour of ρp = 1.10 is plotted in order to remove spurious
visualisation artifacts. The colour scale is chosen from [72, 73]
and is used to represent the magnetic field strength following
the ‘dark-is-more’ bias [74] for easier interpretation.

The streamlines follow a left handed winding with the pos-
itive B direction clockwise if viewed from the top. Only mag-
netic streamlines in the scrape-off layer are visible, which ori-
ginate at the numerical divertor at the bottom. The magnetic
field strength is clearly higher on the interior side (high field
side) than on the outside (low field side) following the general
1/R dependence of equation (41). As mentioned in section 2.5
theB×∇B direction points towards themagnetic X-point and
we have a favourable drift direction.

4.1.2. Electron density. The electron density is depicted
in figure 4. Here, we create an iso-volume for ne/n0 ⩾ 0.22
between the angles 0 and 250◦ in the φ direction. This enables
the viewer to see both the field-alignment in the scrape-off
layer as well as a cross-section of the perpendicular turbulence
in the edge and core regions.

As a colour-scale we create a three-colour map with the
help of the ColorMoves tool [72] with transitions at 0.8
and between 6 and 7. The three colours can be interpreted
as visualisations of scrape-off layer (grey-blue), edge (red-
yellow) and core (brown-grey). Here, the core is the region
where our particle source is active (cf the dashed line in
figure 1). The motivation for choosing such a colour scale
for the density is the large data volume spanning almost
two orders of magnitude with relatively small fluctuations
on top. We follow the colour-name variation metric as pro-
moted by [75] as opposed to a colour scale that varies purely
in luminance say. The latter would help to visually estab-
lish order, that is darker regions correspond to higher density
values. However, we found no single-colour scale that could
span the large data volume while maintaining good colour
discriminability.

The scene itself shows the largest turbulent fluctuations
in the core and edge regions on the low field side, espe-
cially at the outboard midplane. Fluctuations on the high
field side are smaller in perpendicular extension. This points
towards a ballooning mode. Further, we notice that fluc-
tuations are highly elongated vertically at the top of the
domain as well as at the bottom around the X-point both
in the edge as well as the scrape-off layer. The scrape-
off layer fluctuations appear field aligned judging from
the form of the contours in between the two poloidal
planes.
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Figure 3. Streamlines of the magnetic field vector B integrated and visualised in ParaView [71]. One low-opacity iso-contour of ρp = 1.10
is plotted (corresponding to ψp = 4). The positive B direction is clockwise if viewed from above and the field-line winding is left-handed.
B×∇B points towards the magnetic X-point and we have a favourable drift direction.

Figure 4. The electron density ne at 5.18 ms for η = 10−4, Ti = Te = 7.8 eV and B0 = 0.4 T. We show an iso-volume of ne/n0 ⩾ 0.22 and
choose a wave colourmap constructed with the ColorMoves tool from [72] mapped to logarithmic density values. The three colour regions
(blue-grey, red-yellow and brown-grey) roughly coincide with the three regions scrape-off layer, edge and core/source region (cf
figure 1(b)). (A video for this figure is available).
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Figure 5. The parallel electric current j∥/(en0cs) at 5.18 ms for η = 10−4, Ti = Te = 7.8 eV and B0 = 0.4 T. We plot two isovolumes
j∥ ⩽−0.5en0cs and j∥ ⩾ 0.5en0cs. The colour-scale is cut at −1 and 1 respectively. A translucent contour of the separatrix ψp = 0 is shown.
Current mainly flows in field-aligned tubes. Each tube has a typical extension of 5 mm and thus carries approximately 25en0csρ2s ≈ 2.5 A.

4.1.3. Parallel current. The next visualisation is the paral-
lel current j∥ = e(NiU∥,i− eneu∥,e) in figure 5. We create two
separate iso-volumes for j∥: one for j∥/(en0cs)⩾ 0.5 and one
for j∥/(en0cs)⩽ 0.5. Here, we use cs =

√
Te/mi = 4.64 · 104

m s−1. Two separate colourmaps are chosen for each region; a
blue one for the negative and a red one for the positive values.
Both colourmaps begin at±0.5 and are truncated at±1 (actual
values lie between±4.7). In order to guide the viewer we plot
a low-opacity iso-contour of ρp = 1 (the separatrix).

The resulting image highlights the localized ‘field-aligned
tubes’ in which current flows in the simulation. These tubes
have a typical extension of about 5 mm and thus carry a cur-
rent of approximately 25en0csρ2s ≈ 2.5 A. It is further visible
that the current is positive (flow direction clockwise viewed
from above) mainly on the high-field side and negative mainly
on the low-field side. However, a couple of individual current
lines of the opposite signs are discernible in either region. Few
current lines exist in the scrape-off layer and only close to the
separatrix.

The large scale regions of positive and negative current on
the high- and low-field side could be a form of Pfirsch-Schlüter
current. A Pfirsch-Schlüter current is typically associated to
the parallel part of an equilibrium current. Now, the back-
ground magnetic field in equation (39) is externally given and
any equilibrium current that generates it is absent from our
model. At the same time the observed large-scale currents in
figure 5 lead to an associated magnetic potential A∥ that adds
a small poloidal magnetic field b⊥ equation (14) to the back-
ground field. With the toroidal field approximation 2.1.2 we
have

B⊥ = Bb⊥ =
1
R

[
∂
(
RA∥

)
∂Z

êR−
∂
(
RA∥

)
∂R

êZ

]
. (50)

A comparison with equation (39) reveals that ψp+RA∥ can
be viewed as a modified magnetic equilibrium flux function.
However, in a contour-plot RA∥ barely changes the contours of
ψp (see supplementary material in appendix B). We conclude
that the perturbation RA∥ of the flux-function is rather small.

4.2. The flux surface average—profiles and fluctuations

Before we can turn to an error analysis of our simulations we
first need to establish appropriate integration routines. More
specifically we here want to compute so called flux-surface
averages and integrals. The flux-surface average is defined as
a differential volume average according to [62]:

⟨ f⟩(ψp) : =
∂

∂v

ˆ
fdV, (51)

v(ψp,0) : =
ˆ
H(ψp (R,Z)−ψp,0)H(Z−ZX) dV, (52)

where H(x) is the Heaviside function. In order to accurately
integrate equations (51) and (52) we use themethods described
in [68]. The first step is to construct a flux aligned coordinate
system as we show in figure 6.

There are several numerical pitfalls that should be con-
sidered when numerically constructing a flux-aligned grid. As
pointed out in [68, 76] the volume element in flux-aligned
grids diverges and care must be taken when constructing such
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Figure 6. The flux-aligned grid (with 20× reduced resolution to
see the grid points) used for the computation of flux-surface
averages and flux-volume integration. The closed field line region Ω
for our analysis is shown in blue and contains a volume of 0.5 m3.
The grid allows for a definition of a flux-surface average outside the
separatrix.

grids close to the X-point. This is especially true if the flux-
surface average of the separatrix (or a surface close to it) is to
be computed. We follow [76, 77] for the construction of our
grid.

In flux-aligned coordinates η, ζ, φ the flux-surface average
simplifies to

⟨ f⟩= 1
2π
¸ √

gdη

‹ 2π

0
f(ζ (ψp) ,η,φ)

√
gdηdφ, (53)

where
√
g is the volume element in the flux aligned coordinate

system.
The numerical integration in the φ direction is straightfor-

ward. The resulting toroidal average can be interpolated onto
the flux-aligned grid displayed in figure 6. Then, equation (53)
can be used to compute the flux surface average. Since the grid
in figure 6 exists also outside the last closed flux surface, we
can use equation (53) to compute flux-surface averages in the
scrape-off layer as well.

In figure 7 in the top half we show the flux-surface averages
of the density ⟨ne⟩ as a function of ρp defined in equation (43).
In fact, we show a time averaged ⟨ne⟩ profile for all simula-
tions. The average profiles for Ti = 0 and Ti = Te are visibly
very similar. For the high resistivity simulations η = 3 · 10−4

and η = 10−4 (both Ti = 0 and Ti = Te) the average profile
appears linear in ρp up to the separatrix at ρp = 1. The remain-
ing simulations have accumulated density in the core at about
ρp < 0.4. This is the region where the source Sne is active and

continuously increases the density, which also translates to a
large variation amplitude in the core. The edge and scrape-off
layer at 0.95< ρp < 1.075 are shown enlarged. The density
on the separatrix increases with resistivity from 0.5 · 1019 m−3

to about 1.5 · 1019 m−3 for both Ti = 0 and Ti = Te simula-
tions. Afterwards, in the scrape-off layer at ρp > 1 the dens-
ity sharply drops. Notice that the black dashed line in the
enlarged region signifies the minimum density ne,min = 0.2 ·
1019 m−3 in equation (34). The average densities thus cannot
reach below the artificially enforced lower boundary. It may
be preferable to run simulations with lower ne,min to study if
the lower resistivity simulations converge at a different value,
however then also the parallel viscosities ν∥ must be adapted
in equation (31) in order to not also lower the CFL condition.

We define the relative fluctuation amplitude as

σne (ρp, t) :=

√⟨
(ne−⟨ne⟩)2

⟩
⟨ne⟩

. (54)

In the lower part of figure 7 we show the time averaged σne
for our simulations. Again, both the Ti = 0 and Ti = Te sim-
ulations exhibit similar behaviour. The fluctuation levels in
the core region lie between 10−3 and 10−2 at the smallest
ρp where higher resistivity corresponds to higher fluctuation
levels. The relative fluctuation amplitudes increase for all sim-
ulations to about 15% at the separatrix. There is sharp increase
in fluctuations for ρp > 1 to a maximum of 35% for Ti = 0 and
40% for Ti = Te, visible in the enlarged regions of figure 7.
Furthermore, between about 1< ρp < 1.01 the amplitudes for
all simulations overlap before they decrease again at about
ρp = 1.02. The small resistivity simulations decrease furthest
in fluctuation amplitudes.

The decrease in fluctuation amplitude again is a numerical
effect of the enforced minimum density in equation (34). From
experimental measurements we expect the fluctuation amp-
litudes to increase in the SOL [6–9].

Note that setting cold ions Ti = 0 in the model removes
finite Larmor radius effects with Γ1i = 1 equation (13) as well
as the parallel ion pressure gradient Ti∇∥Ni and part of the
ion curvature fluxes in equations (9) and (10). We conclude
that these terms have only minor influence on the density
and fluctuation profiles, which appear similar for both Ti =
0 and Ti = Te. With respect to finite Larmor radius effects
we can further estimate from figure 5(a) radial fluctuation
extension of l⊥ ≈ 5ρs and thus have (k⊥ρs)2 ≃ (ρsσne/l⊥)

2 ≃
(0.4/5)2 = 0.0064≪ 1. Small scales on which finite Larmor
radius effects become important are not present in our simu-
lations. However, we may not yet conclude that finite Larmor
radius effects are unimportant in general. Higher order polar-
ization terms currently not present in equation (8) may lead to
the so-called gyro-amplification strongly exciting small scales
with k⊥ρs ≃ 1 in the E×B vorticity, as is shown for isolated
blob simulations in [14, 16].

The observed radial profiles for density and its fluctu-
ations can be tentatively compared with [78] where a non-
isothermal drift-fluid model is used to simulate the turbulent
dynamics in a limiter configuration using buffer regions to
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Figure 7. The time averaged density profiles (top) and the relative fluctuation amplitudes (bottom) for Ti = 0 (left) and Ti = Te (right) as a
function of ρp equation (43). Colours correspond to different values of plasma resistivity η. The separatrix corresponds to ρp = 1. The edge
and scrape-off layer regions 0.95< ρp < 1.075 are shown enlarged.

exclude the core region from the simulation domain. There,
the fluctuation level at the separatrix peaks only for small res-
istivities. Furthermore the separatrix densities are highest for
smallest resistivities instead of largest resistivities as in our
case. This is likely a consequence of how the source term SN
depends on η. In the present case the source strength is adap-
ted (see table 1) such that the density profiles across simu-
lations remain similar, while [78] keeps an absolute source
strength.

4.3. Error analysis of conservation laws

With a reliable way to compute flux-surface averages and
volume integration we can now turn to defining a suitable error
norm for a numerical error analysis. First, we again emphasize
that due to the turbulence nature of our simulations, we cannot
show pointwise convergence. In fact, in [47] it is shown that
even computational errors on the order of machine precision
in two-dimensional simulation exponentially increase to order
one within a short period of time. We here therefore follow
a different strategy where we compute the volume and time
integrated error of conservation laws.

Assume that our model equations in section 2 allow for a
local analytical balance equation of the form∑

i

ti (R,Z,φ, t) = 0 (55)

that is a sum of individual terms ti balances to zero. First, we
define a time average via

⟨ti⟩t :=
1
∆t

ˆ t1

t0

ti (R,Z,φ, t)dt. (56)

The time interval [t0, t1] in equation (56) will in the follow-
ing section 4.3.1 be manually defined for each simulation by
identifying a saturated turbulence state.

Under a further volume integration we can convert the ti to

Ti :=

⟨ˆ
Ω

ti (R,Z,φ, t)dV

⟩
t

. (57)

The spatial integration region in equation (57) is chosen
as the closed field line region Ω := {(R,Z,φ) : Z> ZX ∧
ρp(R,Z)< 1} and shown in colour in figure 6. Note that once
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Figure 8. The relative global errors as defined by equation (59) of the terms in the mass conservation in section 4.3.1, the energy theorem in
section 4.3.2, the parallel momentum balance in section 4.3.3 and the electron force balance in section 4.3.4 for Ti = 0 (left) and Ti = Te
(right).

we have the flux-surface average ⟨ti ⟩ on a sufficiently fine grid
in ψp we can integrate

ˆ
Ω

ti dV=

ˆ
⟨ti ⟩dv=

(
dv
dψp

)−1ˆ
⟨ti ⟩(ψp)dv.

We then have
∑

i Ti = 0 analytically, however, numerically
due to discretization errors we usually have∑

i

Tnum
i = E (58)

where E is the total numerical error and Tnum
i is the numerical

result given by the discrete version of equation (57). We would
consider the conservation law well fulfilled numerically, if E
is small compared to the Tnum

i . We have |E|= |
∑

i T
num
i |⩽∑

i |Ti|, which motivates the definition of the relative global
error

ε :=
E∑

i |Tnum|
i

. (59)

The error E consists of the contributions Ei of the errors of
each individual term Ei = Tnum

i −Ti, i.e. E=
∑

i Ei. We are
interested in the error for each term, however, given E we a
priori cannot deduce Ei. In order to get an error estimate nev-
ertheless, we here assume that the error contribution Ei of each
term is determined by its magnitude |Tnum

i |, i.e. we define

Ei := ε|Tnum
i |. (60)

It is important to state that in our approach the terms
tnumi and Tnum

i are numerically computed from the data
available in post-processing independently from the numer-
ical methods used during the simulation. For example,
for the term ∇ · (neuE) in the mass conservation an

upwind scheme is used in the simulation code while
simple centred differences are used in post-processing.
A part of the error E is thus the discretization error
due to using different methods for computing the same
term.

The main advantage of our method is that it applies to
the same simulation data that is used for data-analysis, i.e. it
provides numerical errorsEi for terms Ti that are used for phys-
ical interpretation. For example, we can quantify the numer-
ical errors of the terms we use for the mass and energy
confinement times in section 4.5. At the same time the
method makes a statement of how large or important these
errors are relative to the quantity of interest. Our approach
may also catch coding mistakes provided the caused error
is much larger than the discretization error. This is because
the simulation code and the diagnostics code are independ-
ent and serve as consistency checks for each other. Finally
and importantly, our method catches certain systematic errors
in a conservation law. For example, terms of the form ∇ ·
( fb̂) vanish under flux-aligned volume integration, which
is not necessarily true numerically. Any numerical diffu-
sion out of the confined region will show up as an error
contribution.

A disadvantage of the method is that it cannot determ-
ine which contribution exactly causes a certain error, only
the size of the total error relative to a certain quantity of
interest. It is up for discussion whether this size is sufficiently
small or cause for concern. Overall, we consider any error
below 1% as excellent, while anything above merits further
discussion.

We now analyse the mass conservation in section 4.3.1,
the energy theorem in section 4.3.2, the parallel momentum
balance in section 4.3.3 and the electron force balance in
section 4.3.4. The resulting relative global errors are presented
in figure 8.
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4.3.1. Mass conservation. The electron density equation (5)
directly yields the particle conservation

∂

∂t
ne+∇ · jne −Λne − Sne = 0 (61)

with

jne = jne,E+ jne,C+ jne,∥ + jne,A (62)

Λne = Λne,⊥ +Λne,∥ (63)

where we split the density flux into the E×B flux
jne,E := neb̂×∇ϕ/B, the curvature flux jne,C =−neTK/e−
meneu2∥,eK∇×b̂, parallel flux jne,∥ = neu∥,eb̂ and magnetic
flutter flux jne,A = neue,∥b⊥. The diffusive part consists of
Λne,⊥ =−µne,⊥∆2

⊥ne and Λne,∥ = µne,∥∆∥ne.
Analytically, the volume integral of divergences like∇ · jne

yields the total flux out of a flux surface. It holds ⟨∇ · j⟩=
d
dv ⟨ j ·∇v⟩ [62] and thus
ˆ
Ω

∇ · jdV=

ˆ v

0
⟨∇ · j⟩dv= ⟨ j ·∇v⟩=

ˆ
∂Ω

j ·dA. (64)

Equation (64) signifies that the total flux out of the last closed
flux surface is given by either the flux-surface average of the
radial current ⟨ j ·∇v⟩ or the volume integral of the diver-
gence

´
⟨∇ · j⟩dv. Assuming that we can numerically com-

pute j then equation (64) gives two methods to numerically
compute the total flux out of a flux surface: (i) we can numer-
ically compute ∇ · j, compute ⟨∇ · j⟩ and finally numeric-
ally integrate

´
⟨∇ · j⟩dv or (ii) we can form j ·∇ψp and

then compute ⟨ j ·∇v⟩= ⟨ j ·∇ψp⟩(dv/dψp), where dv/dψp
can be computed highly accurately from the Jacobian of the
flux aligned grid [68]. Both methods converge because the
involved numerical derivative and integration formulas con-
verge and equation (64) guarantees that they converge to
the same solution. We tried both methods in our analysis
and it turns out that the former method is slightly superior
to the latter. The global errors E are systematically lower
using volume integrals of divergences than using the aver-
age radial flux. Furthermore, we see in figure 9 that ⟨j ·∇v⟩
exhibits slightly more fluctuations than the direct volume
integral.

In figure 10 we plot the volume integrated terms of the
mass conservation (61) as a function of time for the Ti = Te
and η = 10−4 simulation. We immediately see that the two
largest actors in this figure are the E×B flux ⟨ jE ·∇v⟩ on
the last closed flux surface and the density source

´
Sne dV,

which is constant throughout the simulation. The time deriv-
ative of the total mass fluctuates around zero. Note that the
remaining terms including the error given by the sum of all
terms

∑
i ti are too small to be visibly different from zero in the

plot.
Further, notice that the flux surface average ⟨∇ · ( j0b̂)⟩=

d
dv ⟨ j0b̂ ·∇v⟩= 0 vanishes for any parallel current j0b̂. Any
deviation from zero is thus purely numerical. This applies in
particular to the terms∇ · j∥ and Λne,∥ in equation (61). In our
recent work in [42] we individually study the deviations from

Figure 9. A comparison of two ways to numerically compute the
total flux

´
dA · jne,E equation (64). Shown is the radial E×B flux

as a function of ρp equation (43) for the simulation Ti = Te,
η = 10−4 at t= 5.18 ms.

Figure 10. The time evolution of volume integrated terms in the
mass conservation equation for Ti = Te and η = 10−4. The length
of the shaded regions signifies the time interval which we consider
for our statistics while the widths signify the standard deviations
within that region.

zero in those terms and find them to be negligibly small. We
will thus here and in the following ignore parallel terms accept-
ing that they may contribute to the errors visible in figure 8.

From the E×B flux in figure 10 we manually identify
a time interval where fluctuations appear around a constant
average. We do this for all 12 simulations. This allows us
to identify suitable t0 and t1 = tend in equation (57) and thus
we can compute the relative global error in equation (59).
We plot terms together with error bar from equation (60) in
figure 11. The left plot shows simulations with Ti = 0 for the
various resistivities η and the right plot shows corresponding
simulations with Ti = Te. We can immediately confirm that
the E×B flux as well as the source term are the largest terms
for all simulations while the time derivative follows with lesser
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Figure 11. The mass conservation equation (61): volume integrated and time averaged terms equation (57) with error bar equation (60) for
Ti = 0 (left) and Ti = Te (right). The error bars are too small to be visible in the plot and are separately shown in figure 8.

importance. Note here that the density source strengthωs in Sne
in equation (32) was chosen differently for each simulation.
The magnetic flutter term as well as the curvature flux and the
perpendicular diffusion terms have negligible importance on
the evolution of the global mass balance. We emphasize that
this does not necessarily imply negligible importance on the
local dynamics just that the volume integrated mass balance is
unaffected.

The relative errors in the terms are invisible in this plot,
which is why we separately plot these in figure 8. There we
see that the relative error of the terms in the mass conservation
is at an excellent maximal 3% for all simulations and below
1% for simulations with η > 10−5.

4.3.2. Energy theorem. The terms of the energy theorem are

∂tE +∇ · jE −ΛE − SE −RE = 0 (65)

with

E = Tene ln(ne/ne0)+ TiNi ln(Ni/ne0)

+
1
2
µ0
(
∇⊥A∥

)2
+

1
2
miNi u

2
E

+
1
2
meneu

2
∥,e+

1
2
miNiU

2
∥,i, (66)

jE =
∑
s

[(
T ln(N/ne0)+

1
2
mU2

∥ + qψ

)
jN

]
+
∑
z

[
m
q
NU2

∥K∇×b̂+TNU∥

(
b̂+ b⊥

)]
, (67)

ΛE =
∑
s

[(
T(1+ ln(N/ne0))+ qψ +

1
2
mU2

∥

)
ΛN

]
+mNU∥ΛU (68)

SE =
∑
s

[(
T(1+ ln(N/ne0))+ qψ − 1

2
mU2

∥

)
SN

]
(69)

RE =− η∥e
2ne
(
U∥,i− u∥,e

)(
NiU∥,i− neu∥,e

)
(70)

where in the energy flux jE we neglect terms containing time
derivatives of the electric and magnetic potentials and we
sum over all species. The energy density E consists of the
Helmholtz free energy density for electrons and ions, the
E×B energy density, the parallel energy densities for elec-
trons and ions and the perturbed magnetic field energy dens-
ity. In Λ we insert the dissipative terms of section 2.2 and use
ΛU := ΛmNU/mU−UΛN/N.

The dissipation term can be further simplified to

ΛE =−
∑
s

∇ ·
[(

T(1+ ln(N/ne0))+ qψ +
1
2
mU2

∥

)
jN,ν

]
−∇ ·

(
U∥ j̄mNU,ν

)
+ j̄mNU,ν ·∇U∥ + jN,ν ·∇(lnN/ne0 − qψ ) (71)

where we use ∇ · j̄mNU,ν := µU,⊥(−∆⊥)
2u∥,e−µ∥,e∆∥ue.

The dissipation term thus consists of a diffusive energy cur-
rent under a total divergence and a dissipation contribution.
Focusing on the parallel diffusion terms we find for the dissip-
ative contribution:

j̄mNU,ν ·∇U∥ + jN,ν ·∇(ln(N/ne0)− qψ ) =

−µ∥,U
(
∇∥U

)2 −µ∥,N

(
∇∥N

)2
N

− qµ∥,N∇∥N∇∥ψ. (72)

The first two terms are always negative and thus always dis-
sipate energy. The last term containing the potential vanishes
under species summation at least to zeroth order with ne ≈ Ni
and ψi ≈ ϕ.

The term RE is approximately quadratic in the sense that
RE ≈−η∥j2∥, which is the familiar Joule heating term. Since
we have an isothermal model this term appears as an energy
dissipation term. The source term SE dissipates parallel kinetic
energy−0.5mU2

∥SN < 0 but generates free energy lnNSN > 0.
The integration region in time remains unchanged and

we can compute the time and volume integrated terms
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Figure 12. Energy conservation equation (66): the terms equation (57) with error bar equation (60) for Ti = 0 (left) and Ti = Te (right). The
error bars are too small to be visible in the plot and are separately shown in figure 8.

equation (57) with error bar equation (60) in figure 12. The
relative errors of the terms must again be read from figure 8
and are below 1% for all simulations. The global relative error
in energy is generally a factor 2–5 smaller than the error in
mass.

In figure 12 we see that the energy source SE is the
largest (and only) negative contributor in the equation. From
equation (69) we see that it is in fact the density source Sne
that translates to a source of energy. The magnitude of the
energy source decreases by approximately a factor 10 from
smallest to highest resistivity. Since the density source does
not vary much in figure 11, this is likely a simple consequence
of the decreasing electron temperature in our parameter scan
in table 1. The energy source is balanced by the energy flux out
of the last closed flux surface jE , the parallel energy dissipation
ΛE,∥, the Joule heat RE , the perpendicular energy dissipation
ΛE,⊥ and the energy gain ∂tE .

Few clear trends with resistivity can be inferred from the
plot. The parallel energy dissipation is systematically larger
than the perpendicular energy dissipation. The resistivity term
RE becomes relatively less important for smaller resistiv-
ities η than for higher resistivities. For Ti = 0 the energy
gain ∂tE is most important for small resistivities η < 10−4

but least important else. The energy flux term jE is most
important for η ⩾ 10−4 but small compared to the other terms
for η < 10−5.

The fact that the energy gain ∂tE is the largest contributor
especially for small resistivities indicates that the system con-
stantly gains energy during our simulations. It thus appears
that these simulations have not yet reached a steady state where
∂tE = 0 on average. Further analysis reveals that the energy at
the end of the small resistivity simulations is up to 10% higher
than at the beginning. Longer simulation runs need to confirm
the trends shown in figure 12.

4.3.3. Parallel momentum balance. In the parallel
momentum equation (6) for ions we insert the mirror force

equation (12) and use −(b̂+ b⊥) ·∇ lnB=∇ · (b̂+ b⊥) to
get

∂

∂t

(
miNiU∥,i

)
+ eNi

∂

∂t
A∥ +∇ · JmNU,i

+Ti
(
b̂+ b⊥

)
·∇Ni +

mi

e
NiU∥,iTiK∇×b̂ ·∇ lnB

−FmNU,ψ +R∥,e−ΛmNU,i = 0, (73)

with ion momentum current

JmNU,i : = j∥ + jA+ jE+ jC,

jmNU,∥ : = miNiU
2
∥,ib̂,

jmNU,A : = miNiU
2
∥,ib⊥,

jmNU,E : = miNiU∥,i
b̂×∇ψ

B
,

jmNU,C : =
mi

e
U∥,iNi

(
3Ti +miU

2
∥,i

)
K∇×b̂

+
mi

e
U∥,iNiTiK∇B, (74)

as well as resistivity term and the parallel electric force

R∥,e : = η∥e
2ne
(
NiU∥,i− neu∥,e

)
, (75)

FmNU,ψ =−eNi(b̂+ b⊥) ·∇ψ

−miNiU∥,iK∇×b̂ ·∇ψ . (76)

Note that the total divergences ∇ · jmNU,∥ and ΛmNU,∥, par-
allel flux and viscosity terms, again vanish exactly under the
flux-surface average. We plot the terms of the ion momentum
equation in the top half of figure 13. Again, the error bars are
invisible and are separately plotted in figure 8. There we find
relative errors for Ti = Te between 10−3 and 3 · 10−2. Each
term of the ion momentum equation thus has a relative error
of maximal 3%. This is true also for Te = 0 and η > 10−5 sim-
ulations. However, for Ti = 0 and η ⩽ 10−5 the relative error
climbs to about 10%. This can be reasoned in the smallness of
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Figure 13. The parallel momentum balance (top) equation (73) and the parallel electron force balance (bottom) equation (77): the terms
equation (57) with error bar equation (60) for Ti = 0 (left) and Ti = Te (right). The error bars are too small to be visible in the plot and are
separately shown in figure 8.

the terms in figure 13, i.e. the absolute error of the equation
remains the same across simulations but the term

∑
i |Tnum

i | in
equation (59) is small for Ti = 0 and small η.

In figure 13 the largest positive term is the parallel elec-
tric force eNi∇∥ψ. To this add negative contributions from the
gauge term eNi∂tA∥ and the magnetic flutter eNib⊥ ·∇ψ. The
resistivity term R∥,e, as expected, makes a significant contribu-
tion only for large η > 10−5 for both Ti = 0 as well as Ti = Te.
The E×B flux is the final significant term and decreases in
magnitude with η. The absolute value is however larger for
Ti = Te than for Ti = 0.

For Ti = Te and small resistivities the term mi∂tNiU∥,i is
the largest positive term. This indicates positive acceleration,
while for large resistivites η > 3 · 10−5 there is acceleration
in the opposite direction. For Ti = 0 the same trend can be
observed, however, the magnitude of the term is about a factor

10 smaller than for the Ti = Te simulations. We will discuss
this further in section 4.4.

4.3.4. Parallel electron force balance. The parallel electron
momentum equation is given by equation (73) with electron
instead of ion labels. In a plot of the terms analogous to the
ion momentum plot figure 13(top) it turns out that most of the
terms are very close to zero. We thus gather only the dominant
terms in the electron momentum equation neglecting all terms
proportional to the electron mass with me = 0. This leaves the
parallel force balance

−Te(b̂+ b⊥) ·∇ne

+ ene

(
(b̂+ b⊥) ·∇ϕ +

∂A∥

∂t

)
+R∥,e ≈ 0. (77)
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Figure 14. The sum of electron force balance and the parallel ion momentum equation (figure 13) neglecting small terms. The summed
electric force is close to zero and drops out as does the resistivity. The error bars in the Ti = 0 (left) plot become visible for η ⩽ 3 · 10−5

while staying invisible for Ti = Te (right).

In the bottom half of figure 13 we plot the terms of the par-
allel force balance. The relative global error of this equation
is generally the smallest among all the equations that we test.
In figure 8 we see that the error is of excellent orders 10−4

and 10−3, which lies in the range of the value for me/mi =
2.7 · 10−4. This confirms that at least under volume integration
equation (77) is very well fulfilled even if it is not analytically
exact.

Analogous to the ion momentum equation the largest
term in the electron force balance is the parallel electric
force ene∇∥ϕ. Notice here that the colours of figure 13(top)
and (bottom) coincide for analogous terms. In fact, visually
the terms ene∇∥ϕ, eneb⊥ ·∇ϕ and ene∂tA∥, i.e. all terms of
the electric field are indistinguishable from eNi ∂tA∥, eNib⊥ ·
∇ψ and eNi∇∥ψ. We will use this to further study the total
momentum equation in section 4.4.

4.4. Parallel acceleration

Figure 13 is visually overburdened due to the number of dis-
played terms and thus hard to physically interpret further.
Thus, we here simplify the discussion by focusing on the total
momentum balance. First, we see in figure 13 that the elec-
tron and ion components of the electric field and the resistivity
are visually equal. Neglecting those terms we sum the ion and
electron momentum equations to get

mi
∂

∂t
NiU∥,i+∇ ·

(
jmNU,E+ jmNU,C

)
+miNiU∥,iK∇×b̂ ·∇ψ +(Te+Ti)(b̂+ b⊥) ·∇ne.

(78)

We further neglect the term ∇ · jmNU,A and ΛmNU,⊥ and

approximate Ti(b̂+ b⊥) ·∇Ni ≈ Ti(b̂+ b⊥) ·∇ne. The result
is shown in figure 14.

The error bars in figure 14 are visible in particular in
the Ti = 0 plot, however the plot is easier to interpret than
figure 13. We now clearly see the positive acceleration in the
Ti = Te plot for η ⩽ 10−4. For η ⩾ 10−4 the parallel accelera-
tion is negative. The Ti = 0 plot shows the same trends but the
acceleration is more than a factor 10 smaller than for Ti = Te.

Four candidates explain the observed accelerations. The
E×B flux of parallel momentum is negative signifying
that positive momentum is lost to the plasma (or negative
momentum enters the plasma) via the radial transport. TheE×
B flux decreases in magnitude with η for both Ti = 0 and Ti =
Te but is about a factor 2− 4 larger for Ti = Te than for Ti = 0.
For Ti = 0 the two terms ∇ · jmNU,C and miNiU∥,iK∇×b̂ ·∇ψ
are close to zero for all η. The only remaining term for Ti = 0
is thus the parallel gradient Te(b̂+ b⊥) ·∇ne, which remains
roughly constant in η.

For Te = Ti the term (Te+Ti)(b̂+ b⊥) ·∇ne is positive
but much smaller than the curvature contribution. The second
curvature term ∇ ·miNiU∥,iK∇×b̂ ·∇ψ is strongly negative
for η < 10−4 but jumps to a positive contribution at η =
10−4 thus facilitating the associated negative acceleration. The
term ∇ · jmNU,C in figure 14 represents the total flux of ion
momentum through the last closed flux surface by curvature
drifts, while the term miNiU∥,iK∇×b̂ ·∇ψ appears as a drift
correction to the parallel electric force term (11). In our pre-
vious theoretical analysis both curvature terms were neglected
as small [79] but for Ti = Te each term has similar contribution
in magnitude to the radial E×B momentum flux.

Again, similar to the energy balance it can be argued that
the appearance of a net parallel acceleration indicates that our
simulations have not all reached a steady state. Our analysis
thus gives only indications of the situation where the parallel
momentum saturates. We would expect that the positive/neg-
ative parallel acceleration then translates to a net positive/neg-
ative parallel momentum.
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Figure 15. The mass confinement times τM equation (81). The fit is
given by equation (83).

4.5. Mass and energy confinement times

From our analysis of the mass conservation equation in
figure 11 and the energy conservation equation in figure 12 it is
straightforward to extract confinement times. As we explained
before in equation (64) the volume integral of ∇ · j yields the
total flux out of the closed fieldline region

´
j · dA. We thus

start with the definition of the total particle number and energy
within the confined region

M(t) =
ˆ
Ω

ne dV, (79)

E(t) =
ˆ
Ω

E dV. (80)

We can then compare these with the total loss of particles
and energy. The particle loss is simply the total flux jne
(equation (62)) integrated over the last closed flux surface. We
can neglect the diffusive transport from figure 11 as close to
zero. The losses of energy consist of the energy flux out of
the last closed flux surface, but also of the energy dissipation
through diffusion and the resistivity. We thus define

τM : =
⟨M⟩t⟨´

LCFS jne · dA
⟩
t

, (81)

τE : =
⟨E⟩t⟨´

LCFS jE · dA−
´
Ω
(ΛE +RE) dV

⟩
t

. (82)

In figures 15 and 16 we present the resulting values for
our simulations. Note that the total particle number ⟨M⟩t =
(2.3± 0.1) · 1019 is roughly constant for all simulations. From
figure 12 we should keep in mind that the total energy
has not saturated for small resistivities. Longer simulations
are needed to confirm the trends in the following discus-
sion. The error bars are computed from the fluctuation amp-
litudes of all quantities in equations (81) and (82). The
relative numerical errors are negligible at 1% as estab-
lished in section 4.3. Two regimes are visible in both plots
with a transition at ηcrit ≈ 5 · 10−5 for both Ti = 0 as well
as Ti = Te.

Figure 16. The energy confinement times τE equation (82). The fit
is given by equation (84).

The mass confinement times in figure 15 reach roughly
constant values for η < 3 · 10−5 while for η > 10−5 there is a
decrease of confinement with increasing resistivity. The drop
in mass confinement above the critical η could be related to
the discussion of the density limit [80, 81] in the operational
space of tokamaks. The constant regime should be regarded
tentatively as the fluctuations are particularly large in this
regime, especially for Ti = Te. The values for Ti = 0 are a
factor

√
1+Ti/Te larger than the ones for Ti = Te within the

error bars. We can tentatively fit a power law of

τM =
cM (n0,mi,R0,ρs)√

1+Ti/Te

{
1 for η < 5 · 10−5

η−1/3 for η > 5 · 10−5
(83)

where cM(n0,mi,R0,ρs) signifies the unknown dependency on
the parameters n0, mi, R0 and ρs that we kept constant during
our parameter scan. We remind the reader here that the values
for both Te and B0 decrease for increasing η in our parameter
scan as seen in table 1 as well as our dimensional analysis in
section 3.4.

For the energy we see a clear maximum in the confinement
time at η = 3 · 10−5. The fluctuations are systematically smal-
ler for the energy confinement times than for the particle con-
finement times. However, the energy confinement times are
also approximately a factor 100 smaller than the mass confine-
ment times. This may be due to the fact that we have an iso-
thermal model where Joule heat is not converted to an increase
in temperature and is instead lost to the system. A tentative fit
reveals

τE =
cE (n0,mi,R0,ρs)√

1+Ti/Te

{
η+1/4 for η < 3.5 · 10−5

η−1/3 for η > 3.5 · 10−5
(84)

where similar to equation (83) the factor cE(n0,mi,R0,ρs)
encapsulates a yet unknown dependence on the parameters n0,
mi, R0 and ρs.

The existence of a critical value for the plasma resistivity
ηcrit ≈ 5 · 10−5 for both mass and energy confinement points
towards two different turbulent regimes above and below the
critical value. Various candidates are discussed in the literature
with the most likely ones being drift-wave turbulence for small
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η and resistive ballooning type turbulence for high η [81–83].
According to [83] the transition between the two regimes hap-
pens at the resistive ballooning threshold at αt,crit = 1 with
turbulence parameter αt := ηq2R0/ρs ≈ 5 · 103η. With ηcrit =
5 · 10−5 we obtain αt,crit, num ≈ 0.25, which is only a factor
4 away from the theoretical prediction. The difference may
be explained by geometrical factors like the presence of the
X-point.

There is an apparent discrepancy in this explanation how-
ever, insofar the transport in drift-wave turbulence reduces for
small η (converging to the adiabatic case) and thus the confine-
ment time should increase for decreasing η instead of remain-
ing constant. An explanation for the observed plateau in the
mass confinement time could be so-called reactive instabilit-
ies, which are independent of η and are due to a finite electron
inertia [2]. Reactive instabilities are unphysical insofar they
are an artefact of an isothermal gyro-fluid model and have no
gyro-kinetic counterpart where Landau damping counteracts
the effect of electron inertia. Note that this does not contra-
dict figure 13 where the electron inertia effect vanishes under
volume integration. Locally, the electron inertia may still be
important.

5. Conclusion

We present a new version of the three-dimensional gyro-
fluid turbulence code FELTOR. 12 simulations covering sev-
eral milliseconds with different values for plasma resistiv-
ity and ion temperature and fixed values for plasma density
and gyro-radius are setup, analysed and discussed. An effi-
cient implementation on GPUs allows for simulation runtimes
of about 1 week per simulation covering a couple of milli-
seconds of turbulence. Simulation results are analysed using
volume and time integrated conservation laws, mass, energy,
momentum and force balance. Relative errors are generally
below 1% for energy conservation and force balance while
for mass and momentum conservation the errors climb to
about 3% as seen in figure 8. Only in the ion momentum bal-
ance and for vanishing ion temperature and small resistivity
do we see relative errors of about 10%, which is reasoned
in the smallness of the parallel acceleration compared to
Ti = Te simulations with at the same time equal absolute
errors.

We systematically investigate the importance of the terms
in the parallel momentum generation where we find that for
increasing resistivity the direction of acceleration is swapped.
This is caused mainly by an interplay of decreasing E×B
momentum transport and curvature drifts across the separat-
rix. The analysis of the momentum density miNiU∥,i is related
to intrinsic toroidal rotation in tokamaks and the angular
momentum density miNiU∥,iR [79, 84]. At the same time
the appearance of net acceleration indicates that the parallel
momentum has not yet saturated during the simulation time
and longer simulations are needed to confirm the trends shown

here. A detailed analysis of rotation profiles and the angular
momentum balance is here postponed to future analysis.

Similar transitions from a low resistivity regime to a high
resistivity regime happen for the mass and energy confine-
ment times. Beyond the critical resistivity the mass and energy
confinement decrease with increasing resistivity. Below it, the
mass confinement remains roughly constant, while the energy
confinement decreases with decreasing resistivity. This beha-
viour could be explained by so-called reactive instabilities,
which are an artefact of electron inertia in isothermal gyro-
fluid models and have no gyro-kinetic counterpart. A dynamic
electron temperature should help counteract this effect in
future works. The transition from drift-wave turbulence to
resistive ballooning roughly coincides with the value pre-
dicted by the literature. Further parameter studies in ρs and
n0 need to clarify the unknown dependence factors cM(n0,ρs)
and cE(n0,ρs) in the observed scaling laws for τM(η) (83) and
τE(η) (84).

We did not find qualitative differences in our analysis of
mass, energy or momentum confinement between the Ti = 0
and Ti = Te simulations. Also, the density and fluctuation pro-
files are similar in both scenarios. Quantitative differences
exist, in particular a factor

√
1+Ti/Te in the mass and energy

confinement times. Small scales with ρsk⊥ ≃ 1 on which
finite Larmor radius effects become important are absent in
our simulations. This may be due to the absence of arbit-
rary wavelength polarization terms in equation (8), which are
known to strongly excite small scales ρsk⊥ ≃ 1 in the E×B
vorticity, an effect called gyro-amplification [14, 16].

The capability of running numerically stable simulations
for a set of different parameters with FELTOR is an important
milestone. We offer a first high level analysis of the run simu-
lations and quantify numerical errors, leaving many questions
open for future work as outlined above. Furthermore, various
physical model improvements can be added fairly straight-
forwardly within the FELTOR framework. These include for
example, dynamic temperature equations [15], plasma-neutral
collisions [25], arbitrary order polarisation terms [16, 19] and
more.
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Appendix A. General magnetic field expressions

We assume a three-dimensional flat space with arbitrary
coordinate system x := {x0,x1,x2}, metric tensor g and
volume element

√
g :=

√
detg. Given a vector field B(x) with

unit vector b̂(x) := (B/B)(x) we can define various differ-
ential operations in table A1. Explicit expressions for these
expressions depend on the choice of the magnetic field and
the underlying coordinate system. Note that we have

h2 = h, (A.1)

∇ ·K∇×b̂ =−∇ ·K∇B =−K∇×b̂ ·∇ lnB, (A.2)

∇ ·K= 0, (A.3)

K= K∇B+K∇×b̂ (A.4)

K∇×b̂−K∇B =
1
B2

(∇×B) , (A.5)

∇ ·

(
b̂×∇f
B

)
= K ·∇f, (A.6)

∆⊥ f=−∇†
⊥ ·∇⊥f , (A.7)

∇∥ lnB=−∇·b̂. (A.8)

The last equality holds with ∇·B= 0. Furthermore, we have

b̂ · (∇f ×∇g) = bi ε
ijk∂jf∂kg/

√
g. (A.9)

In any arbitrary coordinate system we have

(∇f)i = gij∂jf , ∇ · v= 1
√
g
∂i
(√

gvi
)
,

(v×w)i =
1
√
g
εijkvjwk (A.10)

with bi the contra- and bi the co-variant components of b̂, εijk

the Levi-Civita symbols and gij the contra-variant elements of
the metric tensor.

Table A1. Definitions of geometric quantities for given vector field
B(x), unit vector field b̂ := B/B and metric tensor g.

Name Definition

Projection Tensor h := g− b̂b̂
Perp. gradient ∇⊥ f := b̂× (∇f× b̂)≡ h ·∇f
Perp. divergence ∇†

⊥ · v :=−∇ · (h · v) =−∇ · v⊥
Perp. Laplacian ∆⊥ f :=∇ · (∇⊥ f) =∇ · (h ·∇f)
Curl-b Curvature K∇×b̂ :=

1
B (∇× b̂)

Grad-B Curvature K∇B :=
1
B (b̂×∇ lnB)

Curvature K :=∇× b̂
B

Parallel derivative ∇∥f := b̂ ·∇f
Parallel Laplacian ∆∥f :=∇ · (b̂b̂ ·∇f)

Appendix B. Data access

The FELTOR code is available freely on GitHub at https://
github.com/feltor-dev/feltor with the latest release tracked
on Zenodo [48]. It includes the dg library and the three-
dimensional code used for this paper. Ample documenta-
tion and additional visualisations are found on our homepage
https://feltor-dev.github.io.

We offer several predefined sets of magnetic field para-
meters as well as Mathematica and Python scripts to gen-
erate fit coefficients for experimental magnetic field equilib-
ria in the https://github.com/feltor-dev/magneticfielddb repos-
itory. The contained Jupyter Notebooks and Python scripts
help setting up appropriate simulation domains as well
as wall and sheath regions χw and χs as presented in
section 3.1.

The parameter scan is setup using https://github.com/
mwiesenberger/feltorutilities which in turn is based on the
simplesimdb Python package developed at https://github.
com/mwiesenberger/simplesimdb. Simplesimdb is a free
simulation database manager in Python that allows to run /
submit, access and manage simulations using a unified Python
interface. In order to help analyse the simulation data in Python
we use xFeltor https://github.com/feltor-dev/xFELTOR, an
interface to the xarray Python package and pyFeltor https://
github.com/feltor-dev/pyFeltor, an implementation of basic
dG numerical methods in Python. All three-dimensional ren-
derings were setup in ParaView-5.11 www.paraview.org [71]
the remaining analysis is available as Jupyter Notebooks in
https://github.com/mwiesenberger/data-analysis-3d.
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