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Abstract
This work derives upper bounds on the convergence rate of the moment-sum-of-
squares hierarchy with correlative sparsity for global minimization of polynomials on
compact basic semialgebraic sets. The main conclusion is that both sparse hierarchies
based on the Schmüdgen and Putinar Positivstellensätze enjoy a polynomial rate of
convergence that depends on the size of the largest clique in the sparsity graph but
not on the ambient dimension. Interestingly, the sparse bounds outperform the best
currently available bounds for the dense hierarchy when the maximum clique size is
sufficiently small compared to the ambient dimension and the performance ismeasured
by the running time of an interior pointmethod required to obtain a bound on the global
minimum of a given accuracy.
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1 Introduction

This work provides rates of convergence for the sums-of-squares hierarchy with cor-
relative sparsity. For a positive n ∈ N, consider the polynomial optimization problem

fmin :=y min
x∈S(g)

f (x)

where f is an element of the ring R[x] of polynomials in x = (x1, . . . , xn), and S(g)
is a basic compact semialgebraic set determined by a finite collection of polynomials
g = {g1, . . . , gk̄} by S(g) = {x ∈ R

n : gi (x) ≥ 0, i = 1, . . . , k̄}. An approach to
attack this problem, first proposed by Lasserre [10] and Parrilo [20], is as follows:
Imagine we knew that f (x) − λ could be written as

f (x) − λ =
k̄∑

j=0

σ j g j (x) or f (x) − λ =
∑

J⊆{1,...,k̄}
σJ

∏

j∈J

g j (x),

with g0(x) = 1 and σ j and σJ being sum-of-squares (SOS) polynomials. Then the
right-hand sides of each of these equations would be clearly nonnegative on S(g), so
we would know that fmin ≥ λ. By bounding the degree of the SOS polynomials, we
obtain the following two hierarchies of lower bounds:

lbq ( f , r) = max

{
λ ∈ R : f − λ =

k̄∑
j=0

σ j g j , deg(σ j g j ) ≤ 2r , σ j ∈ �[x]
}

,

lbp( f , r) = max

{
λ ∈ R : f − λ = ∑

J⊆{1,...,k̄}
σJ
∏

j∈J g j , deg
(
σJ
∏

j∈J g j

)
≤ 2r , σJ ∈ �[x]

}
,

where �[x] is the convex cone of all sum-of-squares polynomials. These satisfy
lbq( f , r) ≤ lbp( f , r) ≤ fmin. The lower bound lbq( f , r) is associated to a so-called
quadratic module certificate, while lbp( f , r) corresponds to a preordering certificate;
this terminology is justified by the definitions in Sect. 1.2. The well-known Putinar
and Schmüdgen Positivstellensätze [21, 23], respectively, guarantee that these bounds
converge to fmin as r → +∞, the former with the additional assumption that the asso-
ciated quadratic module be Archimedian.1 Here we prove sparse quantitative versions
of these results.

1 This means that there are R > 0 and σ j ∈ �[x] such that R − ‖x‖2 =∑ j σ j g j (x).
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Convergence rates for sums-of-squares hierarchies with...

Table 1 Known results on the asymptotic error of Lasserre’s hierarchies of lower bounds; based in part on
[25, Table 1]

Domain S(g) Error Certificate Ref

Archimedean O(1/ log(r)c) Quadratic module [18]

Archimedean O(1/rc) Quadratic module [2]

General O(1/rc) Preordering [24]

General O(1/rc) Quadratic module & uniform denominators [16]

Sn−1 O(1/r2) quadratic module/preordering [4]

{0, 1}n See [26] Quadratic module/preordering [26]

Bn O(1/r2) Quadratic module/preordering [25]

[−1, 1]n O(1/r2) Preordering [14]

�n O(1/r) Preordering [9]

�n O(1/r2) Preordering [25]

The domain S(g) is assumed to be compact in all cases, ε ∈ [0, 1/2), c > 0, Sn−1 is the unit sphere, Bn is
the unit ball, �n is the standard simplex

Polynomial optimization schemes have generated substantial interest due to their
abundant fields of application; see for example [12, 13]. The first proof of conver-
gence, without a convergence rate, was given by Lasserre [10] using the Archimedian
Positivstellensatz due to Putinar [21]. Eventually, rates of convergence were obtained;
initially in [18] these were logarithmic in the degree of the polynomials involved, and
later on they were improved [2, 4, 14, 25] (using ideas of [3, 22]) to polynomial rates;
refer to Table 1. The crux of the argument used to obtain those rates is a bound of
the deformation incurred by a polynomial strictly-positive on the domain of interest,
as it passes through an integral operator that closely approximates the identity and is
associated to a strictly-positive polynomial kernel that is itself composed of sums of
squares and similar to the Christoffel–Darboux and Jackson kernels (see Definition
10). More recently, results showing an exponential bound on the convergence rate
was obtained in [1] with the additional assumption on the positive definiteness of the
Hessian at all global minimizers.

The techniques used to obtain these results generally involve linear operators on
the space of polynomials (mostly Christoffel–Darboux kernel operators; see [25]) that
are close to the identity and that, for positive polynomials, are easily (usually, by
construction) proved to output polynomials that are sums of squares and/or of their
products with the functions in g. All of these results deal, however, with the dense
case.

In this work, we treat the case where the problem possesses the so-called correlative
sparsity, where each function gi depends only on a certain subset of variables and
the function f decomposes as a sum of functions depending only on these subsets
of variables. This structure can be exploited in order to define sparse lower bounds
that are cheaper to compute but possibly weaker. Nevertheless, these sparse lower
bounds allow one to tackle large-scale polynomial optimization problems arising from
various applications including roundoff error bounds in computer arithmetic, quantum
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correlations and robustness certification of deep networks; see the recent survey [15].
In [11] Lasserre proved that these sparse lower bounds converge as the degree of the
SOS multipliers tends to infinity provided the variable groups satisfy the so-called
running intersection property (see Definition 1). A shorter and more direct proof
was provided in [6], and was adapted in [17] to obtain a sparse variant of Reznick’s
Positivstellensatz. In this work, we show polynomial rates of convergence for sparse
hierarchies based on both Schmüdgen and Putinar Positivstellensätze. Importantly, we
obtain rates that depend only on the size of the largest clique in the sparsity graph rather
than the overall ambient dimension. This allows the perhaps surprising conclusion that,
asymptotically, the sparse hierarchy is more accurate than the dense hierarchy for a
given computation time of an optimizationmethod, provided that the size of the largest
clique is no more than the square root of the ambient dimension. This assumes that the
running time of the optimization method is governed by the size of the largest PSD
block and the number of such blocks in the semidefinite programming reformulations
of the dense and sparse SOS problems which is the case for the interior point method
as well as the most commonly used first-order methods.

To the best of our knowledge, these are the first quantitative results of this kind. Our
proof techniques rely on an adaption of [6] and utilize heavily the recent results from
[2, 14], and can thus be seen as a generalization of these works to the sparse setting.

Since our results are very technical and their full statement necessitates the intro-
duction of a lot of notation, we have prepared a rough summary to help the reader get
a glance at what they are, presented next. We urge the reader to mind the fact that we
have not fully spelled-out all the details and definitions, for which we refer to the next
section.

Definition 1 A collection {J1, . . . , J�} of subsets of {1, . . . , n} ⊃ J j satisfies the
running intersection property if for all 1 ≤ k ≤ � − 1 we have

Jk+1 ∩
k⋃

j=1

J j ⊂ Js for some s ≤ k. (RIP)

Theorem 2 (Rough summary of results) Let:

• n > 0, � > 0, and k̄ be positive integers,
• r1, . . . , r� ∈ N

n, r j = (r j,1, . . . , r j,n) be some multi-indices with r j,i ≥ 1,
• J1, . . . , J� ⊂ {1, . . . , n} be sets of indices satisfying (RIP),
• p1, . . . , p� be polynomials such that p j depends only on the variables xi with

i ∈ J j , and its degree in the variable xi is ≤ r j,i ,
• p = p1 + p2 + · · · + p� be a polynomial that this a sum of the polynomials

p1, . . . , p�,

We will denote by |J j | the cardinality of the set J j .
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Convergence rates for sums-of-squares hierarchies with...

i. (Schmüdgen-type, Theorem 6) Assume that, for large-enough c1 > 0 (determined
explicitly in the statement of Theorem 6 and depending only on n and J1, . . . , J�),

p(x) ≥ c1
‖p‖L∞([−1,1]n)

r
2

3+max j |J j |
j,i

(1)

for all 1 ≤ i ≤ n, 1 ≤ j ≤ �, and x ∈ [−1, 1]n. Then p can be written as a sum
p = h1 + · · · + h� of polynomials h j that belong to the respective preorderings
generated by the polynomials 1− x2i with i ∈ J j and only depend on the variables
xi with i ∈ J j . This means that there are polynomials σ j,K that are sums of
squares, that depend only on xi for i ∈ J j , and such that

h j =
∑

K⊂J j

σ j,K

∏

m∈K

(1 − x2m).

The sum is taken over all (possibly empty) subsets K of J j ; the product on the
right is understood to be 1 when K = ∅. Moreover, the degree of each term
σ j,K

∏
m∈J j

(1 − x2m) in the variable xi is bounded by r j,i .
ii. (Putinar-type, Theorem 8) Additionally we let

• K1, . . . , K� ⊂ {1, . . . , k̄} be sets of indices,
• g1, . . . , gk̄ be polynomials such that, if m ∈ K j then gm depends only on the

variables xi with i ∈ J j , and satisfying some additional technical assump-
tions.2

Now, instead of assuming (1), we assume that, for large-enough c2, c3 > 0 (deter-
mined more-or-less explicitly in the statement of Theorem 8 and depending only
on n, J1, . . . , J�, g1, . . . , gk̄),

p(x) ≥ c2
(‖p‖L∞(S(g)) deg p j

∑
i Lip pi )

c3

r
1

13+3|J j |
j,i

,

for x in the set S(g) = {x ∈ R
n : g j (x) ≥ 0, j = 1, . . . , k̄}, and for all 1 ≤ i ≤ n,

1 ≤ j ≤ �. Then p can be written as a sum p = h1 + · · · + h� of polynomials
h j that belong to the respective quadratic modules generated by the polynomials
(gi )i∈K j and only depend on the variables (xi )i∈J j . This means that there are
polynomials σ j,0 and σ j,k that are sums of squares, that depend only on xi for
i ∈ J j , and such that

h j = σ j,0 +
∑

k∈K j

σ j,k gk .

2 Apart from assumptions of scale (3) and an Archimedean condition (4), for this simplified version of the
results we have for simplicity taken L j = 1 and c j = 1 in the statement of Theorem 8. With these values,
the exponent of ε in (5) is (238 + 55|J j |)/9, which we estimate from below with the simpler expression
26 + 6|J j | to derive the statement of Theorem 2.
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Moreover, the degree of each term σ j,0 and σ j,k gk in the variable xi is bounded
by r j,i + 2.

Although the exponents of r j,i in the above statement are often much smaller than
2, hence making the rates slower than those that had been obtained (see Table 1) for
the dense case, we have also analyzed the complexity involved in solving the corre-
sponding optimization problems, showing that the sparse hierarchies may outperform
the dense ones in certain situations.

We proceed to summarize this analysis. When using the sums-of-squares hierar-
chies, we use, as a proxy for the complexity necessary to obtain a certificate that a
lower bound of the minimum of a polynomial p has been found to ε > 0 accuracy,
the size and number of the positive-semidefinite (PSD) blocks in the corresponding
semidefinite program (SDP).

We denote:

• Bdense(ε) the size of PSD block in the dense case, which is equal to the number(n+r
r

)
of monomials of degree r in n variables, and in our argument we take r to

be of the order of O(ε−1/2) as in the best results listed in Table 1,
• BsparseSchm(ε) the size of the largest PSD block in the sparse case of Theorem 2i.
(i.e., optimizing over [−1, 1]n using a Schmüdgen-style scheme), multiplied by
the number � of blocks,

• BsparsePut(ε) the size of the largest PSD block in the sparse case of Theorem 2ii.
(i.e., optimizing over S(g) using a Putinar-style scheme), multiplied by the number
� of blocks.

The quotients

BsparseSchm(ε)

Bdense(ε)
and

BsparsePut(ε)

Bdense(ε)

being < 1 is thus indicative of our rates being better than the dense ones.

Proposition 3 (Summary of SDP size results) With some technical assumptions, we
have:

1. (Proposition 7) If n > |J j |2 +3|J j | for all 1 ≤ j ≤ �, then, for minimizing p over
[−1, 1]n, we have

lim
ε↘0

BsparseSchm(ε)

Bdense(ε)
= 0.

2. (Proposition 9) If n > 6|J j |2 + 26|J j | for all 1 ≤ j ≤ �, then, for minimizing p
over S(g), we have
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lim
ε↘0

BsparsePut(ε)

Bdense(ε)
= 0.

In other words, our rates improve on those already found for the dense case as long
as n is sufficiently large with respect to the sizes |J j | of the blocks of variables indexed
by the sets J1, . . . , J�, and ε > 0 is sufficiently small.

Let us turn to some concrete examples. The functions in our examples were consid-
ered before in [27, §6.1], where sums-of-squares algorithms leveraging sparsity were
benchmarked on them.

Example 4 Consider the chain singular function for x ∈ [−1, 1]n :

fcs(x) =
∑

i∈P

(
(xi + 10xi+1)

2 + 5(xi+2 − xi+3)
2 + (xi+1 − 2xi+2)

4 + 10(xi − 10xi+3)
4
)

,

where P = {1, 3, 5, . . . , n − 3} and n is a multiple of 4. Then we can take J j =
{ j, j + 1, j + 2, j + 3} for j = 1, . . . , n − 3, so that these sets satisfy (RIP) and
|J j | = 4. The proofs of Propositions 7 and 9 show that in this case we have, for
large-enough n and as ε ↘ 0,

BsparseSchm(ε)

Bdense(ε)
= O(ε

n
2−14) and

BsparsePut(ε)

Bdense(ε)
= O(ε

n
2−62).

Example 5 Consider the Broyden banded function, defined for each n ∈ N by

fBb(x) =
n∑

i=1

⎛

⎝xi (2 + 5x2i ) + 1 −
∑

j∈Pi

(1 + x j )x j

⎞

⎠
2

,

where Pi = { j : j �= i, max(1, i−5) ≤ j ≤ min(n, i+1)}, on the box [−1, 1]n . Then
Ji = Pi ∪ {i}, and |Ji | ≤ 7, and these sets satisfy (RIP). The proofs of Propositions 7
and 9 show that in this case we have, for large-enough n and as ε ↘ 0,

BsparseSchm(ε)

Bdense(ε)
= O(ε

n
2−35) and

BsparsePut(ε)

Bdense(ε)
= O(ε

n
2−143).

The paper is organized as follows. The results are detailed below in Sect. 1.2 and
further discussed in Sect. 1.2.1, after a brief interlude to establish some notations in
Sect. 1.1. Some machinery is developed in Sects. 2 and 3, regarding variants of the
Jackson kernel and some approximation theory, respectively, and the proofs of the
main theorems are presented in Sect. 4.

1.1 Notation

Denote by R the set of real numbers, by N the set of positive integers, and by N0 =
{0, 1, . . . } the set of nonnegative integers. Denote by e1, . . . , en the vectors of the
standard basis of Euclidean space Rn .
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For a Lipschitz continuous function f : [−1, 1]n → R, we set

Lip f = max

(
1, sup

x,y∈[−1,1]n

| f (x) − f (y)|
‖x − y‖

)
.

We take this to be at least 1 to simplify estimates below.
A multi-index I = (i1, . . . , in) ∈ N

n
0 is an n-tuple of nonnegative integers ik , and

its weight is denoted by

|I | =
n∑

k=1

ik .

For a multi-index I = (i1, . . . , in) ∈ N
n
0 and J ⊂ {1, . . . , n}, we write I ⊆ J to

indicate that the index k of every nonzero entry ik > 0 is contained in J , that is, k ∈ J
for all 1 ≤ k ≤ n such that ik > 0.

Similarly, given a multi-index I = (i1, . . . , in) ∈ N
n
0 and a subset J ⊆ N0, we let

IJ be the multi-index whose k-th entry is either ik if k ∈ J or 0 if k /∈ J .
For two multi-indices I and I ′, we write I ≤ I ′ if the entrywise inequalities ik ≤ i ′k

hold for all 1 ≤ k ≤ n.
We distinguish two special multi-indices:

1 = (1, 1, . . . , 1) and 2 = (2, 2, . . . , 2).

We denote x I = xi1
1 xi2

2 . . . xin
n . Also, we denote the Hamming weight of I ∈ N

n
0 by

w(I ) = #{k : ik > 0, 1 ≤ k ≤ n}.

In other words, w(I ) is the number of nonzero entries in I .
We denote the space of polynomials in n variables by R[x], and within this set we

distinguish the subspace R[x]d of polynomials of total degree at most d. We denote,
for a polynomial p(x) =∑I cI x I , by deg p the vector whose i-th entry is the degree
of p in xi ,

deg p =
(
max
cI �=0

i1,max
cI �=0

i2, . . . ,max
cI �=0

in

)
.

Observe that deg p ≤ ∣∣deg p
∣∣ =∑n

k=1 maxcI �=0 ik .
Set also

Ip = {I ∈ N
n
0 : cI �= 0}.

Given a subset J ⊂ {1, . . . , n}, we let R[xJ ] denote the set of polynomials in the
variables {x j } j∈J . For a multi-index r = (r1, . . . , rn) ∈ N

n
0, we let R[x]r denote the

set of polynomials p such that, if p(x) =∑I cI x I for some real numbers cI ∈ R, then
for each I = (i1, . . . , in) with cI �= 0 we also have ik ≤ rk for 1 ≤ k ≤ n. Finally,
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we let R[xJ ]r = R[xJ ] ∩ R[x]r; in other words, R[xJ ]r is the set of polynomials p
with deg p ≤ r in the variables {x j : j ∈ J } ⊆ {x1, . . . , xn}.

Given a set X , we write Xn to denote the product

Xn = X × X × · · · × X︸ ︷︷ ︸
n

.

We denote by ‖ · ‖∞ the supremum norm on [−1, 1]n .
The notation �s� stands for the least integer ≥ s.

1.2 Results

Let �[xJ ] denote the set of polynomials p that are sums of squares of polynomials in
R[xJ ], that is, of the form p = p21 + · · · + p2� for p1, . . . , p� ∈ R[xJ ].

Let k̄ ∈ N and let g = {g1, . . . , gk̄} be a collection of polynomials gi ∈ R[x]
defining a set

S(g) = {x ∈ R
n : gi (x) ≥ 0, i = 1, . . . , k̄}.

For convenience, denote also g0 = 1. To the collection g and a multi-index r, we
associate the (variable- and degree-wise truncated) quadratic module associated to
the collection g and a multi-index r be

Qr,J (g) =
⎧
⎨

⎩

k̄∑

i=0

σi gi : σi ∈ �[xJ ], deg(σi gi ) ≤ r

⎫
⎬

⎭ .

Similarly, we have a (variable- and degree-wise truncated) preordering

Pr,J (g) = Qr,J ({gK : K ⊆ {1, . . . , k̄}})

=
⎧
⎨

⎩
∑

K⊆{1,...,k̄}
σK gK : σK ∈ �[xJ ], deg(σK gK ) ≤ r

⎫
⎬

⎭ ,

where

gK =
∏

i∈K

gi .

Denote, for j = 2, 3, . . . , �,

J j = J j ∩
⋃

k< j

Jk . (2)

Then (RIP) is the condition that, for all 1 ≤ k ≤ � − 1, there is some s ≤ k such that
Jk+1 ⊂ Js .
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1.2.1 Sparse Schmüdgen-type representation on [−1, 1]n

Let L :=∑�
k=1 Lip pk , M := max 1≤k≤�

1≤m≤n
(deg pk)m , and J := max1≤k≤� |Jk |.

Theorem 6 Let n > 0 and � ≥ 2, and let r1, r2, . . . , r� ∈ N
n, r j = (r j,1, . . . , r j,n),

be nowhere-vanishing multi-indices.
Let also J1, . . . , J� be subsets of {1, . . . , n} satisfying (RIP).
Let p = p1 + p2 + · · · + p� be a polynomial that is the sum of finitely many

polynomials p j ∈ R[xJj ]r j . Then if p ≥ ε on [−1, 1]n, we have

p ∈ Pr1,J1({1 − x2i }i∈J1) + · · · + Pr�,J�
({1 − x2i }i∈J�

)

as long as, for all 1 ≤ j ≤ � and all 1 ≤ i ≤ n,

r2j,i ≥ 2J+3(� + 2)nπ2‖p‖∞
ε

(
max

(
M, 4CJac(� + 2)

J L

ε

)
+ 2

)J+2

.

For small enough 0 < ε < 4CJac(� + 2)J L/M, this boils down to

r j,i ≥
√

A ‖p‖∞
εJ+3

= O(ε− J+3
2 ),

with

A = nπ2(4CJac J L + 2)J+2(2(� + 2))J+3.

The proof is presented in Sect. 4.1.

Discussion
Solving the dense problem considered by [14] using the sum-of-squares hierarchy
reduces to a semidefinite program with the largest PSD block of size

(n+r
r

)
that typical

optimization methods (e.g., interior point or first order) can solve in an amount of time
proportional to a power of

(
n + r

r

)
≈
(

n + Cε−1/2

Cε−1/2

)
=: Bdense(ε),

at least when certain non-degeneracy conditions are satisfied [5]. The bounds we find
in Theorem 6 —in the case in which J j is the largest of the sets J1, . . . , J�— give a
bound for the complexity of the leading term as (the same power of)

�

(|J j | + |r j |
|r j |

)
≤ �

(|J j |(1 + C ′ε− |J j |+3
2 )

|J j |C ′ε− |J j |+3
2

)
=: BsparseSchm(ε).
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The reason we have |r j | ≤ |J j |C ′ε−|J j |−3 is that r j,i ≤ O(ε− |J j |+3
2 ) and there are at

most |J j | values of i with r j,i �= 0.

Proposition 7 If n > |J j |(|J j | + 3) for all j = 1, . . . , �, then we have

lim
ε↘0

BsparseSchm(ε)

Bdense(ε)
= 0.

Thus, if the size of the largest clique is of the order of square root of the ambient
dimension n or smaller, the sparse bound outperforms the best available dense bound
if the performance is measured by the amount of time required by an optimization
method to find a bound of a given accuracy ε.

Proof of Proposition 7 by Lemma 20 we have, as ε ↘ 0,

BsparseSchm(ε)

Bdense(ε)
=

(|J j |(1 + C ′ε− |J j |+3
2 )

|J j |C ′ε− |J j |+3
2

)

(n+Cε−1/2

Cε−1/2

) = O(ε
1
2 (n−|J j |(|J j |+3))),

and this tends to 0 if the sparsity of the polynomial p is such that n > |J j |
(|J j | + 3). ��

1.2.2 Sparse Putinar-type representation on arbitrary domains

For a set of polynomials g = {g1, . . . , gk̄}, denote

S(g) = {x ∈ R
n : gi (x) ≥ 0 for all i = 1, . . . , k̄}

and, for a subset K ⊂ {1, . . . , k̄}, denote

gK = {gi : i ∈ K }.

Theorem 8 Let n > 0, k̄ > 0, � ≥ 2, J1, . . . , J� ⊂ {1, . . . , n}, r1, . . . , r� ∈ N
n, and

p = p1 + · · · + p� with p j ∈ R[xJj ]r j .
Assume that the sets J1, . . . , J� satisfy (RIP).
Let K1, . . . , K� ⊂ {1, . . . , k̄} and let g = {g1, . . . , gk̄} ⊂ R[x] be a collection of k̄

polynomials such that, if i ∈ K j for some 1 ≤ j ≤ �, then gi ∈ R[xJj ]. Assume that

‖g j‖∞ ≤ 1

2
, j = 1, 2, . . . , k̄. (3)

Assume that S(g) ⊂ [−1, 1]n and that there exist polynomials s j,i ∈ R[xJj ]r j , j =
1, . . . , �, i ∈ {0} ∪ K j , such that the Archimedean conditions

1 −
∑

i∈J j

x2i = s j,0(xJj )
2 +

∑

i∈K j

s j,i (xJj )
2gi (xJj ), j = 1, . . . , �, (4)
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hold; that is to say, we assume that 1 −∑i∈J j
x2i ∈ Qr j ,J j (gK j ). Let c1, . . . , c� ≥ 1

and L1, . . . , L� ≥ 1 be constants such that3

dist(x, S(gK j ))
L j ≤ −c j min

{{0} ∪ {gi (x) : i ∈ K j
}}

for all x ∈ [−1, 1]n .

Then there are constants C j > 0, depending only on g, J1, . . . , J�, such that, if
p ≥ ε > 0 on S(g), we have

p ∈ Qr1+2,J j (gK j ) + · · · + Qr�+2,J�
(gK�

)

as long as, for all 1 ≤ j ≤ � and 1 ≤ k ≤ n,

(r j,k + 2)2 ≥ C j
4(� + 2)

(∑
i ‖pi ‖∞

)L j +1
(deg p j

∑�
i=1 Lip pi )

(2L j +|J j |+2)(1+ 8L j
3 )

ε1+L j + 4L j +1
3 (2L j +|J j |+2)(1+ 8L j

3 )

, (5)

(r j,k + 2)2 ≥ C j

⎛

⎜⎜⎝

(∑�
i=1 ‖pi ‖∞

) 4L j +1
3

(deg p j
∑�

i=1 Lip pi )
8L j
3

ε
12L j +1

3

⎞

⎟⎟⎠

2

. (6)

The proof of the theorem can be found in Sect. 4.2.

DiscussionBy the same arguments we used in the discussion at the end of the previous
section, if we assume L1 = · · · = Lk̄ = 1, the bounds we find in Theorem 8 give a
bound for the complexity of the leading term as (a power of)4

�

(|J j | + |r j |
|r j |

)
≈
(|J j |(1 + C ′′ε−13−3|J j |)

|J j |C ′′ε−13−3|J j |

)
) =: BsparsePut,

at least when certain non-degeneracy conditions are satisfied [5]. The assumption
L1 = · · · = Lk̄ = 1 is realized for example when the so-called constraint qualification
condition that, at each point x ∈ S(g) all the active constraints gi1, . . . , gil (i.e., those
satisfying gi j (x) = 0) have linearly independent gradients ∇gi1(x), . . . ,∇gil (x)),
holds; this latter statement is proved in [2, Thm 2.11].

In this case, we have:

Proposition 9 If n
>

|J j |(26 + 6|J j |) for all j = 1, . . . , � and if L1 = · · · = Lk̄ = 1,
then we have

lim
ε↘0

BsparsePut

Bdense
= 0.

3 This is a version of the Łojasiewicz inequality, and its validity (with appropriate constants c j , L j ) for
semialgebraic functions is justified in [2, Thm. 2.3] and the papers cited therein.
4 With L1 = · · · = Lk̄ = 1, the exponent of ε in (5) is (238 + 55|J j |)/9, which we estimate from below
with the simpler expression 26 + 6|J j | to derive the exponent of ε here.
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Again the implication is that the sparse bound asymptotically outperforms the dense
bound provided that the largest clique is sufficiently small.

Proof of Proposition 9 Lemma 20 gives

BsparsePut

Bdense
=

(|J j |(1 + C ′′ε−13−3|J j |)
|J j |C ′′ε−13−3|J j |

)

(n+Cε−1/2

Cε−1/2

) = O(ε
n
2−|J j |(13+3|J j |)),

which tends to 0 if n
2 > |J j |(13 + 3|J j |). ��

Organization of the paperThe proof of Theorem6 can be seen as a variable-separated
version of the proof in [14], which relies on the Jackson kernel. Therefore in Sect. 2
we derive the suitable ingredients for sparse Jackson kernels while carefully taking
into account each variable separately.

A strategy is also required to write a positive polynomial p that is known to be a
sum p = p1 + · · ·+ p� with pi ∈ R[xJi ] as a similar sum p = h1 + · · ·+ h� but now
with h j ∈ R[xJj ] and h j ≥ 0 on [−1, 1]|J j |; this is done in Sect. 3.

Section 4 gives the proofs of Theorems 6 and 8, together with the statement and
proof of Lemma 20, which was used in the proofs of Propositions 7 and 9 above.

2 The sparse Jackson kernel

In this section, we derive Corollary 13, one of the main ingredients of the proof of
Theorem 6. The corollary guarantees that polynomials bounded from below by ε > 0
on [−1, 1]n are in the preordering Pr,J ({1− x2i }i∈J ) (defined in Sect. 1.2) for ε large
enough. The corollary follows from Theorem 14, which gives a refined estimate of the
distance between a polynomial p and its preimage under a Jackson-style operator that
treats each variable separately. We begin with some preliminaries and a useful lemma.

The measure μn on the box [−1, 1]n defined by

dμn(x):=y
dx1

π

√
1 − x21

· · · dxn

π
√
1 − x2n

, x = (x1, . . . , xn) ∈ [−1, 1]n,

is known as the (normalized) Chebyshev measure; it is a probability measure on
[−1, 1]n . It induces the inner product

〈 f , g〉μn :=y
∫

[−1,1]n
f (x)g(x) dμn(x)

and the norm ‖ f ‖μn = √〈 f , f 〉μn .
For k = 0, 1, . . . , we let Tk ∈ R[x] be the univariate Chebyshev polynomial of

degree k, defined by

Tk(cos θ):=y cos(kθ), θ ∈ R.
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The Chebyshev polynomials satisfy |Tk(x)| ≤ 1 for all x ∈ [−1, 1], and

〈Ta, Tb〉μ1 =
∫ 1

−1

Ta(x)Tb(x)

π
√
1 − x2

dx =

⎧
⎪⎨

⎪⎩

0, a �= b,

1, a = b = 0,
1
2 , a = b �= 0.

For a multi-index I = (i1, . . . , in), we let

TI (x1, . . . , xn):=yTi1(x1)Ti2(x2) · · · Tin (xn)

be the multivariate Chebyshev polynomials, which then satisfy (see for example [28,
§II.A.1]), for multi-indices I and I ′,

deg TI = |I | and 〈TI , TI ′ 〉μn =
{
0, I �= I ′,
2−w(I ), I = I ′.

(7)

Thus p ∈ R[x]d can be expanded as p =∑|I |≤d 2
w(I )〈p, TI 〉μn TI .

If we let, for a finite collection � ⊆ R×N
n
0 of pairs (λ, I ) of a real number λ and

a multi-index I ,

K �(x, y) =
∑

(λ,I )∈�

2w(I )λ TI (x)TI (y), x, y ∈ R
n,

then, for any p ∈ R[x], we have

K�(p)(x):=
∫

[−1,1]n
K �(x, y)p(y) dμn(y) =

∑

(λ,I )∈�
|I |≤d

2w(I )λ〈p, TI 〉μn TI (x).

This means that, if we set all the nonzero numbers λ equal to 1, thenK� is the identity
operator in the linear span of {TI : ∃λ �= 0 s.t. (λ, I ) ∈ �} ⊆ R[x]d .

We let, for r , k ∈ N,

λr
k = 1

r + 2

(
(r + 2 − k) cos πk

r+2 + sin πk
r+2

sin π
r+2

cos π
r+2

)
, 1 ≤ k ≤ r ,

and

λr
0 = 1.

We set, for r = (r1, . . . , rn) ∈ N
n
0,

λrI =
n∏

j=1

λ
r j
i j
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and

�r = {(λrI , I ) : I ≤ r}.

Then K Jac
r = K �r is the (r-adapted) Jackson kernel, and its associated linear operator

K�r is denoted KJac
r .

Lemma 10 Let r ∈ N
n
0 be a multi-index. The operator KJac

r defined above has the
following properties:

i. KJac
r (R[xJ ]r) ⊆ R[xJ ]r.

ii. We have

KJac
r (TI ) =

{
λrI TI , I ≤ r,
0, otherwise.

In particular, KJac
r (1) = 1.

iii. KJac
r is invertible in R[xJ ]r with J = {i : 1 ≤ i ≤ n, ri > 0}.

iv. 0 < λrI ≤ 1 for all 0 ≤ I ≤ r.
v. For I = (i1, . . . , in) and r = (r1, . . . , rn) in N

n
0 ,

|1 − λrI | = 1 − λrI ≤ nπ2 max
j

i2j
(r j + 2)2

.

vi. For I = (i1, . . . , in) and r = (r1, . . . , rn) in N
n
0 that verify (9), we have

∣∣∣∣1 − 1

λrI

∣∣∣∣ ≤ 2nπ2 max
j

i2j
(r j + 2)2

.

vii. Let p ∈ R[x]J ,r with p(x) ≥ 0 for all x ∈ [−1, 1]n and ‖p‖∞ ≤ 1. Let
r = (r1, . . . , rn) be a multi-index such that I ≤ r for all I ∈ Ip, and assume
that, for all I = (i1, . . . , in) ∈ Ip, condition (9) is verified. Then we have

∥∥∥(KJac
r )−1(p) − p

∥∥∥∞ ≤ 2nπ2

⎛

⎝
∏

1≤k≤n

((deg p)k + 1)

⎞

⎠ max
I∈Ip
1≤ j≤n

[
2w(I )/2

i2j
(r j + 2)2

]
.

viii. K Jac
r (x, y) ≥ 0 for all x, y ∈ [−1, 1]n.

ix. If p ∈ R[x] is such that p(x) ≥ 0 for x ∈ [−1, 1]n, then KJac
r (p)(x) ≥ 0 for all

x ∈ [−1, 1]n.

Proof Throughout, we follow [14].
Item (ii) is immediate from the definitions and (7). Item (i) follows from item (ii)

and the fact that {TI : I ≤ r, I ⊆ J } is a basis for R[xJ ]r.
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Observe that item (ii) means that KJac
r is diagonal in R[xJ ]r, so in order to prove

item (iii) it suffices to show that λrI > 0 for all I ≤ r, I ⊆ J . This follows immediately
from item (iv), which in turn follows from the definition of λrI and [14, Proposition
6(ii)], which shows that 0 < λr

k ≤ 1 for all 0 ≤ k ≤ r .
Similarly, by [14, Proposition 6(iii)] we have that, if k ≤ r , then

∣∣1 − λr
k

∣∣ = 1 − λr
k ≤ π2k2

(r + 2)2
.

Thus, if γ j = 1 − λ
r j
i j

≤ π2i2j /(r j + 2)2 and γ = max j γ j , we also have, using
Bernoulli’s inequality [14, Lemma 11],

1 − λrI = 1 −
n∏

j=1

λ
r j
i j

= 1 −
n∏

j=1

(1 − γ j )

≤ 1 − (1 − γ )n

≤ nγ

≤ nπ2 max
j

i2j
(r j + 2)2

.

This shows item (v). Using it, we can prove item (vi) as follows: condition (9)
implies, by item (v), that |1 − λrI | ≤ 1/2, and hence |λrI | ≥ 1/2, so

∣∣∣∣1 − 1

λrI

∣∣∣∣ =
|1 − λrI |

|λrI |
≤ 2nπ2 max

j

i2j
(r j + 2)2

,

leveraging item (v) again.
Let us show item (vii). From items (ii) and (iii), we have

∥∥∥(KJac
r )−1(p) − p

∥∥∥∞ =
∥∥∥∥∥
∑

I

[
1

λrI
2w(I )〈p, TI 〉μn TI − 2w(I )〈p, TI 〉μn TI

]∥∥∥∥∥
∞

≤
∑

I

2w(I )|〈p, TI 〉μn |
∣∣∣∣1 − 1

λrI

∣∣∣∣ ,

because |TI (x)| ≤ 1 for all x ∈ [−1, 1]n . Plugging in the estimate from item (vi), we
get

∥∥∥(KJac
r )−1(p) − p

∥∥∥∞ ≤
∑

I

2w(I )/2+1nπ2 max
j

i2j
(r j + 2)2
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≤ 2nπ2

⎛

⎝
∏

1≤k≤n

((deg p)k + 1)

⎞

⎠max
I∈Ip

[
2w(I )/2 max

j

i2j
(r j + 2)2

]
,

where we have also used

|〈p, TI 〉μn | ≤ ‖p‖μn ‖TI ‖μn ≤ ‖TI ‖μn = 2−w(I )/2,

which follows from (7).
To prove item (viii), let, for a fixed multi-index r,

�k = {(λrI , I ) : I ≤ (0, . . . , 0, rk, 0, . . . , 0)}
= {(λrk

ik
, (0, . . . , 0, ik, 0, . . . , 0)) : ik ≤ rk}, 1 ≤ k ≤ n,

and observe that
KJac

r = K�r = K�1
x1 ◦ K�2

x2 ◦ · · · ◦ K�n
xn

(8)

where K�k
xk is the operator K�k acting in the variable xk , i.e.,

K�k
xk

(p)(x) =
∫ 1

−1
K �k (xk, y) p(x1, . . . , xk−1, y, xk+1, . . . , xn) dμ1(y).

Equation (8) follows from the identity

K �r(x, y) = K �1(x1, y1)K �2(x2, y2) · · · K �n (xn, yn)

= K Jac
(r1)(x1, y1)K Jac

(r2)(x2, y2) · · · K Jac
(rn)(xn, yn),

that can be checked from the definitions. Item (viii) then follows from the well-known
fact that K Jac

(r) (x, y) ≥ 0 for all r ∈ N0 and all x, y ∈ [−1, 1]; see for example [28,
§II.C.2–3].

Item (ix) follows immediately from item (viii). ��
Theorem 11 We have KJac

r (R[xJ ]r) ⊆ R[xJ ]r, and if p(x) ≥ 0 on [−1, 1]n then
KJac

r (p) ≥ 0 on [−1, 1]n.
Also, we have:

P1. If p ∈ R[xJ ]r satisfies p(x) ≥ 0 for all x ∈ [−1, 1]n,

KJac
r (p) ∈ Pr,J ({1 − x2i }i∈J ).

P2. Let p ∈ R[xJ ]r be a polynomial that satisfies 0 ≤ p(x) ≤ 1 for all x ∈ [−1, 1]n,
and for all I = (i1, . . . , in) ∈ Ip, assume that r = (r1, . . . , rn) verifies

i2j
(r j + 2)2

≤ 1

2π2n
, 1 ≤ j ≤ n. (9)
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Assume that

ε ≥ 2nπ2

⎛

⎝
∏

1≤k≤n

((deg p)k + 1)

⎞

⎠max
I∈Ip

[
2w(I )/2 max

j

i2j
(r j + 2)2

]
> 0.

Then
∥∥∥(KJac

r )−1(p + ε) − (p + ε)

∥∥∥∞ ≤ ε.

Proof The first statement of the theorem corresponds to Lemma 10(i) and 10(ix).
Property P2. follows from Lemma 10(vii).

Let us prove property P1.. Take a finite subset {zi }i of [−1, 1]n and a correspond-
ing set of positive weights {wi }i ⊂ R giving a quadrature rule for integration of
polynomials q ∈ R[xJ ]r, so that

∫

[−1,1]n
q(x) dμn(x) =

∑

i

wi q(zi ) for all q ∈ R[xJ ]r.

Then we have, for p as in the statement of P1.,

KJac
r (p)(x) =

∑

i

wi p(zi )K Jac
r (zi , x),

with wi p(zi ) ≥ 0. Since, by Lemma 10(viii) and Theorem 12 below, K Jac
r (zi , x) is in

Pr,J ({1 − x2i }i∈J ), so is KJac
r (p). ��

Theorem 12 ([8, Th. 10.3]) If p ∈ R[y] is a univariate polynomial of degree d non-
negative on the interval [a, b] ⊂ R, then

{
p = σ0 + σ1(b − y)(y − a), σ0 ∈ �d [y], σ1 ∈ �d−2[y] d even,

p = σ0(y − a) + σ1(b − y), σ0 ∈ �d−1[y], σ1 ∈ �d−1[y] d odd,

where �d is the cone of sum-of-squareds of polynomials of degree at most d.

Corollary 13 If p ∈ R[xJ ]r satisfies 0 ≤ p(x) ≤ 1 for all x ∈ [−1, 1]n, then

p + ε ∈ Pr,J ({1 − x2i }i∈J )

for all multi-indices r satisfying (9) and

ε ≥ 2nπ2

⎛

⎝
∏

1≤k≤n

((deg p)k + 1)

⎞

⎠max
I∈Ip

(
2w(I )/2 max

1≤ j≤n

i2j
(r j + 2)2

)
.

Here, r = (r1, . . . , rn) and I = (i1, . . . , in).
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Proof By property P2. in Theorem 11,

∥∥∥(KJac
r )−1(p + ε) − (p + ε)

∥∥∥∞ ≤ ε.

Thus, (KJac
r )−1(p + ε) ≥ 0 on [−1, 1]n . By property P1. and Lemma 10(i),

p + ε = KJac
r ◦ (KJac

r )−1(p + ε) ∈ Pr,J ({1 − x2i }i∈J ).

��

The rest of this section is devoted to results used in the proof of Theorem 11.

3 Sparse approximation theory

In this section, we prove a useful result, Lemma 15, that is crucial to our proof of
Theorem 6. Given a positive polynomial f ≥ ε > 0 for which we know there is an
expression of the type f = f1+· · ·+ f�, with each f j depending only on the variables
indexed by a subset J j ⊂ {1, . . . , n} (but with f j not necessarily positive), the lemma
gives us positive polynomials h1, . . . , h� such that f = h1 +· · ·+ h� and h j depends
only on the variables indexed by the subset J j . To prove the lemma we need some
preliminaries.

For 1 ≤ i ≤ n and a function f : [−1, 1]n → R, let

Lipi f = sup
x∈[−1,1]n

y∈[−1,1]

| f (x) − f (x1, . . . , xi−1, y, xi+1, . . . , xn)|
|xi − y| .

Theorem 14 Let f ∈ C0([−1, 1]n) be a Lipschitz function with variable-wise Lips-
chitz constants Lip1 f , . . . ,Lipn f . Then there is a constant CJac > 0 such that, for
each multi-index m = (m1, . . . , mn) ∈ N

n, there is a polynomial p ∈ R[x]m such
that

sup
x∈[−1,1]n

| f (x) − p(x)| ≤ CJac

n∑

i=1

Lipi f

mi

and

Lipi p ≤ 2 Lipi f .

The constant CJac does not depend on n, f , or m.
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Proof Jackson [7, p. 2–6] proved that there is a constant C > 0 (independent of
n, f ,m) such that, if g : R → R is Lipschitz and π -periodic, g(0) = g(π), then

∣∣∣∣∣∣
g(θ) −

∫ π/2
−π/2 g(θ − ϑ)

( sinmϑ
m sin ϑ

)4
dϑ

∫ π/2
−π/2

( sinmϑ
m sin ϑ

)4
dϑ

∣∣∣∣∣∣
≤ C Lip g

m
, m ∈ N, x ∈ R. (10)

For a multivariate Lipschitz function g : Rn → R and a multi-index m =
(m1, . . . , mn) ∈ N

n , let

Li (g)(θ)

=
∫ π/2
−π/2 . . .

∫ π/2
−π/2 g(θ1 − ϑ1, . . . , θi − ϑi , θi+1, . . . , θn)

∏i
j=1

(
sinm j ϑ j
m j sin ϑ j

)4
dϑ1 . . . dϑi

∏i
j=1

∫ π/2
−π/2

(
sinm j ϑ j
m j sin ϑ j

)4
dϑ j

.

Then we have, using the triangle inequality and the single-variable inequality (10) at
each step,

|g(θ) − Ln(g)(θ)|
≤ |g(θ) − L1(g)(θ)| + |L1(g)(θ) − L2(g)(θ)| + · · · + |Ln−1(g)(θ) − Ln(g)(θ)|
≤ C

(
Lip1 g

m1
+ · · · + Lipn g

mn

)
.

The function
∏

j (sinm jθ j/m j sin θ j )
4 is a polynomial of degree m j in cos θ j (cf.

[7, p. 3]). If we replace f with its Lipschitz extension to [−2, 2]n and apply the
results above to g(θ) = f (2 cos θ1, . . . , 2 cos θn) we get a polynomial Ln(g)(θ) in
cos θ1, . . . , cos θn satisfying the above inequality. Thus

p(x) = Ln(g)(arccos(x1/2), . . . , arccos(xn/2)), x ∈ [−2, 2],

is a polynomial with deg p ≤ m that satisfies (cf. [7, p. 13–14])

| f (x) − p(x)| ≤ C

(
Lip1 g

m1
+ · · · + Lipn g

mn

)
≤ 2C

(
Lip1 f

m1
+ · · · + Lipn f

mn

)
,

since Lipi g ≤ 2 Lipi f . This proves the first statement, setting CJac = 2C . We also
have

∣∣∣∣
d

dx
arccos(x/2)

∣∣∣∣ =
1

2
√
1 − (x/2)2

≤ 1√
3

for x ∈ [−1, 1],

and, by linearity and monotonicity of Ln ,

|Lng(θ) − Lng(θ1, . . . , θi−1, θi + t, θi+1, . . . , θn)|
≤ ∣∣Ln(|t |Lipi g)(θ)

∣∣ = |t |Lipi g ≤ 2|t |Lipi f ,
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whence

Lipi p = Lipi Ln(g)(arccos(x1/2), . . . , arccos(xn/2))

≤ Lipi Ln(g)

∣∣∣∣
d

dxi
arccos

xi

2

∣∣∣∣ ≤ Lipi Ln(g) ≤ 2 Lipi f . ��

Lemma 15 (a version of [6, Lemma 3]) Let J1, . . . , J� be subsets of {1, . . . , n} satis-
fying (RIP). Suppose f = f1 + · · · + f� with � ≥ 2, f j ∈ R[xJj ]. Let ε > 0 be such
that f ≥ ε on S(g) ⊆ [−1, 1]n. Pick numbers ε, η > 0 so that

ε = (� − 1)ε − (� − 2)η and ε > 2η.

Set, for 2 ≤ l ≤ �,

Dl,m =
⌈
2CJac |Jl |∑m

k=l Lip fk

ε − 2η

⌉
, (11)

with Jl as in (2), and D1,m = D2,m.
Then f = h1 + · · · + h� for some h j ∈ R[xJj ] with h j ≥ η on S(g) ⊆ [−1, 1]n

and
deg h j ≤ max(deg f j , D̄ j,�, D̄ j+1,�, . . . , D̄�,�)J j (12)

where D̄ j,m is the multi-index whose k-th entry equals D j,m if k ∈ J j = J j ∩⋃k< j Ji

and 0 otherwise, and the maximum is taken entry-wise.
Additionally, if Lip f denotes the Lipschitz constant of f on [−1, 1]n, then

Lip h j ≤ 3
�∑

k= j

Lip fk .

Finally, we have

‖h j‖∞ ≤ 3 × 2�−1
�∑

j=1

‖ f j‖∞.

Remark 16 If S(g) = [−1, 1]n , we also have the obvious estimate ‖h j‖∞ ≤ ‖ f ‖∞,
that follows from 0 ≤ h j ≤ f .

Proof In order to prove the result by induction, let us first consider the case � = 2. In
this case, ε = ε and ε > 2η. Assume that J1 ∩ J2 �= ∅. For a subset J ⊂ {1, . . . , n},
let πJ denote the projection onto the variables with indices in J , that is, πJ (x) =
(xi )i∈J ∈ [−1, 1]J for x ∈ [−1, 1]n .

Define g : [−1, 1]J1∩J2 → R by

g(x) := min
y∈πJ1\J2 (S(g))⊆[−1,1]J1\J2

f2(x, y) − ε

2
, x ∈ [−1, 1]J1∩J2 .
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The function g is Lipschitz continuous on [−1, 1]J1∩J2 . To see why, let x, x ′ ∈
[−1, 1]J1∩J2 and pick y, y′ ∈ πJ1\J2(S(g)) ⊆ [−1, 1]J1\J2 minimizing f2(x, y) and
f2(x ′, y′), respectively. Then

|g(x) − g(x ′)| = | f2(x, y) − f2(x ′, y′)|
≤ max(| f2(x, y) − f2(x ′, y)|, | f2(x, y′) − f2(x ′, y′)|) ≤ Lip( f2)|x − x ′|,

where Lip( f2) denotes the Lipschitz constant of f2 on [−1, 1]n .
The function g also satisfies

f1 + g ≥ ε

2
and f2 − g ≥ ε

2

on S(g). The second inequality follows from the definition of g, and the first one
can be shown taking (x, y, z) ∈ S(g) with x ∈ [−1, 1]J1∩J2 , y ∈ [−1, 1]J1\J2 , and
z ∈ [−1, 1]J2\J1 , taking care to pick y only after x has been chosen, in such a way that
the minimum is in the definition of g is realized there, that is, g(x) = f2(x, y) − ε/2
holds (this is possible by compactness of S(g) and continuity of f ); then we have

f1(x, z) + g(x) = f1(x, z) + f2(x, y) − ε

2
= f (x, y, z) − ε

2
≥ ε

2
.

For j ∈ J1 ∩ J2, let

m j = D2,2 =
⌈
2CJac |J1 ∩ J2|Lip( f2)

ε − 2η

⌉
.

Set m j = 0 for all other 0 ≤ j ≤ n, and m = (m1, . . . , mn) = D̄2,2. Then Theorem
14 gives a polynomial p2 such that

‖g − p2‖∞ = CJac

∑

j∈J1∩J2

Lip j g

m j
≤ CJac|J1 ∩ J2|Lip( f2)

2

D2,2
≤ ε

2
− η.

Also,
deg p2 ≤ m = D̄2,2. (13)

Let

h1:= f1 + p2 and h2:= f2 − p2,

so that f = h1 + h2, h1 ≥ η and h2 ≥ η on S(g), and h j ∈ R[xJj ].
The bound (12) follows from the definition of h j and (13). Observe also that, by

the last part of Theorem 14,

Lip p2 ≤ 2 Lip g ≤ 2 Lip( f2).
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Finally, we have

‖p2‖∞ ≤ ‖g‖∞ + ε

2
− η ≤ ‖ f2‖∞ + ε − η ≤ 2‖ f2‖∞, (14)

so

‖h j‖∞ ≤ ‖ f j‖∞ + ‖p2‖∞ ≤ ‖ f j‖∞ + 2‖ f2‖∞ ≤ 3(‖ f1‖∞ + ‖ f2‖∞).

For the induction step, let � ≥ 3 and set f̃ = f1 + · · · + f�−1 − (� − 2)(ε − η), so
that we have f − (� − 2)(ε − η) = f̃ + f� ≥ ε since f ≥ ε = (� − 1)ε − (� − 2)η.
The proof for the case � = 2 with ε = ε�−1 gives a polynomial p� ∈ R[xJ�

] such
that

f̃ − p� ≥ η and f� + p� ≥ η

on S(g), and with deg p� = D̄�,�, Lip p� ≤ 2 Lip f�.and, analogously to (14),

‖p�‖∞ ≤ 2‖ f�‖∞. (15)

Write

f ′
1 + · · · + f ′

�−1 = f1 + · · · + f�−1 − p�,

where f ′
j = f j − p� for the largest j with J� ⊂ J j (which must happen for some j ,

by (RIP)) and f ′
k = fk for all other k �= j . Thus f ′

j ∈ R[xJj ],

deg f ′
j ≤ max(deg f j , deg p�) = max(deg f j , D̄�,�), Lip f ′

j ≤ Lip f j + Lip p�,

(16)
The induction hypothesis applies to the polynomial

f ′
1 + · · · + f ′

�−1 + (� − 2)(ε − η) = f̃ + (� − 2)(ε − η) − p� ≥ (� − 2)ε − (� − 3)η.

This means that there are polynomials h1, . . . , h�−1 such that

• f ′
1 + · · · + f ′

�−1 = f1 + · · · + f�−1 − p� = h1 + · · · + h�−1,
• h j ∈ R[xJj ] for all 1 ≤ j ≤ � − 1,
• h j ≥ η for all 1 ≤ j ≤ � − 1,
• We have, for all 1 ≤ j ≤ � − 1,

deg h j ≤ max(deg f ′
j , D̄ j,� . . . , D̄�−1,�)

≤ max(deg f j , deg p�, D̄ j,�, . . . , D̄�−1,�)

= max(deg f j , D̄ j,�, . . . , D̄�,�).

Observe that the second index in each D̄k,� is � because of the accumulation of
Lipschitz constants resulting from the estimate (16).

123



M. Korda et al.

• We have, for all 1 ≤ j ≤ � − 1, again because of (16),

Lip h j ≤ 3
�∑

k= j

Lip fk .

• We have, for all 1 ≤ j ≤ � − 1, using (15),

‖h j‖∞ ≤ 3 × 2�−2
�−1∑

k=1

‖ f ′
k‖∞ ≤ 3 × 2�−2

(
�−1∑

k=1

‖ fk‖∞ + ‖p�‖∞

)

≤ 3 × 2�−1
�∑

k=1

‖ fk‖∞.

Let

h� = f� + p�.

Then again f1 + · · · + f� = h1 + · · · + h�, h� ∈ R[xJ�
], h� ≥ η on S(g), deg h j ≤

max(deg f�, D̄�,�), Lip h� ≤ Lip f� +Lip p� ≤ 3Lip f�, ‖h�‖∞ ≤ ‖ f�‖∞ + ‖p�‖ ≤
3‖ f�‖ ≤ 3 × 2�−1∑�

j=1 ‖ f j‖∞, so the lemma is proven. ��

4 Proofs

4.1 Proof of Theorem 6

OverviewTheorem 6 follows fromTheorem 17, which presents amore detailed bound,
together with the definitions of L, M, J . To prove the latter theorem, we first use the
sparse approximation theory developed in Sect. 3 to represent the sparse polynomial p
as a sum of positive polynomials h1 +· · ·+ h�, each of them depending on a clique of
variables J j . We then use Corollary 13 to see that each h j belongs to the preordering.

Theorem 17 Let n > 0 and � ≥ 2, and let r1, r2, . . . , r� ∈ N
n, r j = (r j,1, . . . , r j,n),

be nowhere-vanishing multi-indices. Let also J1, . . . , J� be subsets of {1, . . . , n} sat-
isfying (RIP). Let p = p1 + p2 + · · · + p� be a polynomial that is the sum of finitely
many polynomials p j ∈ R[xJj ]r j . Then if p ≥ ε on [−1, 1]n, we have

p ∈ Pr1,J1({1 − x2i }i∈J1) + · · · + Pr�,J�
({1 − x2i }i∈J�

)

as long as, for all 1 ≤ j ≤ � and all 1 ≤ i ≤ n,

(r j,k + 2)2 ≥ 2
|J j |
2 +2(� + 2)‖p‖∞nπ2

ε
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·
∏

1≤m≤n

⎛

⎜⎝max

⎡

⎢⎣(deg p j )m , max
j≤l≤�
m∈Jl

4CJac(� + 2)|Jl |
∑�

t=l Lip pt

ε

⎤

⎥⎦+ 2

⎞

⎟⎠

· max
l∈J j

⎡

⎢⎣(deg p j )l , max
j≤q≤�
l∈Jq

4CJac(� + 2)|Jq |∑�
t=q Lip pt

ε

⎤

⎥⎦

2

, (17)

and

(r j,i + 2)2 ≥ 2π2n max

[
max

1≤m≤n
(deg p j )m , max

j≤k≤�

4CJac(� + 2)|Jk |∑�
t=k Lip pt

ε

]2
.

(18)

Proof of Theorem 17 Let

ε = ε + (� − 2)η

�
and η = ε

2(� + 2)
. (19)

Apply Lemma 15 with g = 0, so that S(g) = [−1, 1]n . From the lemma, we get
polynomials h1, . . . , h� with

h j ∈ R[xJj ],
p = h1 + · · · + h�,

h j ≥ η on [−1, 1] for 1 ≤ j ≤ �,

deg h j ≤ max(deg p j , D̄ j , D̄ j+1, . . . , D̄�).

Here,

D̄l := (δ j∈Jl
Dl )

�
j=1,

δ j∈Jl
=
{
1, j ∈ Jl

0, otherwise,

Dl :=
⌈
2CJac |Jl |

∑�
t=l Lip pt

εl−1 − 2η

⌉
=
⌈
4CJac � |Jl |

∑�
t=l Lip pt

η(� + 2)

⌉
, l = 2, 3, . . . , �,

since ε j − 2η = η(� + 2)/2�. We also set

D1 := D2.

Thus

|D̄l | = |Jl |Dl for 2 ≤ l ≤ �.
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Apply Corollary 13 to each of the polynomials

Hj = h j − min[−1,1]n h j

max[−1,1]n h j − min[−1,1]n h j

to see that, for

ε j ≥ 2nπ2

⎛

⎝
∏

1≤k≤n

(
(deg Hj )k + 1

)
⎞

⎠ max
I∈IH j

(
2w(I )/2 max

1≤k≤n

i2k
(r j,k + 2)2

)
, (20)

(recall that IHj is the set of multiindices I = (i1, . . . , in) corresponding to exponents
of x1, . . . , xn in the terms appearing in Hj and w(I ) is the number of nonzero entries
in I ) we have

Hj + ε j ∈ Pr j ,J j ({1 − x2i }i∈J j ); (21)

when applying the corollary, note that (18) implies (9) in this case because, if I =
(i1, . . . , in) ∈ IHj , then

ik ≤ (deg Hj )k ≤ (deg h j )k ≤ max(deg p j , D̄ j , . . . , D̄�)

≤ max

[
max

1≤m≤n
(deg p j )m, max

j≤k≤�

4CJac(� + 2)|Jk |∑�
t=k Lip pt

ε

]
,

by the definition of D̄l . Observe that (21) means also that

h j − min[−1,1]n
h j + ε j

(
max[−1,1]n

h j − min[−1,1]n
h j

)
∈ Pr j ,J j ({1 − x2i }i∈J j ). (22)

Note that we have deg Hj = deg h j , IHj \Ih j = ∅, and Ih j \IHj ⊆ {(0, . . . , 0)} since
the powers of all terms in h j and in Hj are the same, with the only possible exception
of the constant term, which may appear in one of these and vanish in the other. Now,
going back to our choice (19) of η and using (17), we have

η = ε

2(� + 2)

≥ ‖p‖∞nπ2

(
max

[
max

1≤m≤n
(deg p j )m , max

j≤k≤�

2CJac |Jk |∑�
t=k Lip pt

η

]
+ 2

)|J j |+2

· 2
|J j |
2 +1

min1≤k≤n(r j,k + 2)2

≥ ‖p‖∞nπ2

(
max

[
max

1≤m≤n
(deg p j )m , max

j≤k≤�

⌈
2CJac � |Jk |∑�

t=k Lip pt

η(� + 2)

⌉]
+ 1

)|J j |+2

· 2
|J j |
2 +1

min1≤k≤n(r j,k + 2)2
.

123



Convergence rates for sums-of-squares hierarchies with...

for all j ∈ {1, . . . , �}. Notice that after separating two of the |J j | + 2 terms in the
product and removing the +1 factor from them, we obtain

η ≥ ‖p‖∞nπ2

(
max

[
max

1≤m≤n
(deg p j )m , max

j≤k≤�

⌈
2CJac � |Jk |∑�

t=k Lip pt

η(� + 2)

⌉]
+ 1

)|J j |
2

|J j |
2 +1

·
max

[
max1≤m≤n(deg p j )m ,max j≤k≤�

⌈
2CJac � |Jk |∑�

t=k Lip pt
η(�+2)

⌉]2

min1≤k≤n(r j,k + 2)2

≥ ‖p‖∞nπ2

⎛

⎝
∏

k∈J j

(
[
max

(
deg p j , D̄ j , . . . , D̄�

)]
k + 1)

⎞

⎠ 2
|J j |
2 +1

· max1≤k≤n
[
max

(
deg p j , D̄ j , . . . , D̄�

)]2
k

min1≤k≤n(r j,k + 2)2
,

where we have used the definition of D̄l , as well as the fact that each factor has
been replaced by one that is smaller or equal, the original expression containing the
maximum of them on each factor. Next, use deg Hj ≤ max(deg p j , D̄ j , . . . , D̄�) as
well asw(I ) ≤ |J j | for everymulti-index I inIHj , which is true because Hj ∈ R[xJj ],
yielding

η ≥ ‖p‖∞

⎛

⎝2nπ2

⎛

⎝
∏

1≤k≤n

((
deg Hj

)
k + 1

)
⎞

⎠ max
I∈IH j

(
2w(I )/2 max

1≤k≤n

i2k
(r j,k + 2)2

)⎞

⎠

≥
(

max[−1,1]n
h j − min[−1,1]n

h j

)

·
⎛

⎝2nπ2

⎛

⎝
∏

1≤k≤n

(
(deg Hj )k + 1

)
⎞

⎠ max
I∈IH j

(
2w(I )/2 max

1≤k≤n

i2k
(r j,k + 2)2

)⎞

⎠ ,

since we have max[−1,1]n h j −min[−1,1]n h j ≤ ‖p‖∞. With this bound for η, together
with the fact that min[−1,1]n h j ≥ η, we get

h j ≥ h j − min[−1,1]n
h j + η

≥ h j − min[−1,1]n
h j +

(
max[−1,1]n

h j − min[−1,1]n
h j

)

·
⎛

⎝2nπ2

⎛

⎝
∏

1≤k≤n

(
(deg Hj )k + 1

)
⎞

⎠ max
I∈IH j

(
2w(I )/2 max

1≤k≤n

i2k
(r j,k + 2)2

)⎞

⎠ ,

so that, by (20) and (22), h j ∈ Pr,J j ({1 − x2i }i∈J j ) and hence
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p = h1 + · · · + h� ∈ Pr,J1({1 − x2i }i∈J1) + · · · + Pr,J�
({1 − x2i }i∈J�

).

��

4.2 Proof of Theorem 8

Overview For this proof, we first use the sparse approximation theory developed in
Sect. 3 to represent the sparse polynomial p as a sum of positive polynomials h1 +
· · ·+ h�, each of them depending on a clique of variables J j . We then work with each
of these polynomials h j using the tools developed by Baldi–Mourrain [2] to write
h j = f̂ j + q̂ j , where q̂ j is by construction obviously an element of the corresponding
quadratic module, and f̂ j is strictly positive on [−1, 1]n . Thus Corollary 13 can be
applied to f̂ j , which shows that it belongs to the preordering, and then one argues (also
following the ideas of [2]) that the preordering is contained in the quadratic module,
hence giving that f̂ j is contained in the latter as well. In sum, this shows that h j is in
the quadratic module, which is what want. Most of the heavy lifting goes to estimating
the minimum of f̂ j to justify the application of Corollary 13.

Proof of Theorem 8 For each j = 1, . . . , �, pick C j > 0 such that the following two
bounds are satisfied:

C j ≥ 2π2|J j |1+
16L j
3 Cd

2C
16L j
3

Jac 21+2(4+3 8
3 )L j 3

(16+8�)L j +2
3 k̄− 2

3 c
8
3
j (max

i∈K j
deg gi )

2(2(� + 2))8L j ,

(23)

C j ≥ C f (CJacCm)(2L j +|J j |+2)(1+ 8L j
3 )|J j |π224L j + |J j |

2 +1+(1+ 4L j +1
3 )(2L j +|J j |+2)(1+ 8L j

3 )

× 3�(L j +1)+(2L j +|J j |+2)(1+ 8L j
3 )(� + 2)1+L j + 4L j +1

3 (2L j +|J j |+2)(1+ 8L j
3 )k̄

× c
1+ 3

4 (2L j +|J j |+2)(1+ 8L j
3 )

j

⎛

⎝
�∑

i= j

|Ji |2(2L j +|J j |+2)(1+ 8L j
3 )

⎞

⎠

· (max
k∈K j

deg gk + 1)(2L j +|J j |+2)(1+ 8L j
3 ). (24)

Note that these only depend on g and J1, . . . , J�.
Apply Lemma 15 to f = p, fi = pi , ε = 3ε/2�, η = ε/2(�+2) to get polynomials

h1, . . . , h� such that

p = h1 + · · · + h�, hi ∈ R[xJi ], hi (x) ≥ η = ε

2(� + 2)
for x ∈ S(g), (25)

and
deg hi ≤ max(deg pi , D̄i,�, . . . , D̄�,�)Ji . (26)
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In the dense setting, Baldi–Mourrain [2] construct a family of single-variable poly-
nomials

(ht,m)(t,m)∈N×N

providing useful approximation properties that we have adapted to the (separated-
variables) sparse setting and collected in Lemma 18. To state this, we set, for all
j = 1, . . . , � and for (t j , m j ) ∈ N × N as well as for s j > 0,

q j,t j ,m j (x) :=
∑

i∈K j

hti ,mi (gi (x))2 gi (x), (27)

f j,s j ,t j ,m j (x) := h j (x) − s j q j,t j ,m j (x). (28)

Let us give an idea of what these functions do. The single-variable polynomial ht j ,m j

is of degree m j and roughly speaking approximates the function that equals 1 on
(−∞, 0) and 1/t j elsewhere. Thus q j,t j ,m j almost vanishes (for large t j ) on S(gK j ),
and outside of this domain it is roughly a sum of multiples of the negative parts of
gK j ’s entries. The definition of f j,s j ,t j ,m j is engineered to obtain a polynomial that
is almost equal to h j in S(gK j ) yet remains positive throughout [−1, 1]n . Instead of
going into the details of the construction, we record the properties we need in the
following lemma. ��
Lemma 18 (a version of [2, Props. 2.13, 3.1, and 3.2, Lem. 3.5]) Assume (3) and the
Archimedean conditions (4) are satisfied. Then for each j = 1, . . . , � there are values
s j , t j , m j of the parameters involved in Definition (27) and Definition (28), such that
the following holds with the shorthands

f̂ j = f j,s j ,t j ,m j and q̂ j = s j q j,t j ,m j : (29)

i. [2, Prop. 3.1] gives

f̂ j (x) ≥ 1

2
min

y∈S(gK j )
h j (y) ≥ η

2
= ε

4(� + 2)
for all x ∈ [1, 1]n .

ii. We have q̂ j ∈ Qr,J j (g) for all multi-indices r = (r1, . . . , rn) with

ri ≥ (2m j + 1) max
k∈K j

(deg gk)i .

iii. [2, eq. (20)] gives the existence of a constant Cm > 0 such that

m j ≤ Cmc
4
3
j k̄

1
3 24L j (deg h j )

8L j
3

(
minx∈S(g) h j (x)

‖h j‖∞

)− 4L j +1
3

.
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iv. [2, eq. (16)] gives the existence of a constant C f > 0 such that

‖ f̂ j‖∞ ≤ C f ‖h j‖∞23L j k̄c j (deg h j )
2L j

(
minx∈S(g) h j (x)

‖h j‖∞

)−L j

.

v. [2, eq. (17)] gives the existence of a constant Cd > 0 such that

deg f̂ j ≤ Cd2
4L j k̄

1
3 c

4
3
j (max

i∈K j
deg gi )(deg h j )

8L j
3

(
minx∈S(g) h j (x)

‖h j‖∞

)− 4L j +1
3

.

Item (ii.) follows5 from deg ht j ,m j = m j and the definition of q j,t j ,m j . The proofs
of the other items can be found in the indicated sources.

Take s j , t j , m j , f̂ j , q̂ j for j = 1, . . . , � satisfying the properties (i)–(v) collected
in Lemma 18.

Continuing with the proof of Theorem 8, denote

Fj := f̂ j − min[−1,1]n f̂ j

max[−1,1]n f̂ j − min[−1,1]n f̂ j
.

Since f̂ j ≥ ε/4(� + 2) on [−1, 1]n , we may apply Corollary 13 with p = Fj to get
that

Fj + ε j ∈ Pr j ,J j ({1 − x2i }i∈J j ) (30)

as long as

ε j ≥ 2|J j |π2

⎛

⎝
∏

i∈J j

((deg Fj )i + 1)

⎞

⎠ max
I=(i1,...,in)∈IFj

(
2w(I )/2 max

1≤k≤n

i2k
(r j,k + 2)2

)
,

(31)
and (9) are verified.

In this context, the condition (9) required in Corollary 13 is equivalent to the the-
orem’s assumption (6); let us show how this works: First, using ik ≤ (deg Fj )k ,
deg Fj ≤ deg f̂ j ≤ (deg f̂ j )1, Lemma 18(v.), we get

2π2|J j |i2k ≤ 2π2|J j |
(
deg Fj

)2
k ≤ 2π2|J j |(deg f̂ j )

2

≤ 2π2|J j |
⎛

⎝Cd2
4L j k̄

1
3 c

4
3
j (max

i∈K j
deg gi )(deg h j )

8L j
3

(
minx∈S(g) h j (x)

‖h j ‖∞

)− 4L j +1
3

⎞

⎠
2

.

5 This calculation is slightly different to the one in [2, Lem. 3.5] because the definition of q j,t j ,m j (or in
their notations, f − p) differs from the one given there in that the functions h j are squared here, an idea
we take from the exposition of the results of [2] in the dissertation of L. Baldi and that is advantageous
because then q j,t j ,m j ∈ Qr,J j (g) automatically. This requires taking m j twice as large, and we absorb
this difference into the constant Cm .
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Now use Eq. (26) to get that this is

≤ 2π2|J j |

·
⎛

⎜⎝Cd2
4L j k̄

1
3 c

4
3
j (max

i∈K j
deg gi )max

(
deg p j , D̄ j ,�, . . . , D̄�,�

) 8L j
3

(
minx∈S(g) h j (x)

‖h j ‖∞

)− 4L j +1
3

⎞

⎟⎠

2

≤ 2π2|J j |
⎛

⎜⎝Cd2
4L j k̄

1
3 c

4
3
j (max

i∈K j
deg gi )max

(
deg p j , D̄ j ,�, . . . , D̄�,�

) 8L j
3

(
3�
∑

i ‖pi ‖∞
ε/2(� + 2)

) 4L j +1
3

⎞

⎟⎠

2

,

where we have also used the fact that

‖h j‖∞ ≤ 3 × 2�−1
�∑

i=1

‖pi‖∞ ≤ 3�
�∑

i=1

‖pi‖∞, (32)

and the last estimate from (25). Next, use (11), |J j | ≤ |J j |, εi − 2ηi = �+6
2�(�+2) ε to

get

2π2|J j |i2k

≤ 2π |J j |

⎛

⎜⎜⎝Cd2
4L j k̄− 1

3 c
4
3
j (max

i∈K j
deg gi )(deg p j )

8L j
3

⎛

⎝2CJac|J j |(3
∑�

i=1 Lip pi )

�+6
2�(�+2) ε

⎞

⎠

8L j
3

·
(
3�
∑

i ‖pi ‖∞
ε/2(� + 2)

) 4L j +1
3

⎞

⎟⎠

2

≤ C j

⎛

⎜⎜⎜⎝

⎛

⎝
�∑

i=1

‖pi ‖∞

⎞

⎠

4L j +1
3

(deg p j )
8L j
3

(∑�
i=1 Lip pi

) 8L j
3

ε
(8+4)L j +1

3

⎞

⎟⎟⎟⎠

2

≤ (r j,k + 2)2,

where we have additionally used Eq. (23) and our assumption (6); this is precisely (9).
We would next like to show that

f̂ j ∈ Pr j ,J j ({1 − x2i }i∈J j ). (33)

Let us first explain why this will be enough to prove the theorem. Once we have (33),
by Lemma 19 f̂ j is also contained inQr j +2,J j (1−∑i∈J j

x2i ), and it is our assumption

(4) that Qr j +2,J j (1 −∑i∈J j
x2i ) ⊆ Qr j +2,J j (gK j ). In other words, we have

f̂ j ∈ Qr j +2,J j (gK j ).
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By Lemma 18(ii.), q̂ j also belongs to Qr j +2,J j (gK j ), so we can conclude that

h j ∈ Qr j +2,J j (gK j ),

which is equivalent to the conclusion of the theorem.
Thus we need to prove (33). Let us first show that

η

2
= ε

4(� + 2)
≥ ( max[−1,1]n

f̂ j − min[−1,1]n
f̂ j ) 2|J j |π2

⎛

⎝
∏

i∈J j

((deg Fj )i + 1)

⎞

⎠

× max
I=(i1,...,in)∈IFj

(
2w(I )/2 max

1≤k≤n

i2k
(r j,k + 2)2

)
(34)

implies (33) Observe that (30) is equivalent to

f̂ j − min[−1,1]n
f̂ j + ε j ( max[−1,1]n

f̂ j − min[−1,1]n
f̂ j ) ∈ Pr j ,J j ({1 − x2i }i∈J j ). (35)

If (34) were true, we would then have

f̂ j ≥ f̂ j − min[−1,1]n
f̂ j + ε

4(� + 2)

≥ f̂ j − min[−1,1]n
f̂ j + ( max[−1,1]n

f̂ j − min[−1,1]n
f̂ j ) 2|J j |π2

⎛

⎝
∏

i∈J j

((deg Fj )i + 1)

⎞

⎠

× max
I=(i1,...,in)∈IFj

(
2w(I )/2 max

1≤k≤n

i2k
(r j,k + 2)2

)
.

So in view of (31) and (35), we would indeed have f̂ j ∈ Pr j ,J j ({1− x2i }i∈J j ), which
is (33).

Let us now collect some preliminary estimates that will help us to prove (34). For
I ∈ IFj we have w(I ) ≤ |J j | so we estimate

2w(I )/2 ≤ 2|J j |/2. (36)

We also estimate

i2k
(r j,k + 2)2

≤
(
deg f̂ j

)2
k

min1≤l≤n(r j,l + 2)2
. (37)

Now we will estimate max[−1,1]n f̂ j − min[−1,1]n f̂ j from above. Using Lemma
18(i.) and (iv.), we get

max[−1,1]n
f̂ j − min[−1,1]n

f̂ j ≤ C f ‖h j‖∞23L j k̄c j (deg h j )
2L j

(
minx∈S(g) h j (x)

‖h j‖∞

)−L j
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− ε

4(� + 2)
.

Use (25), (26) and (32) to see that this is

max[−1,1]n
f̂ j − min[−1,1]n

f̂ j

≤ C f

(
3�
∑

i

‖pi‖∞

)
23L j k̄c j max(deg p j , |D̄ j,�|, . . . , |D̄�,�|)2L j

·
(

ε

2(� + 2)3�
∑

i ‖pi‖∞

)−L j

= C f

(
3�
∑

i

‖pi‖∞

)
23L j k̄c j max(deg p j , |J j |D j,�, . . . , |J�|D�,�)

2L j

·
(

ε

2(� + 2)3�
∑

i ‖pi‖∞

)−L j

. (38)

For the last line, we have used the definition of D̄l,m as in Lemma 15.
Additionally, we obtain the following estimate

deg f̂ j ≤ max
(
deg h j , deg q̂ j

)

≤ max

(
deg p j , D̄ j,�, . . . , D̄�,�, (2m j + 1) max

k∈K j
deg gk

)

≤ max
(
deg p j , D̄ j,�, . . . , D̄�,�,

⎛

⎝2

⎛

⎝Cmc
3
4
j k̄− 1

3 24L j (deg h j )
8L j
3

(
minx∈S(g) h j (x)

‖h j ‖∞

)− 4L j +1
3

⎞

⎠+ 1

⎞

⎠max
k∈K j

deg gk

⎞

⎠

≤ max
(
deg p j , D̄ j,�, . . . , D̄�,�,

⎛

⎜⎝Cm2
4L j +1c

3
4 k̄− 1

3 (deg h j )
8L j
3

(
3�
∑

i ‖pi ‖∞
ε/2(� + 2)

) 4L j +1
3

+ 1

⎞

⎟⎠max
k∈K j

deg gk

⎞

⎟⎠ . (39)

The first inequality comes from (28), the second one from (26) and Lemma 18(ii.), the
third one from Lemma 18(iii.), and the last one from (25), (32), and (26). Compare
with Lemma 18(v.).

With those estimates under our belt, we now turn to showing that (34) is true. Using
(38), (36), (37), as well as deg Fj ≤ deg f̂ j , we can start to estimate the right-hand
side of (34) by

( max[−1,1]n
f̂ j − min[−1,1]n

f̂ j ) 2|J j |π2

⎛

⎝
∏

i∈J j

((deg Fj )i + 1)

⎞

⎠
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× max
I=(i1,...,in)∈IFj

(
2w(I )/2 max

1≤k≤n

i2k
(r j,k + 2)2

)

≤ C f

(
3�
∑

i

‖pi‖∞

)
23L j k̄c j max(deg p j , |J j |D j,�, . . . , |J�|D�,�)

2L j

×
(

ε

2(� + 2)3�
∑

i ‖pi‖∞

)−L j

× 2|J j |π2
(
max
1≤i≤n

(deg f̂ j )i + 1

)|J j | 2|J j |/2 max1≤i≤n

(
deg f̂ j

)2
i

min1≤k≤n(r j,k + 2)2
.

Next, denote

m j,� = max(deg p j , |J j |D j,�, . . . , |J�|D�,�),

This will help us to reorganize and consolidate the terms. Use (39) to see that this is

≤ ε−L j C f |J j |π2

(
3�
∑

i

‖pi‖∞

)L j +1

24L j + |J j |
2 +1(� + 2)L j k̄c j m

2L j
j,�

×
(
max
1≤i≤n

(deg f j )i + 1

)|J j |+2 1

min1≤k≤n(r j,k + 2)2

≤ ε−L j C f |J j |π2

(
3�
∑

i

‖pi‖∞

)L j +1

24L j + |J j |
2 +1(� + 2)L j k̄c j m

2L j
j,�

×
⎛

⎜⎝max

⎛

⎜⎝ deg p j , D̄ j,�, . . . , D̄�,�,

⎛

⎜⎝Cm2
4L j +1c

3
4 k̄− 1

3 (deg h j )
8L j
3

(
3�
∑

i ‖pi‖∞
ε/2(� + 2)

) 4L j +1
3

+ 1

⎞

⎟⎠

× max
k∈K j

deg gk

⎞

⎟⎠+ 1

⎞

⎟⎠

|J j |+2

1

min1≤k≤n(r j,k + 2)2

≤ ε−L j C f |J j |π2

(
3�
∑

i

‖pi‖∞

)L j +1

24L j + |J j |
2 +1(� + 2)L j k̄c j m

2L j
j,�

×
⎛

⎜⎝max

⎛

⎜⎝ deg p j , D̄ j,�, . . . , D̄�,�,
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⎛

⎜⎝Cm2
4L j +1c

3
4 k̄− 1

3 m
8L j
3

j,�

(
3�
∑

i ‖pi‖∞
ε/2(� + 2)

) 4L j +1
3

+ 1

⎞

⎟⎠

× max
k∈K j

deg gk

⎞

⎟⎠+ 1

⎞

⎟⎠

|J j |+2

1

min1≤k≤n(r j,k + 2)2
.

Now use (11) as well as εi − 2ηi = �+6
2�(�+2) ε to see that the above is bounded by

ε−L j C f |J j |π2

(
3�
∑

i

‖pi ‖∞

)L j +1

24L j + |J j |
2 +1(� + 2)L j k̄c j

×
(
max

[
deg p j , |J j |2 2�(� + 2)

� + 6

2CJac
∑�

k= j Lip f̂k

ε
+ 1, . . . ,

|J�|2 2�(� + 2)

� + 6

2CJac Lip f̂�
ε

+ 1,
⎛

⎜⎝Cm2
4L j +1c

3
4 k̄− 1

3

(
3�
∑

i ‖pi ‖∞
ε/2(� + 2)

) 4L j +1
3

+ 1

⎞

⎟⎠max
k∈K j

deg gk

]

+ 1
)(2L j +|J j |+2)(1+ 8L j

3 ) 1

min1≤k≤n(r j,k + 2)2

≤ ε−L j − 4L j +1
3 (2L j +|J j |+2)(1+ 8L j

3 )C f (CJacCm)(2L j +|J j |+2)(1+ 8L j
3 )|J j |π2

(
3�
∑

i

‖pi ‖∞

)L j +1

× 24L j + |J j |
2 +1+(1+ 4L j +1

3 )(2L j +|J j |+2)(1+ 8L j
3 )(� + 2)1+L j + 4L j +1

3 (2L j +|J j |+2)(1+ 8L j
3 )k̄

× c
1+ 3

4 (2L j +|J j |+2)(1+ 8L j
3 )

j

⎛

⎝
�∑

i= j

|Ji |2(2L j +|J j |+2)(1+ 8L j
3 )

⎞

⎠

× (3 deg p j

�∑

i=1

Lip pi )
(2L j +|J j |+2)(1+ 8L j

3 )

× (max
k∈K j

deg gk + 1)(2L j +|J j |+2)(1+ 8L j
3 ) 1

min1≤k≤n(r j,k + 2)2
.

Finally use (24) and then (5) to get that the above is less than

C j
ε−L j − 4L j +1

3 (2L j +|J j |+2)(1+ 8L j
3 )
(∑

i ‖pi ‖∞
)L j +1

(deg p j
∑�

i=1 Lip pi )
(2L j +|J j |+2)(1+ 8L j

3 )

min1≤k≤n(r j,k + 2)2

≤ ε

4(� + 2)
.

This shows that (34) holds, and hence also (33), which proves the theorem. ��
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Lemma 19 ([2, Lemma 3.8]) Let J ⊂ {1, . . . , n}, and let r = (r1, . . . , rn) be a multi-
index such that ri > 0 only if i ∈ J .

The quadratic module Qr+2,J (1 −∑i∈J x2i ) contains the preordering Pr,J ({1 −
x2i }i∈J ),

Pr,J ({1 − x2i }i∈J ) ⊆ Qr+2,J (1 −∑i∈J x2i ).

Proof This follows from

1 ± xi = 1

2
(1 − x2i + (1 ± xi )

2) = 1

2
((1 − ‖x‖2) +

∑

j∈J
j �=i

x2j + (1 ± xi )
2)

and

1 − x2i = (1 − xi )(1 + xi )

= 1

4
(1 − ‖x‖2J )

⎛

⎝2
∑

j �=i

x2j + (1 − xi )
2 + (1 + xi )

2

⎞

⎠

+ 1

4
(1 − ‖x‖2J )2 +

⎛

⎝
∑

j �=i

x2j

⎞

⎠
2

+
∑

j �=i

x2j ((1 − xi )
2 + (1 + xi )

2).

The increase of 2 in r stems from the fact that deg(1 − x2i ) = 2 while the degree of
the right-hand side above is 4. ��

4.3 An asymptotic lemma

Lemma 20 For a, b, c, d, p, q > 0, with cq − ap �= 0, we have

lim
ε↘0

log

[(
a + bε−p

bε−p

)/(
c + dε−q

dε−q

)]

(cq − ap) log ε
= 1.

In other words, as ε ↘ 0,

(a+bε−p

bε−p

)
(c+dε−q

dε−q

) ≈ εcq−ap → 0.

Proof Recall the Stirling series can be used [19, p. 293–294] to see that

log(n!) = n log n + n + 1

2
log(2πn) + O(1/n)

123



Convergence rates for sums-of-squares hierarchies with...

for all large n > 0. We use it to get that,

log

[(a+bε−p

bε−p

)/(c+dε−q

dε−q

)]

(cq − ap) log ε

=
log

[
(a+bε−p)!
a!(bε−p)!

/
(c+dε−q )!
c!(dε−q )!

]

(cq − ap) log ε

= log(a + bε−p)! − log a! − log(bε−p)! − log(c + dε−q )! + log c! + log(dε−q )!
(cq − ap) log ε

= 1

(cq − ap) log ε

[
(a + bε−p) log(a + bε−p) − bε−p log(bε−p) (40)

− (c + dε−q ) log(c + dε−q ) + dε−q log(dε−q ) (41)

+ (a + bε−p) − (bε−p) − (c + dε−q ) + (dε−q ) (42)

+ 1

2

(
log(2π(a + bε−p)) − log(2πbε−p) − log(2π(c + dε−q )) + log(2πdε−q )

)

(43)

+ log c! − log a! + O(ε p + εq )
]
. (44)

Notice that the terms in both (42)—where the non-constant terms cancel out—and
in (44) are asymptotically much smaller than the absolute value of the denominator,
which tends to +∞. Line (43) is

1

2

log(2π(a + bε−p)) − log(2πbε−p) − log(2π(c + dε−q)) + log(2πdε−q)

(cq − ap) log ε

= log( a+bε−p

bε−p
dε−q

c+dε−q )

2(cq − ap) log ε
= log( aε p+b

b
d

cεq+d )

2(cq − ap) log ε

As ε ↘ 0, the factors inside the logarithm tend to 1, so the numerator tends to 0, while
the denominator tends to ±∞, and the quotient tends to 0. Let us now show that the
remaining two lines (40)–(41) together tend to 1 in the limit. Now,

lim
ε↘0

bε−p (log(a + bε−p) − log(bε−p)
) = a and

lim
ε↘0

dε−p (log(c + dε−p) − log(dε−p)
) = c,

so we get

lim
ε↘0

1

(cq − ap) log ε

(
(a + bε−p) log(a + bε−p) − bε−p log(bε−p)

− (c + dε−q) log(c + dε−q) + dε−q log(dε−q)
)

= lim
ε↘0

a − c + a log(a + bε−p) − c log(c + dε−q)

(cq − ap) log ε
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= lim
ε↘0

a log(a + bε−p) − c log(c + dε−q)

(cq − ap) log ε
.

In this quotient, both the numerator and the denominator tend to±∞, so we can apply
a version of the l’Hôpital rule, which states that, if the limit of the quotient of their
derivatives exists, then the original limit above equals that limit. Taking the limit of
the quotient of the derivatives gives

lim
ε↘0

cdqε−1−q

c+dε−q − abpε−1−p

a+bε−p

(cq − ap)/ε
= lim

ε↘0

cdqε−q(a + bε−p) − abpε−p(c + dε−q)

(cq − ap)(a + bε−p)(c + dε−q)

= lim
ε↘0

cdq(aε p + b) − abp(cεq + d)

(cq − ap)(aεq + b)(cε p + d)

= lim
ε↘0

cdqb − abpd

(cq − ap)bd
= 1. ��
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