SVERs,

UNIVERSITY OF TROMS® UIT &

TR()E‘%

FACULTY OF SCIENCE AND TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE

Detecting Events in Videos Using Semantic
Analytics of Subtitles

Erik Braeck Leer

INF-3981

Master's Thesis in Computer Science
June, 2011

Abstract

Recently, television broadcasters such as the NRK and TV2 channels, have
begun offering live internet television and movie archive along with their
regular schedule, much like the known video archives such as Youtube and
Vimeo. The amount of all television offered reduces the ability of the user
to get an overview of the programs that are available at any given time,
making the user will probably miss important events. Regular indexing
engines for recommending does not generally work on media since it is hard
to index media data. Tags and keywords describing a media file does only
describe the whole file, making it difficult to use them for indexing and
recommendation of specific scenes within the media.

This thesis presents a text event detection system for discovering inter-
esting events based on video subtitles. By performing textual analytics, our
system is able to discover events that are not discoverable through regu-
lar syntactic search. We have, based on related work, extended algorithms
used for discovering semantic relationships between different words. Also,
we have experimented with several algorithm for capturing the essence of
each sentence, relating the prominent sense of each sense towards the events.

Our experiments illustrates how we can increase the accuracy of the
algorithm used by performing a context exploration based on event key-
words. The results shows that our system improved the base algorithm of
the prototype by including more relevance methods like consecutive sentence
similarity and similarity based on sentence internals.

ii

Acknowledgement

I would like to thank my supervisor Dr. Havard Johansen who’s inspiration,
constructive criticism and support proved invaluable. I also want to thank
my co-advisor Professor Dag Johansen for his enthusiastic ideas, feedback
and his great motivational talks.

I would also like to thank Dr. Cathal Gurrin from the Dublin City
University for providing good ideas and an insight to information retrieval.
I would also like to thank the rest of the iAD group for their support and
input on how to do proper research.

My gratitudes to my fellow students Terje, Arild, Johan, and @yvind for
good ideas and valuable input during the whole process and for five great
years. Qyvind, could not have done it without you.

Finally, I would like to thank my girlfriend, my family and my friends
for their support and for always believing in me.

iii

v

Table of Contents

1 Introduction

1.1 Problem Definition
1.2 Interpretation, Scope, and Limitations
1.3 Methodologyo
1.4 Context e
1.5 Outline
Background
2.1 Natural Language Processing
2.1.1 Part-of-speech Tagging
2.1.2 Word Sense Disambiguation
2.1.3 Corpuso
2.1.4 Information Content
2.1.5 Short Text and Sentence Similarity
2.2 Ontology
221 Wordnet
2.3 Recommendation L.
24 Ranking L
2.5 Similarity Measurement L.
2.5.1 Syntactic Similarity Algorithms
2.5.2 Semantic Similarity Algorithms
2.6 Summary
Design
3.1 System Model and Architecture
3.1.1 Components
3.1.2 Control Flow
3.2 System Components
3.3 Imput Manager
3.3.1 Stopword Removal
3.3.2 Stemming and Lemmatization
3.4 Event Context
3.4.1 Generating Context

3.5 Similarity Computation

3.5.1 Determine Semantic Links
3.5.2 Similarity Within A Sentence
3.5.3 Similarity in Consecutive Sentences.
Implementation
4.1 Technologies Used
4.2 Input Manager
4.2.1 Stopword Removal
4.2.2 Syntax and Spell Checker
4.2.3 Stemming and Lemmatization
4.3 Event Context
4.3.1 Generating Context,
4.4 Similarity Computation
4.4.1 Similarity Within A Sentence
4.4.2 Similarity in Consecutive Sentences

4.4.3 Detecting Events - Similarity Towards a Context . . .
4.5 Storage e

4.6 Applications L
4.6.1 Recommender System
4.6.2 Media Client
4.6.3 Event Discovery

4.7 Summaryo e e e e

Experiments

5.1 Experiment Setup
51.1 TestPlan

5.2 Initial Proof of Idea

5.3 Detecting Specific Events 000

5.4 Context Size e

5.5 Sentence Relatedness

5.6 Context Evaluation

5.7 Computation Throughput

5.8 Computation Throughput with Database Access

5.9 Summary

Conclusion

6.1 Achievements

6.2 Related Work

6.3 Concluding Remark

6.4 Future Work

vi

31
31
32
32
33
33
34
34
36
36
37

39
41
41
42
43
44

47
47
48
48
50
52
95
o8
60
62
64

List of Figures

2.1
2.2

3.1
3.2

3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3
5.4
9.5
5.6
5.7

5.8
5.9

A hierarchy of words
Explanation of how a dictionary works

High level system model
System model containing both a similarity computation mod-

ule, an event context module and the input manager.
High level control flow
Overall event detection architecture
Input manager architecture and design
Architecture and design of the event context generator
Architecture and design of the semantic similarity computa-

tionmodule

Implementation of the input manager
Database schema used for storage and extraction of data . . .
Recommender system utilizing the event detection system. . .
A screen shot of the media player.
Event Discovery Application using our semantic text event

detector.

Distribution of unique words and concepts
Accuracy of a simple event detection
Accuracy of event detection based on context size
Accuracy of event detection using consecutive sentence simi-
larity with length 2
Accuracy of event detection using consecutive sentence simi-
larity with length 3
Accuracy of event detection using consecutive sentence simi-
larity with length 4
Percentage of discovered positive events when increasing the
context
Time used evaluating each sentence using several algorithms .
Time used evaluating each sentence based on the consecutive
algorithm with database access.

vil

12

19

20
21
22
24
26

28

32
40
41
43

44

49
52
53
26
o7
o8

29
61

viii

Listings

4.1
4.2
4.3
4.4
4.5

Levenshtein Implementation 33
Context Exploration (Fanout) 34
Path Implementation 35
Syn Implementation 0. 38
Hot Rankingo 42

ix

Chapter 1

Introduction

Consumers have a large selection of TV channels to watch. With traditional
TV broadcasters, like the Norwegian NRK and TV2 channels, making ever
more content available over the Internet and with the ever growing content
of online video archives like YouTube and Vimeo, the selection of content
available to each consumer is becoming even larger. The unfortunate con-
sequence of this trend is that users must spend ever more time navigating
between available video channels in order to find interesting content. This
is similar to the problem that the web encountered once it started growing
beyond a certain size. Here, keyword search engines like Alta Vista, All the
Web, and eventually Google, helped solving the problem. Video channels
cannot as easily be indexed since the media data is constantly changing. It
is however possible to extract and analyse the text that accompanies the
media data such as subtitles.

To help users find an interesting video feed to watch, several methods
have been proposed and are in use today. They range from simple reminders,
as for instance, alarms and similar apps used on a smart phone, to advanced
concept detectors, as for instance the TubeTagger and TubeFilter [1] that
can be applied to home media centres. These concept detectors can scan
several streams of media data and alert the user when some interesting event
has taken place. A trend is to use annotated tags or keywords as the base for
recommending. For instance, the DAVVI system [2] which is a prototype of
the next generation multimedia entertainment platform, scrapes for instance
live-commenatry from internet sites and use them to annotate soccer videos.

Two different commentators will typically have two unique ways of de-
scribing the same event, meaning a regular syntactic search will not be able
to recognize the similarity between them. Another technique, yet to emerge
in recommender systems, is the use of natural language processing (NLP) to
detect events based on text and match it against user defined preferences.
Only a semantic search can recognize the relatedness between the words and
the concepts they represent by the use of for instance, a lexical database.

Natural language processing is based on text recognition and the sources for
such a comparison could be any text ranging from sentences, subtitles, live-
commentary internet-sites and speech-to-text systems. There exist several
applications that can evaluate a word against another word [3, 4]. However,
to our knowledge, no known application that can compute a satisfactory
short text or sentence similarity. Existing solutions tend to not successfully
calculate relationships between a term and a sentence [5].

Such a system we are proposing, is currently as of our knowledge, not
used today. We find systems that are able to compute similarity for syntactic
and semantic probability, they are however yet not combined in any system.
Due to low efficiency and some in-correctness discovered in these systems [6,
7], these systems must either be modified or completely redesigned in order
to produce a more correct result based on semantic similarity towards short
text and sentences. Based on earlier work regarding semantic relatedness
systems, we will look at the possibility of generating a context consisting of
related words to an event, that is later used for similarity comparison. This
can improve the event detection drastically because the reference probability
is based on a more knowledgeable text [8].

1.1 Problem Definition

This thesis shall design, implement, and evaluate a similarity calculation
service, based on probabilistic approaches. The focus will be on constructing
algorithms that supports semantic stmilarity calculations between text. The
basis for evaluating the algorithms will be by using human judges.

1.2 Interpretation, Scope, and Limitations

This thesis will explore techniques for systematically discovering similarity
between text by using a semantic text analyser. The idea of our work is to
build a system for automatic similarity calculation between given input.

Comparing text can prove difficult since a sentence may be interpreted in
several different ways based on the context that it is evaluated in. Therefore,
we propose an alternative way of discovering relatedness between text. We
propose a system that will compare text towards known events. These event
could be very specific, such as ”someone crying”, ”an assassination” or the
more generic event as for instance, ”an emotion” or ”a kill”. By constructing
a set of events and calculate the similarity between those events and the text,
the relatedness between two set of texts can be discovered. The computed
similarity describes the relatedness between the different set of texts, as
defined by the event.

1.3 Methodology

The final report of the AcM Task Force on the Core of Computer Science
divides the discipline of computing into three major paradigms [9]. These
are theory, abstraction and design. Below is a short summary:

Theory is the mathematical approach rooted in development of a co-
herent and valid mathematical principles. Theorems about objects are pro-
posed, and the scientist seeks to prove them in order to find new relationships
and progress in computing.

Abstraction is related to the natural science, where the study of objects
are done by modelling and simulate the different processes the scientist
is investigating. The scientist seeks progress by formulating and testing
hypotheses about algorithms and architectures.

Design is rooted in engineering. The scientist first formulates a problem.
Then designs and builds prototypes in systematic order. These are compared
in order to find the best solution to the given problem.

This thesis will utilize the design process of engineering. We have stated
a problem and will systematically design and build a prototype to solve it.
After the prototype is built, we will construct a series of experiments in order
to evaluate our solution in contrast to the given problem. The prototype
will be built according to similar approaches and ideas from related work.

1.4 Context

This thesis is a part of the information Access Disruption (iAD). The iAD
Center targets core research for next generation precision, analytic and
scale in the information access domain. The project investigates structuring
techniques for future-generation large-scale information access applications.
Most multi-media content and heterogeneous sensor data input must be
supported, but more importantly is the real-time aspects involved. As such,
next generation information access systems must blend in with data stream-
ing application querying, processing, and delivering real-time data.

DAVVI is a prototype of the next generation multimedia entertainment
platform. It delivers a personalized experience to a user in form of recom-
mending video that is annotated based on live-commentary sites. Based on
the annotation, the system offers a highly customizable video composition
service that can, for instance, compose highlights of events on the fly and
deliver it to the user in a torrent similar way.

For delivering video data, the system uses well known solutions, as for
instance, data segmentation where each video segment is a self-contained me-
dia file. These segments can be delivered by simple HT'TP GET requests.
As feature extractions yet are very resource demanding and not accurate
enough, metadata for annotation is scraped from trusted sites on the Inter-

net. The extracted metadata is converted from unstructured commentary
text to annotations based on minute accuracy for their soccer example. The
data extracted for annotation are scraped from several different sites. Since
two people may use two different completely different words to describe the
same event, these may be lost when searching for a given event. Therefore,
we propose using NLP to discover relatedness between words that possibly
represent the same concepts.

The DAV VI system has been described and we have discovered a problem
with the current use of metadata used for annotation. By applying NLP
analysis we hope to solve the problem.

1.5 Outline

The rest of this thesis is structured as follow. Chapter 2 contains relevant
background information on topics this thesis explore, including both techni-
cal reviews and related work. The design is described in chapter 3 and the
implementation in chapter 4, while chapter 5 presents the experiments and
evaluation. Chapter 6 will conclude this thesis.

Chapter 2

Background

This chapter will introduce important concepts and topics for this thesis. We
must evaluate and analyse text in order to calculate the relatedness between
textual input. To calculate similarity and relatedness between text, we need
to first analyse it, for this, we use Natural Language Processing (NLP).
Tools for analysing words and sentences within NLP include part-of-speech
(POS) tagging and word sense disambiguation (WSD). These tools locate
and discover the sense and concept that the word represents. Used in NLP,
is a collection of text that can be annotated and used to train classifiers such
as POS taggers and WSD. Such an annotated text is called a corpus and will
be introduced. To achieve a common level of word understanding, we look
into ontologies to establish relationships between words. There exist several
algorithms and approaches that calculates similarity between two different
concepts. To produce results, ranking and recommendation are key elements
and will be presented. In the end, we will summarize the different concepts
that are the background for this thesis.

2.1 Natural Language Processing

NLP is a branch in computer science and linguistics dealing with the un-
derstanding of natural text for a computer. The field spans several areas
in computer science such as Artificial Intelligence (AI), computational lin-
guistics, statistics, and machine learning. Its history stretches from around
1950 until today. Alan Turing made the concept and field popular by his
paper regarding an imitation game [10]. The paper states the question ”Can
machines think?” leveraging the idea of a learning machine.

NLP is not only about understanding, but also the ability to manipulate
data, and in some cases, produce answers. Creating good interpretations
does however require large amount of information to such a system. In this
process we tend to utilize machine learning, making models or concepts of
problems and solutions solvable to some Al, thus making NLP a sub field

of said AI. Algorithms used today utilize statistical machine learning, that
is algorithms allowing computers to evolve behaviours (in this case, recog-
nition or understanding) based on empirical data sets. Machine learning
uses concepts from probability theory, pattern recognition, data mining,
and statistics to mention a few.

NLP problems are under heavy research today. The IBM Watson! is
an example on a complete system that is able to translate from human
speech to text and process the given query related to the asked question,
to ultimately produce a result satisfying the questionnaire. It does however
require a data center with different data stores, schemas, and ontologies to
power the Watson. The NLP problems that are most relevant to this thesis
are the POS tagging, parsing and WSD. NLP is also strongly connected
with information retrieval (IR) for searching and retrieving information by
using some of these concepts.

A word can be classified into several linguistic word types. These could
for instance be hypernyms, homonyms and hyponyms. A hypernym is a
less specific instance than the original word. Hyponyms are the opposite,
a more specific instance of the given word. Homonyms are equal words or
synonyms.

2.1.1 Part-of-speech Tagging

POS tagging [11], is used to tag grammar within a text. It could for in-
stance be to locate the word category of a given word within a sentence.
In a system using NLP, a word can have several meanings, each based on
what POS the word in the given context has. In English, it is common to
learn nine part of speech: noun, verb, article, adjective, preposition, pro-
noun, adverb, conjunction, and interjection. A user may also find that there
exists many more categories and sub-categories. In many languages, words
(typically nouns) are also marked for their "role”, grammatical gender, and
so on within the sentence. Verbs are marked for tense, aspect, and other
things. Discovering the relationship between words in a phrase, sentence or
paragraph in known as the identification of nouns, verbs, adjectives and ad-
verbs etc. Once performed by hand, POS tagging is now done in the context
of computational linguistics, using algorithms that associate terms.

POS tagging is hard since words can represent more than one part of the
speech. For instance, the word ”"saw” can be represented as both a verb and
a noun. The sentence: ”He saw two dogs”, can represent the meaning of a
man seeing two dogs based on that ”saw” is past tense of "see”. However, if
the word is flagged as a noun, we mean the cutting instrument used on e.g.
a tree. For a human judge it is easy to differentiate between the different
meanings based on how it is used, however, it may prove very hard for a

"http://www-03.ibm.com/innovation /us/watson/index.html

computer to do the same task. By performing semantic analysis on the
sentence, a computer may find it unusual if the word "man” is followed by
"saw” and "dogs” if all are nouns. If the computer analyse the POS of
each word, it can conclude that the series noun-verb-noun is more probable
than noun-noun-noun. For this reason, POS taggers are often trained with
supervision by a human judge before used.

2.1.2 Word Sense Disambiguation

WSD is one of the main problem areas within natural language processing.
WSD analyses a sentence and based on statistics, it tries identifying which
sense of a word that is used in the sentence, if the word has several differ-
ent senses. Its uses are within other field of computer linguistics and can,
for instance, improve relevance of search engines. Research has progressed
steadily to the point where WSD systems can achieve accuracy on 90-96%
[12] on a variety of word types. Several techniques have been used to achieve
this accuracy, which range from machine learning and trained classifiers to
lexical resources like dictionaries and clustering of words and concepts.

To explain word sense disambiguation, consider two examples of the
distinct senses that exist for the word ”bass”: It could be (1) a type of fish
or (2) tones of low frequency. In a sentence it is used as (1) "I went fishing
for some sea bass” and (2) ”did you hear the bass line of that song?”. For
a human judge, it is obvious that the the two sentences use the different
senses of "bass”, however, it is not obvious to a computer.

Supervised learning approaches have been the most successful algorithms
to date. Using the English language, accuracy at the coarse-grained level
is above 90%. The simplest possible algorithm of always choosing the most
frequent sense has a standard accuracy of between 51.4% and 57% [12].

WSD requires a list of senses that are to be disambiguated and a corpus
containing language data to be disambiguated. The actual process have two
variants: (1) Either all words within a text are processed from disambigua-
tion or (2) just a small sample of short text previously processed for a more
accurate precision. The former comprises disambiguating the occurrences of
a small sample of target words which were previously selected, while in the
latter all the words in a piece of running text need to be disambiguated.

The difference between word sense disambiguation and part-of-speech
tagging is that WSD is used to discover the sense behind a word, thus
require a more complete sentence while POS taggers are able to determine
the part of speech simply by examining the adjacent terms.

2.1.3 Corpus

In linguistics, a corpus is a large set of text that can be structured. A corpus
is used to do statistical analysis and testing hypothesis and may occur in

a single to multiple languages. To make a corpus more useful for linguistic
research, they are often subjected to processing and annotation [8], although
we find use of corpora as unprocessed text.

A lemma is the headword, that is the core of a word. For instance, in
English, jump, jumping and jumped all originates from the lemma jump.
When performing NLP analysis, POS tagging is often used. The part of
speech could be information like verb, noun and adjective, while lemma
processing requires us to find the base word. The size of corpora varies, an-
notated corpora are usually smaller for consistency reasons and can typically
contain from around 100k to three million words [13] annotated, although
it is possible to find corpora containing only 3000 words.

It is possible to further structure corpora, these are called treebanks or
parsed corpora [13]. Here we also find that further processing and analysis
are applied. Corpora are the main knowledge base in corpus linguistics. In
computer linguistics, speech recognition and machine translation do all use
corpora for analysis and processing. There are several notable corpora used
today. The most known corpora is the Brown corpus by Kucera and Nelson
from Brown University [14]. It is used in several academic and proposed
work. Other notably corpora are the American National Corpus, Bank of
English and British National Corpus, which are widely used together with
the Corpus of Contemporary American English.

2.1.4 Information Content

Information content (IC) is a measurement of how specific a concept is, that
means how much information that is possible to extract from a given word.
For instance, vehicle is a generic concept if compared towards car. The
word ”car” will in this example be more specific, thus have more information
about the concept it represent opposed to a ”vehicle”. Mentioned by Resnik
[15, 16], it is an approach to determine the conceptual similarity between
nodes within a hierarchy. Each node represents a unique concept described
by a notion of information and is connected by edges between nodes that
represent the given relationship and connection between themselves. If such
edge exists, the similarity between nodes are measured by the information
they have in common. The given similarity is calculated based on estimating
the probability of the occurrence of a specific concept class within a collection
of text.
Information content is by information theory defined as

IC(c) = —log(P(c))

That is the probability of encountering an instance of the concept ¢ written
as P(c). It measures the specificity of a concept, as described above. When
using 1C, words are placed in a hierarchy. In this hierarchy, they are placed

according to their the sense or concept they represent. An example of this
is shown in figure 2.1.

Vehicle

l

Wheeled Vehicle

N

Motor Bicycle

Car Truck

Figure 2.1: A hierarchy of words

For text, a more specific instance of a word is called a hyponym and
is located below the initial word in a hierarchy. A less specific instance is
called a hypernym and is located above. The higher value of a associated
concept means that we are dealing with a more specific concept. An ”entity”
is typically the least specific term in a text hierarchy and will get the IC
score of zero. At the bottom of the hierarchy, related concepts that are
the most specific receives the score of 1. For instance, the concept car will
have a higher score than the concept vehicle since car is more specific than
a vehicle. This example is explained more thoroughly in section 2.2.1 and
based on 2.1.

2.1.5 Short Text and Sentence Similarity

While there has been lots of academic work in semantic similarity [15, 17, 18],
it is mostly related to term versus term relatedness. According to several
researchers, there exists problems regarding the discovery of the essence in
a sentence or short text. It is not possible to utilize regular and well-known
algorithms such as TF-IDF [19], regular syntactic search and basic semantic
search [5] since relationships must be clearly defined such as, within a lexical
database.

A large portion of the problem related to this field, is to capture the
sense of a sentence. Nicely described by Kiddon and Brue [20] is the double

entendre identification, that is a joke that consists of saying ”that’s what
she said” after someone utters a statement in a non sexual context that also
could have been used in a sexual context. Take for instance the sentence:

I was taking an essay test when a girl raised her hand and half-
jokingly said ”Can we finish this orally, my hand is starting to
hurt.2”

By saying ”that’s what she said” afterwards, a sexual context is added, thus
completing the joke. The core problem is to find the context of the sentence
that has a double meaning. Their system, Double Entendre via Noun Trans-
fer (DEviaNT) is basically a classifier trying to locate sentences with two
meanings utilizing a support vector machine (SVM). The classifier targets
the grammar and structure of a sentence by knowing that the structure:
”object” ”verb” ”subject” is more likely to contain a double meaning than
for instance ”verb” "object” ”subject”. An important attribute is that the
verb must also have a meaning in an erotic setting.

Other systems performing similar tasks are the Mihalcea’s work on ” Mak-
ing computer laugh” [21] and the Cleverbot [22]. While Mihalcea locate hu-
mor in text, the Cleverbot? is a system responding to human text interaction
by text. Both of these work relate to locating the sense of a sentence.

2.2 Ontology

In order to maximize the usability of NLP, we need to have defined an on-
tology. The term ontology has its origin in philosophy, and has been applied
in many different ways. What many ontologies have in common in both
computer science and in philosophy is the representation of entities, ideas,
and events, along with their properties and relations, according to a system
of categories. It was Gruber [23] who coined the term ontology as ”a formal,
explicit specification of a shared conceptualization” in 1993. Formal is de-
fined as being in accordance with a set of rules or requirements, for instance
XML, which is a set of rules for encoding documents in a machine readable
form. The shared conceptualization refers to the common understanding
of the entities and objects that exist in the area of interest. By explicit
specification we mean a clear and detailed description of the relationships
that exists between the objects within the conceptualization. An ontology
is the formal representation of knowledge as a set of concepts within a given
domain. Within the language domain, relations are defined between as re-
lationships between words and the concepts that word represent.

Words with several senses are used differently based on their part-of-
speech. In order to capture the ”right” sense, we must understand the

2http://www.twssstories.com/best
3www.cleverbot.com

10

current context. This also goes for understanding humans, since a statement
may have one or more meanings based on the context the second person
bases the evaluation on. An example for this is the word ”rose”. If a
person evaluates the statement based on a context of flowers and fauna, the
meaning is the flower rose. Else, if the person uses the context of empires
in the growth, the sense would be the past tense of ”rise”.

A domain ontology tries modelling a specific domain, or part of the world.
It represents the particular meanings of terms as they apply to that domain.
For instance, the word ”card” has many different meanings. An ontology
about the domain of poker would model the ”playing card” meaning of the
word, while an ontology about the domain of computer hardware would
model the "punched card” and ”video card” meanings.

2.2.1 Wordnet

Wordnet is a lexical database that consists of several dictionaries. It is used
to find relationships between words and has been employed as a linguistic
tool for learning domain ontologies. Wordnet is a general lexical database
that is not tied to any specific domain and is perhaps the most widely used
ontology for handling text. The main supported language is English, but
Arabic and European localization are currently under development.

The purpose of using this kind of ontology, is the distinction between the
actual word and the sense of the word. To a computer, a word by itself is
simple a set of characters with no specific meaning. For linguistic processing,
Wordnet offers the possibility of linking a word to a set of concepts that it
represents to humans. For this, Wordnet utilizes the concept of synsets.
A synset is a set of synonyms each with somewhat equal meaning. When
calculating the relationship between two words, the shortest path between
each of the two word’s synset is discovered.

Due to different grammatical rules, Wordnet distinguishes between noun,
verbs, adverbs and adjectives. Within each of these groups, each word can
belong to several lexical groups as described in section 2.1. These could
be hypernyms, hyponyms, homonyms, and coordination terms to mention a
few. A word could be both a hypernym and a hyponym, however, to find
the right meaning, we must parse and discover the context.

As figure 2.1 describes, Wordnet is built as a hierarchy. We can see that
the most generic type of word is placed at the top, while more specific words
are linked at a lower level. In the figure, the term ”vehicle” is more generic
than ”"wheeled vehicle”, while that again have several sub categories. The
figure includes both motor and bicycle, it can however contain several more
of these categories. ”Motor” vehicles do also have several sub categories, in
this example "car” and ”truck”. In order to detect the difference between
two terms, it is possible to calculate the distance between them. It is also
possible to find the semantic difference between the different terms by first

11

finding which synonym set each term reside within, before calculating the
difference between them.

Lemma, or headword
Sense definition

Brand [verb], marking animals.

~ homonyms

Brand [noun], public known name.

‘ Lexeme, or lexical entry

Part of speech

Figure 2.2: Explanation of how a dictionary works

For our example in using a lexical database, we must understand the
meaning of a word. To further complicate the matter, a word or term may
have several different senses. These are based on the part-of-speech, or the
lexical category the word in its writing is in. In figure 2.2 the word ”Brand”
withdrawn from a lexical book. The lemma of the word, or headword is
"brand”. This is followed by the part-of-speech which could be the different
word categories such as verb, noun, adverb, etc. In our example we have the
word ”brand” in both verb and noun form. After the part-of-speech, we find
the lexeme, or the sense definition. In our case, ”brand” is defined as the
infinitive of brand in the verb category (brand, branding, brand etc.), while
for noun, it is defined as a type of product manufactured by a particular
company under a particular name. In a lexical database, the word ”brand” in
all its part-of-speech forms are defined as homonyms, that is equal words in
the hierarchy. By using a lexical database such as Wordnet, all the different
senses of this word is listed. More specific words are categorized as hyponyms
while more generalized words are hypernyms. An example of these are
”Vehicle” as a generalized term while ”Bicycle” are a more specific term in
the hierarchy as shown in figure 2.1

Similar approaches as Wordnet exists. Example of these are CYC [24],
and Sensus [25].

2.3 Recommendation

Recommendation can be defined as a suggestion or a proposal as to the
best course of action. In the context of this thesis, course of action signifies
the best possible object to be recommended at the time being. By action
we mean recommending an item to a user that is the most suitable. In

12

recommender systems, recommendation is a specific type of information
filtering that tries present a user with items that are most likely to be of
interest [26, 27].

By filtering we mean the possibility of removing items from a set based
on different attributes that the items posses. Recommendation systems in
general tries to recommend items in categories such as electronic advertising,
movies, audio and books, to mention a few. Such systems are generally built
upon extracting information from user profiles.

There are generally two different types of algorithms that are used:
neighbourhoods and collaborative filtering. While neighbourhoods calcu-
late relations based upon the distance between several concepts, actors, and
their attributes, collaborative filtering utilize the combined view of a defined
group as a filter. The k-nearest neighbour algorithm (k-NN) is used for
classifying objects based on supervised training [28]. k-NN utilizes instance-
based learning, or lazy learning where the function is only approximated
locally and all computation is deferred until classification. k-NN is among
the simplest algorithms used in machine learning where an object is only
classified if receiving the majority of the neighbour’s votes.

Collaborative filtering (CF) is the process of filtering for information or
patterns using techniques involving collaboration among multiple sources
[29]. Typical applications using collaborative filtering tend to use very large
data sets. This could be, for instance, geochemical data used to describe the
geological media of interest and resource evaluation describing the quality
and quantity of a resource in an excavation.

Collaborative filtering is a method of making automatic predictions based
on any interests a user has, by collecting similar information from other
users. Such system may have underlying assumptions of equal preferences
between group members. Based on group members, these approaches pre-
sume that if agreed in the past, members also agree in the future. For
instance, based on users preferences and interests, a recommendation sys-
tem may use CF to predict and propose TV-shows and movies to users.
The difference from other recommending algorithms is that information is
gathered from many users and proposed to individuals instead of a ranking
based on, for instance, a scoring algorithm.

2.4 Ranking

Ranking is defined as the relationship between objects, whereas objects could
range from music to television shows. This creates partial order of a set,
since for any two numbers, one is either ranked higher than, lower than,
or equal to the other. Search engines utilize ranking by relevance in order
to retrieve documents that match the user’s query. For many commercial
systems that perform ranking, the actual algorithm is a closely kept secret.

13

To rank two or more items against each other, these must be associated
with some kind of score. A major problem within ranking is the determi-
nation of how to score any given item. For any ranking algorithm, items
are usually given an identifier and initial rank score before the algorithms
simply generates a ranked list of these items. There exist several ways of
scoring items. This is based on some pre-defined criteria.

The best known ranking algorithm today are Hub Authorities [30] and
PageRank [31]. Hub Authorities also known as the Hyperlink-Induced Topic
Search where a hub represented a page that linked to many other sites
and an authority represented a page that was linked to by many hubs.
PageRank is known for its link analysis, weighting links within a set of
Internet documents. When performing ranking, several parameters count
towards the final result as giving the best, most relevant, up-to-date and
comprehensiveness.

Other known ranking algorithms are for instance the reddit social new
ranking [32] which utilize hot ranking. It is a logarithmic scale that weights
votes based on their log(t), that is the logarithmic scoring algorithm based
on the initial timestamp. The score will not decrease over time, however,
newer items are ranked higher based on a higher initial score.

2.5 Similarity Measurement

Similarity measurement is the concept of finding the equality between two or
more objects. These objects could range from word syntax to the concepts
a word may represent to the difference in length and grading. Similarity
is the probability that these objects are equal. There exist several ways
of finding such probability. We have the two different models, syntactic
probability and semantic probability. While syntactic probability only in-
spects the difference in syntax, semantic probability tries understanding the
concept behind a term or word [15]. Semantic similarity often requires ex-
tra knowledge in order to understand concepts and NLP processing is often
used. Such extra knowledge could be lexical databases where we find defined
relationships between words. These are often presented in a hierarchy.

2.5.1 Syntactic Similarity Algorithms

Most of the syntactic similarity algorithms are based on the ”edit distance”
theory %. Edit distance algorithms transform one string from a two strings
set and counts the number of operations needed to fully transform them
to equal. These algorithms are mostly used in spell checking, where their
application area spans from spam filtering and medical use.

“http://nlp.stanford.edu/IR-book/html/htmledition /edit-distance-1.html

14

The Levenshtein distance [33] is a metric for measuring the difference in
two sequences. The edit distance is the difference between two words, that is,
the number of edit operation that must be completed before the two words
are equal. Edit operations defined are: insertion, deletion and substitution of
single characters for the Levenshtein algorithm. The Levenshtein distance
between "kitten” and ”sitting” is three, as three edit operation must be
preformed to make the transformation:

1. kitten - sitting
2. sitten - sitting
3. sittin - sitting
4. sitting - sitting

Damerau-Levenshtein distance [34] is a more advanced form of edit dis-
tance. The algorithm also calculates the minimum number of operations
needed to transform a string into the other. In this algorithm, the transport
of two adjacent characters is also considered an edit operation.

Take for example the edit distance between CA and ABC. The Damerau-
Levenshtein distance between CA and ABC is 2. This is because of the edit
operations going from CA to AC to ABC, but the optimal string alignment
(OSA) distance of CA to ABC = 3.

The JaroWinkler distance [35] is a measure of the similarity between
two strings and mainly used in the area of duplicate detection. The score
produced by the Jaro-Winkler distance is higher the more similar two strings
are. The distance metric used is designed and best suited for short strings
such as person names. The score is normalized such that 0 equals to no
similarity and 1 is an exact match. The Jaro distance dj of two given strings
sl and s2 is:

=35 +

3°s1 s2 m

m is the number of matching characters while t is the number of transposi-
tions.

2.5.2 Semantic Similarity Algorithms

Several other similarity measures are provided for use with a lexical database
such as Wordnet: Leacock-Chodorow, Wu-Palmer, Resnik, Jiang-Conrath,
and Lin. We tend to divide the algorithms into those how utilize a corpus
and those that do not. Jiang-Conrath [36], Resnik [15] and Lin [37] all use
algorithms that access a corpus while Wu-Palmer [38], Leacock-Chodorow
[39] and the regular PATH algorithm all use a variant of edge counting. The
PATH algorithm is one of the simplest edge counting algorithms used to
determine a distance within a hierarchy. For semantic analysis, all these

15

algorithms access Wordnet to discover relationships between words. These
algorithms based their similarity measurement on locating the least common
subsumer (LCS). That is by definition the common ancestor deepest in the
taxonomy, not closest to the two senses. Where multiple candidates for the
LCS exist, that whose shortest path to the root node is the longest will be
selected. Where the LCS has multiple paths to the root, the longer path is
used for the purposes of the calculation.

PATH returns a score denoting how similar two word senses are, based on
the shortest path that connects the senses in the is-a (hypernym/hyponym)
taxonomy. The score is in the range 0 to 1, except in those cases where a path
cannot be located (will only be true for verbs as there are many distinct verb
taxonomies), in which case -1 is returned. A score of 1 represents identity
i.e. comparing a sense with itself. Leacock-Chodorow Similarity returns
a score denoting how similar two word senses are, based on the shortest
path that connects the senses (as above) and the maximum depth of the
taxonomy in which the senses occur. The relationship is given as: —log(J3)
where p is the shortest path length and d the taxonomy depth. Wu-Palmer
Similarity returns a score denoting how similar two word senses are, based
on the depth of the two senses in the taxonomy and that of their Least
Common Subsumer (most specific ancestor node).

Resnik Similarity returns a score denoting how similar two word senses
are, based on the Information Content of the Least Common Subsumer
(most specific ancestor node). Note that for any similarity measure that
uses information content, the result is dependent on the corpus used to
generate the information content and the specifics of how the information
content was created. Jiang-Conrath Similarity returns a score denoting how
similar two word senses are, based on the Information Content of the Least
Common Subsumer (most specific ancestor node) and that of the two input
Synsets. The relationship is given by the equation

1
IC(s1) + IC(s2) — 2 x IC(LCS)

IC(s1) and IC(s2) is the depth and path for the given synonym set in the
information content. Lin Similarity returns a score denoting how similar two
word senses are, based on the Information Content of the Least Common
Subsumer (most specific ancestor node) and that of the two input Synsets.
The relationship is given by the equation

2 x IC(LCS)
IC(s1) +IC(s2)

Here, the algorithm uses the least common subsumer located in the infor-
mation content that is built from a corpus. Then, the depth of the synsets
of the senses are located in the information content.

16

2.6 Summary

In this chapter we have described the required background needed as a base
for this thesis. While NLP is used heavily today, it is both a time consuming
and error prone field of research where algorithms exchange computational
time for accuracy. This includes the different classifiers used in NLP such as
POS tagging and WSD. We have elaborated some of the existing problem
areas such as discovering of the context and the current state of art. Also,
we have given an introduction to similarity measurements, both syntactic
and semantic algorithms and approaches. We have chosen to use the lexical
database Wordnet in our approach. It is the standard lexical database used
in most academic work within the field of NLP [40, 41].

17

18

Chapter 3
Design

The main contribution of this thesis is the algorithms and how they are used
for similarity comparison. To be able to use such algorithms, we must first
agree on a system model for our prototype. This chapter will discuss several
approaches before we present the architecture of this prototype with all the
needed components.

3.1 System Model and Architecture

Our event detection system will in general generate a similarity score of
how similar two concepts are. Our semantic text analyser is defined as
the system. Based on the semantic analysis, the system will compute the
relatedness between the input.

Output
Video Video I
-] " Input Text Event
! | - Detection
________________________ System

Figure 3.1: High level system model

The main overview is shown in figure 3.1. From the system model, we
can see that the system receives input, and produces output. The input is
defined as text parsed from video files.

3.1.1 Components

From the high level model displayed in section 3.1, the system is defined
as a text event detector. Our event detection system generates a similarity

19

score based on how related two concepts are. From the input received in the
system, it is possible to compute the similarity of, for instance, two words.
Input accepted by the system may be parsed and corrected based on certain
rules within the system, to avoid errors when further parsing the input in
the system. From the system model, we derive a component model as shown
in figure 3.2

Output

System l
Input

' Input Manager

Similarity

Event Context .
Computation

Figure 3.2: System model containing both a similarity computation module,
an event context module and the input manager.

To produce the required output, the system must have a set of modules
that are able to handle and process data from the moment it enters our sys-
tem to the moment the similarity score is delivered. The modules described
here are the input manager, the event context module and a similarity com-
putation module.

To avoid errors when further parsing the input in the system, the input
must be validated according to a set of rules within the system. For instance,
if the system utilizes a lexical database for word lookup, all input arriving at
that point should not generate any exceptions at that point. Then, certain
words should be filtered out at an early stage. Also, when accepting input
from different sources, there may be formatting issues such as different input
file formatting or string encoding.

The similarity computation unit can understand the concept that a word
represent, thus, it calculates how related two different concepts are. The
proposed system must be able to generate such a context in order to evaluate
the input correctly. An event is the basis for such a context, as such, we
define this as an event context.

We define events as specific phenomenons located at a specific point in
time. The length of an event can span across several scenes in a movie,
however, for our system, the length is defined as the period of uninterrupted
sequence of the same event. They take place on a timeline corresponding

20

with the actual feed they are representing. For instance, a video feed will
consist of several events located at different points in the feed’s timeline.
The events will typically be a short summary of the complete feed, as of:
(1) at point t1, "a man got shot”, (2) at point t2 ”"some were flying an
aircraft”, (3) at point t3 "there was an accident” etc.

A word, sentence or text is always evaluated based on the context of the
person that is evaluating the text. The proposed system must be able to
generate such a context in order to evaluate the input correctly. We propose
to generate event contexts, such that it is possible to locate events when
evaluating the input.

3.1.2 Control Flow

As a high level control flow, the system receives input data and computes
a similarity between the two items. However, in order to compute this
relatedness, the correct and formatted data will be parsed and an event
context must be generated.

Output

System |
Input 1)
N

=) . 2)
Input Manager
4)

< Similarity
— .
5)| Computation

Event Context

Figure 3.3: High level control flow

Figure 3.3 summarizes the main control flow in our system. To support
the calculation of semantic relatedness between input, we need a component
that is able to generate a context for a given an event. This includes calcu-
lating the relationship within such a context so that there is a defined and
clear relatedness between all concepts within the context. In other words,
if the original meaning of the base concept is lost when creating the event
context, the relatedness between those concepts is below a certain threshold.

The logic of the similarity calculation is contained in a separate com-
ponent containing its own interface. Hence, it is possible to plug in other
algorithms without the need for redesigning the rest of the components based
on changes done in the algorithm. Also, additional algorithms can be used

21

in sequence in order to skew the output result based on the diversity of the
algorithms used. This could, for instance, be how the similarity is calculated.

All these components can be considered as separate services that are
usable internally through an internal interface. The complexity in usage
of all devised components, can be changed based on the said interface.
For instance, the complexity regarding the event context generation can
be changed to include or exclude the size of the context.

The basic control flow is based on figure 3.3 and defined as the following
in our system:

1. Input arrives in the system.
2. The input is parsed and made ready by the input manager.
. Similarity calculation starts.

3

4. An event context is generated.

5. Similarity computation is finalized based on the event context.
6

. Output is sent from the system.

3.2 System Components

We have defined an event detection system for discovering semantic relat-
edness between text by detecting events within text. Events are detected
based on the discovery of similarity against a generated context. The event
detection system is composed of several modules shown in figure 3.4. The
main modules are as first shown in figure 3.2, the Input Manager, Similarity
Computation and the Fvent Context.

Event Detection System

@ Request
_—
—
Similarity

Response Input
Manager «—> Computation
para — 5 Event Context

Storage

Figure 3.4: Overall event detection architecture
e Input Manager: The input manager is responsible for generating valid

terms for further use in the processing pipeline. A valid term is de-
fined as a unique term that does not generate any exceptions later in

22

the system. An exception may be that it is not found in the lexical
database, or the term is misspelled. Common tasks for the input man-
ager consists of operations like stemming, lemmatization and stopword
removal.

o Fvent Context: Based on simple keywords, this component will gen-
erate an event context containing a set of words that relates to the
event that is searched for. By using a set of terms associated with the
event, the system can, based on certain parameters, expand the set
by so-called context exploration in order to increase the context size.
Context exploration generates the context based on circular crawling
of equal senses with almost similar meaning. This means searching for
similar hypernyms, homonyms and hyponyms. Expanding the context
size can lead to better chances of discovering the event.

o Similarity Computation: This component is responsible for similarity
computation. During run-time, the component is able to execute a
series of algorithms in order to compute similarity between text and
the context representing an event. Computing similarity for a sentence
could prove difficult based on several factors, as for instance captur-
ing the essence of a sentence, or even locating the most prominent
word. By computing similarity within a sentence, we should be able
to capture the essence. Also, by computing the similarity between con-
secutive sentences, the system should be able to locate the meaning of
a series of sentences.

The general program flow is shown in figure 3.4. Typically, an applica-
tion will ask for a similarity check between input, that is, the relatedness
between some text and an event. A context is generated based on the event
keyword that could either be received as input, or located in a database,
described later in this chapter. The event detection system will utilize a
lexical database for semantic inquiry. Also, similarity within and between
sentences are computed to generate the best possible result. The computed
result is the delivered back to the application.

3.3 Input Manager

The input manager is a tool to prepare the input data for the pipeline
processing that awaits later in the system. The system accepts most kind
of text, as for instance, single words and short text. For the design and
implementation, we will focus on subtitles as input, however, regular words
and short text will also work as valid input.

23

Raw input q / Input \
]

Stopword Removal

!

Spell Check

!

| Lemmatize |

Validated input_ K Result /

Figure 3.5: Input manager architecture and design

As mentioned earlier, the input manager has the job of preparing the
input for further processing in the system. The program flow within the
input manager is based on the overall control flow as illustrated in figure 3.3
and more specific in 3.5.

1. Tokenize a short text into terms
2. Remove stopwords and terms without any prominent sense
3. Check for spelling errors

4. Lemmatize all terms

3.3.1 Stopword Removal

Stopwords are in computer science defined as a set of words that is very
common and not required for linguistics analysis. Also, they appear frequent
and have little or no meaning, thus can safely be removed. Results based on
datasets that are not processed for stopwords can make results inaccurate
due to words with no or little meaning are being ranked as regular words.
Examples of such words are ”"thus”, ”"then” etc. Stopwords as ”I”, 7a”,
”some” and ”just” are words that when parsed into tokens, make little
sense alone. There exist several lists of stopwords on the Internet, some
contain up to 10 000 word. When searching a database that have removed
the 10 000 most common English words, the execution time of the query
and accuracy of the result is far better than without!. Some of these words
do actually create a structure within the sentence, and could be kept in a
shadow sentence for later semantic processing.

"http:/ /blog.stackoverflow.com /2008 /12/podcast-32/

24

Stopwords are removed during the linguistic processing of the data. Since
we are expecting heavy processing during the semantic analysis, it is better
to remove stopwords at the very first in the processing line.

3.3.2 Stemming and Lemmatization

This component is responsible for locating the root of a given word. Stem-
ming is used within linguistics for the purpose of reducing a word to its
root. Take for instance the word ”jumping”. Its root is ”jump” and it has
many forms and endings when used in speech, as for instance ”jumped”. For
better comparison between words, all words should have the same form and
tense. The first stemmer published was by Julie Beth Lovins in 1968 [42],
though published early and regarded as important for the linguistic field,
the Porter Stemmer is now among the most used and best known stemmers.
Published by Martin Porter [43] in 1980 its algorithm is ported to most pro-
gramming languages today. In his paper, the word connect has been written
with several endings, but still contains the same meaning as a base. ” Con-
nect”, ”connected”, ”connecting”, ”connection” and ”connections” still use
connect as its root and all these words should be treated as ”connect”. It
is however not possible for a stemmer to find relationships like ”good” and
"better”.

Lemmatization is a more advanced form of stemming, where you allow for
these links to be discovered. While stemmers use grammatical rules for word
reduction, lemmatizers allows for dictionary lookups in lexical databases as
Wordnet. This means that lemmatizers can understand the context and
therefore find the part-of-speech used with the lemma.

Words like ”jump”, ”jumping” and ”jumped” have all the same lemma
which is ”jump”. By removing the suffix in ”jumping” and ”jumped”, all
these words will have the same base and therefore can be compared to each
other. However, if we decide not to include any information of the different
terms, they might actually semantically mean different things, as one term
could be in the present state, while the other, indicated by the ending,
happened several years ago.

3.4 Event Context

The event context component generates a context for a specific event. It
is by this context, sentences are evaluated against based on word patterns.
For a given scene within any media, there exist a context for it. In order
to evaluate any discovery, we need to evaluate towards the correct context.
We define an event context as a pattern of words that are representing the
event. The context is ”expertly” chosen terms special for the event we are
computing against. For soccer, it would be for instance ”keeper”, ” forward”,
"back” etc.

25

We think of using a keyword based approach to generate the context that
ultimately will be the base for the similarity evaluation. Several non-lexical
algorithms utilize a corpus and the generated information content in order
to generate a probability for a given term within a sentence. If we are able
to construct an event context consisting of similar words as the keyword, we
may be able to generate higher precision in our event detector, based on a
larger and more specialized comparable context.

Keyword from Similarity Computation

\

1)

Event Keyword

‘23) 3)
-

Wordnet
Exposure

LED

Context
Exploration

¥y

Event Context

5)

N

7 Context

Figure 3.6: Architecture and design of the event context generator

Based on the overall control flow in figure 3.3 and 3.6, a specific control
flow has been created.

1. A base context is established

2. The keyword is exposed to wordnet

3. A context exploration is performed

4. Based on certain metrics and criteria, an event context is created

5. The context is completed and sent to the similarity computation mod-
ule.

Through the use of Wordnet, each word can be associated with a syn-
onym set. This is a collection of words where there are defined relationships
between them. We can, by performing a term expansion process, hopefully
increase the possibility of finding terms that generate a probability hit when

26

searching for events. By a context expansion, we try locating all synonyms
that are relevant for the actual unique term. Also all synonym sets that are
in relation to our word’s synonym set should also be evaluated in order to
generate the best matching list for our search. Li et al. [44] also proposes
such a solution by scaling the similarity based on depth in the taxonomy.

3.4.1 Generating Context

For a given scene within any media, there exists a context within it. In
order to evaluate any results, we need to evaluate the results to the right
context. It is possible to generate a context based on keywords as proved
by [6], building a bag-of-words based on similarity towards some keyword.
Typically, we can perform a context expansion utilizing Wordnet as a lexical
database and generate larger set of words within the context. The set of
terms can have several properties as of a maximum distance from a term
in the Wordnet hierarchy. Also, this generation allows for several metrics,
calculating for instance, the distance and edge-weighting using the lexical
hierarchy. A proper solution can utilize edge counting and weighting as base
probability.

For each event, some keywords regarding this event must be defined in
advance. For instance, all relations to the word "kill” is located through the
lexical database. The list contain both hypernyms and hyponyms. While
hypernyms are words of a less specific nature like ”termination”, hyponyms
are more specific instances of the word. For the case of ”kill”, more specific
words are "neutralize”, ”dispatch”, ”lynch” etc. Based on the total number
of senses available after this exposure, we have the ability to repeat the
step. An important part of the process is to discover the part-of-speech of
the keywords. If a noun is discovered, this must be taken into account when
exposing the keyword to Wordnet as the lexical database is POS sensitive
for difference between noun and verbs, thus must be taken into account.

The generated context consists of several connected senses, defined via
part-of-speech tagging and word sense disambiguation. For instance, a word
could have several meanings based on the POS. The word ”kill” would have
some defined senses if it is a verb. A 7kill” would be the termination of
somebody, the actual action while the noun POS would be the event.

Unique words are sent through a pipeline process where the lemma is
first found, then both POS tagging and WSD are used to find the word
type and its sense. The reason we use both POS tagging and WSD is that
though we can find the part-of-speech, the part-of-speech may consist of
several senses that are only found by a WSD classifier. It is the WSD that
based on the text or sentence tries finding the right sense that would be
appropriate in the given context.

27

3.5 Similarity Computation

It is within the similarity computation component that all the similarity is
computed. Semantic similarity is finding the probability that the concept
the term is representing is actually similar to the comparing concepts. The
internal design of the similarity computation component is illustrated in
figure 3.7.

Validated

llnput
()

Input |

|

Pre-Processing |

Relevance
Feed Loop
\ Semantic similarity v /

l Probability of relatedness

Figure 3.7: Architecture and design of the semantic similarity computation
module

~

We find three different calculation units within. They are: (1) similarity
calculation towards an event, (2) similarity calculation within a sentence
and (3) similarity calculation in consecutive sentences. Based on figure 3.7,
we have designed the flow of control within the similarity computation unit:

1. Receive list of tokens for further processing
2. Pre-process for similarity comparison that typically is Wordnet access

3. Generate similarity probability

3.5.1 Determine Semantic Links

By locating possible semantic relationships between a selection of words, it
might be easier to discover the true meaning and content of a given sentence.
A way of exploring the semantic relationships between words is to use an
ontology. Since verbs and nouns are each set up in a hierarchy we can
determine the distance between senses, thus estimate how two words are
related. A computation of semantic relatedness can only give an indication
of the similarity between two words and their meaning. Jiang and Conrath
[36] describes an approach for discovering semantic similarity by combining

28

lexical taxonomy and corpus statistics. By using a taxonomy for defining
relationships, they define a topology which bases similarity on edge counting,.

A single word can have several different meanings or senses, and for each
word, a calculating process will have to determine the similarity of a large
number of words and their meanings. By using part-of-speech (POS) tag-
ging and word sense disambiguation (WSD), it is possible to compute the
similarity towards the given word in its correct sense. As there are a no-
table computational time there can be an issue when computing similarities
against many sentences, therefore, we have created database support for
the similarity calculation, such that context are calculated for each sentence
when we import them into the system. This allows for both a full computa-
tion on demand as when a client asks for similarity and database retrieval
minimizing the computation needed before returning a result.

3.5.2 Similarity Within A Sentence

To discover the context of a sentence, the system need to understand the
meaning of each word located within that sentence. We will look at possi-
bilities to relate different senses within a sentence toward each other. By
performing such a similarity search, we hope to locate and discover the
meaning and pattern between a set of words in a sequence. As described
in section 2.1, each word has a sense related to it. The Wordnet lexical
database have constructed relationships between all words in the hierarchy.
This allows for using synonym sets. By using the lexical database, we are
able to compute the similarity between synonym sets.

There exist several algorithms for discovering relationships between words,
each emphasizing on different attributes. The regular PATH described in
section 4.4, is based on edge counting within a hierarchy of words. This
algorithm exists in many different variants though most are based on count-
ing edges between terms. Leacock-Chodorow is another algorithm that also
utilizes edge counting. It does however, emphasize more on the taxonomy
that is used. For instance, the relationship between two senses are based on
the negative logarithmic scale of the shortest path divided on the taxonomy
depth. Wu-Palmer uses the least common subsumer of the two senses in
the taxonomy, that is the lowest most common term within the hierarchy.
The main difference between these algorithms the use of the least common
subsumer. While Leacock-Chodorow computes the maximum depth of the
taxonomy where the sense occurs, Wu-Palmer calculates the similarity based
on the most specific ancestor in the hierarchy. Based on the difference, we
related the most the the Wu-Palmer version of edge counting, based on the
least common subsumer between two senses.

29

3.5.3 Similarity in Consecutive Sentences

In order to evaluate a sentence towards an event context, the context must
be correct. That is for instance, a context generated based on the correct
sense of a word. Detecting the main context of a sentence can be difficult
depending on, for instance, the length of the sentence. Based on the length of
a sentence, the context may change based on the known words. For instance,
if we encounter a scene boundary in a movie or TV-show, the content often
changes or have a different meaning in another scene. Else, a new context
can be created and new relationships may be found. By creating separate
contexts for each scene boundary, we avoid floating boarders, where possible
events may not be recognized due to floating contexts.

As our stab at increasing the chances of generating the correct context,
we look at locating similarities between consecutive sentences. If similar
words or concepts are present in for instance two to three sentences, that
word may contain a prominent meaning across several sentence, thus is a
base for the event context.

30

Chapter 4

Implementation

This chapter describes the design and implementation of our system. The
chapter is organized in the following way. First, section 4.1 details the
tools and environment used for our system. Then, section 4.2 describes the
pipeline used for preparing each sentence for further processing. Context
generation and similarity computation are described in section 4.3 and 4.4.
The storage unit is elaborated in section 4.5 while the different applications
are described under section 4.6. Finally, we present a summary of this
chapter in section 4.7

4.1 Technologies Used

For this thesis the following software development platform was chosen.

e Windows 7

Silverlight

Python
e NLTK
Wordnet

As we developed the application in Silverlight, the Windows 7 operating
system was chosen for this purpose. Silverlight is an application framework
from Microsoft for writing and running browser plugins and desktop applica-
tions. Unix systems were also used for developing the actual event detection
system in Python. The language was chosen for easy data structures and
the use of the framework for accessing the Wordnet application for lexical
database access. The accessing framework for Wordnet was NLTK which
is an academic project [45] and is currently used as a de facto standard for
this type of framework application. Several Python modules where used

31

and include for instance, the srtParser and other standard libraries. The
srtParser was used to parse subtitles by creating each line as a accessible
object with properties like start-time, end-time and text. Numpy is also
used for mathematical computations.

4.2 Input Manager

We based the implementation of the input manager on the design elaborated
in section 3.3. The basic implementation is shown in figure 4.1. First,
the system receives text as input from, for instance, an application. The
input is then (1) tokenized into a list for easier processing. Then, for each
token within the list, (2) stopwords are removed before (3) spell checking is
performed. During the last two phases, the token may be discarded based
on the system’s findings. Afterwards, the system (4) perform lemmatization
of the given token, and is stored in a list. When all tokens are processed,
the validated input are sent to the similarity computation unit as described
in figure 3.3.

Input)
—
3) 4 =\
Spell Check Stopword?
\ J

4)

Lemmatize |
-

Validated
Input

Figure 4.1: Implementation of the input manager

4.2.1 Stopword Removal

We have chosen to use a stopword list containing 126 words as provided
by the NLTK package which includes the most known stopwords. Also, we
filter out all words with length less that 3 characters. These are the most
common words used in English today and when removed, only meaningful
words make out the sentence.

Each word within the sentence is compared against the list and removed
if found equal. Also, most words that have the length of two characters or

32

less have little on no value and therefore removed. By implementing a too
large stopword list, the result will be that almost all words are filtered out
before the actual processing begins. However, if a too small list is chosen,
the result would be that too much of the sentence is left when processing
for semantic similarity. Therefore, we have chosen a smaller subset of an
English brown-stopword list.

As point 2 in figure 4.1 illustrates, tokens arrive at the stopword removal
process. If the token exists in the stopword list, the token is disposed of.
However, if not found, the token is then passed on in the pipeline to step 3.

4.2.2 Syntax and Spell Checker

All edit distance algorithms performs well, though some are more compli-
cated than others. We have chosen to implement a simple version of the
Levenshtein algorithm [33]. The implementation is straight forward. A
term arrives at the process and is checked against a dictionary provided in
Wordnet. If it exists, the word is passed on for further processing. If not,
we locate the k-nearest words and execute the algorithm. The lowest score
by the algorithm is chosen as the word and passed on. The basic algorithm
is as below.

Listing 4.1: Levenshtein Implementation

1 def Levenshtein(base, test):

2 distance = 0

3 for charl in enumerate(base):

4 for char2 in enumerate(test):
5 if charl = char2:

6 continue

7 else:

8

distance += 1

Testing the difference between two words is in this example as easy as com-
paring each character for equality.

4.2.3 Stemming and Lemmatization

Based on the discussion is section 3.3.2, we have chosen to use a lemmatizer
in order to discover the root of each word. This allows our system to discover
relationships that a stemmer cannot detect, such as locating the lemma of
the word better is the word good. The general form of lemmatizing a word is
to apply grammatical rules until the word it is not possible to preform such
actions or it is located in a dictionary. This could for instance be, checking
the suffix for known endings such as -ion, -ing or -sses.

33

The generic lemmatization process usually involves the following steps:
1. Select word to lemmatize: lets say ”meeting”.

2. Grammatical rules to find the lemma or root word which is meet.

3. Analyse the context, using a word sense disambiguation.

4. Based on the context, meet could be: (a) noun - sports meeting (b)
noun - gathering (¢) noun - encounter (d) verb - meeting someone (e)
verb - satisfy requirements, to mention some of the senses found.

Based on the analysis of the context, performed by WSD and POS, the
lemmatizer will make an informative guess of the sense. We use the lexical
database of Wordnet to find possible senses. As the word is now lemmatized,
it is also possible to further process the words by extracting the actual sense
or concept the word is representing.

4.3 Event Context

The implementation of the event context is based upon the design from
section 3.4. Context representing the event is generated based on two algo-
rithms that will be presented below.

4.3.1 Generating Context

Each comparable context could be generated differently based on attributes
set by a user or temporary results within the generation process. The context
should be between a minimum and a maximum number of sense. If too many
senses are present, it is highly possible that the number of positive results
may drop in percentage due to the number of false positives rising. This
is because we can relate incoming sentences with too many and widespread
senses. If too few senses are present, we may not be able to generate scores
above given threshold and therefore not be able to detect events.

In section 3.4, we have defined the fanout of senses as a context explo-
ration. Pseudo code for the fanout is given below.

Listing 4.2: Context Exploration (Fanout)

1 def Fanout(keyword):

2 senseList .append (keyword. getSense ())
3 senseList .append (sense.getHypernyms())
4 senseList .append(sense.getHyponyms())

34

A problem related to the context exploration is that words can loose the
original meaning of the keyword. As this may not be a problem for hyponyms
where words are more specialized instance of the high-level concept. How-
ever, as hypernyms are less specific than the current term, they may lead to
unrelated terms in the sense of a concept looses its specific attribute. An
example would be the noun "kill”. Its hypernym is ”"termination”. While
”termination” is a good term that is interchangeable with "kill”, the hy-
pernym of ”termination” is ”change of state”. The term ”change of state”
has in this context lost all the meaning of the original word. Hyponyms of
”termination” includes ”destruction”, ”demoralization” and ”liquidation”
to mention a few. All these terms are good examples that the term has not
lost its original meaning. If too many senses are generated by the context
exploration, we simply calculate the relatedness for each new sense to the
original sense. To calculate the relatedness between two words, we calculate
the difference between their synonym set, as each word belongs in such a
set: S =[sp,S1,...,5n_1]. Based on the score, some senses will be removed
as they do not longer posses the same attributes as the original sense. The
pseudo code for the removal process is given below and is based on the Path
algorithm explained in section 2.5.2.

Listing 4.3: Path Implementation

1 def Path(synsetl, synset2):

2 # returns score between 0 and 1

3 numEdges = CountEdges(synsetl , synset2)
4 if score < 0.85:

5 disposeOfSynonym (synset2)

We use two sets of metrics for calculating a sense’s surrounding context.
The first metric describes the selection of senses into the context, while the
second metric describes the relatedness between similar senses. The first is:

(1)

Context = Fanout(keyword)

score = Path(s1,s2)

To select senses for context generation, we perform a circular crawling of
the hierarchy and the specific tree the sense belongs too. By discovering both
hypernyms and hyponyms we are able to generate a context where similar
senses are present. Based on the selected senses in to context, each of them
are checked for similarity relatedness towards the original sense (keyword).

35

(2)
Path(s1,s2)

Z?:o depth(sl,s2)

similarity =

In the second metric, we use both the PATH similarity and Wu-Palmer
similarity, both described in section 2.5.2. By using the PATH algorithm,
we calculate the distance between the two senses the is compared. If the
score calculated in the first metric is higher than the similarity calculated
in the second metric, the sense is thrown away. Based on the distance that
is calculated based on edges between them within the Wordnet hierarchy,
we know their basic relatedness. This allows us to discover the relatedness
based on common senses and concepts in the hierarchy. By comparing the
score of each algorithm we have a basis for knowing the actual sense to sense
relatedness. The use of these algorithms will be described in the following
paragraph.

4.4 Similarity Computation

It is within the similarity computation component that all similarity is com-
puted. The implementation is based upon both the discussion in section 3.5
and figure 3.7. To produce similarity between two concepts, there must exist
a relationship between them. These are often defined in lexical databases
such as Wordnet. As discussed earlier, we propose locating both the most
prominent word within a sentence and the discovery of the base context that
consecutive sentences represent.

4.4.1 Similarity Within A Sentence

By computing the similarity between all words within a sentence, we hope
to better locate the essence of the sentence in such way that it is easier to
compute the similarity between the sentence and an event. For this we use
a metric.

The metric computes the similarity based on the depth of each word
within the current taxonomy. The depth is calculated based on the depth of
the taxonomy used. That is, the distance between the word in question and
the root of the taxonomy based on the distance in the Wordnet hierarchy.
By computing the fraction of 2 times the depth divided by the sum of the
two different depths each word + two times the depth the score will be at
most 1. The depth function calculates the offset from the entity regarded
as top in the Wordnet hierarchy.

(3)
2 x depthmax

(depth; + depth; + 2 x depthimax)

sCore =

36

Our implementation of the similarity within a sentence is based on cal-
culating each word against every other word within the sentence, given that
they are not filtered out by the pre-precessing. This includes both stopword
removal and lemmatizing as described regarding the input manager. A total
score will be generated based on the implementation of the algorithm used.
Since a score of one only indicates basic similarity between words, we have
chosen to set the threshold higher than one. By encountering such a sim-
ilarity, we have the ability to later emphasize on the relationship between
those words. Again, this may result in an extra enquiry of finding the sense
that most relates to the similar words as the possibility of that sense to be
the most prominent and thus indicating a possible context for the sentence.

The enquiry is done by a simple edge count. Also, we have modified the
counting to also take into account the number of hyponyms and hypernyms
each sense have. If a sense have many hypernyms, it means that it is one of
many different senses originates from the parent, thus is more specific that
senses with less hypernyms. This is however not the case with hyponyms.
As a sense with several hyponyms will have many children meaning that it
is a important concept, that is often related to and have properties that we
may look after. Based on a simple scoring algorithm with attributes like
the number of hypernyms and hyponyms, each sense is graded, thus ranked.
The ranked sense list is the based of the concept or context the sentence is
containing.

4.4.2 Similarity in Consecutive Sentences

The algorithm for calculating similarity based on the discussion in section
3.5.3. We underlined the problem of not successfully locating the correct
context that sentences were evaluated against. For optimal use of similarity
calculation towards an event, we need an algorithm that captures the context
based on certain criteria.

We have developed a metric that calculates the sum of the path based
on the synonym set of the first word divided by the number of paths. It is
multiplied by the constant a divided on the sum of similarity of the synonym
sets sT and s2. The path is calculated to the root and could maximum be 1,
making the left most side equal to 1. The constant a is calculated and based
on the currently found similarity in the consecutive sentences. Similarity
between synonyms are calculated based on shortest path between them in
the hierarchy by the metric displayed below.

(4)
path(sl,s2)

n x syn(sl,s2)

The path calculates the shortest path between the different synonym
sets, while syn calculates the similarity of the synsets based on the least

37

common subsumer as described in section 2.5.2. n is the number of words
within the sentences. We have implemented the sentence consecutive simi-
larity by comparing each sentence towards each other. As the score is tied
to a specific set of senses or concepts, we simply calculate the score for each
sense against the score of each other sense within the compared sentences.

Listing 4.4: Syn Implementation

1 def Syn(keyword, synonym):

2 ic = generatelnformationContentFromCorpus ()

3 keyword_lecs = informationContent (keyword, ic)
4 synonym _lcs = informationContent (synonym, ic)
5 subsumers = keyword_lcs.common_hypernyms (

6 synonym_lcs)

7

8

9

lcs = subsumers. filter (keyword_lcs
synonym _lcs)

If similar senses are discovered, we calculate a simple PATH algorithm,
finding the similarity between the two (or more) senses. Based on the algo-
rithm, we should get a score above 1 if there are some similarities between
the two sentences, or less if no obvious similarity is found. As elaborated
in section 4.4.1, we will perform an enquiry of the most prominent sense
within all sentences. This would be the context the consecutive sentences
are promoting.

4.4.3 Detecting Events - Similarity Towards a Context

To discover relationships between a sentence and an event, the whole sen-
tence is evaluated against the generated context. The context is found earlier
and explained in section 4.3.1. Sentences have been through a pipeline of
processing, ranging from regular stopword removal and lemmatizing to sim-
ilarity calculation within sentences and between them. Now, we evaluate all
sentences against the generated context in order to detect possible events.

We have chosen to implement a version of the Jiang-Conrath similarity.
The algorithm bases it self on an information content described in section
2.1.4. It returns a score that represents the equality of two senses based on
the information content or the most specific ancestor node that both have
in common. A maximum score based on this algorithm will be between zero
to one. The relationship is given by the metric:

(5)
1

score = ic(s1) + ic(s2) — 2 x ic(les)

38

We divide one on the sum of the information content of both synsets minus
two times the information content of the least common subsumer. This
means that if both senses are equal, one is returned. The IC call generates
the probability of the synonym set is present in the information content. The
metric returns an error if the two senses are not connected by an ancestor.
It is important to remember that though every sense is connected within
the Wordnet hierarchy based on the part-of-speech, that they may not be
in the information content that is generated from a corpus.

For the duration of subtitles, each lemma that reaches the similarity
process are compared towards the contexts. The score generated is the total
score of every lemma from a given text string towards the entire context.

Scoring Schema

To make sure that our system does not differentiate between short, medium
or long sentences, we have devised a scoring schema. This schema first com-
putes the average score of the similarity for the given sentences as elaborated
in section 4.4.3. The scoring algorithm will then take into account the size
of the sentence compared, and the context compared against, meaning that
though a short sentence calculated against a context will not receive a high
total score even if all the words are in some way related to the context. It
will, however, have a high average score ranking it on the top list when fur-
ther processed. In the opposite case, the system encounters a long sentence
with only a few words related to the context, though the average score would
be high enough for passing the threshold. These two attributes (short and
long sentences) have been marked as the most problematic encounters for
the system, as either one of them can be falsely produced as an event or not.

4.5 Storage

For storage and data retrieval, we have chosen to implement support for
a database. A database support storing of structured and organized data
that are logical related within a database model. Data models have evolved
and today, we operate with approximately 3 common models: (1) relational
model, (2) entity-relationship model and (3) object model. The relation
model’s primary focus is to store data in tables with defined relationships
between them. This is based on first-order predicate logic, meaning it uses
quantifiers that range over a given domain. For instance, ”for all items in”
and ”"there exist items in” are examples of first-order logic. Whereas the
entity-relationship model uses an abstract and conceptual representation of
data. That is, modelling relationships and a conceptual schema utilizing a
top-down approach. Typical, we find entities, relationships and attributes
in these schemas. The object model relates differently to data, as it is
represented by objects and classes with attributes. It more powerful that

39

the other two models, but more complex and is conceptually harder and
more complicated to use.

We chose to implement a database using Microsoft SQL server, inte-
grated with Visual Studio 2010. This convenience allows us to easily ma-
nipulate both data and the actual database. We created 5 different tables
for usage in this thesis. These are video, subtitle, term, termCollection and
UniqueTerm. Keep in mind that the database schema was design and tai-
lored to handle text for our text event detection system, as modelled in
section 3.1. to the event detection system, using a recommender system as
application.

The database is used for storing subtitles and other text processed for
the semantic text event detector. Also, the context of an event is stored in
case of often usage, meaning that it context will not be regenerated every
time.

A2 Subtitle 4| (42 Video ES
= Properties = Properties

g Hd

[Text 0* 10 5 Name

#9 Videold “ Genre

5 Time = Navigation Properties
= Navigation Properties =l Subtitle

5] video

= Term

1
o .

“+2 Term 2 | #2 TermCollection % “42 UniqueTerm ES
= Properties = Properties = Properties

1 # Groupid M

BText P ¢ 2 Description | S o 3 Text

' Subtitleld * 1 “7 Semanticld 1 * “r Termld

5 SubtitleVideold = Navigation Properties 7 TermCollection..

2 TermCollection... = UnigueTerm = Navigation Properties
= Navigation Properties =l Term = TermCollection

=] subtitle

%, TermCallection

Figure 4.2: Database schema used for storage and extraction of data

The video table contain an unique id, a name and the genre of a given
media file. Each video table can access several subtitles. A subtitle table
contain the subtitle’s id, the given text, a foreign key to access the media
file and the display time of the subtitle. The subtitle table can access the
term table, whereas all terms are described. Here we find an id, the term
itself, a subtitleld, and a foreign key to the termCollection.

40

4.6 Applications

To test our text event detection system, we have implemented several appli-
cations. These include a recommender system that uses ranking based on
time, votes, and a similarity score as input and an event discovery applica-
tion that locates all defined events in text.

4.6.1 Recommender System

Our recommender system provides a couple of features regarding the algo-
rithm used. We have implemented both a collaborative filtering algorithm
and one based on scoring events based on similarity. The collaborative fil-
tering is based on the early work regarding the group lens project [29]. As
we have implemented a scoring algorithm based on the social news media
site reddit.com we use a self implemented semantic text event detector. This
allows us to register new events within our database or network and thus
finding suitable references to TV-shows based on e.g. time-stamps.

Media Player Request

Recommender
System

Event
Detection
System

Media
Database

Lexical

Database

Figure 4.3: Recommender system utilizing the event detection system.

For any recommender system they are evaluated after certain properties,
it need to propose the best, most relevant, up-to-date and comprehensive-
ness for any given user. We predict that by modifying several parameters
for the said reddit news algorithm, we are able to provide up-to-date and
relevant recommended items to a user. The system operates with a data
source feeding relevant text and sentences into the system. Each incoming
video feed is first ranked based on the time since last event. This allows
us to give a feed an initial ranking based on its freshness. Then, we utilize

41

semantic relatedness between a given property and all the feeds. The idea is
that the system is are able to find several equal events based on the semantic
evaluation. A new score is added to the each video feed within the system,
that is the probability of the feed to contain the specific event we are eval-
uating for. Note that all video feeds participating within the recommender
system will have their score altered every few interval. This is to ensure
freshness and precision in the results generated by the system.

Ranking

We have implemented a version of the reddit news ranking algorithm [32].
This algorithm utilizes attributes such as length of availability, total score,
and votes into account when scoring an object. When a new item enters the
system, an initial score is given. Later, when the score is updated, these are
then altered based on, for instance, the length of which the item has been
in the system. Also, the 100 first votes counts more that the 100 next votes
scored on a time axis.

Listing 4.5: Hot Ranking

1 def Hot(votes_up, votes.down, time):

2 timeDifference = time — epoch

3 tmp_score = log (max(abs(votes_up — votes_.down),
4 1), 10)

5 score = tmp_score x timeDifference / 45000

The function Hot first defines the time period at which the item was first
published. Then, a score is created based on the logartimic scale with base
10, based on the absolute value of the votes given. Lastly, the final score
is based on the temporary score and the time difference from the time the
item was published divided by a constant.

By using this scoring schema, we achieve a ranked list of the different
items in the system.

4.6.2 Media Client

We have implemented a media client that is capable of playing a video feed
from the local drive. This client will in turn request similarity scores from the
event detector which will comply with numbers based on the current action
level within several different sources. The media client’s use is primarily for
the recommender system, as a working prototype. The implementation is
done in Silverlight and it uses local media files on disk opposed to streaming.
This is because it is only a proof of concept and this thesis focuses on event
detection based on text and not streaming solutions.

42

The media client is a desktop application capable of playing given media
files such as video. The application initiates contact with the recommender
system and is given a list of video feeds in choose from. Communication
is done asynchronously as Silverlight imposes restrictions to the desktop
application to always be responsive to the user. When a user initiates a
change in the watching schema, the recommender system utilizes the event
detector by discovery of similar events sorted by closeness in time. The most
appropriate video feed is then returned to the user.

B! LiveDAVVI Application - localhast

Remove a Secondary
Video Player

Add new Secondary
Video Player

’ WVote Positive ‘

Vote Negative ‘

Figure 4.4: A screen shot of the media player.

The recommender system will have the opportunity of altering the result
list received by the event detector. By utilizing concepts such as collabora-
tive filtering and news hotness, the list may be rearranged before presented
to the user.

4.6.3 Event Discovery

It is well known that two different users or two different commentators can
describe the same event using different words. It is hard for a regular search
engine to find relationships between two terms describing the same con-
cept by simply using syntactic search. We have proposed a solution to the
problem by introducing a lexical database in a semantic search. Here it is
possible to draw relations between different terms describing a concept.

43

Comparable
Sentences

Event Discovery ‘ Semantic Text Event
Application Detector

‘(Comparable .

Event

Figure 4.5: Event Discovery Application using our semantic text event de-
tector.

The system allows for systematically event discovery as for finding all
events that are pre-defined. Events must, as described earlier be defined
through a specific schema. These are then searched for through regular pro-
cessing. A list of possible detected events are created based on a threshold
for the minimum score. This type of application apply for several domains,
for instance sports and video summary. For sporting events, commentary
can be scraped off a live commentary site and parsed through the system,
possibly finding all related events of interest. By analysing a video, it is
possible to find events throughout the entire video, generating short video
summary of the action.

4.7 Summary

In this chapter, we have presented the implementation of our text event
detection system. The system currently runs on Windows and is imple-
mented in Python. We have elaborated the functionality of our three main
components, the input manager, the context generation and similarity com-
putational unit.

The input manager generates validated input from given text based
on search engine principals, such as removing stopwords and lemmatize
words. Then, the context generation module generates an event context
that presents the event. We presented the concept of context exploration
where the algorithm analyse the input and generate the context systemat-
ically by relate each new word to the original words. Lastly, the similarity

44

computational module have several algorithms implemented that can be
used for detecting similarity relatedness between text. Our system offers
the ability to compute similarity between several consecutive sentences to
better capture the essence of the sentences in addition to compute similarity
towards the specific event.

45

46

Chapter 5

Experiments

We will during this chapter, evaluate our system and its algorithms based
on a set of experiments. First, we describe our experiment setup, along
with out test plan, then, the results of the experiments are presented. In
light of our context, scope and problem definition, we will evaluate these
findings objectively. We propose three different sets of experiments, the
first will evaluate the event detection mechanism, while the second set of
experiments will evaluate the different algorithms and how they perform
based on accuracy. Lastly, the different algorithms and their approaches
will be timed.

5.1 Experiment Setup

All our experiments were performed on the same set of servers. We used
a server with two Quad-Core Xeon E5430 2.66 GHz processors running on
1.995 GHz with a front side bus running at 1333MHz. There were 2x6MB
L2 cache (per processor), and a total of 16GB of main memory. The servers
hosting the clients were running Intel Xeon E5540 processors at 2.26GHz.
The front side bus was running at 1666MHz with 2x8MB L2caches and
8 GB of main memory. All servers were connected in the same network
by a switch. The experiments done are computational heavy as most NLP
problems are.

The client side had Python and Silverlight installed. Libraries like cher-
rypy, routes, bottle and pySrt were also used. To avoid unwanted interference
on the different servers such as the current load, all experiments took place
late at night. This off-peak run also removed the possible unwanted network
load by administrative tasks such as backups running at that hour.

Several scripts were created in order to reduce the interference from the
researcher running the actual experiments. These scripts handled the start-
up of the different experiments. Since the similarity between two terms
do not change at all based on static use of lexical databases, experiments

47

regarding the similarity calculation have only been executed once. However,
the timing experiments in section 5.7 and 5.8 were completed several times
in order to calculated the average and mean value.

5.1.1 Test Plan

In this chapter, we will conduct a series of tests, analysing our implementa-
tion of the prototype. First, we will test the usability and an argument to
use a system such as our prototype and the algorithms its using. Secondly,
discovering related senses will be evaluated in light of the usage experiment,
while the third experiment will analyse the specific event detection system.
Then, we will evaluate the context size described in section 4.3, before we
look at sentence relatedness, based on finding prominent senses based on
consecutive sentences. Lastly, we will evaluate the application domains.

5.2 Initial Proof of Idea

As described in section 1.2, the scope and limitation of the problem solved by
this thesis was to create a working prototype of a system capable of detecting
events based on semantic analysis of text for use in a recommender system.
A prototype that is able to detect events based on subtitles has been created.

We will conduct an experiment to see the potential of our idea regarding
the discovery of events based on semantic analysis on text. In this first ex-
periment, we will outline the need for semantic evaluation of words in order
to detect events. We conjecture that if all words are transformed to the con-
cepts they represent by semantic analysis, we will see overlapping concepts
of words containing similar meaning. When the overlapping concepts are
removed, as done in regular systems handling text, such as search engines,
the only way of discovering relationships between the remaining words, is by
semantic analysis. By locating all words, unique words, concepts and unique
concepts, we can discover the usability of such a system we are proposing.

This experiment will analyse the complete subtitle from a television
show, discovering the number of words, number of unique words, lemmas,
concepts, unique concepts and the number of overlapping concepts within.
First we will create a baseline for the experiment by using unaltered text
as input, before we do a lemma based filtering as described in section 4.2.3.
Lastly, we will do a complete filtering of the input text by for instance re-
moving stopwords and wrongly spelled words before we lemmatize them as
described in section 4.2.1 and 4.2.2. The last way of processing subtitle is
typically how text processing is done today in order to achieve optimized
search through storage.

The graph in figure 5.1 shows three different types of columns. The
original column creates the baseline for these experiments, while lemma
and stopword are modifications to that. The baseline discovered a total of

48

7000

6000 -

5000 -

4000 o
M Original

3000 -~ Lemma

2000 B StopWord

1000 -

0 - T
Unique Words concepts Unique concepts overlapping
concepts

Figure 5.1: Distribution of unique words and concepts

5954 different words. These words mapped down to 2680 different concepts,
however, only 716 of these concepts were unique, meaning an overlap of 1964
concepts. By using lemmatization as a filter in the second run, discovered
5954 different words. Of these, only 864 different concepts where extracted
and filtered as 841 unique concepts, meaning that only 25 concepts where
overlapping. Last, we applied the stopword filter and the spell check filter
along side with the lemmatizer. During the experiment, the system found
3710 unique words, translating them into 842 different concepts. From that
pool of concepts, only 21 of them were overlapping.

Discussion

The result is somewhat as expected, generally underlining our hypothesis
that when processed, concepts that the words represent are not syntacti-
cally equal. This shows the potential of our system, since relatedness be-
tween the words left in the process, can only be found by semantic analysis
of the text. The experiment baseline illustrates that a regular television
show has about 6000 words mapping down to 2680 concepts with almost
2000 overlapping concepts. The number of unique words and overlapping
concepts is an argument for a solution to semantic analysis text in order to
find similar concepts, as our implemented prototype does.

A simple regular syntactic search could not find relatedness between
words, thus having access to a lexical database for further semantic process-
ing is needed. By improving the input filter as explained in the implemen-
tation of the system, we were able to further filter out unwanted words and
finding the core word and lemma. Then, executing calculation based on the

49

lemma removed most of the overlapping concepts. Last, the graph illus-
trates the potential of reducing the pool of words by removing stopwords,
thus having a smaller subset of words to test. By using regular filtering tech-
niques, we find little overlapping between the different concepts, meaning
that regular search will have small chances to locate any relatedness between
words.

This experiment has shown the potential of performing semantic analy-
sis of text. By finding the core lemma of a word, it can easily be translated
to the concept representing the word by using a lexical database such as
Wordnet. Further, by removing stopwords etc. we have managed to remove
most of the overlapping concepts originally found, thus meaning that al-
most 2000 concepts in related and we have the implementation to find their
relatedness.

5.3 Detecting Specific Events

In section 3.1, we defined an event as a specific phenomenon located at a
specific point in time. To find such events, we analyse text in order to locate
specific patterns whereas the system can make an informative guess of what
type of event the text represents. This could, for instance, be an action
sequence, an emotional scene or more specific events such as a murder or
crying.

A sentence is compared against a context, that is, the essence of a given
event. This context defines the event as described in section 4.3. The context
is made up by a series of related words based on the equality in its sense,
that is, words with similar meaning. To capture the essence of an event we
do a hyponym and hypernym fanout to better find related concepts with
the same or a related meaning. The fanout is described in section 4.3 and
called a context exploration. However, as described in section 4.3.1 each
new sense added to the context is checked for relevance in order to remove
unrelated such as senses that are related but without the specific meaning
the original word contained. This experiment is conducted as a baseline
experiment using a context with a zero context exploration, that is, only
the event keyword present in the context.

The experiment will evaluate several television shows against a set of
events that are defined in advance. Each sentence that is evaluated is sent
through our text event detection system defined in sections 4.2, 4.3 and
4.4. The immediate results are written to a file which is later accessed to
determine the actual result based on a set of criteria. The criteria defines a
result as either positive, uncertain, or false and are determined two computer
science graduate students. A sheet of paper containing the complete subtitle
that the system was evaluating were handed out to the students. They were
then required to mark each processed line from the system as either positive,

50

uncertain or false. A positive result is defined as a positive likelihood of an
event to actual take place during the text evaluated against. If an event
is not certain to take place, though the system has flagged the event, the
human judges must use their own intuition to determine whether or not this
event should be flagged as uncertain or false. If no event can be discovered
and matched towards the context by the human judges, the result is counted
as a false result.

Based on the similarity computation described in section 4.4, our system
computes the total score that a sentence is related towards the event. An
average score is computed and checked against a set threshold. This thresh-
old defines how similar each word within the sentence must be, on average
towards the event, in order to flag the event as positive. If the score is above
the threshold, it is marked as a positive result with the score accompanying
the found event for further processing outside the system, as for instance
ranking and recommendation.

We calculate the score as percentage of the total number of found events.
For instance, if the system discover 10 events whereas 5 are positive, 2 are
uncertain and 3 are defined as false, the percentage share would respectably
be 50%, 20% and 30% for the positive, uncertain and false rating.

Our conjecture is that it is possible to detect events based on semantic
analysis of text. By examining a sentence, the system should be able to
locate the most dominant word and its corresponding concept for further
processing by the event detection system. However, we do not expect to
locate a huge number of events since the context that words are compared
against, only contain the actual word and sense that the system is looking
for. By including a larger vocabulary of context we think it will be easier to
find events.

As seen in figure 5.2 the system is able to discover events by analysing
text. It does however, based on the scoring and rating schema only achieve
14.8% positive rating on the discovered events, that is those events also
recognized by the human judge. 19.4% of the events discovered got an
uncertain rating, meaning that a human judge verified that the sentence
compared to the context, contained some words that also were found in the
related context. However, we see that the system achieves a false rating of
65.7% of the events found, meaning that the human judges were not able
to locate any substantial evidence of relatedness between the sentences and
the context.

Discussion

By examining the results more closely, we look at the text behind the results
in order to get a better understanding of how the system actually evaluate
a sentence. We can see from the result files that ”You’re the only person on
this planet i’'m totally honest with.” gets a similarity score of 60.2% towards

o1

100 %

90 %

80 %

70%

60 %

50 % .
M Percentage rating

40 %

30%

20%
0%

Positive Uncertain False

Figure 5.2: Accuracy of a simple event detection

the event emotion. For a human, this makes sense in the order of that event
would have a high possibility of happening. Consider the two following
sentences: ”"In czech republic, too, we love pork.” and ”Now, listen, artie’s
business...”. The first sentence received a score of 20.65% while it does
not have any substantial meaning towards the event, however, it contains a
word that belong in the search pattern, namely "love”. As we can clearly
see, the text event detector has mistakenly thought that the word ”love”
belonged to the event pattern and marked it as an event. This is the case
of an uncertain rating. The second sentence has no useful meaning towards
the event (emotion) and clearly is a false match from the event detection
system. However, if we closely examine the similarity computed between
the second sentence and the event, we can see how the event detector could
flag this as a match. By using the NLTK to access Wordnet, we find that
the word ”business” and ”love” from the event context have these words in
common: “undertaking”, ”work”, ”activity” and "act”. Not easily thought
of by a human judge, the computational unit found the similarity that was
marked false.

5.4 Context Size

As shown by the previous experiment, locating events within a piece of
text can prove difficult. Since a similarity match between a term and an
event is based upon the a hierarchy computation of similarity using a corpus
to determine the possibility of two term coexisting in the same hierarchy
branch. Using a larger context will affect the similarity results since the
information content will change. We define the context size as a context

52

level, meaning that with no context exploration, we have a context level of
Zero.

Based on the description of the two different algorithms used for simi-
larity calculation between sentences and within them (section 4.4), we have
conducted an experiment for discovering whether the event detection algo-
rithm performs better or worse when exploiting sentence similarity. For each
run within the experiment, the size of the context is changed in order to dis-
cover the impact the context size has on the event detection. As mentioned
previously, we utilize context exploration, that is, a fanout based on the
word’s hypernyms and hyponyms. Then, based on the similarity for each
new sense towards the original event keyword, it is added to the context
pool.

Our conjecture on utilizing context exploration is that we will see an
increase in the positive rating for the event detection. As more senses are
added to the context pool, the greater are the chances for a sentence to
be related to the event if it contains a word in the vicinity of the context.
However, when the context pool grows beyond a certain size, the percentage
of positive rating compared to the false rating will decrease based on the
fact that the context now contain too many relations that are not relevant
for the event compared too.

100 %
90 %

80 % /\

70 % \bﬂf

60 % A /

50 % \ / 4— Positive

40 % X Uncertain
30 % / == False
20% *7‘, AN?—AL*

10 % —
0% :
0 1 2 3 4
Context Level

Percentage of Found Events

Figure 5.3: Accuracy of event detection based on context size

Interestingly, the graph in figure 5.3 illustrates that when increasing the
context level, the positive rating of the result increases. At a context level
of two, the positive rating is far better than in the previous experiment. For
a context level of three and four, the rating decreases.

From figure 5.3 we can see that by increasing the context size we achieve

53

a better result for our semantic text detector. At a context size of zero we
achieve a positive rating of only 14.8%. The uncertain rating is at 19.4%,
while the false rating is at the 65.7% level. When the context size is zero, the
system will only evaluate on the exact sense of the event, for instance will the
word "kill” only be represented by the concept "kill” being a verb or noun.
At context size 1, the system has made a concept expansion by locating the
hypernyms and hyponyms of the given event. For the word "kill”, these are
”termination”, ”slaughter”, ”destroy”, ”assassinate” and ”death blow” to
mention a few. Now, all words are compared against a larger context, thus
having the possibility for relating themselves to a larger set. Again, we can
see in the graph that the result for the positive, uncertain and false rating
are respectively 40.9%, 20.5% and 38.6%. Then, for a context expansion
of 2 we have the result of 82.3% for positive, 0% for uncertain and 17.7%
for the false rating. At expansion 3 we have 71.4% for positive, 7.1% for
uncertain and 21.5% for false. At last, we have 69.2%, 7.8% and 23.0% for
the different ratings.

Discussion

For the result of the zero expanding context we have a huge false rating at
65.7%. We think that it is because of all words entering the event detec-
tion system will be matched only against the specific event keyword. As
most sentences will have some words with relatedness towards an event as
explained previously in section 5.3. We can see that at context expansion
one, the positive rating has gone from 14.8% to 40.9% and likewise, the
false rating has gone down from its 65.7% margin to 38.6%. By expanding
the context based on the implemented sense relatedness explained in section
4.3.1, an increase in the positive result is measured. This is also the case
with our second context expansion, as the positive rating crosses the 82.3%
line. However, we find a 0.0% uncertain rating and a 14.8% false rating.
This illustrates the usage of related context exploration as an event will
typically increase the similarity relatedness discovered, thus making events
easier to detect. We reckon the drop in the positive rating and thus an
increase in the uncertain and false ratings when going from two to three
and four context expansions. Currently the level two context expansion is
the limit from where adding more words to the event has a positive effect
towards the end result. We see that when adding too many word to an
event, the context gets flooded and it is hard to differentiate between the
best terms and the second best terms to evaluate from. The best way of
dealing with this is to use a different scoring mechanism. For instance, per
expansion outwards, the score generated by the similarity computation will
fall in order to preserve the original state of term weighting.

54

5.5 Sentence Relatedness

Calculating similarity against a single sentence may prove inaccurate for
discovering events. The context of a scene may span across several seconds,
or even minutes in a movie or television show. Therefore, we perform a
similarity calculation between consecutive sentences in order to locate the
context. This is a different context than the event context / context level
discussed earlier. The computation may range from one to four sentences
as described in section 4.4.2. Also, for locating the most prominent words
within sentences, we use the implementation described in section 4.4.1.

The experiment conducted calculates the possibility for given events in a
larger setting. This setting is currently between one and four sentences long.
For each sentence in the context, the most prominent words is discovered.
Based on the result of the first context calculation, the calculation of simi-
larity between the different sentences are conducted. The generated result
will contain a list of words linked with a modifier score as of how prominent
they are. These are compared against the event context for locating the
relatedness towards the event.

We have conducted an experiment to explore the possibility of better cal-
culating relatedness towards an event context based on knowing the essence
of a set of consecutive sentences. Our conjecture is that based on a number
of consecutive sentences, we are able to increase our results based on a better
understanding of the underlying context. However, we think that if the sim-
ilarity generated for the context grows too large, events will be zeroed out
due to too many events possible within that context. The implementation
used is described in section 4.4.1 and section 4.4.2.

An interesting notice, is that the positive rating when calculating sim-
ilarity between consecutive sentences, is that the positive rating is almost
stable at around 40%, while the uncertain and false rating interleave each
other for each context level. Figure 5.4 displays the result of the first ex-
periment where we calculated the relatedness between sentences and events
based upon a consecutive sentence length on two. That means that every
two pairs of sentences were evaluated against the event context based on the
similarity score between the two sentences as described in section 4.4.2. The
y-axis display the percentage of detected events that where either positive,
uncertain or false. The x-axis shows at what context level the results are
based on.

For a context level of two, the positive rating received a score of 35.5%,
the uncertain rating was a 4.4% while the false rating hit 60.0% of the total
rating. A context level of three increased the positive results to 41.1%,
while the uncertain and false rating were at 23.5% and 35.2% respectively.
At context level four, the positive rating was at 37.8% while the uncertain
rating dropped to 5.4%, leaving the false rating to 56.7%. When calculating
the results of using a context level of five, our system achieved 41.1%, 23.5%

55

100 %

90 %

80 %

70%
60 % ‘\

== Positive
50 % /\

Uncertian
0% -
== False

30%

Percentage of Found Events

20% —

10%

0% T 1

2 3 4 5
Context Level

Figure 5.4: Accuracy of event detection using consecutive sentence similarity
with length 2

and 35.3% for the different ratings.

The results from the second experiment regarding use of similarity cal-
culations in consecutive sentences are displayed in figure 5.5. The size of
consecutive sentences are three in this experiment meaning that every three
sentences are compared and the most prominent words are selected and used
for similarity calculations between the sentences and the constructed event.
The y-axis display the percentage of detected events that where either pos-
itive, uncertain or false. The x-axis shows at what context level the results
are based on. By calculating the similarity between three sentences, the
algorithm achieves a positive rating around 55% for all context levels.

At a context level of two, the positive rating was calculated to a score of
52.1% while the uncertain rating received a score of 17.3%. The false rating
at this context level was 30.4%. The result of the calculations of context
level three, was for the positive rating 58.3% and for the uncertain and false
rating, our system achieved a score of 16.6% and 25% respectively. With a
context level of four, the following result were achieved: 50% for the positive
rating resulting in 16.7% and 33.3% for the uncertain and false rating. At
context level five, 60% and two times 20% rating were achieved.

Figure 5.6 displays the result of the first experiment where we calculated
the relatedness between sentences and events based upon a consecutive sen-
tence length on four. That means that every four pairs of sentences were
evaluated against the event context based on the similarity score between
the two sentences as described in section 4.4.2. The y-axis display the per-
centage of detected events that where either positive, uncertain or false. The

56

100 %
90 %
80 %
70%

50 % +— Positive

40 % Uncertain
30% —NA\ —4— False
20%
10%
0% T T
2 3 4 5

Context Level

Percentage of Found Events

Figure 5.5: Accuracy of event detection using consecutive sentence similarity
with length 3

x-axis shows at what context level the results are based on.

For a context level of two, the positive rating received a score of 64.3%,
the uncertain rating was a 28.6% while the false rating hit 7.1% of the
total rating. A context level of three increased the positive results to 100%,
leaving the uncertain and false rating to 0.0%. This was also the case for
context level four. At context level five, there were no events discovered by
the algorithm, meaning that there were no results.

Discussion

The graph in figure 5.4 illustrates that our system actually discovers more
false events than positive events. At context level two, the false rating is at
60.1% while the positive rating is only at 35.5%. When increasing the con-
text level further, our system is able to locate 41.1% positive senses, staying
on almost the same level as before, while the uncertain rating increases and
the false rating decreases. For a context level of three, uncertain decreases
and false increases again, while it is opposite from the level five context level.

As for the consecutive sentences similarity of three, most of the events
discovered are of a positive nature for all context levels. We think that by
first calculating the similarity between three sentences, locating the most
prominent words and comparing them to the event context, reduces the
number of false positives since there are less prominent words to compare.

Our argument of removing unwanted words from the similarity com-
putation increases the number of true positives is illustrated by the last
experiment. In figure 5.6, there are only positive events located at a context
level four and higher. Therefore, by discovering the essence of the sentence,

57

100 % / \
90 %

% 80% / \

I.|>J 70 % // \

-§ 60 % \

% 50 % \\ +— Positive
% 40% \ Uncertain
E 30% \ == False

E 20%

10% \
0% ‘\1 — \

Context Level

Figure 5.6: Accuracy of event detection using consecutive sentence similarity
with length 4

we are able to produce far more true positives. However, we conjecture that
if similarity between too many consecutive sentences are computed, there
will be less total events discovered, even though those that are found, are
correct.

5.6 Context Evaluation

As we experienced during the two last experiments, we have seen an increase
in the accuracy of detecting events, however, we like to know the number
of discovered positive events for each of the proposed methods. The score
of each algorithm is presented as a percentage of the total number of events
discovered by the human judges.

The graph display the results of the different algorithms in use. We
present the precision of the five different uses of the algorithms. First with
no consecutive sentence similarity, then the algorithms where the consec-
utive algorithms were in use calculating similarity between two and five
consecutive sentences. The x-axis present the context level, under which
the results were retrieved. The y-axis displays the percentage in how good
an algorithm performed.

The key points from the graph in figure 5.7 are that the baseline algo-
rithm performs best overall, with the consecutive two algorithm as closest
competitor. Also, all instance of the algorithms perform best at a context
level of two.

At context level two we see the best overall result. With no consecu-
tive similarity a total of 85.71% of the positive events were discovered. By

58

100 %
90 %

80 % /.\\
4— Baseline (regular)

i
i A =
50 % X\' Consecutive 2
40 % HZ == Consecutive 3
30% C ive 4
/ \ \ === CONsecutive
20% ==i==Consecutive 5
10 % / & \
0 % 1 T T I\N_!
1

Context Level

70 %

Percentage of Found Positive Events

Figure 5.7: Percentage of discovered positive events when increasing the
context

first calculating consecutive similarity between two sentences, the result was
at 76.19%. Calculating consecutive similarity between three, four, and five
sentences all achieved the same result of 66.67%. By increasing the context
level to three the overall results are degraded. Best, is still the algorithm
not using any consecutive similarity between sentences and achieves a rat-
ing of 66.6%. Calculating a consecutive similarity of two and three will
respectively result in a score of 57.14% and 33.33%. The worst result is
achieved when calculating the similarity between four and five consecutive
sentences which are at 14.26%. At a context level of four, the result is again
falling. With a consecutive similarity of one, that is without any similar-
ity calculation between sentence, the score is a 47.62%. Close behind with
an achieved rating of 42.86% is the calculated consecutive similarity of two
sentences. The results of calculating consecutive similarity on three, four
and five sentences are respectively 33.33%, 9.52% and 0.0%. At context
level five, all approaches using consecutive similarity calculations fails and
receive 0.0%. With no such calculation, the system received a the score of
42.86% discovery.

Discussion

With this experiment, we showed that the base algorithm had the best
overall performance. It discovered 85.71% of all events marked by the human
judges. As the graph illustrates, all instances of the similarity algorithm
peaked at context level two. For the current implementation, the algorithms

59

performs best at a context level of two. A context level of zero and one make
all the consecutive algorithms fail due to a too little context, therefore too
many events are marked as positive by our system, though marked false by
the human judges. All instances of the algorithm achieves a lower score
when further increasing the context level from two and upwards. Best again
is the base algorithm with the consecutive 2 instance as number two.

Though the base algorithm performs best by accuracy of positive events,
our next experiment will measure the computational time for each of these
algorithms.

5.7 Computation Throughput

In this section we will present timing experiments conducted with our proto-
type system. The results will be compared with the findings of the different
accuracy experiments performed earlier. Our system will be evaluated based
on its performance and according to the previous experiments.

Earlier experiments, namely those described and evaluated in section
5.3 to 5.5 shows that different results were achieved for the event detection
based on the use of different attributes. As some experiments increased the
event detection percentage, we wonder if performance took a hit for this.
As known from the use of typical natural language processing techniques
and algorithms, there may be huge time differences in the execution time.
Based on our input being subtitles, we would measure the time performance
in sentences per second.

All previously done experiments will be evaluated again, but with the
focus to timing. First, we will perform the ’clean’ experiment of calculating
the total similarity towards an event by calculating the relatedness for each
and every word within that sentence. This is done for a context level of
zero to five, and will be the same for every algorithm in this experiment.
Then, we time the algorithm that uses the discovered similarity between
consecutive sentences as a first line filter before relating towards the event.
The consecutive sentence similarity will be calculated between two to five
sentences.

Figure 5.8 displays the result of our timing experiment. The graph shows
how many sentences each instance of the used algorithm is able to process
each second. Used as label on the y-axis is the number of sentences processed
each second, while the x-axis displays the different context levels used during
the experiment.

Note that the regular algorithm is far better than its competitors at
context level zero, then at context level one, consecutive two and three
performs as well as the baseline. At a context level of three, the baseline
algorithm is not even close to the performance of all the other consecutive
algorithms.

60

400

350 4\
300

T

c

: \

& 250 \ ¢— Baseline (regular)

[«H]

% 200 Consecutive 2

[«}]

E 150 \ == Consecutive 3

§ 100 - : == Consecutive 4
50 === Consecutive 5
0 I T I T

0 1 2 3 4 5

Context Level

Figure 5.8: Time used evaluating each sentence using several algorithms

The graph is based on the following results: For regular calculated sim-
ilarity, 353 sentences per second are processed towards the context and the
zero context exploration. Then, when increasing the context level by one,
sentences process falls to 127 sentence per second. Additionally, when in-
creasing the context level, it has the possibility to process 23, 18, 9, and 5
sentences per second respectively towards context level two, three, four, and
five.

The results for the consecutive sentence calculations all follow a dis-
tinct patter in figure 5.8. First, when calculating the similarity between
two consecutive sentences, the algorithm described in section 4.4.2 is able to
process 131 sentence per second. However, when calculating similarity be-
tween three and four consecutive sentences, the algorithm is able to process
128 sentences. Then, for three sentences, the result is 102 sentences, and
86 for four consecutive sentences. When calculating similarity between five
different consecutive sentences, it is able to process 64 sentences per second.

By first calculating the similarity between three consecutive sentences,
the system achieved the following timing: 105 sentence per second were
calculated towards context level zero. Then, at context level one, 102 sen-
tence were processed each second. At context level two, the system were
able to increase the possible computation by processing 129 sentence per
second. However, the sentence per second processed dropped to 97, 84, and
55 sentences per second respectively for context level three, four, and five.

When locating the similarity between four sentence, our system was able
to process 87 sentence per second when evaluating against context level zero.
When increasing the context level to one, the system processed 86 sentences

61

per second. Also, our system was able to process an additional 21 sentence
as context level two, increasing the number to 107 sentence per second.
At context level three and four, our system processed 84 and 75 sentences.
For context level five, the algorithm preform at the level as the previous
algorithm instance, processing 55 sentence a second.

By computing the similarity between five sentence, our system achieved
the following results: 72 sentences were processed each second when com-
puting similarity against a context of level zero. Then, our system were able
to increase the processing by computing similarity between 73 and 85 sen-
tences for context level one and two. At context level three, the algorithm
handled 69 sentence each second that dropped to 65 sentence per second at
context level four. 49 sentences were processed each second against the level
five event context.

Discussion

This is the baseline for our evaluation, since by this calculation method,
every word within the sentence is related towards the context. By first per-
forming the consecutive sentence analysis, only the most important words
within the sentences are calculated towards the event context. The difference
between the regular algorithm and calculation, is that we experience a huge
drop in sentences per second processing. By only computing the similarity
between the most important words within the sentences, thus fewer, the
computational time does not suffer that badly when increasing the context
size. Common for the algorithm first calculating the consecutive similarity,
is that the computational ability increases at context level two, opposed
from sim2. Notice that all experiments using the consecutive sentence com-
putation algorithm performed better than the regular computing algorithm
at context level two and towards the end. Also, calculating the similarity
between two sentences performed equal at context level one.

5.8 Computation Throughput with Database Ac-
cess

We explained in section 4.5 that we could use the database to store prepro-
cessed sentences. We thought that if, for instance, the similarity between
consecutive sentences were already computed when the subtitles were im-
ported into the system, our system would perform a lot better. Instead
of using time computing similarity between consecutive sentences, the event
detection system will now be able to extract the preprocessed sentences from
the database and compute the similarity against the event context instantly.

The earlier timing experiment from section 5.7 did not use the enhanced
version of the consecutive algorithm with database access. In this exper-

62

iment, we will use the enhanced algorithm that make use of a database.
Since the result will be affected by the number of related senses between
sentences, the experiment were conducted for five different events, and the
result is based on the average result.

100000
oo T e
=]
=
3
% 1000 +—Baseline (regular)
1]
2 Consecutive 2
b
E 100 ’-—._.\’-ﬁ == Consecutive 3
ot
s —==— Consecutive 4
@ 10
==t==Consecutive 5
1 T T T 1

0 1 2 3 4 5

Context Level

Figure 5.9: Time used evaluating each sentence based on the consecutive
algorithm with database access.

Figure 5.9 displays the result of the timing experiment, when computing
the similarity towards the event context based on preprocessed consecutive
similarity between sentences. The graph shows how many sentences each
instance of the used algorithm is able to process each second. Used as label
on the y-axis is the number of sentences processed each second and is in
a logarithmic scale. The x-axis displays the different context levels used
during the experiment.

As seen in the figure, the first line illustrates the best performance
achieved by the same algorithm, though without the use of preprocessed
sentences in the database. In this case, it is the algorithmic instance of first
computing the similarity between two sentences before evaluating against
the event context.

The results achieved when using the database were pretty even for all
instances of the algorithm. When using a consecutive similarity between
two sentence, the algorithm was able to process 13230 sentence each second
at context level zero. At context level one, the number increased to 21200
sentences. For context level two, it achieved 12794 sentences and dropped
below 10000 sentence to 9173 at context level three. Our system managed
to process 7872 and 7407 sentences each second at context level four and
five.

63

For the instance where similarity were computed between three sen-
tences, the result was almost equal as the first instance. 13000 sentences
at context level zero, 21061 sentences were processed at context level one.
At context level three, the number was 12719 with a difference on 23 sentence
from the previous instance with two consecutive sentences. The algorithm
instance achieved 7872 and 7407 sentences processed each second at context
level four and five.

We had 13454, 21549, 13219, 9261, 8167, and 7682 sentences processed
each second when using preprocessed sentences.

The number of sentences processed each second was at consecutive simi-
larity between five sentences 10769 sentence at context level zero and 21079
sentence at level one. For context level two and three, the numbers were
12669 and 8993 sentences. 7874 and 7383 sentences per second were pro-
cessed at context level four and five.

Discussion

As shown by earlier experiments, the algorithm described in section 4.4.2
reduces the number of words within a sentences. Preprocessing sentences
and temporary storing the result in a database allows for further decreasing
the computational time the algorithm needs for a successfully run. We have
shown that our system is able to process far more sentences per second
when using preprocessed sentences as input. This means that the algorithm
computing and choosing the most prominent words from sentences when
computing similarity for consecutive sentences actually is a much tougher
job than computing the similarity for the remaining words towards the event
context.

This approach is promising, since all major systems in for instance media
delivery networks such as DAVVI [2] pre-process input when it first arrive
in the system. Although the overall accuracy of this algorithm is not the
best as shown in the experiment in figure 5.8. For the instance of first
locating the most prominent words in two consecutive sentences proved to
discover 76.19% of all events, less than 10% lower than the base algorithm
was only able to process 23 sentences per second opposed to 128 sentences
that was the case for the algorithm using consecutive sentence similarity.
The algorithm should be developed further to increase the accuracy, but
without increasing the computational time.

5.9 Summary

In this chapter we have presented the results from our experiments and
evaluated the system based on our problem definition, scope and limitation.
The first experiment concluded that our prototype was able to solve the
problem of relating concepts that are not syntactical equal to each other. In

64

our second experiment we showed how our implemented algorithm worked by
analysing a television show and comparing the sentences towards a generated
event context. The result was rather disappointing, as the system only
located 14.8% of the events marked as positive. However it matched our
conjecture that by analysing towards a small context, it is difficult to discover
relationships. Therefore, in the next experiment, we chose to look at how
the algorithm performed when increasing the size of the event context. By
increasing the context size, the overall results increased. At context level
two, the algorithm was able to discover 82.3% of the positive result.

To further increase the understanding of the sentences, we introduced an
algorithm that first calculated the similarity between a set of sentences, in
order to locate the most prominent words and only calculate the similarity
for them against the event context. This was to better capture the essence
of the sentences. While the experiment showed that the algorithm now
was able to locate a less percentage of the positive marked events, the next
experiment illustrated that the result was not as bad as first thought. The
experiment calculated the accuracy of locating the positive events. Here, all
instances of the algorithm performed well at a context level of two. Best
was the base algorithm discovering 85.71% of all the positive results while
calculating the similarity between two consecutive sentences and the event
context were able to locate 76.19% of the positive events.

We then performed two sets of timing experiments to find the time dif-
ferences for using the different context sizes and algorithm instances. In the
first experiment, the base algorithm was able to process 353 sentences per
second at a context level of two. However, at context level one the algo-
rithm was only able to process 127 sentences whereas the algorithm based
on two consecutive sentences processed 128 sentences at context level one.
At context level two, the base algorithm performed worst all all instance,
only processing 23 sentences a second while the consecutive two algorithm
still processed 128 sentences beat by the consecutive three algorithm that
performed at 129 sentences each second. From here on and out, all algorithm
instances decreased their sentences per second rate. To test our database
access we used an enhanced version of the consecutive sentences algorithm.
By retrieving the consecutive sentences similarity from the database, the
algorithms were now able to process an astonishing 21549 sentences each
second set by the consecutive three algorithm instance at context level one.

65

66

Chapter 6

Conclusion

We will in this chapter conclude this thesis. We have described and im-
plemented a semantic text event detector that is able to analyse text and
detect events based on sentence relatedness.

6.1 Achievements

The thesis is based on the problem definition, scope and limitation in section
1.1 and 1.2 that states:

This thesis shall design, implement and evaluate a similarity cal-
culation service, based on probabilistic approaches. The focus will
be on constructing algorithms that supports semantic similarity
calculations between text. The basis for evaluating the algorithms
will be by using human judges.

This thesis has focused on the use of semantic analysis of text, as a base
of the discovering interesting events. We have reviewed existing frameworks,
algorithms and lexical databases that are currently used in academia. Based
on our findings, we chose to implement a module that computes similarity
based on semantic relatedness between a sentence and a context. The actual
computation and context generation are described in chapter 4. Key com-
ponents were the input manager, context generation, similarity computation
and storage.

The experiments analysed the different parts of the implementation.
First we ran an experiment illustrating the need for such an text event
detection system based on textual analytics. The results discovered that of
2700 concepts found within a subtitle, 2000 of them were overlapping. By
removing stopwords and lemmatize the words as done in most systems and
search engines, only 21 concepts were overlapping. Using a regular syntactic
search on that result would not have found any relatedness between those
words. We showed that by utilizing semantic analysis, these concepts and

67

related words were discovered. Then, the actual performance of the dif-
ferent algorithms were tested, discovering the accuracy and computational
throughput of each algorithm. By introducing the event context with sev-
eral levels, we were able to improve the result of discovering correct events
from 14.8% to 82.3% using the exact same algorithm computing against
the second context level. Based on the computational time, the algorithm
calculating consecutive sentence similarity performed best when computing
similarity against the second context level. It was able to locate 76.2% of all
the positive events, however, those only made out 35.5% of its total event
hits. By preprocessing the input and store it in a database, we saw a tremen-
dous increase in the computational throughput when using the consecutive
similarity based algorithm.

Based on the results in our experiments, we state that semantic analysis
of text as a type of event detection mechanism is a promising approach. By
further improving the implementation of the algorithms used, this type of
analysis should be able to reach even better results. The prototype is generic
enough to accept all kind of text, such as words and sentences as input. We
have pointed out several times its useful areas, such as summary generation
and event discovery.

6.2 Related Work

Previous work from Varelas et al. [6] propose what they call a term expan-
sion. A lack of similar words in two documents does not mean that they
are unrelated, thus performing a term expansion allows for increasing the
number of possible similarities. They generate a bag-of-words, containing
important synonyms for later processing. We relate our context exploration
model to this work, and how to rank the different available synonyms in the
event context. Such an approach is also done by Li et al. [44], which scales
the similarity based on the depth found in the taxonomy used. However,
Mihalcea et al. [8] proposes a similarity calculation based on a second-order
word relations in a hierarchy that prove adoptable to different application
domains since it is based on corpus statics.

We relate our semantic text event detector mainly towards this work,
as they also exploits relationships between the given words based on term
expansion for better similarity calculations.

6.3 Concluding Remark

We have successfully implemented a set of algorithms for discovering se-
mantic relatedness between words, thus being able to discover events. By
comparing sentences towards an event context, the level of success rating
increased drastically. The base algorithm increased its accuracy from 14.8%

68

to 82.3% by the use of context exploration. All results were validated and
confirmed by human judges.

Our prototype system consists of three different modules, computing the
similarity towards events that defines text. The algorithms used are based
on word relationships defined in lexical databases and their probability of
occurrence in text. To analyse text, we used natural language processing.

6.4 Future Work

In this section, we present issues that should be further explored in order to
improve the implementation of the prototype and the algorithms used.

e Develop the algorithms further. This is at least the case for the con-
secutive similarity algorithm since its perform quite well for locating
the number of positive senses, and computation time. It did however
struggle with the accuracy, as it discovered most false events. There
are numerous parameters that can be changed and tweaked within
that algorithm and it should be evaluated better.

e Implement a better scoring algorithm when used in context explo-
ration as the algorithm used today does not differentiates between
the different levels of hypernym / hyponym. Such an implementation
could for instance contain different levels of scoring a word when eval-
uating against the event context, so that hyponyms are better scored
for similarity that hypernyms since hyponyms are more specific that
hypernyms.

e Add better support for applications. Today, applications can only
access the similarity service through a webserver serving as a host.
Based on the application’s query, our service should be able to process
the similarity on an algorithm specified by the user, or at least change
the parameters within the algorithm.

e Use feature extraction in addition to NLP semantic similarity. From
the background, it is known that the current models used today are
not good enough and is computational heavy. Due to time constraints
of creating and training such a model, it was not taken into account
when designing this prototype.

e Use two stage processing by combining the use both types of sim-
ilarity algorithms for better accuracy. By first using the consecu-
tive algorithm (section 4.4.2), discovering a broad spectre of events,
though most of them false for the current implementation, the discov-
ered events can trigger a second level processing for a more accurate
search. Remember that the best results (section 5.6) were achieved

69

by a context level of two. Here, the full processing of the consecutive
algorithm was still far better than the regular processing. The second
level processing can use the base algorithm described in section 4.4.3
which is more accurate. By creating this two stage processing, we can
save computational processing power by not process every sentence
that thoroughly.

70

References

1]

A. Ulges, M. Koch, D. Borth, and T. M. Breuel, “Tubetagger -
youtube-based concept detection,” in Proceedings of the 2009 IEEE
International Conference on Data Mining Workshops, ser. ICDMW ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 190-195.
[Online]. Available: http://dx.doi.org/10.1109/ICDMW.2009.41

D. Johansen, H. Johansen, T. Aarflot, J. Hurley, A. Kvalnes,
C. Gurrin, S. Zav, B. Olstad, E. Aaberg, T. Endestad, H. Riiser,
C. Griwidz, and P. Halvorsen, “Davvi: a prototype for the next
generation multimedia entertainment platform,” in Proceedings of the
seventeen ACM international conference on Multimedia, ser. MM ’09.
New York, NY, USA: ACM, 2009, pp. 989-990. [Online|. Available:
http://doi.acm.org/10.1145/1631272.1631482

V. Snasel, P. Moravec, and J. Pokorny, “Wordnet ontology based model
for web retrieval,” in Proceedings of the International Workshop on
Challenges in Web Information Retrieval and Integration. Washington,
DC, USA: IEEE Computer Society, 2005, pp. 220-225. [Online].
Available: http://portal.acm.org/citation.cfm?id=1105926.1106251

J. Castillo and M. Cardenas, “Using sentence semantic similarity based
on wordnet in recognizing textual entailment,” in Advances in Artificial
Intelligence IBERAMIA 2010, ser. Lecture Notes in Computer Science,
A. Kuri-Morales and G. Simari, Eds. Springer Berlin / Heidelberg,
2010, vol. 6433, pp. 366-375, 10.1007/978-3-642-16952-6_37. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-16952-6_37

P. Achananuparp, X. Hu, and X. Shen, “The evaluation of sentence
similarity measures,” in Proceedings of the 10th international conference
on Data Warehousing and Knowledge Discovery, ser. DaWaK ’08.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 305-316. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-85836-2_29

G. Varelas, E. Voutsakis, P. Raftopoulou, E. G. Petrakis,
and E. E. Milios, “Semantic similarity methods in wordnet
and their application to information retrieval on the web,” in

71

[10]

[11]

[12]

Proceedings of the 7th annual ACM international workshop on
Web information and data management, ser. WIDM ’05. New
York, NY, USA: ACM, 2005, pp. 10-16. [Online|. Available:
http://doi.acm.org/10.1145/1097047.1097051

A. Budanitsky and A. Budanitsky, “Lexical semantic relatedness and
its application in natural language processing,” Tech. Rep., 1999.

R. Mihalcea and C. Corley, “Corpus-based and knowledge-based mea-
sures of text semantic similarity,” in In AAAI06, 2006, pp. 775-780.

D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J.
Turner, and P. R. Young, “Computing as a discipline,” Commun.
ACM, vol. 32, pp. 9-23, January 1989. [Online]. Available:
http://doi.acm.org/10.1145/63238.63239

A. M. Turing, “Computing machinery and intelligence,” pp. 433-460,
1950. [Online]. Available: http://cogprints.org/499/

S. J. DeRose, “Grammatical category disambiguation by statistical op-
timization,” Comput. Linguist., vol. 14, pp. 31-39, January 1988. [On-
line]. Available: http://portal.acm.org/citation.cfm?id=49084.49087

R. Girju, P. Nakov, V. Nastase, S. Szpakowicz, P. Turney, and
D. Yuret, “Semeval-2007 task 04: classification of semantic relations
between nominals,” in Proceedings of the 4th International Workshop
on Semantic Evaluations, ser. SemEval '07. Stroudsburg, PA, USA:
Association for Computational Linguistics, 2007, pp. 13-18. [Online].
Available: http://portal.acm.org/citation.cfm?id=1621474.1621477

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a large
annotated corpus of english: The penn treebank,” COMPUTATIONAL
LINGUISTICS, vol. 19, no. 2, pp. 313-330, 1993.

Brown corpus. Brown = University. [Online]. Available:
http://khnt.aksis.uib.no/icame/manuals/brown/

P. Resnik, “Semantic similarity in a taxonomy: An information-based
measure and its application to problems of ambiguity in natural lan-
guage,” Journal of Artificial Intelligence Research, vol. 11, pp. 95-130,
1999.

——, “Using information content to evaluate semantic similarity in a
taxonomy,” in In Proceedings of the 14th International Joint Conference
on Artificial Intelligence, 1995, pp. 448-453.

M. Sahami and T. D. Heilman, “A web-based kernel function for
measuring the similarity of short text snippets,” in Proceedings of the

72

[20]

[21]

[24]

[25]

[26]

15th international conference on World Wide Web, ser. WWW ’06.
New York, NY, USA: ACM, 2006, pp. 377-386. [Online]. Available:
http://doi.acm.org/10.1145/1135777.1135834

T. Pedersen, “Information content measures of semantic similarity
perform better without sense-tagged text,” in Human Language
Technologies: The 2010 Annual Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics,
ser. HLT ’10. Stroudsburg, PA, USA: Association for Com-
putational Linguistics, 2010, pp. 329-332. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1857999.1858046

K. Sparck Jones, A statistical interpretation of term speci-
ficity and its application in retrieval. London, UK, UK: Tay-
lor Graham Publishing, 1988, pp. 132-142. [Online|. Available:
http://portal.acm.org/citation.cfm?id=106765.106782

C. Kiddon and Y. Brun, “That’s what she said: Double entendre identi-
fication,” in Proceedings of the 49th Annual Meeting of the Association

for Computational Linguistics: Human Language Technologies (ACL-
HLT11), 2011.

R. Mihalcea, “Making computers laugh: Investigations in automatic
humor recognition,” in In Proc. of the Joint Conference on Human
Language Technology / Empirical Methods in Natural Language Pro-
cessing (HLT/EMNLP, 2005.

(2010, November) Cleverbot. amix. [Online]. Avail-
able: http://singularityhub.com/2010/01/13/cleverbot-chat-engine-
is-learning-from-the-internet-to-talk-like-a-human/

T. R. Gruber, “A translation approach to portable ontology
specifications,” Knowl. Acquis., vol. 5, pp. 199-220, June 1993. [Online].
Available: http://portal.acm.org/citation.cfm?id=173743.173747

S. L. Reed and D. B. Lenat, “Mapping ontologies into cyc,” 2002.

Sensus. isi.edu. [Online]. Available: http://www.isi.edu/natural-
language /resources/sensus.html

P. Resnick and H. R. Varian, “Recommender systems,” Commun.
ACM, wvol. 40, pp. 56-58, March 1997. [Online]. Available:
http://doi.acm.org/10.1145/245108.245121

M. Nathan, C. Harrison, S. Yarosh, L. Terveen, L. Stead,
and B. Amento, “Collaboratv: making television viewing social
again,” in Ist International Conference on Designing Interactive

73

[36]

User Ezxperiences for TV and Video, vol. vol 291, ACM. Silicon
Valley, CA: ACM, 10/22/2008 2008, pp. 85-94. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1453805.1453824

M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H. Free-
man & Co., 1990.

J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon,
and J. Riedl, “Grouplens: applying collaborative filtering to usenet
news,” Commun. ACM, vol. 40, pp. 77-87, March 1997. [Online].
Available: http://doi.acm.org/10.1145/245108.245126

J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,”
in Proceedings of the ninth annual ACM-SIAM symposium on Discrete
algorithms, ser. SODA ’98. Philadelphia, PA, USA: Society for
Industrial and Applied Mathematics, 1998, pp. 668—677. [Online].
Available: http://portal.acm.org/citation.cfm?id=314613.315045

L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web,” 1999.

(2010, November) The reddit algorithm explained. amix. [Online].
Available: http://amix.dk/blog/post/19588

V. 1. Levenshtein, “Binary codes capable of correcting deletions,
insertions, and reversals,” Sowviet Physics Doklady, vol. 10, no. 8,
pp. 707-710, 1966. [Online]. Available: http://sascha.geekheim.de/wp-
content /uploads/2006/04 /levenshtein.pdf

F. J. Damerau, “A technique for computer detection and correction
of spelling errors,” Commun. ACM, vol. 7, pp. 171-176, March 1964.
[Online]. Available: http://doi.acm.org/10.1145/363958.363994

W. E. Winkler, “String comparator metrics and enhanced decision rules
in the fellegi-sunter model of record linkage,” in Proceedings of the
Section on Survey Research Methods, American Statistical Association,
1990, pp. 354-359.

J. Jiang and D. Conrath, “Semantic similarity based on corpus statistics
and lexical taxonomy,” in Proc. of the Int’l. Conf. on Research in
Computational Linguistics, 1997, pp. 19-33. [Online]. Available:
http://www.cse.iitb.ac.in/ ¢s626-449 /Papers/WordSimilarity/4.pdf

D. Lin, “An information-theoretic definition of similarity,” in In Pro-
ceedings of the 15th International Conference on Machine Learning.
Morgan Kaufmann, 1998, pp. 296-304.

74

[38]

[42]

[43]

[44]

[45]

Z. Wu and M. Palmer, “Verbs semantics and lexical selection,”
in Proceedings of the 32nd annual meeting on Association for
Computational Linguistics, ser. ACL ’94. Stroudsburg, PA, USA:
Association for Computational Linguistics, 1994, pp. 133-138. [Online].
Available: http://dx.doi.org/10.3115/981732.981751

C. Leacock and M. Chodorow, Combining local context and WordNet
similarity for word sense identification. In C. Fellbaum (Ed.), MIT
Press, 1998, pp. 305-332.

G. A. Miller, “Wordnet: A lexical database for english,” Communica-
tions of the ACM, vol. 38, pp. 39-41, 1995.

R. Richardson, A. F. Smeaton, R. Richardson, and A. F. Smeaton, “Us-
ing wordnet in a knowledge-based approach to information retrieval,”
Tech. Rep., 1995.

J. B. Lovins, “Development of a stemming algorithm.” Jun. 1968.
[Online|. Available: http://stinet.dtic.mil/oai/oai?verb=
getRecord&metadataPrefix=html&identifier=AD0735504

M. F. Porter, An algorithm for suffiz stripping. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1997, pp. 313-316. [Online].
Available: http://portal.acm.org/citation.cfm?id=275537.275705

Y. Li, D. McLean, Z. A. Bandar, J. D. O’Shea, and K. Crockett,
“Sentence similarity based on semantic nets and corpus statistics,”
IEEFE Trans. on Knowl. and Data Eng., vol. 18, pp. 1138-1150, August
2006. [Online|. Available: http://dx.doi.org/10.1109/TKDE.2006.130

S. Bird, E. Klein, and E. Loper, Natural Language Processing with
Python, 1st ed. O’Reilly Media, Inc., 2009.

75

