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Abstract

It is very important for consumers to have the operating voltages within the specified limit.
Sometimes, this is not possible to provide by the grid operators although grid operators invest
heavily in voltage regulating devices. With the integration of variable renewable energy
systems in the grid, it has become more challenging for the grid companies to regulate them to
provide stable voltages and good quality power. However, the control of inverters in renewable

energy sources can be utilized for overcoming such challenges.

Another aspect that should be considered is analyzing the capacity of the inverter to provide
reactive power support to mitigate the voltage violation in the power system network. The
amount of reactive power support from inverters is dependent on different loading conditions
and the size of the inverter. Hence, the analysis of such scenarios is of the great significance of
renewable energy sources and load, modeling of the network for implementing coordinated
control from such inverters is another challenge. Hence, with available data from the grid and
inverters, it is possible to model the system using machine learning (ML) algorithms. From the
model developed using ML, reactive power support requirement from inverters, analysis of the
impact of reactive power and active power from inverters and change of loading in the power
system network can be analyzed. Reinforced machine learning is implemented in this work
where the inverter learns to correct its action to adjust the voltages at the adjacent bus by
controlling the flow of reactive power into the distribution network based on data available for
the next stage. The voltages obtained on the far most bus were also within the specified limit
even for the overloading condition. And the reactive power control was more robust and
aggressive to keep the voltages within the specified limit as compared to the conventional

Optimal Power Flow OPF tool.
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1 Introduction

1.1 Background

In this modern era, we cannot do anything without electrical power. Whether it is required to
charge your mobile phone, do household task like cleaning and charging your car, or to operate
an electron microscope. We need uninterrupted and regulated power. The progress of any
country is also based on calculated how much energy per capita is utilized in the state. Countries

with highest GDP per capita also have higher energy consumption and vice versa [1].

The conventional power system network consists of generation, transmission and distribution
and it is done in separate steps. The power that we receive is product after these 3 steps. There
are several levels defined by state’s regulating authority for all these stages. For example, in
Norway, transmission levels are 132 kV, 300 kV and 420 kV while the distribution system is <
22 kV which distribution companies use to distribute power, and this is then stepped down to
400 V or 230 V according to consumer need [2]. The power obtained at the last end by the
customer must be within a safe limit and regulated. There are various methods which are used
in these 3 steps from time to time to regulate the power so that the last consumer receives the
desired and safe power that is not harmful for the equipment.

The integration of distributed and renewable energy resources (DERs) [3] like solar PV and
wind has become an essential part of power system networks and grids. This growing trend
toward the development of renewable energy sources for the generation of electricity [4] is
being driven by the fact that these alternatives produce fewer carbon emissions and are
becoming more affordable. This integration has changed the operation of conventional power

systems.

1.2 Motivation

Despite significant efforts, it is still not always possible to deliver good power quality. One of
the reasons for this is reactive power, which flows in the line alongside active power in the
power network. AC systems split apparent power between active and reactive components.
Most power system components consume or produce reactive power. Therefore, reactive

compensating devices are essential to compensate for losses because of reactive power flow in

Page 1 of 106



the system. In an AC power circuit, reactive power is the product of current magnitude, voltage,
and sine of phase difference. VVolt-Ampere-reactive (VARS) is the unit of measurement. The
current lags the voltage in inductive loads and reactive power is consumed. In capacitive loads,
the current leads the voltage in capacitive loads. This can cause power losses and voltage
regulation issues. Power losses and voltage regulation are two significant aspects that influence
the efficiency and reliability of an electrical power system. The sum of all power losses
throughout the system is referred to as "power losses". It includes losses caused by transformers
and losses caused by the resistance of transmission lines and other losses. As a result, the
system’s efficiency will suffer because of these losses, which might lead to a decrease in
voltages at the far-end consumer. The capacity of a system to maintain a constant voltage
regardless of the load being applied to it is referred to as voltage regulation. In perfect systems,
the load voltage is maintained regardless of the amount of power required. The system’s voltage
is affected by various elements, including the losses of the transformers and the resistance of

the transmission lines.

To overcome these issues, as mentioned earlier, several voltage compensation devices are
implied at different sides, and they are sometimes more expensive and increase the cost of
infrastructure. This can be either on generation side, transmission side or at distribution side.
And now distributed energy resources (DERS) is another stake holder in the grid. If we utilize
the DERs in a controlled manner, we can not only increase the generation but also can overcome
the losses in the system and avoid voltage regulation issues in the distribution network. Since
grid operators cannot control the DERs all the time, it is better to devise a way by which the
DERs can self-adjust their action and overcome the grid problem of losses and voltage
regulation. Because most of these distributed energy resources (DERS) are technologies based
on inverters, the reactive power of the inverters can be utilized to regulate the voltages because
voltages can be regulated using reactive power. And what other tool is more suitable for
implementing the self-adjusting control of DERs than machine learning. This is my motivation
to fill the gap between machine learning and DERs. So that power quality and voltage
regulation in the grid could be improved without bearing extra by the distribution and
transmission companies. In this case, grid companies do not have to bear additional expenses

and they can still have better grid quality in terms of power and voltages.
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1.3 Problem Statement

As it is known, power is generally provided to the user via low-voltage, medium-voltage, or
high-voltage circuits [5]. Incorporating DERs into power systems results in an increase in
energy output. Also, it can raise several technical, economic, and environmental concerns in
the different network topologies. These issues can be either related to intermittency and
variability, grid integration, energy storage, power quality, etc. in the network [6]. Unbalanced
reactive power in the distribution network is one of the problems, and it affects the system
voltage. Because of how DERs work and how random the load is, it is harder to control the
voltage in distribution networks with a lot of DERS. It is not possible to restrict the consumers
from becoming prosumers and stopping them from installing the roof top solar PVs which
benefits the customer by reducing the power bills. Anyone connected with grid can do that.
This integration of DERs can happen in grid at random point so it is useless to plan grid
accordingly. Due to their integration, estimating reactive power support and managing voltages
or secondary system actions is getting harder. And therefore, it is much needed to have a control
and balanced reactive power in the system to overcome total losses and regulate voltages. For
effective implementation of control and management strategies in power system network with
high integration of DERS, modeling of the power system requires detailed information about
the network, despite this, it might not be always the case when the networks are extremely
sparse. But the power system network must be accurate to analyze the system correctly. Since
the modern power system networks with high integration of DERs are equipped with smart
measuring and monitoring infrastructure, data-driven model based on machine learning can be
developed to implement the suitable control algorithm, Also, the impact of different levels of
reactive power support from inverters under various loading conditions in the power system
network is necessary to analyze the worst-case scenarios of the effective operation of power
system.

1.4 Objective

The purpose of this study is to investigate how intelligent inverters with constrained reactive
power can alter voltage within a given range. The goal of this study is to employ machine
learning in smart inverters with limited reactive power to manage and execute voltage

management in a medium voltage distribution network. This will also help alleviate the line
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losses that occur in such networks which will be beneficial for whole grid. Also with the
implementation of this, grid operators will need not to install the additional reactive power
support devices which is an extra add on in network and it will save the overall operational and

maintenance cost.

1.5 Scope of Thesis
This thesis is partitioned into several distinct phases. They are covered in great depth throughout

the entirety of the thesis, as will become clear in the following sections.

e Section 1 provides an overview of the work that is completed for the report being
discussed here.

e Section 2 reflects the overall picture of strategies for voltage regulation and provides an
overview of work that has previously been done and is being utilized by the industry.

e Section 3 offers a description of the process that is being followed to complete the
present job. Additionally, it provides the concept as well as the foundational features
for carrying out the voltage control action by utilizing reactive power injection and
learning through multi-agent reinforcement for the various scenarios.

e Section 4 provides a comprehensive account of the network, loads, DERs, and all
assumptions we will consider. It will also share insight into how multi-agent
reinforcement learning may possibly be envisioned to make use of reactive power for
the purpose of putting the voltage control action into operation to accomplish the
intended result. Section 4 also addresses how this power may be exploited to bring the
desired result into operation for the goal of putting it into action.

e Section 5 is going to present a summary of all the findings for the many different cases
that we will take into consideration. It will also present a comparison with the Optimal
Power Flow (OPF) model, which is going to act as the benchmark tool for evaluating
the findings of this study.

e Section 6 will wrap up the work for this report by discussing the whole project and

identifying any more contributions that may be made to this effort.
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1.6 Limitations and Assumptions
The following assumptions are made while conducting this study and these limitations are

subjected to this study only.

e This work is carried out using European grid standards only.

e The voltage control (by compensation of VARS) will be implemented by smart
inverters.

e Each agent controls a PV inverter that is used for reactive power compensation.

e Each agent may only make partial observations based on the information available.

e Each PV is an independent RL agent of the system which belongs to either zone 1 or
zone 2 not bot.

e Efficiency of inverters is 100%

e There are 0% losses in the inverters

e There are % losses in transmitting power from the inverters to their adjacent loads.

2 Literature Review

As discussed in Section 1, it is critical to ensure that the voltage always remains within the
prescribed range. In most cases, the national grid regulating authority is the one that establishes
this limit. This cap is set at 6% [7] in most countries. When this is computed in a per unit
system, this is then defined from 0.95 to 1.05 p.u. value of the voltage. So, the rule is that even

the last connected consumer must have voltages within the specified range of 0.95 to 1.05 p.u.

Below 0.95 p.u. values of the rated voltage, there is a chance that the load will not operate as
expected and there is also a chance that it may sustain damage to the load. This can also lead to
a decrease in the performance of the load or an increase in the amount of current drawn to

compensate for low voltages which may result in overheating.

When a load is subjected to voltages that are greater than its rated value, which is 1.05 p.u.
There is a possibility that the load could have issues and possibly be damaged. Overvoltage can
reduce the lifespan of the load. They can also lead to serious safety hazards like electric shocks

and even can set fires.
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In general, it is necessary to ensure that loads receive the optimum voltage within their
permitted range to minimize damage, decrease safety issues, and ensure maximum

performance.

2.1 Traditional Voltage Regulation

In a distribution network, voltages are controlled using a variety of different devices and
approaches. The fundamental objective of voltage regulation devices is to keep the voltage
within a predetermined range, which is normally within 6% of the voltage’s nominal value.
This is done to ensure that loads receive the correct voltage to function properly and to protect
against damage. The following is a list of typical approaches that are utilized in the process of
regulating voltages in distribution networks. This thesis will try to provide a picture of how
they operate and what their principal are. Following components are discussed in detail in the

subsequent subsection.

e Transformers
e Capacitors Banks
e Synchronous Condensers

e Static Voltage Regulators

2.1.1 Transformers

Transformers known as load tap changing (LTC) are power transformers that can adjust the
voltage of the electrical grid by varying the number of turns in the transformer winding. This is
accomplished by tapping into the winding at various locations, which allows modifications to
be made to the voltage that is output by the transformer [44][45]. A LTC transformer is shown

in Figure 1.

Most of the time, an LTC transformer's winding will have a lot of taps, and each tap will be
connected to a choice switch. By changing the tap to a different spot and using the switch, you
can change the transformer's output voltage. If the load on the electrical grid changes, the LTC

transformer can be changed so that the needed voltage level stays the same.
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A voltage regulator (AVR) is often used in an LTC transformer to control how the taps change.
The AVR can change the output voltage of the tap switch. It does this by keeping an eye on the
grid voltage and sending a signal to the device. Through a feedback loop, the AVR keeps an
eye on the output of the generator and makes changes as needed to maintain the desired voltage

on the grid.

On-load tap changers (OLTC) and off-circuit tap changers (OCTC) are the two main types of
tap changers that can be found in LTC transformers. As taps can be changed in an OLTC
transformer even while the transformer is in operation, in this way, the grid operators can
maintain consistent control over the voltage. To change the taps on an off-circuit tap changer

(OCTC), the transformer must first be switched off, which can cause the grid to drop.

There are certain limitations of using LTC transformers that must be considered before putting
them in network. LTC transformers may control voltage up to 10% of nominal voltage. Beyond
this range, voltage control is difficult and may require additional equipment. LTC transformers
need periodic tap changer contact examination and insulator cleaning. Since it is moving, the
tap-changing mechanism's dependability might also be an issue. Changing the tappings of the
LTC transformers can cause harmonic distortion in the network, which may affect the quality
of the power network. Compared to alternative voltage control options, LTC transformers are
pricey. The cost increases with the size of the transformer and taps. Due to tap changes, LTC
transformers can cause harmonic distortion in the network, affecting the quality of the power

supply.
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Figure 1: Load Tap Changing Transformer [45]

2.1.2 Capacitor Banks

Capacitors banks are used quite frequently in substation and distribution networks to
compensate for voltage values in the system. The capacitor banks provide reactive power
compensation due to which the voltages are regulated. Usually, the lagging load caused by an
inductive load makes the power factor to decrease in system. This is compensated by providing

a leading reactive power (capacitive reactance) to compensate for that lagging load [8].

The quantity of active power (P) and reactive power (Q) employed at a particular point in a
power system will influence the voltage level measured at that point. When there is a significant
increase in the consumption of reactive power, the voltage level will decrease. Similarly,
voltages increases when there is a decrease in the amount of reactive power that is being

consumed [9].

A capacitor bank can offer reactive power compensation to a system by supplying the system
with reactive power in the form of capacitive reactance. Capacitor bank supply increases alters
the lagging power factor by providing the leading reactance and leading reactive power. By
balancing the load needs for reactive power, this reactive power can reduce the amount of

voltage drop that occurs within the system.
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In most cases, the capacitor bank is connected in parallel with the distribution line near where
the load is located. When the load draws reactive power, the capacitor bank provides reactive
power to compensate for it. This helps to keep the voltage level at the load point within the

allowed limits by helping to maintain it.

Capacitor bank switching adjusts the voltage levels in a distribution network. The switching of
the capacitor bank can be done automatically based on the voltage of the load point. When the
voltage drops, the capacitor bank increases the voltage and the reactive power, and capacitor
bank is then turned on. In high-voltage-level conditions, the capacitor bank is turned off to

prevent overvoltage.

There are certain drawbacks to using capacitor banks to regulate the voltage of the distribution
network. The reactive power correction that capacitors can provide is limited. If the demand for
reactive power exceeds the capacity of the capacitor bank, the voltage control may fail.
Similarly, capacitor bank switching may create distribution network. Transients may fluctuate
in voltage and can cause a malfunction in grid operation, and can cause the power quality of
the power system to degrade. Moreover, maintenance is crucial for the continued functioning
of capacitor banks. Capacitors should be inspected for leaks and bulges and worn-out ones

should be replaced.
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Figure 2: Capacitor Bank for Voltage Compensation in Distribution Network [9]

The following expression 2.1-1 describes how a capacitor bank compensates for reactive power

Q).

Q =CV2wsin® 2.1-1

Where,

e Q represents the reactive power in volt-ampere-reactive (VAR).

e Cis the capacitance of the capacitor bank in farads

e The voltage at the compensating point is denoted by the symbol V in volts.
e w inradians per second, is the power system's angular frequency

e 6 is the phase angle between current and voltage at the point of compensation

2.1.3 Synchronous Condenser

When a synchronous machine is run at no load condition, it is called synchronous condenser.
Power systems often employ synchronous condensers (sometimes called synchronous
capacitors or synchronous compensators) to control voltage, supply reactive power, and
increase power factor. The reactive power it absorbs or produces is used to regulate the voltage

of the electrical grid; it does not generate electricity itself [10].
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Like a synchronous generator, a synchronous condenser has a rotor and a stator. The rotor
rotates at the same frequency as the grid. To manage the reactive power that it can absorb or

produce, the stator's output voltage is connected to a capacitor bank.

The synchronous condenser draws reactive electricity from the grid when an electrical load
needs it, which helps to keep the system voltage constant. When there is a surplus of reactive
power in the grid, the synchronous condenser can generate reactive power, which aids in

maintaining a constant voltage.

Synchronous condensers are often used in places where the power grid is weak or not stable or
where there is a large amount of renewable energy. They enhance the power factor, the ratio of
real power to total power (real and reactive power) in an AC circuit. The low power factor
causes voltage dips and flicker. Synchronous condensers can stabilize voltage, power factor,

and network power losses by providing reactive power assistance.

Synchronous condensers offer system inertia and voltage management, as well as power factor
adjustment. The inertia allows the power system to maintain a steady frequency in response to
variations in electrical load. Inertia of the synchronous condensers prevents the frequency

variations and outages of the power system.

The response time of synchronous condensers to load variations is quite quick. They are useful
for power systems that have a change in renewable energy production because they can quickly

absorb or create reactive power.

Synchronous condensers cost too much. They cost more than reactive power-supporting static
capacitors or reactors. In cities, setting up them requires a lot of space. To ensure reliability,

synchronous condensers must be regularly serviced and inspected.

Another problem is that they are sensitive to system faults. Whenever there is a system problem,
the synchronous condenser can be put under a lot of mechanical and electrical stress, which can
damage the machine. Protective measures, such as fast-acting circuit breakers or protective
switches, are used to disconnect the machine from the network when something goes wrong in

a fault. Figure 3 shows a Synchronous Condenser.
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Figure 3: Synchronous Condenser [10]

2.1.4 Static Voltage Regulators

The static voltage regulator is a type of voltage regulator used in electrical power systems to
keep the output voltage stable. Solid-state voltage regulators are another name for these
technological devices. Static voltage regulators employ electrical controllers, whereas tap-
changing transformers use mechanical switches. Instead of manually adjusting the voltage,

power electronics are employed [11].

In static voltage regulators, an electronic power circuit is used to regulate the voltage by altering
the amount of reactive power that is delivered into the system. This allows the voltage to be
precisely adjusted. Because of the thyristors or other semiconductor devices that are used for
voltage regulation under varied loading circumstances, they can quickly adjust to changing

loads.
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Compared to tap-changing transformers, static voltage regulators have the advantage of being
able to regulate voltage with little harmonic distortion. This means that they are safe to use with
devices that are particularly sensitive to harmonic distortion [12].

Unlike tap-changing transformers, static voltage regulators can be programmed to respond to
individualized voltage profiles and load conditions. They can also be monitored and controlled
remotely, enabling power plant managers to have greater flexibility to ensure consistent voltage

levels.

However, there are several limitations to using static voltage regulators (SVRs) in distribution
systems that should be considered. SVRs often have lower power ratings than tap-changing
transformers. Because of this, they may not be suitable for use in wide-area power grids or other
high-power settings. Another drawback is that environment variables, such as temperature and
humidity, have an impact on SVR performance. Extreme temperature changes can cause
overheating and performance degradation in these SVRs. Moreover, some motors and
transformers, for example, may not be suitable for use with SVRs because of their nonlinear
load characteristics. As a result, there is a chance of harmonic distortion or a decline in power
quality. SVRs are very reliable, but they are not invincible; faults or breakdowns can cause
voltage instability and other problems with power quality. Things need to be checked and

maintained on a regular basis to ensure their continued smooth operation.

All these traditional voltage regulation devices are implemented at the substation or at
generation point, which might not be very much effective for consumers which are at the far
end of the line [13].

2.2 New Approaches for Voltage Regulation
Since the emergence of renewable DERs, it has become more flexible for the grid operators to
have an extra edge for providing a better voltage regulation to the far away consumer. This has

also made the consumer as a producer, and this is the reason they are now termed as prosumers.

Modern voltage regulation techniques to mitigate the losses in power distribution networks are

classified into two main parts.
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e Droop Control

e Optimal Power Flow

2.2.1 Droop Control

The Droop control method is used to adjust the frequency and voltage in power systems. The
frequency and the amount of power required on the demand side are considered to regulate the
output power of generators. Droop control is based on the principle that as the system load
increases, voltage and frequency should decrease, i.e., it is more dependent on local power and
voltage values. Using the system's frequency to regulate the output of generators, droop control

helps maintain constant voltage and frequency [14].

Each generator in a droop control system has a droop control circuit and a voltage regulator.
The droop circuit adjusts the generator's output based on the system's frequency. The

generator's output voltage is regulated by the voltage regulator [15].

Most of the time, a proportional control method is used in the droop control circuit. The droop
control circuit will lower the output of the generator as the system's frequency drops. The ratio
of the change in generator output to the change in frequency is known as the droop factor. A
normal droop factor is around 5%, which means that if the frequency drops by 1 Hz, the

generator power will drop by 5%.

Droop control circuits are synchronized when many generators are connected in parallel to
evenly distribute the load. It is called load sharing, and it helps ensure that no single generator

is overloaded while the others are not used to their full potential.

Droop control is not very helpful when local measurements of the system are not available.
Moreover, its performance very much depend on the designed parameters of the grid [16].
Droop control is based on the voltage droop characteristic to maintain output voltage levels.
The load current may not be proportional to the voltage drop because this is not linear. Because
of this, the voltage control may not be as precise as desired [16]. When there are unexpected
changes in production or load, the system voltage might fluctuate due to the voltage droop
feature. Sensitive loads may not be able to operate if the output voltage fluctuates. Equal loads

on each phase is the core of droop control. However, in fact, unbalanced loads are common and
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can affect the accuracy of voltage control. System characteristics such as line impedance and
load impedance determine the values of droop control parameters such as droop resistance. The
effectiveness of droop controls is very sensitive to these factors [17], [18].

2.2.2 Optimal Power Flow

The purpose of Optimal Power Flow (OPF) is to minimize an objective function while meeting
a set of constraints to discover the best set-points for controllable devices in a power system.
The objective function may be defined as minimizing some function of either the total system
losses or total system cost or both. Usually, the reactive power dispatch is planned based on

optimal power plow [19].

An objective function is defined to maintain acceptable voltage levels while minimizing the
total cost of the system. There are certain constraints in the system, and these constraints include

power flow equations, device capacities, and voltage limits.

To put it simply, an OPF is a way to find the parameters of a controlled system so that the
objective function is reduced within a given set of limits. Generators, transformers, and other
reactive power devices such as capacitor banks and Static Var Compensators (SVCs) are some

of the things that can be controlled in power systems [20].

Finding the objective function and constraints is the first step in finding out how to solve the
OPF problem. The goal function is often a nonlinear function of the controllable devices'
settings (the decision variables). The limitations include the power flow formulae, which show
how the power injections at different nodes in the system affect the voltage levels, and the
capacity limits of the controllable devices. Constraints on maximum and minimum voltages are

also implemented to keep the voltage levels at all nodes of the system within safe parameters.

The next step, after the objective function and constraints have been defined, is to solve the
optimization problem. The OPF issue can be solved in several ways, some of which include
linear programming (LP), others involve nonlinear programming (NLP), and the option is

mixed integer nonlinear programming (MINLP) [21]
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With constraints and a linear objective function assumed, the LP approach is quick and
effective. However, it might not be reliable for complicated, non-linear systems. Although NLP
is computationally more complex than LP, it is also capable of handling non-linear objective
functions and constraints. The MINLP approach is the most computationally intensive, but it is
also the most versatile since it accommodates discrete choice variables and nonlinear

restrictions.

The ideal set points for the controllable devices may then be utilized to maintain a constant
voltage across the power grid once the optimization problem has been addressed. The voltage

can be kept within safe parameters in real time by altering the device’s set points as required.

When an OPF problem is defined for finding the optimal settings for control variables like
capacitor banks, SVCs, SVRs, generators and LTC transformers, then this is called Centralized
Optimal power Flow or Centralized OPF. Someone with access to all of the system's data, an

operator or utility, for example, is responsible for doing this optimization [22] [23].

Modern distribution networks consist of rooftop solar PVs, wind turbines, and storage. With
their injection in power network, it is no longer feasible to find the OPF using centralized OPF
as it need a centralized body like utility company, to have all the information about the network
parameters. In this case, the distributed optimal power flow or D-OPF methodology is defined
to optimize the DERs [24],

In D-OPF, each DER is responsible for optimizing its own operation based on data collected
locally, such as the DER's own power production, the DERSs' integrated power flow, and voltage
and current readings. While maintaining the voltage and current limits, D-OPF aims to reduce
the total cost of the system. To achieve optimal setpoints for its control variables, a distributed
implementation of a D-OPF algorithm can have each DER communicate with its neighbors [24]

Another distinguishing feature is the computational difficulty of the optimization problem. The
optimization problem in Centralized OPF is handled by a centralized group having access to
powerful computing resources. D-OPF, on the other hand, reduces the computational
complexity of the problem by having each DER tackle a simpler optimization problem based
on its local knowledge [24].
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3 Methodology

Since with the evolution of machine learning techniques and due to its better performances in
different fields, it is becoming popular in power systems to implement machine learning in
power systems and distribution networks to improve power quality and to overcome problems
in this domain. Active voltage control in the power distribution network is one of the main

issues in the distribution network to overcome to ensure the reliable operation of the network.

Injection of DERs into grid has highlighted how DERs can be used to ensure the reliable
operation of the grid. As both solar photovoltaics and wind turbines are inverter-based
technologies, it is an option to utilize them for regulating the voltages. This can be done by
implementing smart inverters that could act to compensate voltages by injecting or absorbing

reactive power on their own without the involvement of grid operators.

AS now DERs can be injected into system by the individual consumers making them
prosumers, this makes each prosumer a contributor in grid. And another thing is that these
inverter-based DERs only inject active power into the system, and too much active power
injection can also cause voltages to fluctuate [25]. Therefore, it is important at this point to
come up with something that can act based on the system’s need for when and how much
reactive power should be added or consumed from grid to keep voltages within 0.95 p.u. to 1.05
p.u. Due to this reason Multi Agent Reinforced Learning (MARL) is perfect for tackling this

real-world problem.

3.1 Multi Agent Reinforced Learning (MARL)

Learning agents that interact with one another while learning is the focus of Multi-Agent
Reinforcement Learning (MARL), which is a branch of RL. Reinforcement learning (RL)
teaches an agent to make decisions by interacting with its environment. The agent monitors the
environment and acts to change it. Multiple agents are trained in MARL to make decisions and
cooperate or compete with one another. The primary goal of MARL is to develop algorithms
that aid agents in learning optimal strategies while considering the actions of other agents in
the environment [26] [27].
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Each agent in MARL receives feedback for the action it takes in the form of a reward which it
uses to inform its future behavior and improve its performance. The reward function may be
common to all agents or may have an individual reward function of their own. The agents
acquire knowledge by adjusting their actions in response to observations of the environment
[26] [27].

MARL may be tackled from several approaches. Traditional RL methods, such as Q-learning
or policy gradients, may be used to describe agents as a Markov Decision Process (MDP) and
learn optimum policies. There is also the option of using game theory to simulate agents'
interactions and develop strategies that are persistent in dealing with unexpected actions from

other agents [27].

We will utilize the MARL to regulate the voltages into grid in such a way that each PV inverter
will act as a voltage regulator by deciding how much reactive power should be injected or
absorbed from the system. These PV inverters which will be referred to as agents will make
decision making based on a decentralized partially observable Markov decision process which
is also referred to as Dec-POMDP. The Markov decision process (MDP) is based on stochastic
control [28]. It provides a mathematical framework for describing decision making in contexts
with random and controlled outcomes. Optimization problems handled by dynamic
programming can be analyzed using MDPs [29]. An extension of the original Markov decision
process (MDP) is the partly observable Markov decision process (POMDP). A POMDP
simulates an agent decision process where an MDP determines the system dynamics but the
agent cannot directly observe the state. Instead, it must keep a sensor model and MDP. Unlike

MDP's policy function, POMDP's policy links the history of observations to actions [30]

We will set up an environment in PandaPower [31] where we will implement the MARL
algorithm based on Dec-POMDP for a Smart Distribution Network (SDN). The SDN will have
a fixed penetration of Solar PV on each bus. The load profiles’ data and the available PV

profiles’ data will then be utilized to calculate,

e Simple power flow without PV interconnection in SDN.
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e Power flow analysis and reactive power support based on OPF will suggest for voltage

regulation.

e Power flow analysis and reactive power support based on correction action MARL will

perform through smart inverters to regulate voltages.

e Comparison and analysis of results for 100% loading, 50% loading (underloading), and
150% (overloading) loading of SDN for fix PV injection.

Figure 4 shows the flowchart of work done in this thesis.
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Figure 4: Flowchart of Methodology

The available load data is perturbated by 5% to make it more realistic according to the power
factor. The available PV data and load data are then utilized in SDN to find the power flow and

analyze the results.

To apply multi-agent reinforcement learning on our CIGRE network topology, we divided the
whole network into 2 regions or zones. Each zone had multiple PVs and loads installed on the
buses. To optimize any global objective e.g., minimizing total power loss, a centralized policy

is needed during training of the PV agents for which we used a MLP based critic DNN model
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during training. To implement the distributed or independent execution of each PV agent, every
PV agent just had the states information of network elements of the zone in which it is available
and did not have the global picture or the states of the network elements in other zones

4 Modeling

There are different parameters which are modeled here. We will explain the parameters and
how they are modeled and used in the simulation.

4.1 CIGRE Medium Voltage Network

The CIGRE network is a test network established by Task Force C6.04.02 [32]. This is a
common basis that is developed for the testing of DERs into SDN. The base frequency for the
this SDN for European version is 50 Hz and we will use parameters for the European version

only, as the scope of this thesis is limited to European standards only.

We will use the CIGRE MV distribution network in our modeling. The benchmark medium
voltage (MV) distribution network services serve a small town and an adjacent rural region in
southern Germany. he benchmarks network's nodes were decreased to increase user-
friendliness and flexibility while maintaining SDN realistic. All data regarding the network
modeling are taken from the report of Task Force C6.04.02 which is mentioned in [32].

4.1.1 Structure

In Europe, three-phase MV distribution lines typically feature a radial form, especially in rural
areas. Both mesh and radial models are allowed within the standards of structure. European
MV distribution feeders are typically meshed, while radial structures are common in more
remote areas. The standard is adaptable, permitting the modeling of either meshed or radial
structures. Multiple MV/LV transformers can be linked to each feeder's many laterals.

Normally, 20 kilovolts is used. There is a 50 Hz frequency in the system [32].

4.1.2 Grounding
The foundation of the MV network will be set primarily by local preferences. In general,

European networks are impedance-based or not grounded at all.
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4.1.3 Types of Lines

Bare conductors consisting of aluminium (designated Al or A1/S1A) are used in overhead
wires. These conductors can be sometime reinforced with steel or any other material to provide
strength. The shielding and conductors of underground cables are made of copper tape and
spherical, stranded aluminum. The European standard has overhead lines installed on towers
without neutral wires and underground cables taped and buried in back-filled pits with a
protective plate. The geometry of overhead and underground lines for the CIGRE network is

shown in Figure 5 and Figure 6. their information regarding parameters is given in

Table 1. The Conductor ID identifies the specific kinds of conductors that are being tested here.
The conductor parameters for underground and overhead lines are given in Table 2 and Table
3. The German DIN VDE notation is used to specify the kind of conductor in underground
cables. Stranding and GMR values from Tables 3.6 and 3.12 of [33], and dc, R'dc, R'ac, ti, tj,
tts, and dov values from Table 5.6.6b of [34] IEC61089 [35] specifies the notation used to
identify the type of conductor used in overhead lines. The dc, GMR, R’dc and R'ac values were

taken from IEC61597 [36].

W b CW b W

cw: conductor
wire

Figure 5: Overhead Line Structure for CIGRE MV SDN [32]
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Figure 6:Underground Line Structure for CIGRE MV Network [32]

Table 1: Geometry Table for Lines in CIGRE MV SDN

a b

[m] [m]
Overhead 9,5 1
Underground | 0,7 0,3

Table 2: Conductor Parameters of Underground Lines of CIGRE European MV SDN Benchmark

Conducto
riD

Type | Stranding

Cross-
sectional
Area
[mm2]

dc GMR

[em] | [cm]

R'dc
at 20
°C

[Q/k

m]

R'ac
at 90
°C

[Q/k

m]

ti

[mm]

i

[mm]

Tts

[mm]

dov

[mm]
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NA2
0,25 |0,33

2 XS2 |19 120 1,24 |0,48 ) 2,5 0,2 34,2

Table 3: Conductor Parameters of Overhead Lines of CIGRE European MV SDN Benchmark

Cross-
_ R'dc at | R'ac at
Conductor ) sectional | dc GMR
Type | Stranding 20 °C |50 °C
ID Area [cm] | [cm]
[Q/km] | [Q/km]
[mm2]
1 Al |7 63 1,02 | 0,37 |04545 |0,51

4.1.4 Symmetry
Unbalances between MV lines and the low-voltage laterals are common, despite attempts to

preserve balance. Although it is possible to implement imbalance in the European standard, this

has not yet been done.

4.2 Topology

The topology of the CIGRE MV network for the European version is the same as defined in the
benchmark document of the document of Task Force C6.04.02 [32]. The 110 kV sub-
transmission network feeds both feeders' 20 kV transformers. Both feeders can be used for DER
integration studies. Configuration switches S1, S2 and S3 add diversity. Both feeders are radial
if these switches are open. Closing feeders S1,” S2, and S3 forms a mesh or loop. The placement
implies that both feeders are served by the same substation or by different substations, and
shutting S1 links the two feeders through a distribution line. Figure 7 shows CIGRE MV SDN.
The topology and line lengths of the network shown in Figure 7, as well as the positive and

zZero sequence resistance, reactance, and susceptance values of the lines, are listed in Table 4.
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Figure 7: CIGRE MV SDN for European Standards [32]
Table 4: CIGRE MV SDN Connections and Line Specifications
Line Node | Node | Cond R'ph X'ph B'ph R'o X' B'o |
segment | from | to uctor )
ID QK QK [nS/K QUK | QK | [nSk | [km] Installation
m] | m] m] m] | m] m]
1 1 2 2 0,501 0,716 47,49 0,817 | 1,598 | 47,49 2,82 underground
3 3
2 2 3 2 0,501 0,716 47,49 0,817 | 1,598 | 47,49 4,42 underground
3 3
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3 3 4 2 0,501 0,716 47,42 0,817 | 1,598 47é49 0,61 underground
4 4 5 2 0,501 0,716 47,42 0,817 | 1,598 47é49 0,56 underground
5 5 6 2 0,501 0,716 47,42 0,817 | 1,598 47é49 1,54 underground
6 6 7 2 0,501 0,716 47,42 0,817 | 1,598 47é49 0,24 underground
7 7 8 2 0,501 0,716 47,42 0,817 | 1,598 47é49 1,67 underground
8 8 9 2 0,501 0,716 47,42 0,817 | 1,598 47é49 0,32 underground
9 9 10 2 0,501 0,716 47,42 0,817 | 1,598 47é49 0,77 underground
10 10 11 2 0,501 0,716 47,42 0,817 | 1,598 47é49 0,33 underground
11 11 4 2 0,501 0,716 47,42 0,817 | 1,598 47é49 0,49 underground
12 3 8 2 0,501 0,716 47,42 0,817 | 1,598 47é49 1,30 underground
13 12 13 1 0,510 0,366 3,172 0,658 | 1,611 | 1,280 | 4,89 overhead

14 13 14 1 0,510 0,366 3,172 0,658 | 1,611 | 1,280 | 2,99 overhead

15 14 8 1 0,510 0,366 3,172 0,658 | 1,611 | 1,280 | 2,00 overhead

4.3 Transformers

2 Transformers are attached in this CIGRE MV SDN. The transformers are located at node 1

and node 12. The primary side is 110 kV and the secondary side is 20 kV. They are both rated
for 25 MVA. The impedance of both transformers is 0.016+j 1.92 which is reffered to the

secondary side. The connection type is 3 phase Delta at the primary side and 3 phase star

connection at the secondary side. Tap changers are required for power distribution to be within

appropriate bus voltages of 0.95 pu to 1.05 p.u. The tap changing in these transformers is

defined for both primary and secondary of transformer is calculated.

e Secondary: The load taps can be changed by 10% in 0.625% increments.

e Primary: No-load taps of 5% in 2.5% increments.

Table 5 contains the parameter for the distribution transformers of CIGRE MV SDN.
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Table 5: CIGRE MV Distribution Transformer Parameters

Zy impedance on
Node V1 V2 secondary side S rated
from | Node to | Connection | [KV] [kKV] [Q] [MVA]
0 1 3-ph Dynl 110 20 0.016+j1.92 25
0 12 3-ph Dynl 110 20 0.016+j1.92 25

4.4 External Grid

The external grid substation is present at bus 0. The external grid has a short circuit power rating
of 5000 MVA at 110 kV and the R/X ratio is 0.1. Table 6 contains the parameters for external
grid.

Table 6: External Grid Parameters for CIGRE MV SDN

Nominal system voltage | power, Ssc | X/R Ratio

[KV] [MVA] [no Units]

110 5000 0,1

4.5 Load Data

The loads are symmetric and hence equal across all three phases in the European version of the
reference design. Compared to the other nodes, nodes 1 and 12 are assigned significantly higher
load values. These loads are not part of the feeder that is represented in detail, but the
transformer still provides power to them. The maximum instantaneous peak load values of our
CIGRE MV SDN according to Task Force C6.04.02 [32] are defined in Table 7

We modified the Portuguese electricity consumption [37] according to our CIGRE MV
benchmark configurations and used it in our PandaPower model. The data are used for the
modeling training and testing of our MARL based Deep Neural Network (DNN) model. This
is the same data as used in [37] for 141 busses system.

The maximum instantaneous combined load of 14 buses (commercial and residential)

mentioned of Table 7 in CIGRE MV SDN are divided by maximum instantaneous value of load
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of first 14 busses in 141 busses system mentioned in [37] for 3 years to get the factor with which
we scaled the load of 3 years and used in our CIGRE MV SDN. The data of 3 years are the

ones on which we trained our model. The load profile given in Task Force C6.04.02 [32]

document is used to test the MARL which is being implemented in this thesis. The mean load

profile used by Task Force C6.04.02 [32] is shown Figure 8. The mean load profile of first 14

buses in 141 busses system mentioned in [37] is shown in Figure 10.

< < S
N N 0] —_—

.
b

Apparent power, S (% of max)

Residential (blue-solid), Commercial/Industrial (red-dashed)

Figure 8: CIGRE MV SDN Load Profile of 1 day

Table 7: Load Parameters for CIGRE MV distribution Network

Apparent Power, S [kVA] | Active power, P [kKW] Reactive Power, Q [kVar] | Power Factor, pf
Node
Commercial Commercial Commercial Commercial
Residential ] Residential ) Residential ) Residential .
/ Industrial / Industrial / Industrial / Industrial
1 15300 5100 14994 4845 3045 1592 0,98 0,95
2 - - - - - — — -
3 285 265 276,45 225,25 69 140 0,97 0,85
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4 445 431,65 --- 108 --- 0,97
5 750 727,5 --- 182 --- 0,97
6 565 548,05 --- 137 --- 0,97
7 20 76,5 47 0,85
8 605 586,85 147 0,97
9 675 --- 573,75 --- 356 0,85
10 490 80 475,3 68 119 42 0,97 0,85
11 340 329,8 83 0,97
12 15300 5280 14994 5016 3045 1649 0,98 0,95
13 40 34 21 0,85
14 215 390 208,55 3315 52 205 0,97 0,85
4.6 PV Data

The solar PV which are injected into the system are of constant rattings. 13 solar PV systems
are used in producing the results of this thesis. Each PV has fixed maximum ratting of 200 kW.
It is assumed that the reactive power reinforcement is provided by these inverters and these are
therefore considered as SVCs here.

We have Belgium’s RESs generation [37] in our CIGRE MV SDN modeling and used it for the
training as well as testing of our MARL-based Deep Neural Network (DNN) model. The 3-
year solar PV data was scaled for data available in modeling the Task Force C6.04.02 [32]
benchmark and was scaled for 3 years in the same way as we modeled the load data in Section
4.5. The resolution of the PV data is 5 minutes. The Solar PV profile mentioned in the
benchmark document Task Force C6.04.02 [32] is shown in Figure 9. The median of PV Profile
used for training and testing in this thesis is shown in Figure 10. The PV data can be seen in
Table 8.

Page 28 of 106



Active power output of photovoltaic

Table 8: PV Data
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Figure 9: PV Profile According to CIGRE MV SDN Benchmark Document [32]
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Figure 10: Load and PV Profile of first 14 Busses According to 141 Busses [37]
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11 10 11 200
12 0 12 200
13 12 13 200
14 13 14 200

The CIGRE MV SDN modeled according to the parameters mentioned above in PandaPower
is shown in Figure 11. In the overall picture, elements reffered in the PandaPower model

without PV are:
e Dbus (15 element for buses)
e load (13 elements for loads)
e switch (8 element representing switches to make the system radial or star)
e ext_grid (1 elements for external main grid)
e line (15 element of lines)

o trafo (2 elements of transformers)

bus_geodata (15 elements showing busses location on GPS)
And elements reffered in my PandaPower model with PV are:
e Dbus (15 element for buses)
e load (13 element for loads)
e sgen (13 element for PVs that serve as SVC
e switch (8 elements representing switches to make system radial or star)
o ext grid (1 elements for external main grid)

o line (15 elements of lines)
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o trafo (2 elements of transformers)

e Dbus_geodata (15 elements showing busses location on GPS)

— |ines

=== disconnected branches

[
/ \ m— 2\V transformers

external grid
® buses
®
Q L ]
] °
L e
L ®

Figure 11: CIGRE MV SDN Modeled in PandaPower

This is defined according to equation given below in 4.6-1
(V,E)= G 4.6-1

where,
V =0, 1,..., NJ, shows each collection of nodes (buses)
And E ={1, 2, ..., N} depict the collection of edges (the tree's branches).
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4.7 OPF Modeling

In the normal network shown in Figure 12, we have generation, transmission, and distribution.
The power distribution is further carried out by distribution companies. With DERSs in the
system, distribution companies can usually acquire the data of DERs and control them if
needed. In this thesis, modeled PVs can be share information and. via a smart meter and
distribution entity. can perform a control action. This can be illustrated in Figure 13. This will
be done through the OPF in the system. In this report, the OPF results are used as a comparison
tool and the results obtained using MARL will be compared with the OPF. The only data that
need to be tested is passed on to OPF structure in code. The test data defined in this thesis are
taken from [38] and other parameters are set according to [39] [40] [41]. The same data will be
scaled for 2 more cases, that is, 50% overload with same PV penetration and 50% underload
with same PV penetration as defined in Table 8. We have defined an objective function in OPF
which is the sum of total losses and is shown in equation 4.7-1

Objective Function = Total losses 4.7-1

The constraints are defined for nonlinear case, and it is, therefore, NLP OPF. The voltage barrier
is between 0.95 and 1.05 for this. The defined bounds are such that only 44% of the ratted
power at max can be used for compensating the voltages. This means that out of 200 kW,
inverter can dedicate a maximum of 88 kVARs to compensate voltages. This was done in
PandaPower whose code is available in the attached ANNEXTURES
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Figure 12: A Standard Distribution Network

Figure 13: Energy Management in OPF
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4.8 MARL Modeling

Our CIGRE MV network structure was split into two zones so that multi-agent reinforcement
learning could be implemented. We used an MLP-based critic DNN model to train PV agents
with a centralized strategy to minimize overall power loss and regulate voltages by
compensating for reactive power in the system. Each PV agent only has the states of network

elements in its zone to achieve distributed or independent execution.

In the normal network, we have generation, transmission, and distribution. The power
distribution is further carried out by distribution companies. With DERs in the system,
distribution companies can usually acquire the data of DERs and control them if needed. In this
thesis, modeled PVs can be share information and via a smart meter and distribution entity can

perform a control action. This will be done through OPF in the system.

The active and reactive power of the entire grid are balanced through Bus 0. There is a value of
Vi and i that represents the magnitude of the complex Voltage and the phase angle of the

complex Voltage for each bus i & ¥ (i in node-set). The Power, both active and reactive is

defined in
4.8-1 and 4.8-2.
qipv _ qiL = viz — Z bl] - Z V](QU sin Hl] + bU Cos 91]) 4.8-1
JEV; JEV;
pP’ —plt =2 — Z 9ij — Vi Z vj(gij cos 6;; + b;j sin Hij) 4.8-2
JEV; JEV;

q;¥= is the reactive power of the PV on the bus i (this is zero if there is no PV on the bus i).
g;=is the reactive power of the load on bus i. If there is no load on bus i, this value is zero.

v;= the list of buses that are linked to bus i, such that Vi := {j | (i,j) € E} and E is edges or

branch of distribution circuit.

b;j= susceptance on the branch (i,j).
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gi;= conductance on the branch (i,j).
6;;= 0; — 6; is the phase difference between bus i and j.

p;PV=Is the active power output from the PV array connected to bus i (which would be 0 if no

PV array was connected to bus i).

p;L=is the active power of the load connected to bus i (which would be 0 if no load was
connected to bus i).

The dynamics of the power system, represented by equations 4.8-1 and 4.8-2 are crucial to

solving the power flow problem and the active voltage control problem.

The objective is to keep the voltage of each bus within the safety range, which is specified as
0.95 p.u. < Vk < 1.095 p.u. in all conditions. If not in this range, then as much as possible near
to this range. This is the main objective of this thesis. As mentioned previously, it is a Dec-
POMDP problem and to model it in PandaPower, wfe need to define 10 tuples [42] which are
essential for modeling this problem. Our CIGRE MV SDN network is modeled by defining
following 10 parameters in PandaPower. These are represented as (I, S, A, R, O, T, r, Q, p, y)
[42].

4.8.1 Discount factor
vy is defined as a discount factor. The variable that influences how much importance is given to
present vs future rewards. Agents' valuation of current vs future advantages is affected by this

variable. In this model, the discount factor is set to 0.1.

4.8.2 Agent Set

| is a group of agents participating in problem. All agents have their action spaces and
observations. Here | is set of agents that manages PV inverters. Each agent has a specific
location within G (Figure 11 and Figure 12) which is defined in equation 4.6-1. To specify
which node an agent is attached to, we define the function g : I — V (busses or nodes).The
13 PV inverters in CIGRE MV SDN which gives us 13 PV controllers or Agents. Because our
MARL approach is based on the RL framework of Centralized Training and Distributed
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Execution (CTDE), we considered each PV as an independent RL agent of the system which
belongs to either zone 1 or zone 2 not both. The state space of each agent for our MARL

algorithm were:

e Zone-specific load profiles of a series of consecutive timesteps values.
e Zone-specific PV profiles of a series of consecutive time-step values.

e Power flow calculations computed using loads and PVs profiles

4.8.3 State Observables

S is used here to indicate the states. It consists of all the different conditions that can exist in
each environment. This encompasses the measurable and the invisible. Both the observable and
the nonabsorbable states are included in this. All active powers, reactive powers, loads, and PV

side voltages are included in S. It is defined in equation 4.8-3
S=LXP xQ x9 4.8-3
Where,
Q = set of reactive power generated by PV. It is defined by 4.8-4
Q =q"" € (0,00)' 4.8-4

where | is absolute value. keeping in view that PV is controlling the reactive power which will

control Voltages.

v is a set of voltages where v is a vector of voltage magnitudes and 0 is a vector of voltage
phases measured in radius defined in 4.8-5 and V is absolute value, and it is value of node
defined in 4.8-6.

9 =(0,80);9 € (0, o) 4.8-5

P = set of active power generated by PV. it is further modeled with the help of 4.8-6. In 4.8-6,
I is the absolute value.
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P =pP’ € (0, )’ 4.8-6

L = set of (active and reactive) powers of loads. It is defined by 4.8-7 where V is absolute value,

and it is the value of node defined in 4.6-1.

L = {("L,q"L); p*L,q"L € {(0,)}"V 487

4.8.4 Actions

The possible courses of action for each agent. These activities alter the environment in which
the agents are implemented. In this model, the range of the Action set is represented by A and
A =[0.8, 0.8]. Every agent in agent set | has its own action set. The action set is modeled in
4.8-8:

Ai = [ai: —c < a; < +C] 4.8-8

where ¢ > 0 and depends on capacity of grid loading capacity. The joint action set is denoted
4.8-9:

A= Xier 4 4.8-9

The maximum reactive power output from each PV inverter is represented by 4.8-10. Sy™® is

the maximum apparent power of the kth node and is dependent on the capacity of PV. ax > 0
means injection of reactive power into the grid and for ax < 0 means reactive power is absorbed

from grid.

4.8-10

A" = [ - (G

As in our MARL methodology, every smart inverter of PV is an independent agent. For each
agent, we defined 44% absorption and injection of reactive power from the rating capacity of
PV as the safe range for the action space of the agent. The agent’s action can lie only on this
safe range of action space.
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4.8.5 Region Set
The CIGRE MV SDN is divided into regions or zones. For our network there are 2 regions. No

bus in any region or zone can be part of 2 regions at a time. It is denoted by R.

4.8.6 Observation Set

The observation function that specifies the probability distribution over the observations given
the current state and action. It is denoted as O which is the joint observation set in this model.
In addition, Oi determines the measures in the region where agent | is located. It is modeled

based on equation 4.8-11.

0 =Xieryo; 4.8-11

The owner of the distribution network collects data on each PV and communicates them to all
agents in the area.

4.8.7 Transition of State Set

The function defined by the current state and the action taken to determine the probability
distribution across the next state is defined in a transition state set. It is denoted by T. T is the
probability of a Change in State The function is a probability distribution that incorporates the
random elements of the previous action and the new load. The entire idea of a change in state
is connected to the transfer of energy into or out of a PV system, a load, and the grid in response
to a change in load. In accordance with the Makrov decision principle, this probability function

for transitions between states is defined in expression 4.8-12 below.
(TSxAXxS-[0,1] 4.8-12

Here S is state, and A is Action. The state transition = change in load. And it is defined by
4.8-13:

T (Sex1 IS¢, ar) = Pr(spsq |85, ap) 4.8-13

Where, a: belongs to action set A at that time instant. st is from S representing the set of states

at that time instant. Pr (s;,1 | 6 s¢, a;) is representing change in load which is related with
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behavior of the user. (8s;, a;) — s;,.7) is solution of power flow calculations that
PandaPower performs. Here, the time in which state changes is very less , and for this project,
it is defined as 1. This implies is that the time it takes for a state to change is much less than the

time it takes for PV to take control of the situation.

4.8.8 Observation Probability Function

Q represents the observation probability function. The potential for sensor mistakes in electrical
grids is quantified here. It must address the physical characteristics of smart meters that
communicate with the grid and other PV owners. It is modeled using the equation 4.8-14 below.

(2):(Sx Ax0-[0,1]) 4814

Here S is state set and, A is action set and O is observation set values. The probability of an
error in sensor readings is equal to the product of the future state of the agent and an isotropic

multi-variable Gaussian distribution across those readings which is modeled using 4.8-15.
(Q (a; + 1ls¢,ar) = s + 1+ N(0,X)) 4815

Here N is (0, X) isotropic multi-variable Gaussian distribution and X represents the physical

parameters of smart meter implemented in this CIGRE MV SDN.

4.8.9 Probability Function of Initial States p
p is used to represent the probability distribution value of the initial state of the agent. It’s value

is from set of states, S, and is always between 0 and 1

4.8.10 Reward Function r
The reward function defines the benefits and penalties for each possible action and state. It tells
about the reward obtained after joint action was taken on a specific agent so that it changed

state. It is defined by the equation 4.8-16 below.

1 - 4.8-16
r = —m Zlv(vi) — 17" X «a

iev
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Here L, (.) is voltage barrier function. The product of qu”Vis reactive power generation loss.
We must keep the reactive power generation as low as possible ( quPV must < £and £>0) to
keep the voltages within the specified range of 0.95 p.u. to 1.05 p.u. « is Lagrange’s multiplier
whose value can be in set [0,1]. We made a reward function based on the voltage deviations of
each bus from the safe range of 0.95-1.05 p.u. The total power loss of the system in the reward
function. We used the bowl shape reward function for the voltage penalty from the safe range
I.e., the function will penalize the reward function very less if the voltage is within the safe
range for each bus. But the penalty will increase linearly as the deviation goes away from the

safe range.

4.8.10.1 Voltage Barrier Function

To define the reward function, we must define a voltage barrier function. We will use Bowl-
shape as a barrier function to represent voltage constraint as part of the reward. The bowl
function is implemented which is fast in response outside 0.95 p.u. < Vet <I.05 and will have
less penalties when in this range. The barrier function we used [37] is shown in figure below

0.10

0.08

=
o
o

Penalty

0.02

0-08 50 0.95 1.00 1.05 1.10

Voltage (p.u.)

Figure 14: Voltage Barrier Function

4.9 Objective Function
The whole theme of modeling this problem in such a way is to find the optimal joint policy to

maximize the discounted cumulative reward. It is defined by 4.9-1
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*© 4.9-1

maxT[ ET[ [Zyt rt]

t=0

IT is optimal joint policy of agent’s individual objective function. m = X;¢; T;; T; =

0, X A; — [0, 1] and O, is history of observation.

4.10 Train the RL Algorithm

To train the RL regents in each episode, we extracted a series of loads and PVs data for
consecutive 480-time steps for a day and computed the power flow calculations for the
complete network using panda power. After computing power flow calculations, we form the
state space for each agent according to the zones it is available, which included the local power
flow calculation with respect to zones and global reward for minimizing the total power loss
and penalizing the rewards based on the deviation of voltage values of each bus from the safe
range defined as 0.95-1.05 p.u. After formalizing the state space for each agent, we define a 5
layers Recursive Neural Network (RNN) based Deep Neural Network (DNN) network for critic
and agent for each agent and train it to suggest the reactive power support such that global
reward is maximized. In the next episode, we take the suggestions of the agents' suggested
reactive power support and form the next state space for each agent and the process continues
until the agent's 5 layered DNN model learns the policy to suggest the reactive power support

which maximizes the reward function.

In previous studies [37] there are only one or two layers of DNN at maximum in the critics and
in agents where in this model, five layers of DNN are added for both. The performance and
behavior of a machine learning model may be altered in a number of ways by adding layers to
a deep neural network (DNN). The model may capture more complicated patterns and
representations by adding layers. In complicated or high-dimensional data, this additional
capacity can improve performance. Deep networks can learn hierarchical data representations
with multiple levels of abstraction. The network can learn more abstract information by adding
layers, possibly improving representations and performance. Multiple-layer deep neural
networks can describe extremely non-linear input-output interactions. By layering layers with

non-linear activation functions, the network can learn complex mappings that shallow models
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cannot. Keeping in view the modeling parameters and above facts, it is good idea to model

more layers of DNN for agents and critics [43].

Before proceeding to Results, it is better to review the assumptions and limitations mentioned

in Limitations and Assumptions section. This will clarify the Results

5 Results

In this section, the results obtained will be discussed and we will also try to do a comparison of
different cases. We will see the results obtained by this experiment for 3 cases. When the
loading is 100%, when system loading is 150% i.e. load increases 50% more to the actual load,
and when the load decreases to 50% it will be an underloading case. We will observe the line
losses, voltage profile of each bus, and reactive power compensation that was either injected or
absorbed from grid to compensate and control the voltage regulation at each node by each
inverter in our case. Results from 06:00 am to 06:00 pm (12 hours) of test day data [38] are

shown here which makes 244-time instants.

Referring to the diagram of the main grid, which is shown in Figure 11: CIGRE MV SDN
Modeled in PandaPower Figure 11, keep in mind that bus 0 is an external grid, and bus 1 and
12 is the transformer. Therefore, after presenting the results of all buses, the result of the first
and last buses of each zone will be further expressed here to give a better understanding of the
voltage action control taking place. Also, remember that negative values of reactive power are
injection into SDN by external grid substation while positive values of reactive power are

absorption by external grid.

First, we look at the results of CIGRE MV SDN for simple power flow analysis for the test day.
For without PV analysis, we will look for line loading and voltage drop values whose range is
0.95 p.u. to 1.05 p.u. Then we will go through the results obtained when PV is injected into
SDN without Voltage control action. Then we will look at the results when voltage control
action is implemented via OPF. After that, each PV will implement the active voltage control
action by limiting its reactive power using MARL. And finally, the results obtained using
MARL will be compared with OPF and we will try to look for any deviations and try to
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understand them. The results in comparison will be shrunk to 150-time stamps, which constitute

the time when maximum load is on CIGRE MV SDN to give a clearer picture.

5.1 Power Flow Analysis Without Reactive Power Support from
PV

5.1.1 100% loading

Figure 15 presents the voltage profile of all 15 buses which is in range of 0.87 p.u. to 1.02 p.u.
Figure 16 shows how much active power in MW is consumed and supplied to the in entire
CIGRE MV SDN which ranges up to 14 MW from external grid. Figure 17 shows how much
reactive power is present in the CIGRE MV SDN and how much it is required to overcome the
losses that this uncompensated reactive power is causing. Figure 18 presents how much line is
loaded. Lines that are loaded more than 100% are surely causing power losses and have poor

voltage regulation. The maximum loading is 173%
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2 0.94 —— 9 th Bus Voltages in Per Unit
§ —— 10 th Bus Voltages in Per Unit
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—— 14 th Bus Voltages in Per Unit
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Figure 15: Voltage Profile without PV for 100% Load
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Figure 16: Active power of the whole CIGRE MV SDN for 100% Load
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Figure 17: Reactive Power for 100% Load
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Figure 18:Line loading for 100% Load

5.1.2 150% loading (50% overloading)

Figure 19 presents the voltage profile of all 15 buses when load values are increased 50% more
and the per unit values of voltages have decreased below value 0.75 p.u. Figure 20 shows how
much active power in MW is consumed and supplied to the in whole CIGRE MV SDN. It is
worth noting that the demand of active power has increased in the system, which makes sense
as the load values have increased. The blue line below 0 MW is shows the active power supply
from the main grid which has increased in the range of 14 to 24 MW from 10 to 15 MW in
Figure 16. Figure 21 shows how much reactive power is present in the CIGRE MV SDN,
causing the voltage fluctuations below 0.95 p.u. for buses after bus 1 in zone 1 and bus 12 in
zone 2. Figure 22 presents how much line is loaded. Lines that are loaded more than 150% and
lines for loads at the far end from transformer are loaded in the range of 160% to 300%
sometimes. These extra loadings of lines are causing losses in lines of active power and is

responsible for poor voltage regulation.
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Figure 19: Voltage Profile for 150% Loading (50% Overloading)
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Figure 20:Active Power of the entire CIGRE MV SDN for 150% Load
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Figure 21: Reactive Power of the whole CIGRE MV SDN for 150% load
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Figure 22: Loading of Line at 50% Overloading Condition

5.1.3 50% Loading (Underloading)

Figure 23 presents the voltage profile of all 15 buses when load values are decreased 50% less.
These voltages are in range of 1.025 p.u. to 0.96 p.u. which is hardly within the required level
range which is 0.95p.u. and 1.05p.u. Figure 24 shows how much active power in MW is
consumed and supplied to the in entire CIGRE MV SDN. It is worth noting that the demand of
active power has decreased which is understood as the load values have decreased. The blue

line below 0 MW is shows the active power supply from the main grid, which has decreased
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now to approximately 7 MW from range of 10 to 15 MW in Figure 16. Figure 25 shows how
much reactive power is present in the CIGRE MV SDN which is -4.8 MVARs. This is less than
what we had in 100% loading (which is less than 150% loading). Figure 26 presents how much
line is loaded. As the load has decreased so the loading of the lines is also less than the case

shown in Figure 18, the maximum loading is up to 75%.
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Figure 23:Voltage Profile at 50% underload
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Figure 24: Active Power of the entire CIGRE MV SDN for 50% load
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Figure 25:Reactive Power of the entire CIGRE MV SDN for 50% load
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Figure 26: Line Loading at 50% underload

5.2 Power Flow Analysis with PV Injection and no Voltage
Control Action

5.2.1 100 % Loading
Figure 27 presents the voltage profile of all the 15 buses. The voltage profile has improved little
as compared to the one shown in Figure 15. now the limits for voltages are 0.86 p.u. to 1.02
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p.u. which is better than the case of 0.85p.u. to 1.03 p.u. without PV penetration as shown in

Figure 15.

Figure 28 shows how much active power in MW is consumed and supplied to the whole CIGRE
MV SDN. It is visible that now the external grid is supplying less MW i.e. active power as this
is now being taken care of by the power penetration of the solar PVs. This is visible through
the fluctuations of the blue line, which is not smooth and has transients. Previously, the grid

was supplying around 15 MW and now it is supplying 12.5 MW at maximum.

Figure 29 shows how much reactive power is present in the CIGRE MV SDN. The reactive
power that the external grid had is also a bit supported by inverters, but not completely. The
inverters are giving pure active power into the system, and that is power that is minimizing

losses and not this reactive power that is referred to the blue lines fluctuations in Figure 29.

Figure 30 presents how much lines are loaded in terms of percentage. Lines are less loaded for
the time when solar irradiance is available, and PVs are producing. This can be seen through
the falling dips in Figure 30 as compared to Figure 18. Also, now far most buses from

transformer are loaded at a maximum 142% which previously was more than 169%.
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Figure 27: Voltage Profile with PV for 100% load
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Figure 28: Active power in CIGRE MV SDN with PV Penetration and 100% Load
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Figure 29: Reactive power in CIGRE MV SDN with PV Penetration and 100% Load
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Figure 30: Line Loading in CIGRE MV SDN with PV Penetration and 100% Load

5.2.2 150% Loading

Figure 31 presents the voltage profile of all 15 buses when load values are increased 50% more
and the per unit values of voltages have decreased up to 0.75 p.u. which was below 0.75 p.u. as
shown in Figure 19. Figure 32 shows active power in MW in whole CIGRE MV SDN which is
limited to 21 MW by grid instead of 24 MW. This was in the range of 14 to 24 MW as evident
from Figure 20 in case of 50% overloading without PV. Figure 33 shows how much reactive
power is present in the CIGRE MV SDN which is causing the voltage fluctuations upto 0.75
p.u. for buses beyond bus 1 in zone 1 and bus 12 in zone 2 which previously was below 0.75
p.u. the reactive power in the system ranges up to -10 MVVARSs as shown in Figure 21. Figure
34 presents how much line is loaded. According to this figure, lines are although loaded extra
but some loading compensation has been provided by PV as PV is injecting MWs in system.
Now the maximum loading is in the range of 110% to 257%, which was previously 160% to

300% for the loads at the outer nodes as shown in Figure 22.
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Figure 31: Voltage profile with 50% overload and Uncontrolled PV
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Figure 32: Active Power in CIGRE MV SDN with 150% Load and with uncontrolled PV
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Figure 33: Reactive Power of CIGRE MV SDN in 50% Overload with Uncontrolled PV
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Figure 34: Loading of Line for 150% Load with uncontrolled PV

5.2.3 Underloading

In this case, we will have underloading and PV penetration. Here some interesting results can
be observed, as we have underloading condition and PV penetration at the same time. Figure
35 shows voltage profile. In this case the upper limit of voltages is bit more than 1.035 p.u. but
still less than 1.05 p.u. which is our maximum safe allowed voltages in SDN. The lower limit
is 0.978 p.u. which is due to PV penetration compared with results of Figure 23. The active
power consumption and generation for the whole CIGRE MV SDN is represented by Figure

36. It can be seen when solar PV is available, there are instance when whole power demand can
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be met by solar PV. This is the reason why blue line intersects the 0 MW line. This depicts that
main grid does not need to supply and the power needs can be met by solar PVs. Figure 37
shows the reactive power on the CIGRE MV SDN which is in limits of -4.5 MVARs being
supplied by external grid and 0.56 MVARs which the load absorbs. Figure 38 shows line
loading in percentage. Lines are loaded up to 60% as some of the load demands are met by
Solar PV which in the previous case was beyond 75%. The loading of lines decreases when
solar is injecting power into CIGRE MV SDN.
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Figure 35: Voltage profile in underloading condition With PV
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Figure 36: Active power in SDN in underload Case with PV
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Figure 37: Reactive power in SDN in underloading Case with PV
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Figure 38: Line Loadings in SDN in underloading case with PV

5.3 OPF

Here we will see the results when reactive power support is implemented by the distribution
company using the PV inverters. We will again classify the results in 3 cases which are 100%
loading, 50% overload and 50% underload of the loads for the test case. In the results, now

OPF will implement reactive power support to regulate voltages.

5.3.1 100% Load

Figure 39 shows a complete breakdown of the voltage on the 15 buses when OPF is
implemented to regulate the voltages. The voltages are now in range of 0.88 p.u. to 1.02 p.u.
which is better than the results for voltages when no reactive power support is provided from
PVs (0.86 to 1.04 p.u) and when no PVs were injected, which was 0.85p.u. to 1.03 p.u. Figure
40 shows the active power consumption and generation for the whole CIGRE MV SDN. It can
be seen that the power penetration of solar PVs has reduced the number of megawatts (MW)
required from the external grid and is better regulated than in which no control action was
implemented as in Figure 28. Figure 41 suggests the reactive power control action that OPF
implements to regulate voltages. Due to the reactive power flow control, the voltage regulation
is better than the one when no control action was implemented. The inverters which are
controlled by the utility company limits the reactive power flow optimally thus minimizing

losses in system overall. Figure 42 shows line loadings when the OPF is implemented and,
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when closely observed, line loadings are less as when compared to uncontrolled PV injection.

Now maximum line loading is up to 140%.
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Figure 39:Voltage Profile for 100% Load with OPF
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Figure 40: Active power demand and supply with OPF for 100% Load
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Figure 41: Reactive power demand and supply with OPF for 100% Load
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Figure 42: Line loading with OPF for 100% Load case

5.3.2 150% Loading

Figure 43 presents a voltage profile for the case where CIGRE MV SDN is loaded at 150%.
The voltages are in the range of 1.34 p.u. t01.52 p.u. which is a bit more than the case where
no regulated voltage control was implemented i.e., uncontrolled PV injection. In that case, it
was in the range of 0.75 p.u. to 1.03 p.u. Figure 44 shows the active power values in the system
where the supply power is slightly more than in the uncontrolled PV case i.e., up to 13.4 MW.
This is because the external grid is trying to compensate for the demand side’s active power.
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Figure 45 reactive power which is now regulated. And the value of reactive power that gird
supply has reduced from 10 MVARs to 6.8 MVARSs, as it is compensated by regulating PV
inverters. Figure 46 shows the line loading that has now decreased from 260% to 210% in
control PV injection from uncontrolled PV injections into CIGRE MV SDN.
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Figure 43:Voltage profile with OPF for 150% Load
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Figure 44: Active power demand and supply with OPF for 150% Load

Page 60 of 106



0 th Bus Reactive Power in M_watt
1 th Bus Reactive Power in M_watt
2 th Bus Reactive Power in M_watt
3 th Bus Reactive Power in M_watt
4 th Bus Reactive Power in M_watt
5 th Bus Reactive Power in M_watt
6 th Bus Reactive Power in M_watt
7 th Bus Reactive Power in M_watt
8 th Bus Reactive Power in M_watt
9 th Bus Reactive Power in M_watt
10 th Bus Reactive Power in M_watt
11 th Bus Reactive Power in M_watt
12 th Bus Reactive Power in M_watt
13 th Bus Reactive Power in M_watt
14 th Bus Reactive Power in M_watt

Reactive Power in Mvar
|
N
1

T T T T T
0 50 100 150 200 250 300
Time Steps

Figure 45:Reactive power support with OPF for 150% Load
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Figure 46: Line loading with OPF for 150% Load

5.3.3 50% Loading (Under Loading)

In underloading cases, the results are not that significant where one can differentiate regulated
reactive power support to limit voltages and uncontrolled PV injections. This is because our
system is underloaded and does not require that much support to regulate voltages and
overcome line losses and loadings. Figure 47 shows the voltage profile when OPF is
implemented. Figure 48 shows active power in the network. The reactive power is shown in

Figure 49. And Figure 50 shows the line loadings in our system. The results are mostly the
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same with very minute differences, which can be ignored, as discussed in the case of

uncontrolled PV injections.

1.03 A

1.02 A

[y

(=]

fr)
I

Voltage Per Unit
-
o
(=]
1

0.99 1

0.98

0.97 A

"N -

T T T
50 100 150 200
Time Steps

T
250

300

0 th Bus Voltages in Per Unit
1 th Bus Voltages in Per Unit
2 th Bus Voltages in Per Unit
3 th Bus Voltages in Per Unit
4 th Bus Voltages in Per Unit
5 th Bus Voltages in Per Unit
6 th Bus Voltages in Per Unit
7 th Bus Voltages in Per Unit
8 th Bus Voltages in Per Unit
9 th Bus Voltages in Per Unit
10 th Bus Voltages in Per Unit
11 th Bus Voltages in Per Unit
12 th Bus Voltages in Per Unit
13 th Bus Voltages in Per Unit
14 th Bus Voltages in Per Unit

Figure 47:Voltage profile of CIGRE MV SDN with OPF for Underload
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Figure 48: Active power of CIGRE MV SDN with OPF for Underload
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Figure 49: Reactive power of CIGRE MV SDN with OPF for Underload

0 th Bus Line Loading in Percentage
1 th Bus Line Loading in Percentage
2 th Bus Line Loading in Percentage
3 th Bus Line Loading in Percentage
4 th Bus Line Loading in Percentage
5 th Bus Line Loading in Percentage
6 th Bus Line Loading in Percentage
7 th Bus Line Loading in Percentage
8 th Bus Line Loading in Percentage
9 th Bus Line Loading in Percentage
10 th Bus Line Loading in Percentage
11 th Bus Line Loading in Percentage
12 th Bus Line Leading in Percentage
13 th Bus Line Leoading in Percentage
14 th Bus Line Leoading in Percentage

60

50 A

Y
o
1

Percentage
w
(=]
1

[
[=]
1

10 4

T T T T T
0 50 100 150 200 250 300
Time Steps

Figure 50: Line Loading of CIGRE MV SDN with OPF for underload case

5.4 MARL Results

We trained our network to take corrective action that the reactive power. The results generated
in training session are tested on test data [38] and the results discussed here are for test data that
have never being used in training. This makes it a real-world challenging environment where
things are unpredictable. We will see how inverters react to changes that they encounter to
regulate voltage in 3 cases that we are using. We will see the voltage profile, reactive power

support, active power injected in system by the PVs and line losses, which are compensated
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using MARL for our 3 cases. External grid values are not shown here to just focus on the action

and results of PVs only.

5.4.1 Voltage Profiles

Figure 51, Figure 52 and Figure 53 show voltage profiles when PV inverters implemented
corrective action to compensate for reactive power by implementing MARL for 100%, 150%
and 50% loading of the network. For 100% load case, voltages are in range of 0.97 to 1.0287
p.u. when network loads are increased by 50%, voltages are in range of 0.92 p.u. to 1.25 p.u.
and for 50% underload case, voltages fall in limit of 0.995 p.u. to 1.028 p.u. it clearly depicts
better results for voltage regulation than OPF where voltages were in range of 0.88 p.u. to 1.02
p.u. for 100 % load case, 1.34 p.u. to 1.52 p.u. for 150% load, and 0.97 p.u. to 1.035 p.u. for
50% load.
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Figure 51: Voltage profile for 100% loading
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Figure 52: Voltage profile for 150% Load
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Figure 53: Voltage profile for 50% Load

5.4.2 Reactive Power Support

Reactive power that each PV is compensating in system to minimize line losses and to improve
the voltage regulation are shown by Figure 54, Figure 55 and Figure 56. Closely observing
Figure 54, Figure 55 reactive power flow is bit more for 150% case as the system is overload.
The reactive power support of each inverter is up to 0.088 MVARs. In the underloading case,

this is in the range of 0.05 MVARs for both lagging and leading loads. These results are
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individual PV results and not their collective sum. One thing that must be kept in mind that
reactive power compensation is more robust in case of MARL. This is because the DNN layers
of the agents and critics are increased from 2 to 5 and due to that, agents (PV Inverters) acts

more fast to compensate the voltages by adjusting the reactive power in the system.
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Figure 54: Reactive power support for 100% Load
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Figure 55: Reactive power support for 150% Load
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Figure 56:Reactive power support for 50% Load

5.4.3 Active Power Provided by PV

As mentioned in chapter of methodology, the PVs are trained with a limit that they can only
utilize 44% of their ratted power to compensate reactive power flow to regulate voltages. With
this in view, the PV inverters will balance the active power and reactive power themselves and
decide, based on prioritizing their load, how much active power they can inject into the system
accordingly. The active power production for 100% loading, 150 % loading and 50% loading
is shown in Figure 57, Figure 58 and Figure 59. 0.01 shows 100 KW.
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Figure 57: Active power each PV for 100% Load case
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Figure 58: Active power each PV for 150% Load case
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Figure 59: Active power each PV for 50% Load case

5.4.4 Line Losses

Adding PVs not only helps to regulate voltages, but also helps to mitigate transmission and
distribution losses in the lines for system [44]. This becomes clearer when we look at Figure
60, Figure 61 and Figure 62. For 100% loading, losses are up to 12 kW. For 150% loading,
losses are till 30 KW and for underloading, losses are up to 2.5 kW. Keep in mind that these

are the losses between 2 consecutive nodes and in the line connecting those consecutive nodes.
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Figure 60:Line Losses for 100% Loading
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Figure 61: Line Losses for 150% Loading
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Figure 62: Line Losses for 50% Loading

5.5 MARL Comparison with OPF

Reffering to our CIGRE MV SDN, we have node 1 nearest most to grid and node 6 and node 7
far most nodes in zone 1. For zone 2, far most node is node 14. Therefore, it will be reasonable
to compare OPF vs MARL on these nodes to evaluate results much better way. We will compare
the MARL results with OPF on these nodes for our 3 cases. One more thing to keep in account
is that the comparison graphs are generated from 10:30 to 17:40. This is that time range when
the load is maximum. That is why there will be 150 time series values that is, 20 values for 1

hour.

5.5.1 100% Loading

5.5.1.1 Voltage Profiles

The voltage profiles for bus 1, bus 6, bus 7 and bus 14 are shown in Figure 63, Figure 64, Figure
65 and Figure 66 respectively. The blue line shows the OPF results, the green line shows the
MARL results, and the orange line shows voltage values in p.u. when no PV was injected.
MARL has performed better than OPF in regulating voltages for the respective buses.
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Figure 63:Voltage profile without PV, OPF and MARL for Bus 1
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Figure 64: Voltage profile without PV, OPF and MARL for Bus 6
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Figure 65:Voltage profile without PV, OPF and MARL for Bus 7
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Figure 66:Voltage profile without PV, OPF and MARL for Bus 14

5.5.1.2 Reactive Power Support to Regulate Voltages

Here we will see the reactive power support each PV provides to compensate the voltages
within the required range on bus 1, bus 6, bus 7 and bus 14 for 100 % loading condition. We
will compare the results of MARL versus OPF and see how much reactive power support is
provided and how it responded to change in load values so that correct action could be
implemented timely.

Figure 67, Figure 68, Figure 69 and Figure 70 shows corrective action of individual inverters
on bus 1, bus 6, bus 7 and bus 14. The green line show the difference between MARL and OPF,
the orange line shows the behavior of the inverter when MARL is implemented to regulate
voltages by doing vigorous reactive power compensation, and the blue line represents OPF
results. MARL acts much faster, which can be seen through rising and falling steeps in the
MARL curve, while OPF is smooth and not that fast. The max capacity for each inverter is 88
kKVARs or 0.088 MVVARs. This robust response is due to extra layers added in DNN network
during the training and testing which helps the agents to predict and adjust the control more fast

which is not in the case of OPF.
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Figure 67: Reactive Power Support to Regulate Voltages by PV Inverter 1
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Figure 68: Reactive Power Support to Regulate Voltages by PV Inverter 6
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Figure 69: Reactive Power Support to Regulate Voltages by PV Inverter 7
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Figure 70: Reactive Power Support to Regulate Voltages by PV Inverter 14

5.5.1.3 Line Losses

In this section, the results of losses in the line connecting the two consecutive nodes (buses) are
given that stills remain in the line although PV inverter are connected. We will see at line losses
for line 1 connected in between bus 0 and bus 1, on line 6 connected in between bus 5 and bus
6, for line 7 connected in between bus 6 and bus 7, and on line 14 connected in between bus 13
and bus 14 are presented. The blue line shows the losses after OPF, and the orange line shows
the losses after MARL is implemented. Less losses occur in system over all when MARL is
implemented. 0.XX means X.X kW. Due to MARL, there are less loss occur in each line. This

is clear from Figure 71, Figure 72, Figure 73 and Figure 74.
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Figure 71: Line Losses at Bus 1
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Figure 72: Line Losses at Bus 6
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Figure 73: Line Losses at Bus 7
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Figure 74: Line Losses at Bus 14

5.5.2 50% Underloading

5.5.2.1 Voltage Profile

Figure 75, Figure 76, Figure 77 and Figure 78 depict the voltage profiles of buses 1, 6, 7, and
14 correspondingly. The OPF findings are depicted by the blue line, the MARL results by the
green line, and the no-PV injection voltage values by the orange line. When it comes to
maintaining consistent bus voltages, MARL has fared better than OPF as results of MARL tend
to be more toward 1 p.u. despite being in the limit for bus 6, 7 and 14. Also voltage values are
changing less here, and it can be said that it is constant in the case of MARL but the same is
not true in the case of OPF. The OPF values change more vigorously and hence this can be a
setback in providing constant voltages in network which are within the desired range.
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Figure 75: Voltage Profile for 50% Underloading of Bus 1
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Figure 76:Voltage profile for 50% underload of Bus 6
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Figure 77: Voltage profile for 50% Underload of Bus 7
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Figure 78: Voltage profile for 50% Underload of Bus 14

5.5.2.2 Reactive Power Support to Regulate Voltages

Figure 79, Figure 80, Figure 81 and Figure 82 shows the reactive power support by each
inverter. The orange line depicts the inverter's behavior when MARL is used to regulate
voltages by performing robust reactive power compensation, while the blue line displays the
results of OPF. The green line illustrates the difference between MARL and OPF. The abrupt
ups and downs in the MARL curve show how quickly MARL acts, whereas the OPF curve is
flat. Also, the number of VARS each inverter is giving is low as it is self-controlling while the
OPF implementation is done by the grid company. The maximum reactive support provided by
MARL is provided by PV Inverter 7 which is around 0.04 MVARs or 40 kVARs.
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Figure 79: Reactive Power Support in Underloading Condition by PV Inverter at Bus 1

Page 79 of 106



—— B th PV Reactive for OPF
0.020 7 —— 6 th PV Reactive after applying Multi-Agent Reinforcement Learning
—— Difference Between Above 2
0.015 A
.
o
2 0.010 4
0.005 A
0.000 A
T T T T T T T T
o] 20 40 60 80 100 120 140
Time Steps

Figure 80: Reactive Power Support in Underloading Condition by PV Inverter at Bus 6
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Figure 81: Reactive Power Support in Underloading Condition by PV Inverter at Bus 7
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Figure 82: Reactive Power Support in Underloading Condition by PV Inverter at Bus 14

5.5.2.3 Line Losses

The line losses in line 1, line 6, line 7, and line 14 caused by each PV inverter are shown below.
Losses after implementing OPF are shown in blue, and losses after implementing MARL are
shown in orange. When MARL is implemented, system-wide losses decrease. 0.XXX means
X. XX kW. Reduced line losses are a result of MARL. Figure 83, Figure 84, Figure 85 and

Figure 86 make this quite evident.
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Figure 83: Line losses at Bus 1
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Figure 84: Line losses at Bus 6
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Figure 85: Line losses at Bus 7

Page 82 of 106



le-9

—— 14 th line Losses for OPF

2.40 1 V m 14 th line Losses after applying Multi-Agent Reinforcement Learning
4.39 A
4.38
4.37
4.36
4.35

T T T T T T T T

0 20 40 60 80 100 120 140

Time Steps

Figure 86:Line losses at Bus 14

5.5.3 150% Overloading

5.5.3.1 Voltage Profile

Figure 87, Figure 88, Figure 89 and Figure 90 show bus voltage profiles 1, 6, 7, and 14. As this
is Overload case with PV rattings same, we observe some fall in voltage regulation if we go
beyond time of 17:40 but since these results are limited untill time 17:40 until when load is
maximum and solar PV inverters can do production, we will still be in safe voltage limits. The
results of MARL are still in the allowed voltage range, whereas results of OPF are deviating in
buses 6 and bus 7. And, of course, results without controlled PV integration are much worse.
Therefore, we can say that MARL has done better than OPF at maintaining bus voltages around
1 p.u., which is ideal. MARL has a constant voltage, whereas OPF does not. OPF values vary

more quickly.

—— 1 th Bus Voltages for OPF
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Figure 87: Voltage Profile for 50% Overloading of Bus 1
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Figure 88: Voltage Profile for 509% Overloading of Bus 6
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Figure 89: Voltage Profile for 50% Overloading of Bus 7
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Figure 90: Voltage Profile for 50% Overloading of Bus 14
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5.5.3.2 Reactive Power Support

Figure 91, Figure 92, Figure 93 and Figure 94 shows reactive power for the specified PVs on
the specified busses. The orange line shows the inverter's behaviour when MARL regulates
voltages using robust reactive power compensation, whereas the blue line shows the OPF
findings. The green line contrasts MARL with OPF. MARL responds swiftly, whereas the OPF
curve is flat. While the grid company implements OPF, self-controlling inverters compensates
VARSs in a much better way than with OPF. PV Inverter 7 provides the most reactive support
for MARL at 0.04 MVARSs or 40 KVARs. As this is the overloading case, inverter absorbs more
compensating VARSs in the system than in the case of normal loading (100%) and underloading

(in underloading, inverters absorb the least reactive power).
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Figure 91: Reactive power support in overload condition by PV Inverter at Bus 1
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Figure 92: Reactive power support in overload condition by PV Inverter at Bus 6
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Figure 93: Reactive power support in overload condition by PV Inverter at Bus 7
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Figure 94: Reactive power support in overload condition by PV Inverter at Bus 14

5.5.3.3 Line Losses

Each PV inverter's line losses at bus1, bus6, bus7, and bus14 are illustrated below in Figure 95,
Figure 96, Figure 97 and Figure 98. The losses after OPF implementation are blue, whereas
those after MARL implementation are orange. Losses reduce with implementation of MARL,
but since the line is overloaded, so we observe more losses now as compared to normal loading

and underloading. Losses in normal loading are more than in the underloading case.
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Figure 95: Line Losses at Bus 1
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Figure 97: Line Losses at Bus 7
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Figure 98: Line Losses at Bus 14

5.6 Summary of Results

Based on above findings, it can be clearly stated that MARL is a powerful tool in the scenario
where voltage regulation is needed along mitigating losses without spending the additional cost.
This conclusion is evident from Table 9 given below where we can see the difference. The
negative values in active and reactive power are the values which are being supplied in the
CIGRE MV SDN by all sources i.e., PVs and external grid. MARL has clearly overcome the
grid losses and kept the voltages within the range of 0.95 p.u. to 1.05. p.u. with less losses
overall in the grid. Moreover, with the PV inverters, the distribution and transmission
companies will not have to install the extra reactive power compensators to regulate voltages

and this is absolutely maintenance free.

Table 9: Summary Table

Voltage Profile Range in p.u. (see lower

o 0.87 p.uto 1.02 p.u.
limit)

Active Power Range of System in MW

| -14t0 7.5
. see -ve value
Without PV 100 % ( )
Reactive power range in system in
-5101.03
MVARSs (see -ve value)
Loading in % upto 173%
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Voltage Profile Range in p.u. (see lower

o 0.73 p.u.t0 1.0
limit)
Active Power Range of System in MW
-24 10 11.25
150 % (see -ve value)
(o]
Reactive power range in system in
P g Y -12to 2
MVARS (see -ve value)
Loading in % upto 300%
Voltage Profile Range in p.u. (see lower
o 0.96 p.u. to 1.02 p.u.
limit)
Active Power Range of System in MW i
-7to
50 (see -ve value)
0
Reactive power range in system in
-2100.6
MVARSs (see -ve value)
Loading in % upto 75%
Voltage Profile Range in p.u. (see lower
L 0.86 p.u. to 1.017 p.u
limit)
Active Power Range of System in MW
-125t0 6.2
100 % (see -ve value)
0
Reactive power range in system in
-4.8t01.03
MVARSs (see -ve value)
With Loading in % upto 142%
Uncontrolled PV - -
Voltage Profile Range in p.u. (see lower
o 0.75 p.u. to 1.03
limit)
Active Power Range of System in MW
-21t0 7.5
150 % (see -ve value)
(o]
Reactive power range in system in
P 9 Y -10to 2
MVARSs (see -ve value)
Loading in % upto 257%
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Voltage Profile Range in p.u. (see lower
limit)

0.97 p.u. to 1.035 p.u.

Active Power Range of System in MW

-6t02.5
50 o4 (see -ve value)
0
Reactive power range in system in
-1.5t00.56
MVARS (see -ve value)
Loading in % upto 60%
Voltage Profile Range in p.u. (see lower
o 0.88 p.u. to 1.02 p.u.
limit)
Active Power Range of System in MW
-13.41t05.7
100 % (see -ve value)
Reactive power range in system in
-45t01.01
MVARSs (see -ve value)
Loading in % upto 140%
Voltage Profile Range in p.u. (see lower
L. 1.34 p.u.to 1.52 p.u.
limit)
Active Power Range of System in MW
-20to 7.5
OPF 150 % (see -ve value)
Reactive power range in system in
P 9 Y -6.8t02
MVARSs (see -ve value)
Loading in % upto 210 %
Voltage Profile Range in p.u. (see lower
L 0.97 p.u. to 1.035 p.u.
limit)
Active Power Range of System in MW
-6t02.1
50 % (see -ve value)
0
Reactive power range in system in
-1.5t00.56
MVARSs (see -ve value)
Loading in % upto 58%
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MARL

Voltage Profile Range in p.u. (see lower
limit)

0.97 to 1.0287 p.u.

Active Power supply from each individual

. 0to 0,07
100 % PV in MW
(0]
Reactive power range for each individual
. 0.1t00.78
PV in MVARs
Line Losses in MW between 2 nodes upto 12 kW
Voltage Profile Range in p.u. (see lower
o 0.92 p.u. to 1.25 p.u.
limit)
Active Power supply from each individual
. 0to 0.07
150 % PV in MW
0
Reactive power range for each individual
. 0.1t00.88
PV in MVARs
Line Losses in MW between 2 nodes upto 30 kW
Voltage Profile Range in p.u. (see lower
. 0.995 p.u. to 1.028 p.u.
limit)
Active Power supply from each individual
. 0t0 0.07
50 % PV in MW
(0]
Reactive power range for each individual
. - 0.025 t0 0.025
PV in MVARs
Line Losses in MW between 2 nodes upto 2.5 kW

6 Conclusion and Future Work

6.1 Conclusion

This thesis is targeted to answer whether we can implement machine learning approach in
inverter so that they could regulate the voltages by limiting reactive power flow in the system.
The grid operator must maintain the voltages in safe limit for the end consumer and minimize
the losses that occur in the system during the transmission or distribution. Due to this, the

distribution companies also spend extra cost on voltage regulation devices, and they also spend
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their resources in terms of maintenance and operation of these devices. With the integration of
DERs, the voltage control and VARs control devices have become more challenging for grid
operators to regulate.

While the conventional voltage regulation devices have limitations and might not work in an
effective way, machine learning can be used in regulating the voltages and reactive power in
the system. Grid operators without having additional resources for reactive power control to
regulate voltages, can have inverters that utilize MARL for limiting voltages within prescribed
range and can also compensate losses in the system as well. So was the aim of this project to
study whether MARL can be used to regulate voltages, minimize losses, and control reactive
power? Are results more better than conventional approaches? And what are the limitations if
MARL is utilized?

Compared with conventional approaches, MARL is more robust and effective in regulating
voltages. The PV inverters will take self-action to regulate the voltages by absorbing or
injecting VARs into the grid when needed in a fast manner due to DNN layers and the grid
operators will not have to implement the voltage control by them. Moreover, this will liberate
distribution and transmission companies to spend resources on maintenance as this will be the
responsibility of the person having solar PV inverters. The result of MARL clearly depicts when
MARL is implemented, the voltage regulation is better, and the reactive VARS compensation
is faster and more robust. The losses in the lines between the two consecutive loads are less due
to MARL as compared with conventional OPF. The VARs are also controlled in MARL as
MARL set limit on how much reactive power must be absorbed or injected into system along

the active power that will be injected at that time instant.

Based on the foregoing findings, MARL is a powerful instrument for voltage control and loss
mitigation without expense. MARL has reduced grid losses and kept voltages between 0.95 and
1.05. PV inverters also eliminate the need for reactive power compensators to manage voltages

for distribution and transmission companies.
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6.2 Future Work

The aim of this project was to cover as much maximum things that could be covered within

limited scope and limited time. However, there are certain things that could be done for future.

The MARL results have shown that this tool can be used in designing the grids and it is these

results that show that MARL is a perfect tool that could be used by grid operators in planning.

From future perspective, it will be:

interesting to combine the batteries and then simulate it for the 24 hours. As no backup
storage element is there and if we change the rattings of PV system and use more PV
injection, then we will have extra energy for the system that will be produced. Hence in
that case, the network can also use the stored energy but also, the again using inverters
that are implementing MARL, the case study can be carried out to see how reactive
power flow will be controlled and whether voltages are then within specified range or
not?

Interesting to implement it on a real grid with its own data. The data which is being used
here is not of a real distribution network. It will be interesting to carry out this study for
a real distribution or transmission network with its original limitations and modeling
parameters along with load profile of loads connected in that grid and PV irradiance
profile of that area that how much PV can be produced in that area.

Integrate other resources like wind and hydrogen fuel cell. We limited the scope of this
study only for PVs. But with advancement in wind power resources and hydrogen fuel
cell, it will be interested to see how we can use them as the parameter for wind and
hydrogen fuel cell will be different. Their generation profiles will be different.

Use another machine learning tool to see and compare its results. In this way, a study
can be carried out to see which machine learning approach provide more better results

and is better and what will be their limitations.
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APPENDIX A
Agent Code

import torch.nn as nn

class RNNAgent(nn.Module):
def __init_ (self, input_shape, args):
super(RNNAgent, self). __init_ ()
self.args = args

# print("Inside RNNAgent Init Function ")

self.fcl = nn.Linear(input_shape, args.hid_size)
if args.layernorm:
self.layernorm = nn.LayerNorm(args.hid_size)
self.rnn = nn.GRUCell(args.hid_size, args.hid_size)
# self.rn = nn.RNN(args.hid_size, args.hid_size)
self.fc3 = nn.Linear(args.hid_size, args.hid_size)
self.fc4 = nn.Linear(args.hid_size, args.hid_size)
self.fc5 = nn.Linear(args.hid_size, args.hid_size)
self.fc6 = nn.Linear(args.hid_size, args.hid_size)
self.fc2 = nn.Linear(args.hid_size, args.action_dim)
if self.args.hid_activation == 'relu":
self.hid_activation = nn.ReLU()
elif self.args.hid_activation == 'tanh":
self.hid_activation = nn.Tanh()

def init_hidden(self):
# make hidden states on same device as model
return self.fcl.weight.new(1, self.args.agent_num, self.args.hid_size).zero_()

def forward(self, inputs, hidden_state):
# print("changed ")
x = self.fc1(inputs)
if self.args.layernorm:
x = self.layernorm(x)
x = self.hid_activation(x)
h_in = hidden_state.reshape(-1, self.args.hid_size)
h = self.rmn(x, h_in)
hl = self.fc3(h)
h2 = self.fc4(hl)
h3 = self.fc5(h2)
h4 = self.fc6(h3)
a = self.fc2(h4)

return a, None, h
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APPENDIX B
Critic Code

import torch as th
import torch.nn as nn
import torch.nn.functional as F

class MLPCritic(nn.Module):
def __init__ (self, input_shape, output shape, args):
super(MLPCritic, self).__init_ ()
self.args = args

# Easiest to reuse hid_size variable
self.fcl = nn.Linear(input_shape, args.hid_size)

if args.layernorm:
self.layernorm = nn.LayerNorm(args.hid_size)

self.fc2 = nn.Linear(args.hid_size, args.hid_size)
self.fc3 = nn.Linear(args.hid_size, output_shape)
self.fc4 = nn.Linear(args.hid_size, args.hid_size)
self.fc5 = nn.Linear(args.hid_size, args.hid_size)
self.fc6 = nn.Linear(args.hid_size, args.hid_size)
self.fc7 = nn.Linear(args.hid_size, args.hid_size)

if self.args.hid_activation == 'relu":
self.hid_activation = nn.ReLU()

elif self.args.hid_activation == 'tanh".
self.hid_activation = nn.Tanh()

def init_hidden(self):
# make hidden states on same device as model
return self.fcl.weight.new(1, self.args.hid_size).zero ()

def forward(self, inputs, hidden_state):
x = self.fc1(inputs)
if self.args.layernorm:
x = self.layernorm(x)
x = self.hid_activation(x)
h = self.hid_activation(self.fc2(x))
hl = self.fc4(h)
h2 = self.fc5(hl1)
h3 = self.fc6(h2)
h4 = self.fc7(h3)
v = self.fc3(h4)

return v, h
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Appendix C
Algorithm code

import torch as th

import torch.nn as nn

import numpy as np

from utilities.util import select_action
from models.model import Model

from critics.mlp_critic import MLPCritic

class MATD3(Model):
def __init__ (self, args, target_net=None):

super(MATD3, self).__init__(args)

self.construct_model()

self.apply(self.init_weights)

if target_net '= None:
self.target_net = target_net
self.reload_params_to_target()

self.batchnorm = nn.BatchNorm1d(self.args.agent_num).to(self.device)

def construct_value_net(self):
if self.args.agent_id:
input_shape = (self.obs_dim + self.act_dim) * self.n_ + 1 + self.n_
else:
input_shape = (self.obs_dim + self.act_dim) * self.n_ + 1
output_shape = 1
if self.args.shared_params:
self.value_dicts = nn.ModuleList( [ MLPCritic(input_shape, output_shape, self.args) ] )
else:
self.value_dicts = nn.ModuleList( [ MLPCritic(input_shape, output_shape, self.args) for _ in rang

e(self.n) 1)

def construct_model(self):
self.construct_value_net()
self.construct_policy_net()

def value(self, obs, act):
# obs_shape = (b, n, 0)
# act_shape = (b, n, a)
batch_size = obs.size(0)

obs_repeat = obs.unsqueeze(1).repeat(1, self.n_, 1, 1) # shape = (b, n, n, 0)
obs_reshape = obs_repeat.contiguous().view(batch_size, self.n_, -1) # shape = (b, n, n*0)

# add agent id
agent_ids = th.eye(self.n_).unsqueeze(0).repeat(batch_size, 1, 1).to(self.device) # shape = (b, n, n)
if self.args.agent_id:

obs_reshape = th.cat( (obs_reshape, agent ids), dim=-1) # shape = (b, n, n*o+n)

act_repeat = act.unsqueeze(1).repeat(1, self.n_, 1, 1) # shape = (b, n, n, a)
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act_mask_others = agent_ids.unsqueeze(-1) # shape = (b, n, n, 1)
act_mask_i = 1. - act_mask_others

act_i = act_repeat * act_mask_others

act_others = act_repeat * act_mask_i

# detach other agents' actions
act_repeat = act_others.detach() + act_i # shape = (b, n, n, a)

if self.args.shared_params:
obs_reshape = obs_reshape.contiguous().view( batch_size*self.n_, -
1) # shape = (b*n, n*o+n/n*0)
act_reshape = act_repeat.contiguous().view( batch_size*self.n_, -1 ) # shape = (b*n, n*a)
else:
obs_reshape = obs_reshape.contiguous().view( batch_size, self.n_, -
1) # shape = (b, n, n*o+n/n*o)
act_reshape = act_repeat.contiguous().view( batch_size, self.n_, -1 ) # shape = (b, n, n*a)

inputs = th.cat( (obs_reshape, act reshape), dim=-1)

ones = th.ones( inputs.size()[:-1] + (1,), dtype=th.float ).to(self.device)
zeros = th.zeros( inputs.size()[:-1] + (1,), dtype=th.float ).to(self.device)
inputsl = th.cat( (inputs, zeros), dim=-1)

inputs2 = th.cat( (inputs, ones), dim=-1)

if self.args.shared_params:
agent_value = self.value_dicts[0]
valuesl, _ = agent_value(inputsl, None)
values2, _ = agent_value(inputs2, None)
valuesl = valuesl.contiguous().view(batch_size, self.n_, 1)
values2 = values2.contiguous().view(batch_size, self.n_, 1)
else:
valuesl, values2 =[], []
for i, agent_value in enumerate(self.value_dicts):
values_1, = agent_value(inputsl[:, i, :], None)
values_2, _ = agent_value(inputs2[:, i, :], None)
valuesl.append(values_1)
values2.append(values_2)
valuesl = th.stack(valuesl, dim=1)
values2 = th.stack(values2, dim=1)

return th.cat([valuesl, values2], dim=0)

def get_actions(self, obs, status, exploration, actions_avail, target=False, last_hid=None, clip=False):
target_policy = self.target_net.policy if self.args.target else self.policy
if self.args.continuous:
means, log_stds, hiddens = self.policy(obs, last_hid=last_hid) if not target else target_policy(obs,
last_hid=last_hid)
means[actions_avail == 0] = 0.0
log_stds[actions_avail == 0] = 0.0
if means.size(-1) > 1:
means_ = means.sum(dim=1, keepdim=True)
log_stds_ = log_stds.sum(dim=1, keepdim=True)
else:
means_ = means
log_stds_ = log_stds
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actions, log_prob_a = select_action(self.args, means_, status=status, exploration=exploration, info
={clip": clip, 'log_std" log_stds_})
restore_mask = 1. - (actions_avail == 0).to(self.device).float()
restore_actions = restore_mask * actions
action_out = (means, log_stds)
else:
logits, _, hiddens = self.policy(obs, last_hid=last_hid) if not target else target policy(obs, last_hi
d=last_hid)
logits[actions_avail == 0] = -9999999
# this follows the original version of sac: sampling actions
actions, log_prob_a = select_action(self.args, logits, status=status, exploration=exploration)
restore_actions = actions
action_out = logits
return actions, restore_actions, log_prob_a, action_out, hiddens

def get_loss(self, batch):
batch_size = len(batch.state)
state, actions, old_log_prob_a, old_values, old_next_values, rewards, next_state, done, last_step, acti
ons_avail, last_hids, hids = self.unpack_data(batch)

_, actions_pol, log_prob_a, action_out, _ = self.get_actions(state, status="train’', exploration=False, \
actions_avail=actions_avail, target=False, last_hid=last_hids)
# , next_actions, _, , _ = self.get_actions(next_obs, status='train’, exploration=True, actions_avail=

actions_avail, target=True, last_hid=hids)
if self.args.double_q:
_, next_actions, _, , _ = self.get_actions(next_state, status='train', exploration=True, \
actions_avail=actions_avail, target=False, last_hid=hids, clip=True)
else:
_, next_actions, , , _ = self.get_actions(next_state, status='train’, exploration=True, \
actions_avail=actions_avail, target=True, last_hid=hids, clip=True)
compose_pol = self.value(state, actions_pol)
values_pol = compose_pol[:batch_size, :]
values_pol = values_pol.contiguous().view(-1, self.n_)
compose = self.value(state, actions)
valuesl, values2 = compose[:batch_size, :], compose[batch_size:, ]
valuesl = valuesl.contiguous().view(-1, self.n_)
values2 = values2.contiguous().view(-1, self.n_)
next_compose = self.target_net.value(next_state, next actions.detach())
next_valuesl, next_values2 = next_compose[:batch_size, :], next_compose[batch_size:, :]
next_valuesl = next_valuesl.contiguous().view(-1, self.n_)
next_values2 = next_values2.contiguous().view(-1, self.n_)
returns = th.zeros((batch_size, self.n_), dtype=th.float, device=self.device)
assert values_pol.size() == next_valuesl.size() == next_values2.size()
assert returns.size() == valuesl.size() == values2.size()
# update twin values by the minimized target g
done = done.to(self.device)
next_values = th.stack([next_valuesl, next values2], -1)
returns = rewards + self.args.gamma * (1 - done) * th.min(next_values.detach(), -1)[0]
deltasl = returns - valuesl
deltas2 = returns - values2
advantages = values_pol
if self.args.normalize_advantages:
advantages = self.batchnorm(advantages)
policy_loss = - advantages
policy_loss = policy_loss.mean()
value_loss = 0.5 * ( deltasl.pow(2).mean() + deltas2.pow(2).mean() )
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return policy_loss, value_loss, action_out

ANNEX D

After the end cover page
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HHHAHHEEHEEHAEE Mounting the Google Drive ##HHHHHHHHHHHHHHE
from google.colab import drive
drive.mount('/content/drive")

Mounted at /content/drive

HHHEHEHEHEHEHEHEHAA# Changing the Current Directory Path to Cigre_data Folder #it#HttHtHtHHHHEHEHEHEHH
import os
os.chdir("/content/drive/MyDrive/Colab Notebooks/Cigre_data/")

directory_path = "/content/drive/MyDrive/Colab Notebooks/Cigre_data/"

I'pip install tensorboardX

Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Collecting tensorboardX
Downloading tensorboardX-2.6-py2.py3-none-any.whl (114 kB)
114.5/114.5 kB 6.7 MB/s eta 0:00:00
Requirement already satisfied: protobuf<4,>=3.8.0 in /usr/local/lib/python3.10/dist-packages (from tensorboardX) (3.20.3)
Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from tensorboardX) (23.1)
Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from tensorboardX) (1.22.4)
Installing collected packages: tensorboardX
Successfully installed tensorboardX-2.6

Y Installing PandaPower
! pip install pandapower['all']
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tensorboardx 2.6 requires protobuf<4,>=3.8.0, but you have protobuf 4.22.3 which is incompatible. -
Successfully installed click-plugins-1.1.1 cligi-0.7.2 deepdiff-6.3.0 docutils-0.18.1 execnet-1.9.0 fiona-1.9.3 geopandas-0.12.

Ipip install protobuf==3.20.%*

Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Collecting protobuf==3.20.*

Downloading protobuf-3.20.3-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB)
1.1/1.1 MB 27.2 MB/s eta 0:00:00

Installing collected packages: protobuf
Attempting uninstall: protobuf
Found existing installation: protobuf 4.22.3
Uninstalling protobuf-4.22.3:
Successfully uninstalled protobuf-4.22.3

ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the so
ortools 9.6.2534 requires protobuf>=4.21.12, but you have protobuf 3.20.3 which is incompatible.
Successfully installed protobuf-3.20.3

Unzipping Revised Data and Loading the CIGRE Data #it###t####i#
# lunzip Cigre_data_revised.zip

import numpy as np

OPF_Bus_Vmag_cigre = np.load("Cigre_data_revised/OPF_Bus_Vmag_cigre.npy")
OPF_PV_P_cigre = np.load("Cigre_data_revised/OPF_PV_P_cigre.npy")
PV_Q_cigre = np.load("Cigre_data_revised/PV_Q cigre.npy")

print ("Showing the shape of Revised CIGRE Data Provided for PVs Active and Reactive Powers: ", OPF_Bus_Vmag_cigre.shape, "OPF Active Pov

HHEHEHEHE I Taking data just for 9 PVs from the given data for 39 PVs
OPF_PV_P_cigre = np.transpose(OPF_PV_P_cigre)[:,[®,3,6,9,12,15,18,21,24,27,30,33,36]]
PV_Q_cigre = np.transpose(PvV_Q_cigre)[:,[®,3,6,9,12,15,18,21,24,27,30,33,36]]

print ("Showing the shape of Revised CIGRE Data after changing for out Network:
OPF_PV_P_cigre = OPF_PV_P_cigre / 1000000

PV_Q_cigre = PV_Q_cigre / 1000000

OPF_Bus_Vmag_cigre_mv = OPF_Bus_Vmag_cigre / 11000

, "Vmag: ",O0PF_Bus_Vmag_cigre.shape, "OPF Active Power

Showing the shape of Revised CIGRE Data Provided for PVs Active and Reactive Powers: (14, 3, 288) OPF Active Power of PV: (39, 28
Showing the shape of Revised CIGRE Data after changing for out Network: Vmag: (14, 3, 288) OPF Active Power of PV: (288, 13) (28

>
HHEHEHEHEE# Unzipping the Cigre_data.rar and Cigre_data_revised.zip file ##HHHHHHHHHIHEHE

# lunrar x Cigre_data.rar
# lunzip Cigre_data_revised.zip

Installing Machine Learning Libraries
import tensorflow as tf

from tensorflow.keras import Sequential

from tensorflow.keras.layers import Flatten, Dense, Dropout, BatchNormalization
from tensorflow.keras.layers import Conv2D, MaxPool2D

from tensorflow.keras.optimizers import Adam

print(tf.__version_ )

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler, LabelEncoder

Ipip install pydrive

from pydrive.auth import GoogleAuth

from pydrive.drive import GoogleDrive

2.12.0

Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/

Requirement already satisfied: pydrive in /usr/local/lib/python3.10/dist-packages (1.3.1)

Requirement already satisfied: google-api-python-client>=1.2 in /usr/local/lib/python3.10/dist-packages (from pydrive) (2.84.0)
Requirement already satisfied: oauth2client>=4.0.0 in /usr/local/lib/python3.10/dist-packages (from pydrive) (4.1.3)

Requirement already satisfied: PyYAML>=3.0 in /usr/local/lib/python3.10/dist-packages (from pydrive) (6.0)

Requirement already satisfied: uritemplate<5,>=3.0.1 in /usr/local/lib/python3.10/dist-packages (from google-api-python-client>=1.2
Requirement already satisfied: httplib2<ldev,>=0.15.0 in /usr/local/lib/python3.10/dist-packages (from google-api-python-client>=1.
Requirement already satisfied: google-api-core!=2.0.%,!=2.1.%,1=2.,2.%,1=2.3.0,<3.0.0dev,>=1.31.5 in /usr/local/lib/python3.10/dist-
Requirement already satisfied: google-auth<3.0.0dev,>=1.19.0 in /usr/local/lib/python3.10/dist-packages (from google-api-python-cli
Requirement already satisfied: google-auth-httplib2>=0.1.0 in /usr/local/lib/python3.10/dist-packages (from google-api-python-clien
Requirement already satisfied: six>=1.6.1 in /usr/local/lib/python3.10/dist-packages (from oauth2client>=4.0.0->pydrive) (1.16.0)
Requirement already satisfied: rsa>=3.1.4 in /usr/local/lib/python3.10/dist-packages (from oauth2client>=4.0.0->pydrive) (4.9)
Requirement already satisfied: pyasnl-modules>=0.0.5 in /usr/local/lib/python3.10/dist-packages (from oauth2client>=4.0.0->pydrive)
Requirement already satisfied: pyasnl>=0.1.7 in /usr/local/lib/python3.10/dist-packages (from oauth2client>=4.0.0->pydrive) (0.5.0)
Requirement already satisfied: requests<3.0.0dev,>=2.18.0 in /usr/local/lib/python3.10/dist-packages (from google-api-core!=2.0.%,!
Requirement already satisfied: googleapis-common-protos<2.@dev,>=1.56.2 in /usr/local/lib/python3.10/dist-packages (from google-api
Requirement already satisfied: protobuf!=3.20.0,!=3.20.1,!=4.21.0,!=4.21.1,1=4.21.2,1=4.21.3,1=4.21.4,1=4.21.5,<5.0.0dev,>=3.19.5 i
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Importing Few

networks
topology
plotting
converter
estimation
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cachetools<6.0,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from google-auth<3.0.0dev,>=1.19.
pyparsing!=3.0.0,!=3.0.1,!=3.0.2,!=3.0.3,<4,>=2.4.2 in /usr/local/lib/python3.10/dist-packages (from
idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests<3.0.0dev,>=2.18.0->google-api
certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests<3.0.0dev,>=2.18.0->goog
charset-normalizer~=2.0.0 in /usr/local/lib/python3.10/dist-packages (from requests<3.0.0dev,>=2.18.
urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests<3.0.0dev,>=2.18.0->g

PandaPower Libraries for Making CIGRE Network other Functions like OPF ####tH# i #HH#H1

from pandapower.plotting.plotly import simple_plotly
from pandapower.networks import mv_oberrhein
import pandapower.networks as pn

import pandapower

as pp

HHHHEH Y Reading all the load profiles directory paths from single phase load data directory #it#t#t########

import numpy as n
import pandas as
import glob

p
pd

# import pandapower.control as control

from pandapower.control.controller.const_control import ConstControl
import pandapower.networks as nw
import pandapower.timeseries as timeseries

from pandapower.timeseries import DFData

# from pandapower.timeseries.data_sources.frame_data import DFData

# number of time
n_ts = 288

steps

all_loads_directory_path = "{}single phase load data/".format(directory_path)
glob.glob('{}/*.csv'.format(all_loads_directory_path) )
total_loads = len(all_load_profiles_paths)

all_load_profiles

_paths

Loading the p_mw data from the excel data provided for loads #i#Ht#HHHHtHHtHH#HHHT

load_data_P_values_df = pd.read_csv("{}single phase load data/load_profile_1_PQ.csv".format(directory_path))

load_data_P_values_df.rename(columns={'P"': 'P_1'}, inplace=True)
load_data_P_values_df = load_data_P_values_df[['Bl','P_1"]]
load_data_P_values_df.rename(columns={"'B1': 'time_steps'}, inplace=True)

load_data_P_values_df[ 'time_steps'] = range(288)
load_numbers = [4,7,10,13,16,19,22,25,28,31,34,37]

for i in load_num

bers:

# load your timeseries from a file (here csv file)
df_tmp = pd.read_csv("{}single phase load data/load_profile_{}_PQ.csv".format(directory_path, (i)))

df_tmp.rename(columns={"P"':

'"P_{}'.format(i)}, inplace=True)

# Place the DataFrames side by side
tmp_horizontal_stack = pd.concat([load_data_P_values_df, df_tmp[['P_{}'.format(i)]]], axis=1)
load_data_P_values_df = tmp_horizontal_stack

Loading the q_var data from the excel data provided for loads #itHHHHHHHHHHHE

load_data_Q_values_df = pd.read_csv("{}single phase load data/load_profile_1_PQ.csv".format(directory_path))
load_data_Q_values_df.rename(columns={'Q"': 'Q_1'}, inplace=True)

load_data_Q_values_df = load_data_Q_values_df[['B1','Q_1']]

load_data_Q_values_df.rename(columns={"'Bl"': 'time_steps'}, inplace=True)

load_data_Q values_df['time_steps'] = range(288)

load_numbers = [4,7,10,13,16,19,22,25,28,31,34,37]

for i in load_numbers:
# load your timeseries from a file (here csv file)
df_tmp = pd.read_csv("{}single phase load data/load_profile_{}_PQ.csv".format(directory_path, (i)))

df_tmp.rename(columns={'Q":

'Q_{}'.format(i)}, inplace=True)

# Place the DataFrames side by side
tmp_horizontal_stack = pd.concat([load_data_Q_values_df, df_tmp[['Q_{}'.format(i)]]], axis=1)
load_data_Q_values_df = tmp_horizontal_stack

AR Shaowing DataFrame of Concatenated Loaded Data with P Values

load_data_P_value

s_df

https://colab.research.google.com/drive/1FNVdWLpcJ9g72ckfsTgDzQ3_tulESEHh?usp=sharing#printMode=true 3/70
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A Converting Load P values into MVAR
load_prof_names_P = list(load_data_P_values_df.columns[1:])

load_data_P_values_df [load_prof_names_P] = load_data_P_values_df [load_prof_names_P].div(1000)
load_data_P_values_df

https://colab.research.google.com/drive/1FNVdWLpcJ9g72ckfsTgDzQ3_tulESEHh?usp=sharing#printMode=true 5/70
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AR Shaowing DataFrame of Concatenated Loads Data with Q Values
load_data_Q_values_df
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A Converting Load Q values into MVAR
load_prof_names_Q = list(load_data_Q_values_df.columns[1:])

load_data_Q values_df [load_prof_names_Q] = load_data_Q values_df [load_prof_names_Q].div(1000)
load_data_Q_values_df
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0.922515
0.925346
0.928049
0.930620
0.933057
0.935358
0.937519
0.939538
0.941415
0.943146
0.944731
0.946168
0.947456
0.948595
0.949583
0.950422
0.951110
0.951648
0.952037
0.952278
0.952370
0.952317
0.952118
0.951776
0.951293
0.950671
0.949912
0.949019
0.947995
0.946843
0.945566
0.944168
0.942652
0.941023
0.939284
0.937439
0.935494
0.933453
0.931320
0.929100
0.926799
0.924422
0.921974
0.919461
0.916888

0.914261

Q4
0.030375
0.030482
0.030584
0.030682
0.030776
0.030866
0.030952
0.031033
0.031109
0.031181
0.031249
0.031311
0.031368
0.031421
0.031469
0.031512
0.031550
0.031583
0.031610
0.031633
0.031651
0.031664
0.031672
0.031675
0.031674
0.031667
0.031656
0.031639
0.031619
0.031594
0.031564
0.031530
0.031491
0.031449
0.031402
0.031352
0.031298
0.031240
0.031179
0.031114
0.031046
0.030975
0.030901
0.030825
0.030746
0.030664
0.030581
0.030495

0.030408
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Q7
0.024300
0.024385
0.024467
0.024546
0.024621
0.024693
0.024762
0.024826
0.024888
0.024945
0.024999
0.025049
0.025095
0.025137
0.025175
0.025209
0.025240
0.025266
0.025288
0.025307
0.025321
0.025331
0.025338
0.025340
0.025339
0.025334
0.025324
0.025312
0.025295
0.025275
0.025251
0.025224
0.025193
0.025159
0.025122
0.025082
0.025038
0.024992
0.024943
0.024891
0.024837
0.024780
0.024721
0.024660
0.024597
0.024531
0.024465
0.024396

0.024326

Q_10
0.041176
0.041320
0.041458
0.041592
0.041719
0.041841
0.041957
0.042067
0.042171
0.042268
0.042359
0.042444
0.042522
0.042593
0.042658
0.042716
0.042767
0.042812
0.042850
0.042881
0.042905
0.042923
0.042933
0.042938
0.042935
0.042926
0.042911
0.042889
0.042861
0.042827
0.042787
0.042740
0.042688
0.042631
0.042568
0.042499
0.042426
0.042348
0.042264
0.042177
0.042085
0.041989
0.041888
0.041785
0.041678
0.041567
0.041454
0.041338

0.041219

Q13
0.031050
0.031159
0.031264
0.031364
0.031460
0.031552
0.031640
0.031723
0.031801
0.031874
0.031943
0.032007
0.032066
0.032119
0.032168
0.032212
0.032251
0.032284
0.032313
0.032336
0.032355
0.032368
0.032376
0.032379
0.032377
0.032371
0.032359
0.032343
0.032321
0.032296
0.032265
0.032230
0.032191
0.032148
0.032100
0.032049
0.031993
0.031934
0.031872
0.031805
0.031736
0.031663
0.031588
0.031510
0.031429
0.031346
0.031260
0.031173

0.031084

Q16
0.006075
0.006096
0.006117
0.006136
0.006155
0.006173
0.006190
0.006207
0.006222
0.006236
0.006250
0.006262
0.006274
0.006284
0.006294
0.006302
0.006310
0.006317
0.006322
0.006327
0.006330
0.006333
0.006334
0.006335
0.006335
0.006333
0.006331
0.006328
0.006324
0.006319
0.006313
0.006306
0.006298
0.006290
0.006280
0.006270
0.006260
0.006248
0.006236
0.006223
0.006209
0.006195
0.006180
0.006165
0.006149
0.006133
0.006116
0.006099

0.006082

Q19
0.033075
0.033191
0.033303
0.033410
0.033512
0.033610
0.033703
0.033791
0.033875
0.033953
0.034026
0.034094
0.034157
0.034214
0.034266
0.034313
0.034354
0.034390
0.034420
0.034445
0.034465
0.034479
0.034488
0.034491
0.034489
0.034482
0.034469
0.034452
0.034429
0.034402
0.034369
0.034332
0.034291
0.034244
0.034194
0.034139
0.034080
0.034017
0.033950
0.033880
0.033806
0.033729
0.033648
0.033565
0.033479
0.033390
0.033299
0.033206

0.033111

Q22
0.079651
0.079930
0.080198
0.080456
0.080703
0.080938
0.081163
0.081375
0.081576
0.081764
0.081941
0.082104
0.082255
0.082393
0.082519
0.082631
0.082730
0.082817
0.082890
0.082950
0.082997
0.083031
0.083052
0.083060
0.083055
0.083038
0.083008
0.082966
0.082911
0.082845
0.082767
0.082678
0.082578
0.082466
0.082344
0.082212
0.082070
0.081918
0.081757
0.081588
0.081410
0.081224
0.081030
0.080829
0.080622
0.080409
0.080189
0.079965

0.079736

Q25
0.031050
0.031159
0.031264
0.031364
0.031460
0.031552
0.031640
0.031723
0.031801
0.031874
0.031943
0.032007
0.032066
0.032119
0.032168
0.032212
0.032251
0.032284
0.032313
0.032336
0.032355
0.032368
0.032376
0.032379
0.032377
0.032371
0.032359
0.032343
0.032321
0.032296
0.032265
0.032230
0.032191
0.032148
0.032100
0.032049
0.031993
0.031934
0.031872
0.031805
0.031736
0.031663
0.031588
0.031510
0.031429
0.031346
0.031260
0.031173

0.031084

https://colab.research.google.com/drive/1FNVdWLpcJ9g72ckfsTgDzQ3_tulESEHh?usp=sharing#printMode=true

Q28
0.018900
0.018966
0.019030
0.019091
0.019150
0.019206
0.019259
0.019309
0.019357
0.019402
0.019444
0.019482
0.019518
0.019551
0.019581
0.019607
0.019631
0.019651
0.019669
0.019683
0.019694
0.019702
0.019707
0.019709
0.019708
0.019704
0.019697
0.019687
0.019674
0.019658
0.019640
0.019619
0.019595
0.019568
0.019539
0.019508
0.019474
0.019438
0.019400
0.019360
0.019318
0.019273
0.019227
0.019180
0.019131
0.019080
0.019028
0.018975

0.018920

Q31
0.921388
0.924611
0.927715
0.930697
0.933553
0.936280
0.938874
0.941333
0.943653
0.945834
0.947871
0.949764
0.951511
0.953110
0.954559
0.955859
0.957008
0.958005
0.958851
0.959546
0.960089
0.960481
0.960724
0.960817
0.960763
0.960562
0.960218
0.959730
0.959102
0.958337
0.957436
0.956403
0.955240
0.953952
0.952542
0.951013
0.949369
0.947614
0.945754
0.943791
0.941732
0.939580
0.937341
0.935019
0.932621
0.930151
0.927616
0.925020

0.922369

Qo
0.0047:
0.0047:
0.0047¢
0.0047:
0.0047¢
0.0048(
0.0048°
0.0048:
0.0048!
0.0048¢
0.0048¢
0.0048'
0.0048¢
0.0048¢
0.0048¢
0.0049(
0.0049(
0.0049°
0.0049°
0.0049:
0.0049:
0.0049:
0.0049:
0.0049:
0.0049:
0.0049:
0.0049:
0.0049:
0.0049°
0.0049°
0.0049
0.0049(
0.0048¢
0.0048¢
0.0048¢
0.00487
0.0048¢
0.0048¢
0.0048!
0.0048¢
0.0048:
0.0048°
0.0048(
0.0047¢
0.0047¢
0.0047:
0.0047¢
0.0047¢

0.0047¢
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AR Showing CIGRE Network without DERS and default setting or values provided by PandaPower Library #i#HHH####
net = pn.create_cigre_network_mv(with_der="pv_wind")

# net = pn.create_cigre_network_mv(with_der=False )

simple_plotly(net)

m— |ines

=== disconnected branches

([ ]
\ w2 \\/ transformers

external grid

@ buses

HHHHEHA A Showing ALl Buses Details of the CIGRE Network #it#t#t#t#t#####

net.bus

name vn_kv type zone in_service
0 Bus0 110.0 b CIGRE_MV True
1 Bus 1 20.0 b CIGRE_MV True
2 Bus 2 20.0 b CIGRE_MV True
3 Bus3  20.0 b CIGRE_MV True
4 Bus4  20.0 b CIGRE_MV True
5 Bus5 20.0 b CIGRE_MV True
6 Bus6  20.0 b CIGRE_MV True
7 Bus7  20.0 b CIGRE_MV True
8 Bus8  20.0 b CIGRE_MV True
9 Bus9  20.0 b CIGRE_MV True
10 Bus10 20.0 b CIGRE_MV True
11 Bus 11 20.0 b CIGRE_MV True
12 Bus12 20.0 b CIGRE_MV True
13 Bus13  20.0 b CIGRE_MV True
14 Bus14  20.0 b CIGRE_MV True

A Updating the Zone of all 15 Busses to 2 Zones
zones_name = "main", "zonel", "zonel", "zonel", "zonel", "zonel", "zonel", "zonel",
"zonel", "zonel", "zonel", "zonel", "zone2", "zone2", "zone2" ]

for i, tmp_zone in enumerate(zones_name):

https://colab.research.google.com/drive/1FNVdWLpcJ9g72ckfsTgDzQ3_tulESEHh?usp=sharing#printMode=true 11/70
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net.bus.iat[i,3] = tmp_zone

net.bus

10
1
12
13
14

(XTI

name vn_kv type

zone in_service

Aizaz-code-MARL-Implementations-for-CIGRE .ipynb - Colaboratory

Bus0 110.0 b main True
Bus 1 20.0 b zone1 True
Bus 2 20.0 b zone1 True
Bus 3 20.0 b zone1 True
Bus4  20.0 b zone1 True
Bus 5 20.0 b zone1 True
Bus 6 20.0 b zone1 True
Bus7 20.0 b zone1 True
Bus 8 20.0 b zone1 True
Bus 9 20.0 b zone1 True
Bus10  20.0 b zone1 True
Bus 11 20.0 b zone1 True
Bus 12 20.0 b zone2 True
Bus 13 20.0 b zone2 True
Bus 14 20.0 b zone2 True
111 UL 11901 U.UOUOO T U.UZ42U4 V.U 11D

V.UV IUUU  U.UUUUUU

v.voousr

U.UIJUOO0 V.UV IUUU U.UI0OIZ&

HHHHHE A Showing ALl Default Load Details of the CIGRE Network ##tt##########

net.load

10
1
12
13
14
15
16
17

139

name bus
Load R1 1
Load R3 3
Load R4 4
Load R5 5
Load R6 6
Load R8 8
Load R10 10
Load R11 11
Load R12 12
Load R14 14
Load CI1 1
Load CI3 3
Load CI7 7
Load CI9 9
Load CI10 10
Load Cl12 12
Load CI13 13
Load Cl14 14
139

p_mw
14.99400
0.27645
0.43165
0.72750
0.54805
0.58685
0.47530
0.32980
14.99400
0.20855
4.84500
0.22525
0.07650
0.57375
0.06800
5.01600
0.03400

0.33150

q_mvar const_z_percent

3.044662
0.069285
0.108182
0.182329
0.137354
0.147078
0.119121
0.082656
3.044662
0.052268
1.592474
0.139597
0.047410
0.355578
0.042143
1.648679
0.021071

0.205445

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

1.046246 0.034798 0.027838 0.047170 0.035571

#iH##H###H Dropping the Extra Load on Busses #i#t##t#it#it#H##HH#
# net.load.drop(net.load.index, inplace=True)
net.load.drop([10,11,14,15,17], inplace=True)

net.load

https://colab.research.google.com/drive/1FNVdWLpcJ9g72ckfsTgDzQ3_tulESEHh?usp=sharing#printMode=true

const_i_percent
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

sn_mva scaling in_service

15.300
0.285
0.445
0.750
0.565
0.605
0.490
0.340

15.300
0.215
5.100
0.265
0.090
0.675
0.080
5.280
0.040

0.390

0.006960 0.037891

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

0.091247 0.035571

True
True
True
True
True
True
True
True
True
True
True
True
True
True
True
True
True

True

type
wye
wye
wye
wye
wye
wye
wye
wye
wye
wye
wye

wye

wye
wye
wye
wye

wye

0.021652

V.JLUULY  U.UUST

1.065526 0.0054
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name bus p_mw
0 Load R1 1 14.99400
1 Load R3 3 0.27645
2 Load R4 4 0.43165
3 Load R5 5 0.72750
4 Load R6 6  0.54805
5 Load R8 8 0.58685
6 LoadR10 10 0.47530
7 LoadR11 11  0.32980
8 LoadR12 12 14.99400

AR Updating the combined

load_active_power_combined = [19.839, ©.5017, 0.43165,

q_mvar
3.044662
0.069285
0.108182
0.182329
0.137354
0.147078
0.119121
0.082656

3.044662

Load Active, Reactive and Apparent Power at all 13 Busses Loads
0.72750, 0.54805, 0.58685,

Aizaz-code-MARL-Implementations-for-CIGRE .ipynb - Colaboratory

const_z_percent

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

for i, tmp_load_active in enumerate(load_active_power_combined):
net.load.iat[i,2] = tmp_load_active

for i, tmp_load_reactive in enumerate(load_reactive_power_combined):

net.load.iat[i,3] = tmp_load_reactive

for i, tmp_load_apparent in enumerate(load_apparent_power_combined):

net.load.iat[i,6] = tmp_load_apparent

net.load

name bus p_mw q_mvar const_z_percent
0 Load R1 1 19.83900 4.637136 0.0
1 Load R3 3 0.50170 0.208882 0.0
2 Load R4 4 0.43165 0.108182 0.0
3 Load R5 5 0.72750 0.182329 0.0
4 Load R6 6 0.54805 0.137354 0.0
5 Load R8 8 0.58685 0.147078 0.0
6 LoadR10 10 0.54330 0.161264 0.0
7 LoadR11 11  0.32980 0.082656 0.0
8 LoadR12 12 20.01000 4.693341 0.0
9 LoadR14 14 0.54005 0.257713 0.0
12 Load CI7 7 0.07650 0.047410 0.0
13  Load CI9 9 0.57375 0.355578 0.0
16 Load CI13 13  0.03400 0.021071 0.0
183 183 1.236122 0.041113 0.032890 0.055731

net.sgen

name bus p_mw q_mvar
0 PV 3 3 0.02 0.0
1 PV 4 4 0.02 0.0
2 PV 5 5 0.03 0.0
3 PV 6 6 0.03 0.0
4 PV 8 8 0.03 0.0
5 PV 9 9 0.03 0.0
6 PV10 10 0.04 0.0
7 PV11T 11 0.01 0.0
8 WKA7 7 150 0.0

sn_mva

0.02

scaling in_service

1.0

True
True
True
True
True
True
True
True

True

H#itHHE Dropping the Extra sgen on Busses ##ftit#Ht#
# net.load.drop(net.load.index, inplace=True)

https://colab.research.google.com/drive/1FNVdWLpcJ9g72ckfsTgDzQ3_tulESEHh?usp=sharing#printMode=true

const_i_percent

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

const_i_percent

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0

sn_mva scaling in_service type

15.300
0.285
0.445
0.750
0.565
0.605
0.490
0.340

15.300

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

True
True
True
True
True
True
True
True

True

wye
wye
wye
wye
wye
wye
wye
wye

WY€ ~rui

[N EY N PR VAVIVIVIV]

0.5433, 0.32980, 20.01, 0.54005, 0.07650, 0.5737°
load_reactive_power_combined = [4.637136, 0.208882, ©.108182, ©.182329, 6.137354, 0.147078, 0.161264, 0.082656, 4.693341, 6.257713, 0.04]
load_apparent_power_combined = [20.4, ©.550, ©.445, .75, 0.565, 0.605, 0.570, 0.340, 20.580, 0.605, 0.090, 0.675, 0.040]

sn_mva scaling in_service

20.400
0.550
0.445
0.750
0.565
0.605
0.570
0.340

20.580
0.605
0.090
0.675

0.040

type current_source

PV

PV

PV

PV

PV

PV

PV

PV

wpP

True
True
True
True
True
True
True
True

True

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

1.0

True
True
True
True
True
True
True
True
True
True
True
True

True

type
wye
wye

wye

wye
wye
wye
wye
wye
wye
wye
wye

wye

0.042026 0.008223 0.044767 0107807 0.042026 0.025581
HtHEEHEEHEEHE Showing default data for all the DERs attached to the CIGRE Network #it###t#t######

1.247085 0.0063¢

13/70



5/20/23, 1:34 PM Aizaz-code-MARL-Implementations-for-CIGRE .ipynb - Colaboratory

net.sgen.drop([8], inplace=True)

net.sgen

name bus p_mw g_mvar sn_mva scaling in_service type current_source
0 PV3 3 0.02 0.0 0.02 1.0 True PV True
1 PV4 4 0.02 0.0 0.02 1.0 True PV True
2 PV5 5 0.03 0.0 0.03 1.0 True PV True
3 PV6 6 0.03 0.0 0.03 1.0 True PV True
4 PV8 8 0.03 0.0 0.03 1.0 True PV True
5 PV9 9 0.03 0.0 0.03 1.0 True PV True
6 PV10 10 0.04 0.0 0.04 1.0 True PV True
7 PV11T 11 0.01 0.0 0.01 1.0 True PV True
ziv L1V 1100111 U.UO0OI4  U.UOUUJY  U.UVLZU IO  U.UOYLLI  U.WUIUID U.U41100 U.IUUUZY  U.UJYLLI  U.ULOO! I

H#iHHHEHEE Creating New PVs on Each Bus ###H#HH#HHEHEH I

pp.create_sgen(net, 1, p_mw=0.02, q_mvar=0.0, sn_mva=0.02, name='PV 1', type="PV")
pp.create_sgen(net, 7, p_mw=0.02, gq_mvar=0.0, sn_mva=0.02, name='PV 7', type="PV")
pp.create_sgen(net, 12, p_mw=0.02, g_mvar=0.0, sn_mva=0.02, name='PV 12', type="PV")
pp.create_sgen(net, 13, p_mw=0.02, g_mvar=0.0, sn_mva=0.02, name='PV 13', type="PV")
pp.create_sgen(net, 14, p_mw=0.02, g_mvar=0.0, sn_mva=0.02, name='PV 14', type="PV")

net.sgen
name bus p_mw q_mvar sn_mva scaling in_service type current_source

0 PV 3 3 0.02 0.0 0.02 1.0 True PV True
1 PV 4 4 0.02 0.0 0.02 1.0 True PV True
2 PV 5 5 0.03 0.0 0.03 1.0 True PV True
3 PV 6 6 0.03 0.0 0.03 1.0 True PV True
4 PV8 8 0.03 0.0 0.03 1.0 True PV True
5 PV 9 9 0.03 0.0 0.03 1.0 True PV True
6 PV10 10 0.04 0.0 0.04 1.0 True PV True
7 PV11 11 0.01 0.0 0.01 1.0 True PV True
8 PV 1 1 0.02 0.0 0.02 1.0 True PV True
9 PV 7 7 0.02 0.0 0.02 1.0 True PV True
10 PV12 12 0.02 0.0 0.02 1.0 True PV True
1 PV13 13 0.02 0.0 0.02 1.0 True PV True
12 PV14 14 0.02 0.0 0.02 1.0 True PV True
229 2292 N 002042 N N2AANEQA N NIRAAT7 N NAAQ1D N N2A702 N NNRR12 N N2RQQ7 N NARRAR N N2A702 N NINE7N

HHHHEH Updating the Zone Names of all 13 sgen

sgen_zones_name = ["zonel", "zonel", "zonel", "zonel", "zonel", "zonel", "zonel",

"zonel", "zonel", "zonel", "zone2", "zone2", "zone2", ]

for i, tmp_zone in enumerate(sgen_zones_name):
net.sgen.iat[i,0] = tmp_zone

net.sgen

https://colab.research.google.com/drive/1FNVdWLpcJ9g72ckfsTgDzQ3_tulESEHh?usp=sharing#printMode=true
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name bus p_mw q_mvar sn_mva scaling in_service type current_source

0 zonel 3 0.02 0.0 0.02 1.0 True PV True
1 zonel 4 0.02 0.0 0.02 1.0 True PV True
2 zonel 5 0.03 0.0 0.03 1.0 True PV True ... ..o .. . e e e ie—e e mee e

HHHAHHEEHEEHHAE show switch table
net.switch

bus element et type closed name z_ohm in_ka

0 6 12 | LBS True None 0.0 NaN
1 7 12 | LBS False S2 0.0 NaN
2 4 13 | LBS False S3 0.0 NaN
3 N 13 | LBS True None 0.0 NaN
4 8 14 | LBS False S1 0.0 NaN
5 14 14 | LBS True None 0.0 NaN
6 0 0 t CB True None 0.0 NaN
7 0 1 t CB True None 0.0 NaN
o4 £04 U.I1O11D U.ULDI 1D U.UZUDIZ U.UDHODY  U.ULZDZO/ U.UUD 140 U.UZOUUI U.UD/401  U.UZDZO! U.UIDUUI  U.fOUUDD  U.UU4UL

#HFHHHEEE show 1ine table #HHHHHHHHEHEHEHIHE

net.line
name std_type from_bus to_bus length_km r_ohm_per_km x_ohm_per_km c_nf_per_km g_us_per_km max_i_ka df parall
0 L;rlg CABLE_CIGRE_MV 1 2 2.82 0.501 0.716 151.17490 0.0 0.145 1.0
1 Lizljg CABLE_CIGRE_MV 2 3 4.42 0.501 0.716 151.17490 0.0 0.145 1.0
2 L:i;i CABLE_CIGRE_MV 3 4 0.61 0.501 0.716 151.17490 0.0 0.145 1.0
3 L‘iﬂg CABLE_CIGRE_MV 4 5 0.56 0.501 0.716 151.17490 0.0 0.145 1.0
4 Lisrjg CABLE_CIGRE_MV 5 6 1.54 0.501 0.716 151.17490 0.0 0.145 1.0
5 Li;lz CABLE_CIGRE_MV 7 8 1.67 0.501 0.716 151.17490 0.0 0.145 1.0
6 Liarlg CABLE_CIGRE_MV 8 9 0.32 0.501 0.716 151.17490 0.0 0.145 1.0
7 Ig'_”;g CABLE_CIGRE_MV 9 10 0.77 0.501 0.716 151.17490 0.0 0.145 1.0
Line
8 10- CABLE_CIGRE_MV 10 1 0.33 0.501 0.716 151.17490 0.0 0.145 1.0
1
>
283 283 0.722560 0.024032 0.019226 0.032577 0.024566 0.004806 0.026168 0.063017 0.024566 0.014953 0.728968 0.0037¢

H#HHHHEEHEEHEE show external grid table
net.ext_grid

name bus vm_pu va_degree slack_weight in_service s_sc_max_mva s_sc_min_mva rx_min rx_max

0 None 0 1.03 0.0 1.0 True 5000.0 5000.0 0.1 0.1

show transformer table ##t#HiH#HH#IH

net.trafo

name std_type hv_bus 1lv_bus sn_mva vn_hv_kv vn_lv_kv vk_percent vkr_percent pfe_kw 1i@_percent shift_degree tap_side

Trafo

0-1 None 0 1 25.0 110.0 20.0 12.00107 0.16 0.0 0.0 30.0 None
Trafo

1 0-12 None 0 12 25.0 110.0 20.0 12.00107 0.16 0.0 0.0 30.0 None

>

HHHHEHE A Setting Transformer New Parameters #####HH#HH#H#H#H

net.trafo.pfe_kw = 14
net.trafo.i@_percent = 0.07

https://colab.research.google.com/drive/1FNVdWLpcJ9g72ckfsTgDzQ3_tulESEHh?usp=sharing#printMode=true 15/70
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net.trafo.shift_degree = 0
net.trafo.tap_neutral = @
net.trafo.vkr_percent= 0.41
net.trafo.tap_min = 0.9
net.trafo.tap_max= 1.1
net.trafo.tap_step_percent= 1.5
net.trafo.tap_step_degree= 0

net.trafo.tap_side = "hv"
net.trafo.parallel =1
net.trafo

name std_type hv_bus 1v_bus sn_mva vn_hv_kv vn_lv_kv vk_percent vkr_percent pfe_kw i@_percent shift_degree tap_side

0 Trgf:’ None 0 1 250 110.0 200  12.00107 0.41 14 0.07 0 hv
1 Tor_a1fg None 0 12 250 110.0 200  12.00107 0.41 14 0.07 0 hv
4

H#HHHEHEE Showing CIGRE Network Parameters ##ft#Ht##H#
simple_plotly(net)

# print(net)

m—— |ines
Y === disconnected branches
/ \ == 2\ transformers
external grid

@® buses

Saving the Network to an Absolute Path for latter use in Re-inforcement Learning Training

pp.to_pickle(net, "/content/drive/MyDrive/Colab Notebooks/Cigre_data/mapdn-github/MAPDN/environments/var_voltage_control/data/case_CIGRE_

H#itHEHEEE Runing the simple Power Flow One time for the Values set for the complete network #iHf###H##HH###H#I##
net.line["max_loading_percent"] = 100

pp.runpp(net, verbose=True)

A Showing Results of Power Flow for All Buses Powers #ittHt#Hi it
net.res_bus

https://colab.research.google.com/drive/1FNVdWLpcJ9g72ckfsTgDzQ3_tulESEHh?usp=sharing#printMode=true 16/70
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p_mw
-44.848975
19.819000
0.000000
0.481700
0.411650
0.697500
0.518050
0.056500
0.556850
0.543750
0.503300
0.319800
19.990000
0.014000

0.520050

vm_pu va_degree
0 1.030000  0.000000
1 0.989824 -6.461371
2 0.966990 -7.442813
3 0.931272 -9.055301
4 0929477 -9.153457
5 0.928247 -9.221051
6 0.926809 -9.300632
7 0.925713 -9.289575
8 0.925950 -9.283014
9 0.925003 -9.320075
10 0.923808 -9.381632
11 0.923619 -9.392318
12 0.998087 -5.453648
13 0.993509 -5.494631
14 0.990808 -5.521225
net.sgen.controllable = True
net.sgen.min_p_mw = -0.440
net.sgen.max_p_mw = 0.440
net.sgen.min_qg_mvar = -0.440
net.sgen.max_qg_mvar = 0.440
net.bus.min_vm_pu = 0.95
net.bus.max_vm_pu = 1.05

net.
.trafo.max_loading_percen

net

line.max_loading_percent

Aizaz-code-MARL-Implementations-for-CIGRE .ipynb - Colaboratory

q_mvar
-16.275703
4.637136
0.000000
0.208882
0.108182
0.182329
0.137354
0.047410
0.147078
0.355578
0.161264
0.082656
4.693341
0.021071
0.257713

Setting the constraints for the Optimal Power Flow Analysis ##t#HtHHHEHEHHHH

100
100

HHEHEHEHEEHEA# Runing OPF with above constraints #if##H##
pp.runopp(net)

WARNING: pandapower.opf.make_objective:no costs are given - overall generated power is minimized

net.res_line

https://colab.research.google.com/drive/1FNVdWLpcJ9g72ckfsTgDzQ3_tulESEHh?usp=sharing#printMode=true
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p_from_mw q_from_mvar p_to_mw q_to_mvar pl_mw ql_mvar i_from_ka i_to_ka i_ka wvm_from_pu va_fr
7.465060e-
0 4.296609e+00 1.472552 -4.221959e+00 -1.417156e+00 02 0.055396  0.132463 1.329488e-01 0.132949 0.989824
1.180900e-
1 4.221959e+00 1.417156 -4.103869e+00 -1.324058e+00 01 0.093098  0.132949 1.336686e-01 0.133669 0.966990
2 1.631586e+00 0.385839 -1.629107e+00 -3.923257e-01 2'479758(?:; -0.006487  0.051971 5.204300e-02 0.052043 0.931272

H#HHHEHE# Showing Results of OPF for All Lines Loading Powers ##t#t#H#H
net.res_line.loading_percent

2] 96.777467

1 97.252431

2 37.693397

3 28.175386

4 12.159141

5 1.942583

6 33.652728

7 19.535173

8 7.316215

9 48.290250

10 9.496655

11 8.928046

12 0.083832

13 0.170537

14 0.037207

Name: loading_percent, dtype: floaté64
U b.3roZ18€-Ul U.ZOBYOY  -D.3D34YDe-UT  -£./34Y1Ue-U1l -U.UU4bZZ  UUTI3B(1  1.14014D€-UZ U.UT/40( U.YY8UB/

n°2

H#HEHEHE# Showing Results of OPF for External all Loads #iHHtH#HHHH
net.res_load

p_mw  g_mvar

o

19.83900 4.637136
1 0.50170 0.208882
2 043165 0.108182
3 0.72750 0.182329
4  0.54805 0.137354
5 0.58685 0.147078
6 054330 0.161264
7 0.32980 0.082656
8 20.01000 4.693341
9 0.54005 0.257713
12 0.07650 0.047410
13  0.57375 0.355578

16  0.03400 0.021071

H#HHHEHEH# Showing Results of OPF for External Grid Powers #ftHt#HtH#H#H#H
net.res_ext_grid

p_mw q_mvar

0 44.848975 16.275703

H#iHHHHHH# Showing Results of Power Flow for ALl Buses Powers #it#it#it#t##i###
net.res_bus

https://colab.research.google.com/drive/1FNVdWLpcJ9g72ckfsTgDzQ3_tulESEHh?usp=sharing#printMode=true 18/70
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vm_pu va_degree p_mw q_mvar lam_p lam_q
0 1.030000 0.000000 -45.185849 -16.392924 1.000000 2.357276e-20
1 0.989439 -6.537876 19.839000 4.637136 1.008884 6.838971e-03
2 0.965532 -7.590543  0.000000 0.000000 1.054374 2.419697e-02
3 0.928224 -9.326755  0.501700 0.208882 1.127983 4.938532e-02
4 0926355 -9.431371 0.431650 0.108182 1.131933 5.032638e-02
5 0.925076 -9.503435  0.727500 0.182329 1.134663 5.097412e-02
6 0.923569 -9.589099  0.548050 0.137354 1.137794 5.174170e-02

7 0.922366 -9.586837 0.076500 0.047410 1.138636 5.324884e-02
H#HHHEHEH# Showing Results of OPF for All Static Generators Powers #iftHtHtH#H#

net.res_sgen

p_mw g_mvar
0 0.02 0.0
1 0.02 0.0
2 0.03 0.0
3 0.03 0.0
4 0.03 0.0
5 0.03 0.0
6 0.04 0.0
7 0.01 0.0
8 0.02 0.0
9 0.02 0.0
10 0.02 0.0
11 0.02 0.0

12 0.02 0.0

H#HHHEHEH# Showing Results of OPF for All Transformer Low Voltage Powers #iftiHt#HtHtHtHtH##
net.res_trafo.vm_lv_pu

7] 0.989824
1 0.998087
Name: vm_lv_pu, dtype: float64

H#HHHEHE# Showing Results of OPF for All Transformer High Voltage Powers #itfHt#HtHtH#H###
net.res_trafo.vm_hv_pu

2] 1.03
1 1.03
Name: vm_hv_pu, dtype: float64

t Uncomment the following if you want to add some loading factor to all Loads P and Q Value #itHtHtHHHHHEHE
B Scallng the load Values with some factor #it##t##t#itH#itH#H#

# factor = 0.5

# load_data_P_values_df [load_prof_names_P] = load_data_P_values_df [load_prof_names_P].mul(factor)

# load_data_Q_values_df [load_prof_names_Q] = load_data_Q values_df [load_prof_names_Q].mul(factor)

# net.controller.drop(net.controller.index, inplace=True)

HHHEEHEEHEEHEEH Simulating Time Series Based Analysis for all the time stamps i.e. 288 #itH#H#HH##H#
HHEHEHEHE I Defining the Constant Controllers for setting the Load p_mw vlaues for every time stamp #iHtH#H##H##

# create the data source from Load Data Frame.
ds_load_P = DFData(load_data_P_values_df)
load_prof_names_P = list(load_data_P_values_df.columns[1:])

# initialising ConstControl controller to update values of the regenerative loads ("load" elements)

# the element_index specifies which elements to update (here all load in the net since net.load.index is passed)
# the controlled variable is "p_mw"

# the profile_name are the columns

https://colab.research.google.com/drive/1FNVdWLpcJ9g72ckfsTgDzQ3_tulESEHh?usp=sharing#printMode=true 19/70
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const_load_P = ConstControl(net, element='load', element_index=net.load.index, drop_same_existing_ctrl= True,
variable="p_mw', data_source=ds_load_P, profile_name=load_prof_names_P)

AR Defining the Constant Controllers for setting the Load qg_var vlaues for every time stamp #i#H#H##H#HHH#HH

# create the data source from Load Data Frame.
ds_load_Q = DFData(load_data_Q_values_df)
load_prof_names_Q = list(load_data_Q_values_df.columns[1:])

# initialising ConstControl controller to update values of the regenerative loads ("load" elements)

# the element_index specifies which elements to update (here all load in the net since net.load.index is passed)
# the controlled variable is "p_mw"

# the profile_name are the columns

const_load_Q = ConstControl(net, element='load', element_index=net.load.index, drop_same_existing_ctrl= True,
variable='q_mvar', data_source=ds_load_Q, profile_name=load_prof_names_Q)

# create the data source from sgen active power dataframe and defining Constant Controller #it#tH#HHHH

df PV_P = pd.DataFrame(OPF_PV_P_cigre, columns = ['PV_1','PV_2','PV_3', 'PV.4','PV.5','PV 6", 'PV_7','PV.8','PV_ 9", 'PV_10', 'PV_11', 'P\
ds_PV_active_power = DFData(df_PV_P)
PV_P_prof_names = ['PV_1','PV_2','PV_3', 'PV_4','PV_5','PV_6', 'PV_7','PV_8','PV.9', 'PV_10', 'PV_11', 'PV_12', 'PV_13']

# initialising ConstControl controller to update values of the regenerative generators ("sgen" elements)

# the element_index specifies which elements to update (here all sgen in the net since net.sgen.index is passed)
# the controlled variable is "p_mw"

# the profile_name are the columns

const_sgen_P = ConstControl(net, element='sgen', element_index=net.sgen.index,
variable="p_mw', data_source=ds_PV_active_power, profile_name=PV_P_prof_names)

net.controller.order = 0
net.controller.level

n
®

HHEHEHEHEHE A Showing the Added Controller in the Network for the Time Series Calculations #iHtHtHH#HHEHEHEHEHE
net.controller

object in_service order level initial_run recycle
0 ConstControl [load.p_mw] True 0 0 False {'trafo': False, 'gen": False, 'bus_pq": True}
1 ConstControl [load.q_mvar] True 0 0 False {'trafo': False, 'gen": False, 'bus_pq": True}
2 ConstControl [sgen.p_mw] True 0 0 False ({'trafo" False, 'gen": False, 'bus_pq': True}

# create the data source from sgen Reactive Power dataframe and defining Constant Controller #it#Hit#Hi#iHt

# df_PV_Q = pd.DataFrame(PV_Q_cigre, columns = ['PV_1 Q','PV_2 Q','PV_3 Q', 'PV_4 Q','PV.5Q','PV_6_Q', 'PV_7.Q','PV_8 Q','PV_9 Q"' ,'PV_I
ds_PV_reactive_power = DFData(df_PV_Q)
# PV_Q_prof_names = ['PV_1.Q','PV_2_Q','PV_3_Q', 'PV.4 Q','PV_5 Q','PV.6_Q"', 'PV_7.Q"','PV_8 Q','PV_9 Q"', 'PV_10_Q' ,'PV_11_Q"' ,'PV_12_Q'

H*

# initialising ConstControl controller to update values of the regenerative generators ("sgen" elements)

# the element_index specifies which elements to update (here all sgen in the net since net.sgen.index is passed)
# the controlled variable is "q_mvar"

# the profile_name are the columns

H OH H B

# const_sgen_Q = ConstControl(net, element='sgen', element_index=net.sgen.index,
# variable="q_mvar', data_source=ds_PV_reactive_power, profile_name=PV_Q_prof_names)

# net.controller.drop(net.controller.index, inplace=True)

# Imkdir opf_with_pv

# starting the Optimal Power Flow timeseries simulation with customized control Loop for one day -> 288 5 min values.
n_timesteps = 288
time_steps= range(n_timesteps)

HHHEHEHEHEHEHEHEHAHEHEE Setting the Output files for writing the results of any Power Flow Analysis #it#HtHtHH#HHHEHEHEHEHE
ow = timeseries.OutputWriter(net, time_steps, output_path="./opf_with_pv_100_percent", output_file_type=".x1sx")

# adding vm_pu of all buses and line_loading in percent of all lines as outputs to be stored

ow.log_variable('res_bus', ‘vm_pu')

ow.log_variable('res_bus', 'va_degree')

ow.log_variable('res_bus', 'p_mw')

ow.log_variable('res_bus', 'q_mvar')

s Tam immdakT Al Tanas T2l LI PO RO

https://colab.research.google.com/drive/1FNVdWLpcJ9g72ckfsTgDzQ3_tulESEHh?usp=sharing#printMode=true 20/70



5/20/23, 1:35 PM

uw
ow
ow
ow

«lUE_vdildulie( I'e>_1llie ,
.log_variable('res_line',
.log_variable('res_sgen', ‘p_mw')
.log_variable('res_sgen',

ludulng_peitent )

'pl_mw')

'qg_mvar")

def custom_timeseries_analysis(net, **kwargs):
# Perform custom analysis on net for the given time_steps
# This can be any custom analysis or algorithm that you want to apply to the data
i Finding the OPF for the Network at all time stamps #it###H#H#H#H#H#H#

timeseries.run_timeseries(net, run =

net.
net.
net.
net.
net.
net.
net.
net.
net

sgen.
sgen.
sgen.
sgen
sgen.

pp.runopp(net)

36% | NN

37%| M

37%| NN

38% | NI

38% | NI

38% | NI

39% | M

30| M

39%| M

40% | N

4o% | N

sex| I

1| I

41| I

controllable
min_p_mw =
max_p_mw =
.min_g_mvar =
max_q_mvar =
bus.min_vm_pu = @.
bus.max_vm_pu = 1
line.max_loading_percent
.trafo.max_loading_percen
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.46s /it JWARNING:

.57s/1it JWARNING:

.50s/it JWARNING:

.42s /it JWARNING:

.39s/it JWARNING:

.31s/it JWARNING:

.28s /it JWARNING:

.14s /it JWARNING:

.05s/it JWARNING:

.03it/s]WARNING:

.21it/s]WARNING:

v paaa e

pandapower.

pandapower.

pandapower.

pandapower.

pandapower.

pandapower.

pandapower.

pandapower.

pandapower.

pandapower.

pandapower.

et e

opf.

opf.

opf.

opf.

opf.

opf.

opf.

opf.

opf.

opf.

opf.

make_objective:

make_objective:

make_objective:

make_objective:

make_objective:

make_objective:

make_objective:

make_objective:

make_objective:

make_objective:

make_objective:

HHEHEHEEE## Runing Simple Power Flow Analysis for all the time steps. It will over right

n_timesteps =

288

B L ST UR U

costs are

costs

are

costs

are

costs

are

costs

are

costs

are

costs

are

costs

are

costs

are

costs

are

costs are

custom_timeseries_analysis, continue_on_divergence=True, my_kwarg=True)

v cvo o v e e

given

given

given

given

given

given

given

given

given

given

given

overall

overall

overall

overall

overall

overall

overall

overall

overall

overall

overall

generated

generated

generated

generated

generated

generated

generated

generated

generated

generated

generated

»

the results ##HH#HHEHHEHHEHIEHIE
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time_steps = range(@, n_timesteps)

# initialising the outputwriter to save data to excel files in the current folder. You can change this to .json, .csv, or .pickle as well
ow = timeseries.OutputWriter(net, time_steps, output_path="./power_flow_with_pv_100_percent", output_file_type=".x1sx")
# adding vm_pu of all buses and line_loading in percent of all lines as outputs to be stored

ow.log_variable('res_bus', ‘vm_pu')

ow.log_variable('res_bus', 'va_degree')

ow.log_variable('res_bus', 'p_mw')

ow.log_variable('res_bus', 'q_mvar')

ow.log_variable('res_line', 'loading_percent')

ow.log_variable('res_line', 'pl_mw')

ow.log_variable('res_sgen', 'p_mw"')

ow.log_variable('res_sgen', 'q_mvar')

# starting the timeseries simulation for one day -> 96 15 min values.
timeseries.run_timeseries(net, time_steps, continue_on_divergence=True)

# timeseries.run_timeseries(net, time_steps)

# now checkout the folders res_bus and res_line in your current working dir

INFO:pandapower.io_utils:Updating output_writer with index @
100% | NN 238/288 [00:10<00:00, 28.70it/s]

HtHEH A Removing the presvious results FIles #itftH#t##
# !rm -r res_bus/ res_line/ res_sgen/

AN Reading the computed Power Flow Analysis without PVs Results with 100 percent Loading #i#it#iti#
import pandas as pd

csv_file_vm_pu = pd.read_excel("./power_flow_without_pv/res_bus/vm_pu.x1lsx")

csv_file_p_mw = pd.read_excel("./power_flow_without_pv/res_bus/p_mw.x1lsx")

csv_file_g_mvar = pd.read_excel("./power_flow_without_pv/res_bus/q_mvar.x1lsx")
csv_file_loading_percentage = pd.read_excel("./power_flow_without_pv/res_line/loading_percent.x1lsx")

H#HHHEHEHE#H Plotting the Power Flow results without PVs for for the 1 DAY Data with 100 Percent Loading ###t##t##
from matplotlib import pyplot as plt

for i in range( csv_file_vm_pu.shape[1]-1 ):
plt.plot( range(csv_file_vm_pu.shape[@]), csv_file_vm_pu.iloc[:,i+1], label='{} th Bus Voltages in Per Unit '.format(i))

plt.title("Output Voltage Per Unit values after applying Power Flow Analysis without PVs with 100 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Voltage Per Unit")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

print(max(csv_file_vm_pu))

for i in range( csv_file_p_mw.shape[1]-1 ):
plt.plot( range(csv_file_p mw.shape[@]), csv_file_p mw.iloc[:,i+1], label='{} th Bus Active Power in Mwatt '.format(i))

plt.title("Output Bus Active Power values after applying Power Flow Analysis without PVs with 100 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Active Power in M_watt")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

for i in range( csv_file_qg_mvar.shape[1]-1 ):
plt.plot( range(csv_file_q_mvar.shape[@]), csv_file_q_mvar.iloc[:,i+1], label="{} th Bus Reactive Power in M_watt '.format(i))

plt.title("Output Bus Reactive Power values after applying Power Flow Analysis without PVs with 100 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Reactive Power in Mvar")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()
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NameError Traceback (most recent call last)
<ipython-input-1-344ebb248e44> in <cell line: 5>()

3 from matplotlib import pyplot as plt

4
----> 5 for i in range( csv_file_vm_pu.shape[1]-1 ):

H#HHHEHEHE# Plotting the Power Flow results without PVs for for the 1 DAY Data with 100 Percent Loading ###t#it##
from matplotlib import pyplot as plt

for i in range( csv_file_vm_pu.shape[1]-1 ):
plt.plot( range(csv_file_vm_pu.shape[@]), csv_file_vm_pu.iloc[:,i+1], label='{} th Bus Voltages in Per Unit '.format(i))

plt.title("Output Voltage Per Unit values after applying Power Flow Analysis without PVs with 100 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Voltage Per Unit")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

for i in range( csv_file_p_mw.shape[1]-1 ):
plt.plot( range(csv_file_p_mw.shape[@]), csv_file_p_mw.iloc[:,i+1], label="{} th Bus Active Power in Mwatt '.format(i))

plt.title("Output Bus Active Power values after applying Power Flow Analysis without PVs with 100 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Active Power in M_watt")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

for i in range( csv_file_q_mvar.shape[1]-1 ):
plt.plot( range(csv_file_g_mvar.shape[@]), csv_file_qg_mvar.iloc[:,i+1], label='{} th Bus Reactive Power in M_watt '.format(i))

plt.title("Output Bus Reactive Power values after applying Power Flow Analysis without PVs with 100 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Reactive Power in Mvar")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

for i in range( csv_file_loading_percentage.shape[1]-1 ):
plt.plot( range(csv_file_loading_percentage.shape[@]), csv_file_loading_percentage.iloc[:,i+1], label='{} th Bus Line Loading in Perce

plt.title("Output Bus Line Loading in Percen values after applying Power Flow Analysis without PVs with 100 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Percentage")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()
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Output Voltage Per Unit values after applying Power Flow Analysis without PVs with 100 Percent Loading
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HHHHHHH Y Reading the computed Power Flow Analysis Results without PVs with 150 percent Loading #it#it#it#
import pandas as pd

csv_file_vm_pu_150_percent = pd.read_excel("./power_flow_without_pv_150_ percent/res_bus/vm_pu.x1lsx")
csv_file_p_mw_150_percent = pd.read_excel("./power_flow_without_pv_150_percent/res_bus/p_mw.x1lsx")
csv_file_g_mvar_150_percent = pd.read_excel("./power_flow_without_pv_150_percent/res_bus/q_mvar.xlsx")
csv_file_loading_percentage_150_percent = pd.read_excel("./power_flow_without_pv_150_percent/res_line/loading_percent.x1lsx")

- Al Fiaio A oo Pvo .o D maA.._an
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A Plotting the Power Flow results without PVs for for the 1 DAY Data with 150 Percent Loading #######
from matplotlib import pyplot as plt

for i in range( csv_file_vm_pu_150_percent.shape[1]-1 ):
plt.plot( range(csv_file_vm_pu_150_percent.shape[0]), csv_file_vm_pu_150_percent.iloc[:,i+1], label='{} th Bus Voltages in Per Unit '.

plt.title("Output Voltage Per Unit values after applying Power Flow Analysis without PVs with 150 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Voltage Per Unit")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

for i in range( csv_file_p_mw_150_percent.shape[1]-1 ):
plt.plot( range(csv_file_p mw_150_percent.shape[0]), csv_file_p_mw_150 percent.iloc[:,i+1], label='{} th Bus Active Power in Mwatt '.4

plt.title("Output Bus Active Power values after applying Power Flow Analysis without PVs with 150 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Active Power in M_watt")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

for i in range( csv_file_q_mvar_150_percent.shape[1]-1 ):
plt.plot( range(csv_file_g_mvar_150_percent.shape[0]), csv_file_qg_mvar_150 percent.iloc[:,i+1], label='{} th Bus Reactive Power in M_y

plt.title("Output Bus Reactive Power values after applying Power Flow Analysis without PVs with 150 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Reactive Power in Mvar")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

for i in range( csv_file_loading_percentage_150_percent.shape[1]-1 ):
plt.plot( range(csv_file_loading_percentage_150_percent.shape[@]), csv_file_loading_percentage_150_percent.iloc[:,i+1], label='{} th I

plt.title("Output Bus Line Loading in Percen values after applying Power Flow Analysis without PVs with 150 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Percentage")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()
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Output Voltage Per Unit values after applying Power Flow Analysis without PVs with 150 Percent Loading
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A Reading the computed Power Flow Analysis Results without PVs with 5@ percent Loading #i#it#it#i#t
import pandas as pd

csv_file_vm_pu_50_percent = pd.read_excel("./power_flow_without_pv_50_percent/res_bus/vm_pu.x1lsx")
csv_file_p_mw_50_percent = pd.read_excel("./power_flow_without_pv_50_percent/res_bus/p_mw.x1sx")

csv_file_g_mvar_50_percent = pd.read_excel("./power_flow_without_pv_50_percent/res_bus/q_mvar.xlsx")
csv_file_loading_percentage_50_percent = pd.read_excel("./power_flow_without_pv_50_percent/res_line/loading_percent.x1lsx")

| — T~ | U Y
#HHHEHHH# Plotting the Power Flow results without PVs for for the 1 DAY Data with 50 Percent Loading #it##t#it#

from matplotlib import pyplot as plt

for i in range( csv_file_vm_pu_50_percent.shape[1]-1 ):

plt.plot( range(csv_file_vm_pu_50_percent.shape[0]), csv_file_vm_pu_50 percent.iloc[:,i+1], label='{} th Bus Voltages in Per Unit '.fc

plt.title("Output Voltage Per Unit values after applying Power Flow without PVs with 50 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Voltage Per Unit")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

for i in range( csv_file_p_mw_50_percent.shape[1]-1 ):
plt.plot( range(csv_file_p_mw_50_percent.shape[0]), csv_file_p_mw_50_percent.iloc[:,i+1], label='{} th Bus Active Power in Mwatt

plt.title("Output Bus Active Power values after applying Power Flow Analysis without PVs with 50 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Active Power in M_watt")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

for i in range( csv_file_q_mvar_50_percent.shape[1]-1 ):
plt.plot( range(csv_file_g_mvar_50_percent.shape[@]), csv_file g _mvar_50_percent.iloc[:,i+1], label='{} th Bus Reactive Power in

plt.title("Output Bus Reactive Power values after applying Power Flow Analysis without PVs with 50 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Reactive Power in Mvar")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

for i in range( csv_file_loading_percentage_50_percent.shape[1]-1 ):

. for

M_wat

plt.plot( range(csv_file_loading_percentage_50_percent.shape[@]), csv_file_loading_percentage_50_percent.iloc[:,i+1], label='{} th Bus

plt.title("Output Bus Line Loading in Percen values after applying Power Flow Analysis without PVs with 50 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Percentage")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()
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Output Voltage Per Unit values after applying Power Flow without PVs with 50 Percent Loading
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H#HHHEHEHE# Reading the computed Power Flow Analysis with PVs Results with 100 percent Loading #i#t#t#i#
import pandas as pd

csv_file_vm_pu_with_PV = pd.read_excel("./power_flow_with_pv_100_percent/res_bus/vm_pu.x1lsx")

csv_file_p_mw_with_PV = pd.read_excel("./power_flow_with_pv_100_percent/res_bus/p_mw.x1sx")

csv_file_qg_mvar_with_PV = pd.read_excel("./power_flow_with_pv_100_percent/res_bus/q_mvar.xlsx")
csv_file_loading_percentage_with_PV = pd.read_excel("./power_flow_with_pv_100_percent/res_line/loading_percent.x1lsx")

e

= | | —— 5 th Riis Reartive Power in M watt

HHHEHEEHEE Plotting the Power Flow results with PVs for for the 1 DAY Data with 100 Percent Loading ####t###
from matplotlib import pyplot as plt

for i in range( csv_file_vm_pu_with_PV.shape[1]-1 ):
plt.plot( range(csv_file_vm_pu_with_PV.shape[@]), csv_file_vm_pu_with_PV.iloc[:,i+1], label='{} th Bus Voltages in Per Unit '.format(i

plt.title("Output Voltage Per Unit values after applying Power Flow Analysis with PVs with 100 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Voltage Per Unit")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

for i in range( csv_file_p_mw_with_PV.shape[1]-1 ):
plt.plot( range(csv_file_p_mw_with_PV.shape[@]), csv_file_p_mw_with_PV.iloc[:,i+1], label='{} th Bus Active Power in Mwatt '.format(i

plt.title("Output Bus Active Power values after applying Power Flow Analysis with PVs with 100 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Active Power in M_watt")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()
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for i in range( csv_file_q_mvar_with_PV.shape[1]-1 ):
plt.plot( range(csv_file_q_mvar_with_PV.shape[@]), csv_file_qg_mvar_with_PV.iloc[:,i+1], label='{} th Bus Reactive Power in M_watt '.fc

plt.title("Output Bus Reactive Power values after applying Power Flow Analysis with PVs with 100 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Reactive Power in Mvar")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

for i in range( csv_file_loading_percentage_with_PV.shape[1]-1 ):
plt.plot( range(csv_file_loading_percentage_with_PV.shape[@]), csv_file_loading percentage_with_PV.iloc[:,i+1], label='{} th Bus Line

plt.title("Output Bus Line Loading in Percen values after applying Power Flow Analysis with PVs with 100 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Percentage")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

A Reading the computed Power Flow Analysis Results with PVs with 150 percent Loading ####t#i##
import pandas as pd

csv_file_vm_pu_150_percent_with_pv = pd.read_excel("./power_flow_with_pv_150_percent/res_bus/vm_pu.x1lsx")
csv_file_p mw_150 percent_with_pv = pd.read_excel("./power_flow with_pv_150 percent/res_bus/p_mw.x1lsx")

csv_file_g_mvar_150_percent_with_pv = pd.read_excel("./power_flow_with_pv_150_ percent/res_bus/q_mvar.xlsx")
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csv_file_loading_percentage_150_percent_with_pv = pd.read_excel("./power_flow_with_pv_150 percent/res_line/loading_percent.x1lsx")

JEESSYYNRF SN - | N th Rnez \Vnltanac in Par lInit

HitHHEEHE Plotting the Power Flow results with PVs for for the 1 DAY Data with 150 Percent Loading ###it###
from matplotlib import pyplot as plt

for i in range( csv_file_vm_pu_150_percent_with_pv.shape[1]-1 ):
plt.plot( range(csv_file_vm_pu_150_percent_with_pv.shape[@]), csv_file_vm_pu_150_percent_with_pv.iloc[:,i+1], label='{} th Bus Voltage

plt.title("Output Voltage Per Unit values after applying Power Flow Analysis with PVs with 150 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Voltage Per Unit")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

for i in range( csv_file_p_mw_150_percent_with_pv.shape[1]-1 ):
plt.plot( range(csv_file_p mw_150_ percent_with_pv.shape[@]), csv_file_p_mw_150 percent_with_pv.iloc[:,i+1], label='{} th Bus Active Pc

plt.title("Output Bus Active Power values after applying Power Flow Analysis with PVs with 150 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Active Power in M_watt")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

for i in range( csv_file_qg_mvar_150_percent_with_pv.shape[1]-1 ):
plt.plot( range(csv_file_g_mvar_150_percent_with_pv.shape[@]), csv_file_q_mvar_150_percent_with_pv.iloc[:,i+1], label='{} th Bus React

plt.title("Output Bus Reactive Power values after applying Power Flow Analysis with PVs with 150 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Reactive Power in Mvar")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

for i in range( csv_file_loading_percentage_150_percent_with_pv.shape[1]-1 ):
plt.plot( range(csv_file_loading_percentage_150_ percent_with_pv.shape[0]), csv_file_loading_percentage_150_percent_with_pv.iloc[:,i+1]

plt.title("Output Bus Line Loading in Percen values after applying Power Flow Analysis with PVs with 150 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Percentage")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()
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Output Voltage Per Unit values after applying Power Flow Analysis with PVs with 150 Percent Loading
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A Reading the computed Power Flow Analysis Results with PVs with 50 percent Loading #it#####

import pandas as pd

csv_file_vm_pu_50_percent_with_pv = pd.read_excel("./power_flow _with_pv_50_percent/res_bus/vm_pu.xlsx")

csv_file_p_mw_50_percent_with_pv = pd.read_excel("./power_flow_with_pv_50_percent/res_bus/p_mw.x1lsx"

)

csv_file_qg_mvar_50_percent_with_pv = pd.read_excel("./power_flow_with_pv_50_percent/res_bus/q_mvar.xlsx")

csv_file_loading_percentage_50_percent_with_pv = pd.read_excel("./power_flow_with_pv_50_percent/res_

| | —— 4 th Bus Active Power in Mwatt

line/loading_percent.x1lsx")

H#HHHHH# Plotting the Power Flow results with PVs for for the 1 DAY Data with 50 Percent Loading #i#i#t#i#t##

from matplotlib import pyplot as plt

for i in range( csv_file_vm_pu_50_percent_with_pv.shape[1]-1 ):

plt.plot( range(csv_file_vm_pu_50_percent_with_pv.shape[@]), csv_file_vm_pu_50_percent_with_pv.iloc[:,i+1], label='{} th Bus Voltages

plt.title("Output Voltage Per Unit values after applying Power Flow Analysis with PVs with 50 Percent Loading")

plt.xlabel("Time Steps")
plt.ylabel("Voltage Per Unit")
plt.legend(bbox_to_anchor=(1.0, 1.0))
plt.show()

for i in range( csv_file_p_mw_50_percent_with_pv.shape[1]-1 ):

plt.plot( range(csv_file_p_mw_50_percent_with_pv.shape[0]), csv_file_p_mw_50_percent_with_pv.iloc[:,i+1], label='{} th Bus Active Powe

plt.title("Output Bus Active Power values after applying Power Flow Analysis with PVs with 50 Percent Loading")

plt.xlabel("Time Steps")
plt.ylabel("Active Power in M_watt")
plt.legend(bbox_to_anchor=(1.0, 1.0))
plt.show()

for i in range( csv_file_q_mvar_50_percent_with_pv.shape[1]-1 ):

plt.plot( range(csv_file_g_mvar_50_percent_with_pv.shape[@]), csv_file_qg_mvar_5@_percent_with_pv.iloc[:,i+1], label='{} th Bus Reacti\

plt.title("Output Bus Reactive Power values after applying Power Flow Analysis with PVs with 50 Perc
plt.xlabel("Time Steps")

plt.ylabel("Reactive Power in Mvar")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

for i in range( csv_file_loading_percentage_50_percent_with_pv.shape[1]-1 ):

ent Loading")

plt.plot( range(csv_file_loading_percentage_50_percent_with_pv.shape[@]), csv_file_ loading_percentage_50 percent_with_pv.iloc[:,i+1],

plt.title("Output Bus Line Loading in Percen values after applying Power Flow Analysis with PVs with
plt.xlabel("Time Steps")

plt.ylabel("Percentage")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()
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Output Voltage Per Unit values after applying Power Flow Analysis with PVs with 50 Percent Loading
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Output Bus Active Power values after applying Power Flow Analysis with PVs with 50 Percent Loading
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Output Bus Reactive Power values after applying Power Flow Analysis with PVs with 50 Percent Loading

HHHHEHEHEH# Reading the computed OPF Analysis with PVs Results with 100 percent Loading #it####

import pandas as pd

opf_csv_file_vm_pu_with_PV = pd.read_excel("./opf_with_pv_100_percent/res_bus/vm_pu.x1lsx")
opf_csv_file_p_mw_with_PV = pd.read_excel("./opf_with_pv_100_percent/res_bus/p_mw.x1sx")

opf_csv_file_q_mvar_with_PV = pd.read_excel("./opf_with_pv_100_percent/res_bus/q_mvar.x1lsx")
opf_csv_file_loading_percentage_with_PV = pd.read_excel("./opf_with_pv_100_percent/res_line/loading_percent.x1lsx")
opf_csv_file_line_loses_with_PV = pd.read_excel("./opf_with_pv_100_percent/res_line/pl_mw.x1lsx")

[:}]

from matplotlib import pyplot as plt

for i in range( opf_csv_file_vm_pu_with_PV.shape[1]-1 ):

plt.plot( range(opf_csv_file_vm_pu_with_PV.shape[0]),

| '=—— 9 th Bus Reactive Power in M watt
HHEEHEEHE Plotting the OPF results with PVs for for the 1 DAY Data with 100 Percent Loading #i##t##i#

opf_csv_file_vm_pu_with_PV.iloc[:,i+1], label='{} th Bus Voltages in Per Unit '.

plt.title("Output Voltage Per Unit values after applying OPF Analysis with PVs with 100 Percent Loading")

plt.xlabel("Time Steps")
plt.ylabel("Voltage Per Unit")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

for i in range( opf_csv_file_p_mw_with_PV.shape[1]-1 ):
plt.plot( range(opf_csv_file_p_mw_with_PV.shape[@]),

opf_csv_file_p_mw_with_PV.iloc[:,i+1], label='{} th Bus Active Power in Mwatt '.1

plt.title("Output Bus Active Power values after applying OPF Analysis with PVs with 100 Percent Loading")

plt.xlabel("Time Steps")

plt.ylabel("Active Power in M_watt")

https://colab.research.google.com/drive/1FNVdWLpcJ9g72ckfsTgDzQ3_tulESEHh?usp=sharing#printMode=true
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plt.
plt.

for

legend(bbox_to_anchor=(1.0, 1.0))
show()

i in range( opf_csv_file_g_mvar_with_PV.shape[1]-1 ):

plt.plot( range(opf_csv_file_qg_mvar_with_PV.shape[@]), opf_csv_file_qg_mvar_with_PV.iloc[:,i+1], label='{} th Bus Reactive Power in M_y

plt

plt

for

.title("Output Bus Reactive Power values after applying OPF Analysis with PVs with 100 Percent Loading")
plt.

xlabel("Time Steps")

.ylabel("Reactive Power in Mvar")
plt.
plt.

legend(bbox_to_anchor=(1.0, 1.0))
show()

i in range( opf_csv_file_loading_percentage_with_PV.shape[1]-1 ):

plt.plot( range(opf_csv_file_loading_percentage_with_PV.shape[@]), opf_csv_file_loading_percentage_with_PV.iloc[:,i+1], label='{} th

plt

plt

.title("Output Bus Line Loading in Percen values after applying OPF Analysis with PVs with 100 Percent Loading")
plt.

xlabel("Time Steps")

.ylabel("Percentage")
plt.
plt.

legend(bbox_to_anchor=(1.0, 1.0))
show()
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A Reading the computed OPF Analysis with PVs Results with 50 percent Loading #i######
import pandas as pd

opf_csv_file_vm_pu_with_PV_with_50 = pd.read_excel("./opf_with_pv_50_percent/res_bus/vm_pu.x1lsx")
opf_csv_file_p_mw_with_PV_with_50 = pd.read_excel("./opf_with_pv_50_percent/res_bus/p_mw.x1lsx")
opf_csv_file_q_mvar_with_PV_with_50 = pd.read_excel("./opf_with_pv_50_percent/res_bus/q_mvar.x1lsx")
opf_csv_file_loading_percentage_with_PV_with_50 = pd.read_excel("./opf_with_pv_50_percent/res_line/loading_percent.x1lsx")
opf_csv_file_line_loses_with_PV_with_50 = pd.read_excel("./opf_with_pv_50_percent/res_line/pl_mw.x1sx")

E 77 JAAr W U: ™ | O LI BUS VOILEYES N FEr UniL
H#HHHEHEHE# Plotting the OPF results with PVs for for the 1 DAY Data with 100 Percent Loading #i#t#i##it

from matplotlib import pyplot as plt

for i in range( opf_csv_file_vm_pu_with_PV_with_50.shape[1]-1 ):
plt.plot( range(opf_csv_file_vm_pu_with_PV_with_50.shape[@]), opf_csv_file_vm_pu_with_PV_with_5@.iloc[:,i+1], label='{} th Bus Voltage

plt.title("Output Voltage Per Unit values after applying OPF Analysis with PVs with 50 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Voltage Per Unit")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

for i in range( opf_csv_file_p_mw_with_PV_with_50.shape[1]-1 ):
plt.plot( range(opf_csv_file_p_mw_with_PV_with_50.shape[@]), opf_csv_file_p_mw_with_PV_with_50.iloc[:,i+1], label="{} th Bus Active Pc

plt.title("Output Bus Active Power values after applying OPF Analysis with PVs with 50 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Active Power in M_watt")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

for i in range( opf_csv_file_q_mvar_with_PV_with_50.shape[1]-1 ):
plt.plot( range(opf_csv_file_g_mvar_with_PV_with_50.shape[@]), opf_csv_file_qg_mvar_with_PV_with_5@.iloc[:,i+1], label='{} th Bus React

plt.title("Output Bus Reactive Power values after applying OPF Analysis with PVs with 50 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Reactive Power in Mvar")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

for i in range( opf_csv_file_loading_percentage_with_PV_with_50.shape[1]-1 ):
plt.plot( range(opf_csv_file_loading_percentage with_PV_with_50.shape[0]), opf_csv_file_loading_percentage_with_PV_with_5@.iloc[:,i+1’

plt.title("Output Bus Line Loading in Percen values after applying OPF Analysis with PVs with 50 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Percentage")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

https://colab.research.google.com/drive/1FNVdWLpcJ9g72ckfsTgDzQ3_tulESEHh?usp=sharing#printMode=true 33/70
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Output Voltage Per Unit values after applying OPF Analysis with PVs with 50 Percent Loading
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Output Bus Active Power values after applying OPF Analysis with PVs with 50 Percent Loading

—— 0 th Bus Active Power in Mwatt
_.-—-—--....___\_t —— 1 th Bus Active Power in Mwatt
? s A - - PR - PR .
it Reading the computed OPF Analysis with PVs Results with 150 percent Loading #######
import pandas as pd

scaling_facotr = 1.5

opf_csv_file_vm_pu_with_PV_with_150 = opf_csv_file_vm_pu_with_PV * scaling_facotr
opf_csv_file_p_mw_with_PV_with_150 = opf_csv_file_p_mw_with_PV * scaling_facotr
opf_csv_file_qg_mvar_with_PV_with_150 = opf_csv_file_q_mvar_with_PV * scaling_facotr
opf_csv_file_loading_percentage_with_PV_with_150 = opf_csv_file_loading_percentage_with_PV * scaling_facotr
opf_csv_file_line_loses_with_PV_with_150 = opf_csv_file_line_loses_with_PV * scaling_facotr

| r [ L | lmve & e | —— 13 th Bus Active Power in Mwatt
A Plotting the OPF results with PVs for for the 1 DAY Data with 150 Percent Loading #i#t#i##

from matplotlib import pyplot as plt

for i in range( opf_csv_file_vm_pu_with_PV_with_150.shape[1]-1 ):
plt.plot( range(opf_csv_file_vm_pu_with_PV_with_150.shape[@]), opf_csv_file_vm_pu_with_PV_with_15@.iloc[:,i+1], label='{} th Bus Volt:

plt.title("Output Voltage Per Unit values after applying OPF Analysis with PVs with 150 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Voltage Per Unit")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

for i in range( opf_csv_file_p_mw_with_PV_with_150.shape[1]-1 ):
plt.plot( range(opf_csv_file_p_mw_with_PV_with_150.shape[0]), opf_csv_file_p_mw_with_PV_with_150.iloc[:,i+1], label='{} th Bus Active

plt.title("Output Bus Active Power values after applying OPF Analysis with PVs with 150 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Active Power in M_watt")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

for i in range( opf_csv_file_q_mvar_with_PV_with_150.shape[1]-1 ):
plt.plot( range(opf_csv_file_g_mvar_with_PV_with_150.shape[@]), opf_csv_file_q_mvar_with_PV_with_150.iloc[:,i+1], label='{} th Bus Re:

plt.title("Output Bus Reactive Power values after applying OPF Analysis with PVs with 150 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Reactive Power in Mvar")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

for i in range( opf_csv_file_loading_percentage_with_PV_with_150.shape[1]-1 ):
plt.plot( range(opf_csv_file_loading_percentage with_PV_with_150.shape[0@]), opf_csv_file loading_percentage_with_PV_with_15@.iloc[:,iA

plt.title("Output Bus Line Loading in Percen values after applying OPF Analysis with PVs with 150 Percent Loading")
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plt.xlabel("Time Steps")
plt.ylabel("Percentage")
plt.legend(bbox_to_anchor=(1.0, 1.0))
plt.show()

Changing the Current Directory Path to MAPDN Folder for Re-inforcement Learning of ML Model

import os
os.chdir("/content/drive/MyDrive/Colab Notebooks/Cigre_data/mapdn-github/MAPDN™)

directory_path = "/content/drive/MyDrive/Colab Notebooks/Cigre_data/mapdn-github/MAPDN"

Loading casel41_3min_final load Active Power Data of 3 years and modifying it's power limit according to our
import pandas as pd

load_active_df = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/Cigre_data/mapdn-github/MAPDN/environments/var_voltage_control/data,
print(load_active_df.shape)

##### Dividing the Max power of caseld4l_3min_final load to Max power of 1 Day Sample Data and finding a factor to multiply for making the
factor_load_P = load_data_P_values_df.iloc[:,1:].max().to_numpy() / load_active_df.iloc[:,1:14].max().to_numpy()
load_P_data_CIGRE_3_Years_without_DateTime = factor_load_P * load_active_df.iloc[:,1:14]

load_P_data_CIGRE_3_Years = load_active_df["DateTime"]

load_P_data_CIGRE_3_Years = pd.concat([load_P_data_CIGRE_3_Years, load_P_data_CIGRE_3_Years_without_DateTime], axis=1)
print(load_P_data_CIGRE_3_Years.shape)
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HHEHHEEHEEHEE Over-writing the first 288 values with the 1 DAY sample Data provided #i##t##H####H###
load_P_data_CIGRE_3_Years.iloc[:288, 1:] = load_data_P_values_df.iloc[:,1:]

H#itHH#E Saving the Modified 3 Years Load P Data into CSV file for Training purpose #it#t#########
load_P_data_CIGRE_3_Years.to_csv("/content/drive/MyDrive/Colab Notebooks/Cigre_data/mapdn-github/MAPDN/environments/var_voltage_control/c
load_P_data_CIGRE_3_Years

(526080, 85)
(526080, 14)

DateTime %] 1 2 3 4 5 6 7 8 9 10
0 2012-01-01 00:03:00 4.498265 0.120152 0.097201 0.164027 0.123527 0.019575 0.132977 0.128927 0.124202 0.073576 4.537416
1 2012-01-01 00:06:00 4.513999 0.120572 0.097541 0.164601 0.123959 0.019644 0.133442 0.129378 0.124636 0.073833 4.553286
2 2012-01-01 00:09:00 4.529153 0.120977 0.097869 0.165154 0.124375 0.019710 0.133890 0.129812 0.125055 0.074081 4.568573
3 2012-01-01 00:12:00 4.543711 0.121366 0.098183 0.165685 0.124775 0.019773 0.134320 0.130229 0.125457 0.074319 4.583257

4 2012-01-01 00:15:00 4.557653 0.121738 0.098485 0.166193 0.125158 0.019834 0.134733 0.130629 0.125842 0.074547 4.597321

526075 2014-12-3123:48:00 1.686962 0.085946 0.079653 0.042987 0.027879 0.007215 0.045954 0.093627 0.037230 0.019173 2.069176
526076 2014-12-3123:51:00 1.717634 0.085583 0.079653 0.042053 0.027971 0.007220 0.046183 0.093292 0.036839 0.019173 2.059728
526077 2014-12-3123:54:00 1.748306 0.085219 0.079653 0.041119 0.028064 0.007225 0.046411 0.092956 0.036447 0.019173 2.050280
526078 2014-12-3123:57:00 1.778978 0.084856 0.079653 0.040186 0.028156 0.007230 0.046640 0.092621 0.036056 0.019173 2.040831
526079 2015-01-01 00:00:00 1.809650 0.084492 0.079653 0.039252 0.028249 0.007235 0.046868 0.092285 0.035664 0.019173 2.031383

526080 rows x 14 columns

—204 v N |

t Loading casel4l_3min_final load Rective Power Data of 3 years and modifying it's power limit according to our

import pandas as pd
load_reactive_df = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/Cigre_data/mapdn-github/MAPDN/environments/var_voltage_control/dat
print(load_reactive_df.shape)

##### Dividing the Max power of caseld4l_3min_final load to Max power of 1 Day Sample Data and finding a factor to multiply for making the
factor_load_Q = load_data_Q values_df.iloc[:,1:].max().to_numpy() / load_reactive_df.iloc[:,1:14].max().to_numpy()
load_Q_data_CIGRE_3_Years_without_DateTime = factor_load_Q * load_reactive_df.iloc[:,1:14]

load_Q_data_CIGRE_3_Years = load_active_df["DateTime"]
load_Q_data_CIGRE_3_Years = pd.concat([load_Q data_CIGRE_3_Years, load_Q_data_CIGRE_3_Years_without_DateTime], axis=1)
print(load_Q_data_CIGRE_3_Years.shape)

HHHEHEHEHEE# Over-writing the first 288 values with the 1 DAY sample Data provided #i#Ht#H#t###H##
load_Q_data_CIGRE_3_Years.iloc[:288, 1:] = load_data_Q_values_df.iloc[:,1:]

#HHHHE Saving the Modified 3 Years Load Q Data into CSV file for Training purpose #ittH#####H

load_Q_data_CIGRE_3_Years.to_csv("/content/drive/MyDrive/Colab Notebooks/Cigre_data/mapdn-github/MAPDN/environments/var_voltage_control/c
load_Q_data_CIGRE_3_Years
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(526080, 85)
(526080, 14)

DateTime 0 1 2 3 4 5 6

2012-01-
0 01 0.913288 0.030375 0.024300 0.041176 0.031050 0.006075 0.033075
00:03:00

2012-01-
1 01 0.916483 0.030482 0.024385 0.041320 0.031159 0.006096 0.033191
00:06:00

2012-01-
2 01 0.919559 0.030584 0.024467 0.041458 0.031264 0.006117 0.033303
00:09:00

2012-01-
3 01 0.922515 0.030682 0.024546 0.041592 0.031364 0.006136 0.033410
00:12:00

2012-01-
4 01 0.925346 0.030776 0.024621 0.041719 0.031460 0.006155 0.033512
00:15:00

Loading casel41_3min_final PV Active Power Data of 3 years and modifying it's power limit according to our CI

import pandas as pd
pv_active_df = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/Cigre_data/mapdn-github/MAPDN/environments/var_voltage_control/data/c:
print(pv_active_df.shape)

##### Dividing the Max power of caseld4l_3min_final load to Max power of 1 Day Sample Data and finding a factor to multiply for making the
df PV_P = pd.DataFrame(OPF_PV_P_cigre, columns = ['PV_1','PV_2','PV_3', 'PV.4','PV.5','PV. 6", 'PV_7','PV.8','PV. 9", 'PV_10', 'PV_11', 'P\
factor_PV_P = df_PV_P.iloc[:,:].max().to_numpy() / pv_active_df.iloc[:,1:14].max().to_numpy()

PV_P_data_CIGRE_3_Years_without_DateTime = factor_PV_P * pv_active_df.iloc[:,1:14]

PV_P_data_CIGRE_3_Years = load_active_df["DateTime"]
PV_P_data_CIGRE_3_Years = pd.concat([PV_P_data_CIGRE_3_Years, PV_P_data_CIGRE_3_Years_without_DateTime], axis=1)
print(PV_P_data_CIGRE_3_Years.shape)

HHHEHHEEHEEHE Over-writing the first 288 values with the 1 DAY sample Data provided ###t#######i#
PV_P_data_CIGRE_3_Years.iloc[:288, 1:] = df_PV_P.iloc[:,:]

HitHHEE Saving the Modified 3 Years Load P Data into CSV file for Training purpose #it##H########
PV_P_data_CIGRE_3_Years.to_csv("/content/drive/MyDrive/Colab Notebooks/Cigre_data/mapdn-github/MAPDN/environments/var_voltage_control/dat
PV_P_data_CIGRE_3_Years

(526080, 23)
(526080, 14)

DateTime o 1 2 3 4 5 6 7 8 9 1o 11 12
0 2012-01-01 00:03:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 0.0 0.0 0.0 0.0
1 2012-01-01 00:06:00 0.0 0.0 0.0 0.0 0.0 00 0.0 0.0 00 0.0 00 0.0 0.
2 2012-01-01 00:09:00 0.0 0.0 0.0 0.0 0.0 00 0.0 0.0 00 0.0 00 0.0 0.0
3 2012-01-01 00:12:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 0.0 0.0 0.0 0.0

4 2012-01-01 00:15:00 0.0 0.0 0.0 0.0 0.0 00 0.0 0.0 00 0.0 0.0 0.0 0.

526075 2014-12-3123:48:00 0.0 0.0 0.0 0.0 0.0 00 0.0 0.0 00 0.0 0.0 0.0 0.0
526076 2014-12-3123:51:00 0.0 0.0 0.0 0.0 0.0 00 0.0 0.0 00 0.0 0.0 0.0 0.0
526077 2014-12-3123:54:00 0.0 0.0 0.0 0.0 0.0 00 0.0 0.0 00 0.0 0.0 0.0 0.0
526078 2014-12-3123:57:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 0.0 0.0 0.0 0.0
526079 2015-01-01 00:00:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 0.0 0.0 0.0 0.0

526080 rows x 14 columns

Ipip install gym[all]
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Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Requirement already satisfied: gym[all] in /usr/local/lib/python3.10/dist-packages (0.25.2)
Requirement already satisfied: cloudpickle>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from gym[all]) (2.2.1)
Requirement already satisfied: gym-notices>=0.0.4 in /usr/local/lib/python3.10/dist-packages (from gym[all]) (©.0.8)
Requirement already satisfied: numpy>=1.18.0 in /usr/local/lib/python3.10/dist-packages (from gym[all]) (1.22.4)
Collecting ale-py~=0.7.5

Downloading ale_py-0.7.5-cp310-cp310-manylinux_2_17_ x86_64.manylinux2014_x86_64.whl (1.6 MB)
1.6/1.6 MB 24.7 MB/s eta 0:00:00

Collecting 1z4>=3.1.0
Downloading 1z4-4.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)
1.3/1.3 MB 71.2 MB/s eta 0:00:00
Requirement already satisfied: opencv-python>=3.0 in /usr/local/lib/python3.10/dist-packages (from gym[all]) (4.7.0.72)
Collecting pygame==2.1.0
Downloading pygame-2.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.3 MB)
18.3/18.3 MB 63.5 MB/s eta 0:00:00
Requirement already satisfied: imageio>=2.14.1 in /usr/local/lib/python3.10/dist-packages (from gym[all]) (2.25.1)
Collecting mujoco-py<2.2,>=2.1
Downloading mujoco_py-2.1.2.14-py3-none-any.whl (2.4 MB)
2.4/2.4 MB 62.4 MB/s eta 0:00:00

Collecting swig==4.%
Downloading swig-4.1.1-py2.py3-none-manylinux_2_5_x86_64.manylinux1l_x86_64.whl (1.8 MB)
1.8/1.8 MB 83.2 MB/s eta 0:00:00
Requirement already satisfied: matplotlib>=3.@ in /usr/local/lib/python3.10/dist-packages (from gym[all]) (3.7.1)
Collecting mujoco==2.2.0
Downloading mujoco-2.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.6 MB)
3.6/3.6 MB 79.6 MB/s eta 0:00:00

Collecting box2d-py==2.3.5
Downloading box2d-py-2.3.5.tar.gz (374 kB)

374.4/374.4 kB 37.6 MB/s eta 0:00:00

Preparing metadata (setup.py) ... done
Collecting pytest==7.0.1

Downloading pytest-7.0.1-py3-none-any.whl (296 kB)
297.0/297.0 kB 26.3 MB/s eta 0:00:00
Requirement already satisfied: pyopengl in /usr/local/lib/python3.10/dist-packages (from mujoco==2.2.0->gym[all]) (3.1.6)
Collecting glfw

Downloading glfw-2.5.9-py2.py27.py3.py30.py31.py32.py33.py34.py35.py36.py37.py38-none-manylinux2014_x86_64.whl (207 kB)
207.8/207.8 kB 25.0 MB/s eta 0:00:00
Requirement already satisfied: absl-py in /usr/local/lib/python3.10/dist-packages (from mujoco==2.2.0->gym[all]) (1.4.0)
Requirement already satisfied: tomli>=1.0.0 in /usr/local/lib/python3.10/dist-packages (from pytest==7.0.1->gym[all]) (2.0.1)
Requirement already satisfied: pluggy<2.0,>=0.12 in /usr/local/lib/python3.10/dist-packages (from pytest==7.0.1->gym[all]) (1.0
Requirement already satisfied: iniconfig in /usr/local/lib/python3.10/dist-packages (from pytest==7.0.1->gym[all]) (2.0.0)
Requirement already satisfied: attrs»=19.2.0 in /usr/local/lib/python3.10/dist-packages (from pytest==7.0.1->gym[all]) (23.1.0)
Requirement already satisfied: py>=1.8.2 in /usr/local/lib/python3.10/dist-packages (from pytest==7.0.1->gym[all]) (1.11.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from pytest==7.0.1->gym[all]) (23.1)

I'pip install pyglet

Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Collecting pyglet

Downloading pyglet-2.0.6-py3-none-any.whl (840 kB)
840.9/840.9 kB 24.2 MB/s eta 0:00:00

Installing collected packages: pyglet
Successfully installed pyglet-2.0.6

Collecting fasteners~=0.15

lapt-get install python-opengl

Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
freeglut3 libpython2-stdlib python2 python2-minimal
Suggested packages:
python-tk python-numpy libgle3 python2-doc
The following NEW packages will be installed:
freeglut3 libpython2-stdlib python-opengl python2 python2-minimal
0 upgraded, 5 newly installed, © to remove and 24 not upgraded.
Need to get 621 kB of archives.
After this operation, 6,059 kB of additional disk space will be used.
Get:1 http://archive.ubuntu.com/ubuntu focal/universe amd64 python2-minimal amd64 2.7.17-2ubuntu4 [27.5 kB]
Get:2 http://archive.ubuntu.com/ubuntu focal/universe amdé64 libpython2-stdlib amdé64 2.7.17-2ubuntu4 [7,072 B]
Get:3 http://archive.ubuntu.com/ubuntu focal/universe amd64 python2 amd64 2.7.17-2ubuntu4 [26.5 kB]
Get:4 http://archive.ubuntu.com/ubuntu focal/universe amdé4 freeglut3 amdé64 2.8.1-3 [73.6 kB]
Get:5 http://archive.ubuntu.com/ubuntu focal/universe amd64 python-opengl all 3.1.0+dfsg-2buildl [486 kB]
Fetched 621 kB in 1s (851 kB/s)
Selecting previously unselected package python2-minimal.
(Reading database ... 122518 files and directories currently installed.)
Preparing to unpack .../python2-minimal_2.7.17-2ubuntu4_amd64.deb ...
Unpacking python2-minimal (2.7.17-2ubuntu4) ...
Selecting previously unselected package libpython2-stdlib:amdé4.
Preparing to unpack .../libpython2-stdlib_2.7.17-2ubuntu4_amd64.deb ...
Unpacking libpython2-stdlib:amd64 (2.7.17-2ubuntu4) ...
Setting up python2-minimal (2.7.17-2ubuntu4) ...
Selecting previously unselected package python2.
(Reading database ... 122547 files and directories currently installed.)
Preparing to unpack .../python2_2.7.17-2ubuntu4_amd64.deb ...
Unpacking python2 (2.7.17-2ubuntu4) ...
Selecting previously unselected package freeglut3:amd64.
Preparing to unpack .../freeglut3_2.8.1-3_amd64.deb ...
Unpacking freeglut3:amd64 (2.8.1-3) ...
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Selecting previously unselected package python-opengl.

Preparing to unpack .../python-opengl_3.1.0+dfsg-2buildl_all.deb ...
Unpacking python-opengl (3.1.0+dfsg-2buildl) ...

Setting up freeglut3:amdé64 (2.8.1-3) ...

Setting up libpython2-stdlib:amd64 (2.7.17-2ubuntu4d) ...

Setting up python2 (2.7.17-2ubuntu4) ...

Setting up python-opengl (3.1.0+dfsg-2buildl) ...

Processing triggers for man-db (2.9.1-1) ...

Processing triggers for libc-bin (2.31-@ubuntu9.9) ...

HHHEEHEEHAEHAEE Importing Librarirs for MARL Training using MAPDN ##HHHE RN

import torch as th

import os

import argparse

import yaml

from tensorboardX import SummaryWriter

from models.model_registry import Model, Strategy

from environments.var_voltage_control.voltage_control_env import VoltageControl
from utilities.util import convert, dict2str

from utilities.trainer import PGTrainer

# load env args

with open("./args/env_args/var_voltage_control.yaml", "r") as f:
env_config dict = yaml.safe_load(f)["env_args"]

data_path = env_config_dict["data_path"].split("/")

# data_path[-1] = "case33_3min_final"

data_path[-1] = "case_CIGRE_13_PV_5mint_288_ steps"

# data_path[-1] = "casel41_3min_final"

env_config_dict["data_path"] = "/".join(data_path)

net_topology = "case_CIGRE_13_PV_5mint_288_steps"

# net_topology = "caseld4l_3min_final"

env_config dict

{'voltage_barrier_type': '11",
'voltage_weight': 1.0,
'g_weight': 0.1,
'line_weight': None,
'dq_dv_weight': None,
"history': 1,
'pv_scale': 1.0,
'demand_scale': 1.0,
'state_space': ['pv', 'demand', 'reactive', 'vm_pu', 'va_degree'],
'v_upper': 1.05,
'v_lower': 0.95,
‘data_path': './environments/var_voltage_control/data/case_CIGRE_13_PV_5mint_288_steps"',
'episode_limit': 240,
'action_scale': None,
‘action_bias': None,
'mode': None,
'reset_action': True,
'seed': 0}

assert net_topology in ['case33_3min_final', 'casel41l_3min_final', 'case322_3min_final', 'case_CIGRE_13_PV_5mint_288 steps'], f'{net_topc

if net_topology == 'case33_3min_final':
env_config_dict["action_bias"] = 0.0
env_config_dict["action_scale"] = 0.8
elif net_topology == 'case_CIGRE_13_PV_5mint_288_steps':
env_config_dict["action_bias"] = 0.0
env_config_dict["action_scale"] = 0.6
elif net_topology == 'casel4l_3min_final':
env_config_dict["action_bias"] = 0.0
env_config_dict["action_scale"] = 0.6
elif net_topology == 'case322_3min_final':
env_config dict["action_bias"] = 0.0
env_config_dict["action_scale"] = 0.8

mode = "distributed"

voltage_barrier_type = "bowl"

assert mode in ['distributed', 'decentralised'], "Please input the correct mode, e.g. distributed or decentralised."
env_config_dict["mode"] = mode

env_config_dict["voltage_barrier_type"] = voltage_barrier_type

# load default args
with open("./args/default.yaml”, "r") as f:
default_config_dict = yaml.safe_load(f)
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# default_config_dict["agent_type"] = "mlp"

default_config_dict

{'gumbel_softmax': False,
'epsilon_softmax': False,
'softmax_eps': None,
'episodic': False,

‘cuda': True,
‘grad_clip_eps': 1.0,
'save_model_freq': 40,
'replay_warmup': O,
'policy_lrate': None,
'value_lrate': None,
'mixer_lrate': None,
'target': True,

"target_1r': 0.1,

‘entr': 0.001,

'max_steps': 240,
'batch_size': 32,

'replay': True,
'replay_buffer_size': 5000.0,
‘agent_type': 'rnn’,
‘agent_id': True,
'shared_params': True,
‘layernorm': True,

'mixer': False,
'gaussian_policy': False,
"LOG_STD_MIN': 0.0,
"LOG_STD_MAX': @.5,
'fixed_policy_std': 1.0,
'hid_activation': 'relu’,
'init_type': 'normal’,
'init_std': 0.1,
'action_enforcebound': True,
'double_q': True,

‘clip_c': 1.0,

'gamma': 0.99,

'hid_size': 64,
‘continuous': True,
'normalize_advantages': False,
"train_episodes_num': 400,
'behaviour_update_freq': 60,
'target_update_freq': 120,
'policy_update_epochs': 1,
'value_update_epochs': 10,
'mixer_update_epochs': None,
'reward_normalisation': True,
‘eval_freq': 20,
'num_eval_episodes': 10}

# load alg args

alg = "matd3"

with open("./args/alg_args/" + alg + ".yaml", "r") as f:
alg_config_dict = yaml.safe_load(f)["alg_args"]
alg_config_dict["action_scale"] = env_config_dict["action_scale"]
alg config_dict["action_bias"] = env_config_dict["action_bias"]

alg_config_dict

{'policy_lrate': 0.0001,
'value_lrate': 0.0001,
'gaussian_policy': False,
‘action_enforcebound': True,
‘action_scale': 0.6,
'action_bias': 0.0}

env_name = "var_voltage_control"
alias = ""
log_name = "-".join([env_name, net_topology, mode, alg, voltage_barrier_type, alias])

alg_config_dict = {**default_config_dict, **alg_config_dict}
alg_config_dict

{'gumbel_softmax': False,
'epsilon_softmax': False,
'softmax_eps': None,
'episodic': False,
‘cuda': True,
'grad_clip_eps': 1.0,
'save_model_freq': 40,
'replay_warmup': O,
'policy_lrate': ©.0001,
'value_lrate': 0.0001,
'mixer_lrate': None,
"target': True,
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"target_1r': 0.1,

‘entr': 0.001,

'max_steps': 240,
'batch_size': 32,

'replay': True,
'replay_buffer_size': 5000.0,
‘agent_type': 'rnn’,
‘agent_id': True,
'shared_params': True,
'layernorm': True,

'mixer': False,
'gaussian_policy': False,
'LOG_STD_MIN': 0.0,
'LOG_STD_MAX': 0.5,
'fixed_policy std': 1.0,
'hid_activation': 'relu’,
'init_type': 'normal’,
'init_std': ©.1,
‘action_enforcebound': True,
'double_q': True,

‘clip_c': 1.0,

'gamma': 0.99,

‘hid_size': 64,
‘continuous': True,
'normalize_advantages': False,
"train_episodes_num': 400,
'behaviour_update_freq': 60,
'target_update_freq': 120,
'policy_update_epochs': 1,
'value_update_epochs': 10,
'mixer_update_epochs': None,
'reward_normalisation': True,
‘eval_freq': 20,
'num_eval_episodes': 10,
'action_scale': 0.6,
'action_bias': 0.0}

env_config_dict

{'voltage_barrier_type': 'bowl',
'voltage_weight': 1.0,
'g_weight': 0.1,

'line_weight': None,
'dg_dv_weight': None,
‘history': 1,
'pv_scale': 1.0,
‘demand_scale': 1.0,

Aizaz-code-MARL-Implementations-for-CIGRE .ipynb - Colaboratory

'state_space': ['pv', 'demand', 'reactive', 'vm_pu', 'va_degree'],

'v_upper': 1.05,
'v_lower': 0.95,

‘data_path': './environments/var_voltage_control/data/case_CIGRE_13_PV_5mint_288_steps"',

'episode_limit': 240,
‘action_scale': 0.6,
'action_bias': @.0,
'mode': 'distributed’,
'reset_action': True,
'seed': 0}

# define envs
env = VoltageControl(env_config_dict)

This is the s_max:

[0.54 ©.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54]

alg_config_dict["agent_num"] = env.get_num_of_agents()
alg _config_dict["obs_size"] = env.get_obs_size()
alg_config_dict["action_dim"] = env.get_total_actions()

args = convert(alg_config_dict)

save_path_name = "./"

# define the save path

if save_path_name[-1] == "/":
save_path = save_path_name

else:

save_path = save_path_name+"/"

# create the save folders

if "model_save" not in os.listdir(save_path):
os.mkdir(save_path + "model_save")

if "tensorboard" not in os.listdir(save_path):
os.mkdir(save_path + "tensorboard")
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if log_name not in os.listdir(save_path + "model_save/"):
os.mkdir(save_path + "model_save/" + log_name)
if log_name not in os.listdir(save_path + "tensorboard/"):
os.mkdir(save_path + "tensorboard/" + log_name)
else:
path = save_path + "tensorboard/" + log_name
for f in os.listdir(path):
file_path = os.path.join(path,f)
if os.path.isfile(file_path):
os.remove(file_path)

# create the logger
logger = SummaryWriter(save_path + "tensorboard/" + log_name)

HHEHEHEHEHEEEE Defining Model, Strategy #iHtHt#H
model = Model[alg]

strategy = Strategy[alg]

print (f"{args}\n")

GenericDict(gumbel_softmax=False, epsilon_softmax=False, softmax_eps=None, episodic=False, cuda=True, grad_clip_eps=1.0, save_model

>
if strategy == "pg":
train = PGTrainer(args, model, env, logger)
elif strategy == "q":
raise NotImplementedError("This needs to be implemented.")
else:

raise RuntimeError("Please input the correct strategy, e.g. pg or q.")

Inside RNNAgent init funtion:
Inside RNNAgent init funtion:

with open(save_path + "tensorboard/" + log_name + "/log.txt", "w+") as file:
alg_args2str = dict2str(alg_config_dict, 'alg_params')
env_args2str = dict2str(env_config_dict, 'env_params')
file.write(alg_args2str + "\n")
file.write(env_args2str + "\n")

print("Showing the Policy Net DNN Architecture : ")
train.behaviour_net.policy

Showing the Policy Net DNN Architecture :
<bound method Model.policy of MATD3(
(batchnorm): BatchNormld(13, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(value_dicts): ModulelList(
(0): MLPCritic(
(fcl): Linear(in_features=625, out_features=64, bias=True)
(layernorm): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(fc2): Linear(in_features=64, out_features=64, bias=True)
(fc3): Linear(in_features=64, out_features=1, bias=True)
(hid_activation): ReLU()
)
)
(policy_dicts): ModuleList(
(@) : RNNAgent(
(fcl): Linear(in_features=59, out_features=64, bias=True)
(layernorm): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(rnn): GRUCell(64, 64)
(fc2): Linear(in_features=64, out_features=1, bias=True)
(hid_activation): ReLU()
)
)
(target_net): MATD3(
(batchnorm): BatchNormld(13, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(value_dicts): ModulelList(
(0): MLPCritic(
(fcl): Linear(in_features=625, out_features=64, bias=True)
(layernorm): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(fc2): Linear(in_features=64, out_features=64, bias=True)
(fc3): Linear(in_features=64, out_features=1, bias=True)
(hid_activation): ReLU()
)
)
(policy_dicts): ModuleList(
(0): RNNAgent(
(fc1): Linear(in_features=59, out_features=64, bias=True)
(layernorm): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
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(rnn): GRUCell(64, 64)
(fc2): Linear(in_features=64, out_features=1, bias=True)
(hid_activation): ReLU()
)
)
)
)>

print("Showing the Value Net DNN Architecture : ")
train.behaviour_net.value

Showing the Value Net DNN Architecture :
<bound method MATD3.value of MATD3(
(batchnorm): BatchNormld(13, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(value_dicts): ModuleList(
(0): MLPCritic(
(fcl): Linear(in_features=625, out_features=64, bias=True)
(layernorm): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(fc2): Linear(in_features=64, out_features=64, bias=True)
(fc3): Linear(in_features=64, out_features=1, bias=True)
(hid_activation): ReLU()
)
)
(policy_dicts): ModuleList(
(0): RNNAgent(
(fcl): Linear(in_features=59, out_features=64, bias=True)
(layernorm): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(rnn): GRUCell(64, 64)
(fc2): Linear(in_features=64, out_features=1, bias=True)
(hid_activation): ReLU()
)
)
(target_net): MATD3(
(batchnorm): BatchNormld(13, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(value_dicts): ModulelList(
(0): MLPCritic(
(fcl): Linear(in_features=625, out_features=64, bias=True)
(layernorm): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(fc2): Linear(in_features=64, out_features=64, bias=True)
(fc3): Linear(in_features=64, out_features=1, bias=True)
(hid_activation): ReLU()
)

)
(policy_dicts): ModuleList(

(0): RNNAgent(
(fcl): Linear(in_features=59, out_features=64, bias=True)
(layernorm): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(rnn): GRUCell(64, 64)
(fc2): Linear(in_features=64, out_features=1, bias=True)
(hid_activation): ReLU()

)>

Training the Model and Saving the checkpoints for later use
for i in range(120):
stat = {}
train.run(stat, i)
train.logging(stat)
if i%args.save_model_freq == args.save_model_freq-1:
train.print_info(stat)
th.save({"model_state_dict": train.behaviour_net.state_dict()}, save_path + "model_save/" + log_name + "/model.pt")
print ("The model is saved!\n")

logger.close()

HHHEHEHEHE A Defining Parameters for the Testing the Trained Model
from models.model_registry import Model, Strategy

from environments.var_voltage_control.voltage_control_env import VoltageControl
from utilities.util import convert

from utilities.tester import PGTester

test_mode = "single"
render = "store_true"
test_day = 1

# for one-day test
env_config_dict["episode_limit"] = 480

A Change the Below Factor to Scale the Demand Load and PVs ##HHH#H######H#E

env_config_dict["demand_scale"] = 1.0
env_config_dict["pv_scale"] = 1.0
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default_config_dict["max_steps"] = 480
log_name = "-".join([env_name, net_topology, mode, alg, voltage_barrier_type, alias])
alg_config_dict = {**default_config_dict, **alg_config_dict}

# define envs
env = VoltageControl(env_config_dict)

alg_config_dict["agent_num"] = env.get_num_of_agents()
alg config_dict["obs_size"] = env.get_obs_size()
alg_config_dict["action_dim"] = env.get_total_actions()
alg config_dict["cuda"] = False

args = convert(alg_config_dict)

This is the s_max:
[0.54 ©.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54]

HHEHEHEHEHE A Loading Saved Check-points from saved Path #it#HtHtH#H#H#H
import torch

LOAD_PATH = "./model_save/"+log_name+"/model.pt"
model = Model[alg]
strategy = Strategy[alg]

if args.target:
target_net = model(args)
behaviour_net = model(args, target_net)
else:
behaviour_net = model(args)
checkpoint = torch.load(LOAD_PATH, map_location='cpu') if not args.cuda else torch.load(LOAD_PATH)
behaviour_net.load_state_dict(checkpoint[ 'model_state_dict'])

print (f"{args}\n")

Inside RNNAgent init funtion:
Inside RNNAgent init funtion:
GenericDict(gumbel_softmax=False, epsilon_softmax=False, softmax_eps=None, episodic=False, cuda=False, grad_clip_eps=1.0, save_mode

HHHHEHHEEHEEHEEHE Testing the model for 1 Day Data #itHHHHHHHHE
import pickle

if strategy == "pg":

# test = PGTester(args, behaviour_net, env, render)

test = PGTester(args, behaviour_net, env)
elif strategy == "q":

raise NotImplementedError("This needs to be implemented.")
else:

raise RuntimeError("Please input the correct strategy, e.g. pg or q.")

test_hour = 7
test_min = 1

if test_mode == 'single':
# record = test.run(199, 23, 2) # (day, hour, 3min)
# record = test.run(730, 23, 2) # (day, hour, 3min)
record = test.run(test_day, test_hour, test_min)
with open('test_record_'+log_name+f'_day{test_day}'+ f'_hour{test_hour}'+ f'_min{test_min}'+'.pickle', 'wb') as f:
pickle.dump(record, f, pickle.HIGHEST_PROTOCOL)
elif test_mode == 'batch':
record = test.batch_run(10)
with open('test_record_'+log_name+f'_day{test_day}'+ f'_hour{test_hour}'+ f'_min{test_min}'+'.pickle', 'wb') as f:
pickle.dump(record, f, pickle.HIGHEST_PROTOCOL)

HitHHEE Loading Saved Pickle Result Object ###titH#t####H##
import pickle

pickle_file = open('test_record_'+log_name+f'_day{test_day}'+ f'_hour{test_hour}'+ f'_min{test_min}'+'.pickle','rb")
pickled_result = pickle.load(pickle_file)

print("Showing Result Keys available in pickle object" ,pickled_result.keys())
print ("Length of Time Steps Available in Output: ", len(pickled_result['pv_reactive']))
print ("Showing the Predicted Reactive Output for time step @: ",pickled_result['pv_reactive'][0Q])
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out_pv_active = np.array(pickled_result['pv_active'], dtype=np.float64)
out_pv_reactive = np.array(pickled_result['pv_reactive'], dtype=np.float64)
out_bus_active = np.array(pickled_result['bus_active'], dtype=np.float64)
out_bus_reactive = np.array(pickled_result['bus_reactive'], dtype=np.float64)
out_bus_voltage = np.array(pickled_result['bus_voltage'], dtype=np.float64)
out_line_loss = np.array(pickled_result['line_loss'], dtype=np.float64)

Showing Result Keys available in pickle object dict_keys(['pv_active', 'pv_reactive’,

Length of Time Steps Available in Output: 241

Aizaz-code-MARL-Implementations-for-CIGRE .ipynb - Colaboratory

'bus_reactive',

'bus_voltage’,

Showing the Predicted Reactive Output for time step 0: [-0.23445745 -0.19661463 -0.08506609 ©0.20800361 -0.26107837 ©0.2189883

-0.26172823 0.30874573 -0.02031402 0.30894119 0.0679399  ©0.1550428
-0.29860631]

from matplotlib import pyplot as plt

for

plt.plot( range(out_bus_voltage.shape[@]),

i in range( out_bus_voltage.shape[1] ):

out_bus_voltage[:,i], label="{} th Bus Voltages in Per Unit '.format(i))

plt.title("Output Voltage Per Unit values after applying Rective Power by Agent Trained using {} RL Algorithm".format(alg))
plt.xlabel("Time Steps")

plt.ylabel("Voltage Per Unit")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

Output Voltage Per Unit values after applying Rective Power by Agent Trained using matd3 RL Algorithm

Voltage Per Unit

1.03

1.02 A

1.01 4

1.00
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0.98 4

0.97 4

?L“Vfﬂ&ﬂ““b““ﬂwMN%wﬂvwwzdv“f“W““bJ““ﬁNmﬁwm

0 th Bus Voltages in Per Unit
1 th Bus Voltages in Per Unit
2 th Bus Voltages in Per Unit
3 th Bus Voltages in Per Unit
4 th Bus Voltages in Per Unit
5 th Bus Voltages in Per Unit
6 th Bus Voltages in Per Unit
7 th Bus Voltages in Per Unit
8 th Bus Voltages in Per Unit
9 th Bus Voltages in Per Unit
10 th Bus Voltages in Per Unit
11 th Bus Voltages in Per Unit
12 th Bus Voltages in Per Unit
13 th Bus Voltages in Per Unit
14 th Bus Voltages in Per Unit

T
100

T T T
150 200 250

HHEEHEEHEEE With 50 % Overloading of Demand Scale by 1.5 and PV Scale by factor of 1

Time Steps

from matplotlib import pyplot as plt

for

plt.plot( range(out_bus_voltage.shape[@]),

plt
plt
plt

https://colab.research.google.com/drive/1FNVdWLpcJ9g72ckfsTgDzQ3_tulESEHh?usp=sharing#printMode=true

i in range( out_bus_voltage.shape[1] ):

.title("Output Voltage Per Unit values after applying Rective Power by Agent Trained using {} RL Algorithm".format(alg))
.xlabel("Time Steps")

.ylabel("Voltage Per Unit")
plt.
plt.

legend(bbox_to_anchor=(1.0, 1.0))
show()

out_bus_voltage[:,i], label='{} th Bus Voltages in Per Unit '.format(i))
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Output Voltage Per Unit values after applying Rective Power by Agent Trained using matd3 RL Algorithm

0 th Bus Voltages in Per Unit
1 th Bus Voltages in Per Unit
2 th Bus Voltages in Per Unit
3 th Bus Voltages in Per Unit

=

102 WWWW

1.00 4 th Bus Voltages in Per Unit
- 5 th Bus Voltages in Per Unit
E 6 th Bus Voltages in Per Unit
E 0.98 7 th Bus Voltages in Per Unit
8 th Bus Voltages in Per Unit

E n
o LY al O Fh Dir ValFasas in Dar e

HHEEHEEHEEE With 50 % UnderLoading of Demand Scale 0.5 and PV Scale by factor of 1
from matplotlib import pyplot as plt

for i in range( out_bus_voltage.shape[1] ):
plt.plot( range(out_bus_voltage.shape[@]), out_bus_voltage[:,i], label='{} th Bus Voltages in Per Unit '.format(i))

plt.title("Output Voltage Per Unit values after applying Rective Power by Agent Trained using {} RL Algorithm".format(alg))
plt.xlabel("Time Steps")

plt.ylabel("Voltage Per Unit")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

Output Voltage Per Unit values after applying Rective Power by Agent Trained using matd3 RL Algorithm

1.030 —— — 0 th Bus Voltages in Per Un{t
S A A A A A ML PN AR ANPNA i, 1 th Bus Voltages in Per Unit
1.025 4 2 th Bus Voltages in Per Unit

3 th Bus Voltages in Per Unit
4 th Bus Voltages in Per Unit
5 th Bus Voltages in Per Unit

. WMM\W

‘E 6 th Bus Voltages in Per Unit
= 1.015 N .
E 7 th Bus Voltages in Per Unit
8 th Bus Voltages in Per Unit
@
© 1.010 1 —— 9 th Bus Voltages in Per Unit
pi
:;: —— 10 th Bus Voltages in Per Unit
1.005 4 —— 11 th Bus Voltages in Per Unit
—— 12 th Bus Voltages in Per Unit
1.000 —— 13 th Bus Voltages in Per Unit
—— 14 th Bus Voltages in Per Unit
0.995 1
T T T T T T
o 50 100 150 200 250
Time Steps

from matplotlib import pyplot as plt

for i in range( out_pv_reactive.shape[1l] ):
plt.plot( range(out_pv_reactive.shape[@]), out_pv_reactive[:,i], label="{} th PV Reactive Power'.format(i))

plt.title("Output Predicted Reactive Power by Agent Trained using {} RL Algorithm".format(alg))
plt.xlabel("Time Steps")

plt.ylabel("Injected Reactive Power in Mvar")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()
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Output Predicted Reactive Power by Agent Trained using matd3 RL Algorithm

HHHHEHE S With 50 % Overloading of Demand Scale 1.5 and PV Scale by factor of 1

from matplotlib import pyplot as plt

for i in range( out_pv_reactive.shape[1] ):

plt.plot( range(out_pv_reactive.shape[0]),

plt.title("Output Predicted Reactive Power by Agent Trained using {} RL Algorithm".format(alg))

plt.xlabel("Time Steps")
plt.ylabel("Injected Reactive Power in Mvar")
plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

out_pv_reactive[:,i], label='{} th PV Reactive Power'.format(i))

Output Predicted Reactive Power by Agent Trained using matd3 RL Algorithm

0.3 9

0.2 4

0.1

0.0

—-0.1 1

Injected Reactive Power in MVar

—-0.2 1

—0.3 4

HHHHEHEHEEE With 50 % UnderLoading of Demand Scale ©.5 and PV Scale by factor of 1

T T T
0 50 100 150 200

Time Steps

from matplotlib import pyplot as plt

for i in range( out_pv_reactive.shape[1] ):

plt.plot( range(out_pv_reactive.shape[0]),

plt.title("Output Predicted Reactive Power by Agent Trained using {} RL Algorithm".format(alg))

plt.xlabel("Time Steps")
plt.ylabel("Injected Reactive Power in Mvar")
plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

T
250

0 th PV Reactive Power
1 th PV Reactive Power
2 th PV Reactive Power
3 th PV Reactive Power
4 th PV Reactive Power
5 th PV Reactive Power
6 th PV Reactive Power
7 th PV Reactive Power
8 th PV Reactive Power
9 th PV Reactive Power
10 th PV Reactive Power
11 th PV Reactive Power
12 th PV Reactive Power

out_pv_reactive[:,i], label='{} th PV Reactive Power'.format(i))

Output Predicted Reactive Power by Agent Trained using matd3 RL Algorithm

0.15 1

0.10 1

0.05

0.00

—0.05 1

Injected Reactive Power in MVar

—0.10 4

—0.15 4
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from matplotlib import pyplot as plt

for i in range( out_pv_active.shape[1] ):
plt.plot( range(out_pv_active.shape[@]), out_pv_active[:,i], label="{} th PV Active Power'.format(i))

plt.title("Output Predicted Active Power by Agent Trained using {} RL Algorithm".format(alg))
plt.xlabel("Time Steps")

plt.ylabel("Injected Active Power in Mvar")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

Output Predicted Active Power by Agent Trained using matd3 RL Algorithm

0.07 7 —— 0 th PV Active Power
—— 1 th PV Active Power
0.06 1 —— 2 th PV Active Power
5 —— 3 th PV Active Power
% 0.05 —— 4 th PV Active Power
= — 5 th PV Active Power
5 ——— 6 th PV Active Power
Z 0047 —— 7 th PV Active Power
% 8 th PV Active Power
£ 0,031 —— 9 th PV Active Power
g —— 10 th PV Active Power
g 0.02 4 —— 11 th PV Active Power
.“CA —— 12 th PV Active Power
0.01 4
0.00
(I) Sb 160 15;0 260 ZE'I:O
Time Steps

AR With 50 % Overloading of Demand Scale 1.5 and PV Scale by factor of 1

from matplotlib import pyplot as plt

for i in range( out_pv_active.shape[1] ):
plt.plot( range(out_pv_active.shape[@]), out_pv_active[:,i], label="{} th PV Active Power'.format(i))

plt.title("Output Predicted Active Power by Agent Trained using {} RL Algorithm".format(alg))
plt.xlabel("Time Steps")

plt.ylabel("Injected Active Power in Mvar")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

Output Predicted Active Power by Agent Trained using matd3 RL Algorithm

0.07 4 —— 0 th PV Active Power
—— 1th PV Active Power
0.06 - —— 2 th PV Active Power
- —— 3 th PV Active Power
E 0.05 - —— 4 th PV Active Power
c — 5 th PV Active Power
- —— 6 th PV Active Power
5 0.04 1 —— 7 th PV Active Power
% 8 th PV Active Power
£ 0031 —— 9 th PV Active Power
z —— 10 th PV Active Power
% 0.02 1 —— 11 th PV Active Power
.GEJ, —— 12 th PV Active Power
0.01 4
0.00 +
(IJ 56 160 150 ZEIJO 2.’;0
Time Steps

HHEHEHEHEE With 50 % UnderLoading of Demand Scale ©.5 and PV Scale by factor of 1

from matplotlib import pyplot as plt

for i in range( out_pv_active.shape[1l] ):
plt.plot( range(out_pv_active.shape[@]), out_pv_active[:,i], label="{} th PV Active Power'.format(i))
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plt.title("Output Predicted Active Power by Agent Trained using {} RL Algorithm".format(alg))
plt.xlabel("Time Steps")

plt.ylabel("Injected Active Power in Mvar")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

Output Predicted Active Power by Agent Trained using matd3 RL Algorithm

0.07 1 0 th PV Active Power
1 th PV Active Power

0.06 1 2 th PV Active Power
5 3 th PV Active Power
% 0.05 4 th PV Active Power
= 5 th PV Active Power
5 6 th PV Active Power
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a .
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£ 0.031 9 th PV Active Power
g 10 th PV Active Power
J] i 11 th PV Active Power
5 0.02
.ﬂé 12 th PV Active Power
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from matplotlib import pyplot as plt

for i in range( out_line_loss.shape[1] ):
plt.plot( range(out_line_loss.shape[@]), out_line_loss[:,i], label="{} th Bus Line Losses '.format(i))

plt.title("Output Buses Line Loses values after applying Rective Power by Agent Trained using {} RL Algorithm".format(alg))
plt.xlabel("Time Steps")

plt.ylabel("Line Losses")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

Output Buses Line Loses values after applying Rective Power by Agent Trained using matd3 RL Algorithm

—— 0thBus Line Losses
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g —— 7 th Bus Line Losses
S 8 th Bus Line Losses
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HHEEHEEHEEE With 50 % Overloading of Demand Scale 1.5 and PV Scale by factor of 1

from matplotlib import pyplot as plt

for i in range( out_line_loss.shape[1l] ):
plt.plot( range(out_line_loss.shape[@]), out_line_loss[:,i], label="'{} th Bus Line Losses '.format(i))

plt.title("Output Buses Line Loses values after applying Rective Power by Agent Trained using {} RL Algorithm".format(alg))
plt.xlabel("Time Steps")

plt.ylabel("Line Losses")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()
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Output Buses Line Loses values after applying Rective Power by Agent Trained using matd3 RL Algorithm
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HHEHEHEHEE With 50 % UnderLoading of Demand Scale ©.5 and PV Scale by factor of 1

from matplotlib import pyplot as plt

for i in range( out_line_loss.shape[1] ):
plt.plot( range(out_line_loss.shape[@]), out_line_loss[:,i], label='{} th Bus Line Losses '.format(i))

plt.title("Output Buses Line Loses values after applying Rective Power by Agent Trained using {} RL Algorithm".format(alg))
plt.xlabel("Time Steps")

plt.ylabel("Line Losses")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

Output Buses Line Loses values after applying Rective Power by Agent Trained using matd3 RL Algorithm
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A NEW block With 50 % Overloading of Demand Scale by 1.5 and PV Scale by factor of 1 day change
from matplotlib import pyplot as plt

for i in range( out_bus_voltage.shape[1l] ):
plt.plot( range(out_bus_voltage.shape[@]), out_bus_voltage[:,i], label='{} th Bus Voltages in Per Unit '.format(i))

plt.title("Output Voltage Per Unit values after applying Rective Power by Agent Trained using {} RL Algorithm".format(alg))
plt.xlabel("Time Steps")

plt.ylabel("Voltage Per Unit")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()
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Output Voltage Per Unit values after applying Rective Power by Agent Trained using matd3 RL Algorithm

—— 0 th Bus Voltages in Per Unit
1024 MWW —— 1th Bus Voltages in Per Unit
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AR Plotting the Comparison results of Bus 1 without PV, with PV and OPF Voltages for the 1 DAY Data with 100 Percent Loading ##
from matplotlib import pyplot as plt
buses_list = [1]

for i in buses_list:
plt.plot( range(150), opf_csv_file_vm_pu_with_PV.iloc[50:200,i+1], label='{} th Bus Voltages for OPF '.format(i))
plt.plot( range(150), csv_file_vm_pu.iloc[50:200,i+1], label='{} th Bus Voltages for Power Flow without PV '.format(i))
plt.plot( range(150), out_bus_voltage[50:200,i], label="{} th Bus Voltages after applying Multi-Agent Reinforcement Learning '.format(

plt.title("Output Voltage Per Unit values for Power Flow of Bus 1 without PV, MARL, and OPF Analysis with PVs with 100 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Voltage Per Unit")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

Output Voltage Per Unit values for Power Flow of Bus 1 without PV, MARL, and OPF Analysis with PVs with 100 Percent Loading

1.0250 —— 1 th Bus Voltages for OPF
NMWWMW/\W —— 1 th Bus Voltages for Power Flow without PV

1.0225 —— 1 th Bus Voltages after applying Multi-Agent Reinforcement Leamning
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HtHEEHEEHE Plotting the Comparison results of Bus 6 without PV, with PV and OPF Voltages for the 1 DAY Data with 100 Percent Loading ##
from matplotlib import pyplot as plt
buses_list = [6]

for i in buses_list:
plt.plot( range(150), opf_csv_file_vm pu with_PV.iloc[50:200,i+1], label='{} th Bus Voltages for OPF '.format(i))
plt.plot( range(150), csv_file_vm_pu.iloc[50:200,i+1], label="{} th Bus Voltages for Power Flow without PV '.format(i))
plt.plot( range(150), out_bus_voltage[50:200,i], label="{} th Bus Voltages after applying Multi-Agent Reinforcement Learning '.format(

plt.title("Output Voltage Per Unit values for Power Flow of Bus 6 without PV, MARL, and OPF Analysis with PVs with 100 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Voltage Per Unit")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()
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Output Voltage Per Unit values for Power Flow of Bus 6 without PV, MARL, and OPF Analysis with PVs with 100 Percent Loading
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HitHHEEHEH Plotting the Comparison results of Bus 7 without PV, with PV and OPF Voltages for the 1 DAY Data with 100 Percent Loading ##

from matplotlib import pyplot as plt

buses_list = [7]

for i in buses_list:
plt.plot( range(150),
plt.plot( range(150),
plt.plot( range(150),

opf_csv_file_vm_pu_with_PV.iloc[50:200,i+1], label='{} th Bus Voltages for OPF '.format(i))
csv_file_vm_pu.iloc[50:200,i+1], label='{} th Bus Voltages for Power Flow without PV '.format(i))
out_bus_voltage[50:200,1i], label='{} th Bus Voltages after applying Multi-Agent Reinforcement Learning '.format(

plt.title("Output Voltage Per Unit values for Power Flow of Bus 7 without PV, MARL, and OPF Analysis with PVs with 100 Percent Loading")

plt.xlabel("Time Steps")

plt.ylabel("Voltage Per Unit")
plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

Output Voltage Per Unit va\uelksogor Power Flow of Bus 7 without PV, MARL, and OPF Analysis with PVs with 100 Percent Loading
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—— 7 th Bus Voltages for OPF
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AR Plotting the Comparison results of Bus 14 without PV, with PV and OPF Voltages for the 1 DAY Data with 100 Percent Loading #

from matplotlib import pyplot as plt

buses_list = [14]

for i in buses_list:
plt.plot( range(150),
plt.plot( range(150),
plt.plot( range(150),

plt.title("Output Voltage Per Unit values for Power Flow of Bus 14 without PV, MARL, and OPF Analysis with PVs with 100 Percent Loading"
plt.xlabel("Time Steps")

opf_csv_file_vm_pu_with_PV.iloc[50:200,i+1], label='{} th Bus Voltages for OPF '.format(i))
csv_file_vm_pu.iloc[50:200,i+1], label='{} th Bus Voltages for Power Flow without PV '.format(i))
out_bus_voltage[50:200,1], label='{} th Bus Voltages after applying Multi-Agent Reinforcement Learning '.format(

.

plt.ylabel("Voltage Per Unit")
plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()
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Output Voltage Per Unit values for Power Flow of Bus 14 without PV, MARL, and OPF Analysis with PV's with 100 Percent Loading
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—— 14 th Bus Voltages after applying Multi-Agent Reinforcement Learning

A Plotting the Comparison results of bus 1 without PV, with PV and OPF Reactive Power for the 1 DAY Data with 100 Percent Loac

from matplotlib import pyplot as plt

buses_list = [1]

for i in buses_list:
plt.plot( range(200-50),
plt.plot( range(200-50),
plt.plot( range(200-50),

plt.title("Output PV Reactive values of Bus 1 for OPF and MARL with 100 Percent Loading")

plt.xlabel("Time Steps")
plt.ylabel("Mvar")

opf_csv_file_qg_mvar_with_PV.iloc[50:200,i+1], label='{} th PV Reactive for OPF '.format(i))

out_bus_reactive[50:200,1i], label="{} th PV Reactive after applying Multi-Agent Reinforcement Learning '.forn
abs(opf_csv_file_qg_mvar_with_PV.iloc[50:200,i+1]- out_bus_reactive[50:200,i]) , label='Difference Between Abc

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

output PV Reactive values of Bus 1 for OPF and MARL with 100 Percent Loading
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H#HHHHEH# Plotting the Comparison results of bus 6 without PV, with PV and OPF Reactive Power for the 1 DAY Data with 100 Percent Loac

from matplotlib import pyplot as plt

buses_list = [6]

for i in buses_list:
plt.plot( range(200-50),
plt.plot( range(200-50),
plt.plot( range(200-50),

plt.title("Output PV Reactive values of Bus 6 for OPF and MARL with 100 Percent Loading")

plt.xlabel("Time Steps")
plt.ylabel("Mvar")

opf_csv_file_q_mvar_with_PV.iloc[50:200,i+1], label='{} th PV Reactive for OPF '.format(i))

out_bus_reactive[50:200,1i], label="{} th PV Reactive after applying Multi-Agent Reinforcement Learning '.forn
abs(opf_csv_file_qg_mvar_with_PV.iloc[50:200,i+1]- out_bus_reactive[50:200,i]) , label='Difference Between Abc

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

https://colab.research.google.com/drive/1FNVdWLpcJ9g72ckfsTgDzQ3_tulESEHh?usp=sharing#printMode=true
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Output PV Reactive values of Bus 6 for OPF and MARL with 100 Percent Loading

—— 6 th PV Reactive for OPF
—— 6 th PV Reactive after applying Multi-Agent Reinforcement Leaming
—— Difference Between Above 2
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A Plotting the Comparison results of bus 7 without PV, with PV and OPF Reactive Power for the 1 DAY Data with 100 Percent Loac
from matplotlib import pyplot as plt
buses_list = [7]

for i in buses_list:
plt.plot( range(200-50), opf_csv_file_g_mvar_with_PV.iloc[50:200,i+1], label='{} th PV Reactive for OPF '.format(i))
plt.plot( range(200-50), out_bus_reactive[50:200,i], label="{} th PV Reactive after applying Multi-Agent Reinforcement Learning '.forn
plt.plot( range(200-50), abs(opf_csv_file_q_mvar_with_PV.iloc[50:200,i+1]- out_bus_reactive[50:200,i]) , label='Difference Between Abc

plt.title("Output PV Reactive values of Bus 7 for OPF and MARL with 100 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Mvar")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

Output PV Reactive values of Bus 7 for OPF and MARL with 100 Percent Loading

—— 7 th PV Reactive for OPF
—— 7 th PV Reactive after applying Multi-Agent Reinforcement Learning
—— Difference Between Above 2
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H#HEHEHEHE# Plotting the Comparison results of bus 12 without PV, with PV and OPF Reactive Power for the 1 DAY Data with 100 Percent Lo:
from matplotlib import pyplot as plt
buses_list = [12]

for i in buses_list:
plt.plot( range(200-50), opf_csv_file_g_mvar_with_PV.iloc[50:200,i+1], label="'{} th PV Reactive for OPF '.format(i))
plt.plot( range(200-50), out_bus_reactive[50:200,i], label="{} th PV Reactive after applying Multi-Agent Reinforcement Learning '.forn
plt.plot( range(200-50), abs(opf_csv_file_qg_mvar_with_PV.iloc[50:200,i+1]- out_bus_reactive[50:200,i]) , label='Difference Between Abc

plt.title("Output PV Reactive values of Bus 12 for OPF and MARL with 100 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Mvar")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

https://colab.research.google.com/drive/1FNVdWLpcJ9g72ckfsTgDzQ3_tulESEHh?usp=sharing#printMode=true 54/70



5/20/23, 1:35 PM Aizaz-code-MARL-Implementations-for-CIGRE .ipynb - Colaboratory

Qutput PV Reactive values of Bus 12 for OPF and MARL with 100 Percent Loading

—— 12 th PV Reactive for OPF
0.06 —— 12 th PV Reactive after applying Multi-Agent Reinforcement Learning
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HHHHEHEE# Plotting the Comparison results of bus 14 without PV, with PV and OPF Reactive Power for the 1 DAY Data with 100 Percent Lo:
from matplotlib import pyplot as plt
buses_list = [14]

for i in buses_list:
plt.plot( range(200-50), opf_csv_file_qg_mvar_with_PV.iloc[50:200,i+1], label='{} th PV Reactive for OPF '.format(i))
plt.plot( range(200-50), out_bus_reactive[50:200,i], label="{} th PV Reactive after applying Multi-Agent Reinforcement Learning '.forn
plt.plot( range(200-50), abs(opf_csv_file_qg_mvar_with_PV.iloc[50:200,i+1]- out_bus_reactive[50:200,1i]) , label='Difference Between Abc

plt.title("Output PV Reactive values of Bus 14 for OPF and MARL with 100 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Mvar")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

Output PV Reactive values of Bus 14 for OPF and MARL with 100 Percent Loading
0.08
—— 14 th PV Reactive for OPF
WWMW\/\WMNWW —— 14 th PV Reactive after applying Multi-Agent Reinforcement Learning
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H#HHHHHH### Plotting the Comparison results of Bus 1 without PV, with PV and OPF line Losses for the 1 DAY Data with 100 Percent Loading
from matplotlib import pyplot as plt
buses_list = [1]

for i in buses_list:
plt.plot( range(150), opf_csv_file_line_loses_with_PV.iloc[50:200,i+1], label='{} th line Losses for OPF '.format(i))
plt.plot( range(150), out_line_loss[50:200,i], label="{} th line Losses after applying Multi-Agent Reinforcement Learning '.format(i)

plt.title("Output Bus Line Loses of Bus 1 for OPF and MARL with 100 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("MW")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()
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Output Bus Line Loses of Bus 1 for OPF and MARL with 100 Percent Loading
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it Plotting the Comparison results of Bus 6 without PV, with PV and OPF line Losses for the 1 DAY Data with 100 Percent Loading
from matplotlib import pyplot as plt
buses_list = [6]

for i in buses_list:
plt.plot( range(150), opf_csv_file_line_loses_with_PV.iloc[50:200,i+1], label="{} th line Losses for OPF '.format(i))
plt.plot( range(150), out_line_loss[50:200,i], label='{} th line Losses after applying Multi-Agent Reinforcement Learning '.format(i)

plt.title("Output Bus Line Loses of Bus 6 for OPF and MARL with 100 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("MW")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

Output Bus Line Loses of Bus 6 for OPF and MARL with 100 Percent Loading

—— 6 thline Losses for OPF

—— 6 thline Losses after applying Multi-Agent Reinforcement Learning
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HtHEEHEEHE Plotting the Comparison results of Bus 7 without PV, with PV and OPF line Losses for the 1 DAY Data with 100 Percent Loading
from matplotlib import pyplot as plt
buses_list = [7]

for i in buses_list:
plt.plot( range(150), opf_csv_file_line_loses_with_PV.iloc[50:200,i+1], label='{} th line Losses for OPF '.format(i))
plt.plot( range(150), out_line_loss[50:200,i], label="'{} th line Losses after applying Multi-Agent Reinforcement Learning '.format(i)

plt.title("Output Bus Line Loses of Bus 7 for OPF and MARL with 100 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("MW")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

Output Bus Line Loses of Bus 7 for OPF and MARL with 100 Percent Loading

0.00035 - —— 7 thline Losses for OPF
—— 7thline Losses after applying Multi-Agent Reinforcement Learning
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A Plotting the Comparison results of Bus 14 without PV, with PV and OPF line Losses for the 1 DAY Data with 100 Percent Loadir
from matplotlib import pyplot as plt
buses_list = [14]
for i in buses_list:
plt.plot( range(150), opf_csv_file_line_loses_with_PV.iloc[50:200,i+1], label='{} th line Losses for OPF '.format(i))

plt.plot( range(150), out_line_loss[50:200,i], label="'{} th line Losses after applying Multi-Agent Reinforcement Learning '.format(i)

plt.title("Output Bus Line Loses of Bus 14 for OPF and MARL with 100 Percent Loading")
plt.xlabel("Time Steps")

plt

.ylabel("MW")
plt.
plt.

legend(bbox_to_anchor=(1.0, 1.0))
show()
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H#HHHEHEHE# Plotting the Comparison results of Bus 1 without PV, with PV and OPF Voltages for the 1 DAY Data with 50 Percent Loading #i#
from matplotlib import pyplot as plt
buses_list = [1]

for i in buses_list:
plt.plot( range(150), opf_csv_file_vm_pu_with_PV_with_50.iloc[50:200,i+1], label='{} th Bus Voltages for OPF '.format(i))
plt.plot( range(150), csv_file_vm_pu_50_percent.iloc[50:200,i+1], label='{} th Bus Voltages for Power Flow without PV '.format(i))
plt.plot( range(150), out_bus_voltage[50:200,i], label='{} th Bus Voltages after applying Multi-Agent Reinforcement Learning '.format(

plt.title("Output Voltage Per Unit values for Power Flow of Bus 1 without PV, MARL, and OPF Analysis with PVs with 50 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Voltage Per Unit")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

Output Voltage Per Unit values for Power Flow of Bus 1 without PV, MARL, and OPF Analysis with PVs with 50 Percent Loading
1028
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—— 1th Bus Voltages for Power Flow without PV
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I Plotting the Comparison results of Bus 6 without PV, with PV and OPF Voltages for the 1 DAY Data with 50 Percent Loading #i##
from matplotlib import pyplot as plt
buses_list = [6]

for i in buses_list:
plt.plot( range(150), opf_csv_file_vm_pu_with_PV_with_50.iloc[50:200,i+1], label='{} th Bus Voltages for OPF '.format(i))
plt.plot( range(150), «csv_file_vm_pu_50_percent.iloc[50:200,i+1], label='{} th Bus Voltages for Power Flow without PV '.format(i))
plt.plot( range(150), out_bus_voltage[50:200,i], label="{} th Bus Voltages after applying Multi-Agent Reinforcement Learning '.format(

plt.title("Output Voltage Per Unit values for Power Flow of Bus 6 without PV, MARL, and OPF Analysis with PVs with 5@ Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Voltage Per Unit")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()
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A Plotting the Comparison results of Bus 7 without PV, with PV and OPF Voltages for the 1 DAY Data with 50 Percent Loading #i#
from matplotlib import pyplot as plt
buses_list = [7]

for i in buses_list:
plt.plot( range(150), opf_csv_file_vm_pu_with_PV_with_50.iloc[50:200,i+1], label='{} th Bus Voltages for OPF '.format(i))
plt.plot( range(150), «csv_file_vm_pu_50_ percent.iloc[50:200,i+1], label='{} th Bus Voltages for Power Flow without PV '.format(i))
plt.plot( range(150), out_bus_voltage[50:200,i], label="{} th Bus Voltages after applying Multi-Agent Reinforcement Learning '.format(

plt.title("Output Voltage Per Unit values for Power Flow of Bus 7 without PV, MARL, and OPF Analysis with PVs with 5@ Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Voltage Per Unit")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

Output Voltage Per Unit values for Power Flow of Bus 7 without PV, MARL, and OPF Analysis with PVs with 50 Percent Loading

—— 7th Bus Voltages for OPF
—— 7th Bus Voltages for Power Flow without PV
—— 7th Bus Voltages after applying Multi-Agent Reinforcement Learning
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HtHEEHEEHE Plotting the Comparison results of Bus 14 without PV, with PV and OPF Voltages for the 1 DAY Data with 50 Percent Loading ##
from matplotlib import pyplot as plt
buses_list = [14]

for i in buses_list:
plt.plot( range(150), opf_csv_file_vm_pu_with_PV_with_50.iloc[50:200,i+1], label='{} th Bus Voltages for OPF '.format(i))
plt.plot( range(150), csv_file_vm_pu_50_percent.iloc[50:200,i+1], label='{} th Bus Voltages for Power Flow without PV '.format(i))
plt.plot( range(150), out_bus_voltage[50:200,i], label='{} th Bus Voltages after applying Multi-Agent Reinforcement Learning '.format(

plt.title("Output Voltage Per Unit values for Power Flow of Bus 14 without PV, MARL, and OPF Analysis with PVs with 50 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Voltage Per Unit")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

Output Voltage Per Unit values for Power Flow of Bus 14 without PV, MARL, and OPF Analysis with PVs with 50 Percent Loading

1.036 —— 14 th Bus Voltages for OPF
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HitHEEHEEHE Plotting the Comparison results of bus 1 without PV, with PV and OPF Reactive Power for the 1 DAY Data with 50 Percent Loadi
from matplotlib import pyplot as plt
buses_list = [1]

for i in buses_list:
plt.plot( range(200-50), opf_csv_file_qg_mvar_with_PV_with_50.iloc[50:200,i+1], label="{} th PV Reactive for OPF '.format(i))
plt.plot( range(200-50), out_bus_reactive[50:200,i], label="{} th PV Reactive after applying Multi-Agent Reinforcement Learning '.forn
plt.plot( range(200-50), abs(opf_csv_file_q_mvar_with_PV_with_50.iloc[50:200,i+1]- out_bus_reactive[50:200,i]) , label='Difference Bet

plt.title("Output PV Reactive values of Bus 1 for OPF and MARL with 50 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Mvar")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

Output PV Reactive values of Bus 1 for OPF and MARL with 50 Percent Loading

—— 1th PV Reactive for OPF
—— 1 th PV Reactive after applying Multi-Agent Reinforcement Learning
—— Difference Between Above 2
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HHHHEHEHE# Plotting the Comparison results of bus 6 without PV, with PV and OPF Reactive Power for the 1 DAY Data with 50 Percent Loadi
from matplotlib import pyplot as plt
buses_list = [6]

for i in buses_list:
plt.plot( range(200-50), opf_csv_file_q_mvar_with_PV_with_50.iloc[50:200,i+1], label="{} th PV Reactive for OPF '.format(i))
plt.plot( range(200-50), out_bus_reactive[50:200,i], label="{} th PV Reactive after applying Multi-Agent Reinforcement Learning '.forn
plt.plot( range(200-50), abs(opf_csv_file_qg_mvar_with_PV_with_50.iloc[50:200,i+1]- out_bus_reactive[50:200,i]) , label='Difference Bet

plt.title("Output PV Reactive values of Bus 6 for OPF and MARL with 50 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Mvar")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()
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Output PV Reactive values of Bus 6 for OPF and MARL with 50 Percent Loading

—— 6 th PV Reactive for OPF
0.020 —— 6 th PV Reactive after applying Multi-Agent Reinforcement Learning
—— Difference Between Above 2
A A aa M

A Plotting the Comparison results of bus 7 without PV, with PV and OPF Reactive Power for the 1 DAY Data with 50 Percent Loadi

from matplotlib import pyplot as plt
buses_list = [7]

for i in buses_list:
plt.plot( range(200-50), opf_csv_file_q_mvar_with_PV_with_50.iloc[50:200,i+1], label="{} th PV Reactive for OPF '.format(i))
plt.plot( range(200-50), out_bus_reactive[50:200,i], label='{} th PV Reactive after applying Multi-Agent Reinforcement Learning '.forn
plt.plot( range(200-50), abs(opf_csv_file_qg_mvar_with_PV_with_50.iloc[50:200,i+1]- out_bus_reactive[50:200,i]) , label='Difference Bet

plt.title("Output PV Reactive values of Bus 7 for OPF and MARL with 50 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Mvar")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

Output PV Reactive values of Bus 7 for OPF and MARL with 50 Percent Loading

—— 7 th PV Reactive for OPF
—— 7 th PV Reactive after applying Multi-Agent Reinforcement Learning
—— Difference Between Above 2
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HHEEHEEHE Plotting the Comparison results of bus 12 without PV, with PV and OPF Reactive Power for the 1 DAY Data with 50 Percent Loac
from matplotlib import pyplot as plt
buses_list = [12]

for i in buses_list:
plt.plot( range(200-50), opf_csv_file_g_mvar_with_PV_with_50.iloc[50:200,i+1], label="'{} th PV Reactive for OPF '.format(i))
plt.plot( range(200-50), out_bus_reactive[50:200,i], label="{} th PV Reactive after applying Multi-Agent Reinforcement Learning '.forn
plt.plot( range(200-50), abs(opf_csv_file_q_mvar_with_PV_with_50.iloc[50:200,i+1]- out_bus_reactive[50:200,i]) , label='Difference Bet

plt.title("Output PV Reactive values of Bus 12 for OPF and MARL with 50 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Mvar")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()
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Output PV Reactive values of Bus 12 for OPF and MARL with 50 Percent Loading

—— 12 th PV Reactive for OPF

0.03 —— 12 th PV Reactive after applying Multi-Agent Reinforcement Learning
—— Difference Between Above 2
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HitHEHEEHE Plotting the Comparison results of bus 14 without PV, with PV and OPF Reactive Power for the 1 DAY Data with 50 Percent Loac
from matplotlib import pyplot as plt
buses_list = [14]

for i in buses_list:
plt.plot( range(200-50), opf_csv_file_qg_mvar_with_PV_with_50.iloc[50:200,i+1], label="{} th PV Reactive for OPF '.format(i))
plt.plot( range(200-50), out_bus_reactive[50:200,i], label="{} th PV Reactive after applying Multi-Agent Reinforcement Learning '.forn
plt.plot( range(200-50), abs(opf_csv_file_q_mvar_with_PV_with_50.iloc[50:200,i+1]- out_bus_reactive[50:200,i]) , label='Difference Bet

plt.title("Output PV Reactive values of Bus 14 for OPF and MARL with 50 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Mvar")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

Output PV Reactive values of Bus 14 for OPF and MARL with 50 Percent Loading
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HHHHEHEHE# Plotting the Comparison results of Bus 1 without PV, with PV and OPF line Losses for the 1 DAY Data with 50 Percent Loading
from matplotlib import pyplot as plt
buses_list = [1]

for i in buses_list:
plt.plot( range(150), opf_csv_file_line_loses_with_PV_with_50.iloc[50:200,i+1], label='{} th line Losses for OPF '.format(i))
plt.plot( range(150), out_line_loss[50:200,i], label="{} th line Losses after applying Multi-Agent Reinforcement Learning '.format(i)

plt.title("Output Bus Line Loses of Bus 1 for OPF and MARL with 50 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("MW")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()
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—— 1thline Losses for OPF
—— 1thline Losses after applying Multi-Agent Reinforcement Learning
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0.02 4
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oA .

A Plotting the Comparison results of Bus 6 without PV, with PV and OPF line Losses for the 1 DAY Data with 50 Percent Loading

from matplotlib import pyplot as plt

buses_list =

for

plt.plot( range(150),
plt.plot( range(150),

plt.

plt
plt
plt

[6]

i in buses_list:

title("Output Bus Line Loses of Bus 6 for OPF and MARL with 50 Percent Loading")

.xlabel("Time Steps")
.ylabel("MW")
.legend(bbox_to_anchor=(1.0, 1.0))
plt.

show()
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opf_csv_file_line_loses_with_PV_with_50.iloc[50:200,i+1], label='{} th line Losses for OPF '.format(i))
out_line_loss[50:200,1i], label='{} th line Losses after applying Multi-Agent Reinforcement Learning '.format(i),

Output Bus Line Loses of Bus 6 for OPF and MARL with 50 Percent Loading

—— 6 thline Losses for OPF

0.0005 —— 6 thline Losses after applying Multi-Agent Reinforcement Learning

0.0004 4
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0.0000
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A Plotting the Comparison results of Bus 7 without PV, with PV and OPF line Losses for the 1 DAY Data with 50 Percent Loading
from matplotlib import pyplot as plt

buses_list = [7]

for i in buses_list:

plt.plot( range(150),
plt.plot( range(150),

opf_csv_file_line_loses_with_PV_with_50.iloc[50:200,i+1], label='{} th line Losses for OPF '.format(i))
out_line_loss[50:200,1i], label='{} th line Losses after applying Multi-Agent Reinforcement Learning '.format(i),

plt.title("Output Bus Line Loses of Bus 7 for OPF and MARL with 50 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("MW")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()
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A Plotting the Comparison results of Bus 14 without PV, with PV and OPF line Losses for the 1 DAY Data with 50 Percent Loading

Output Bus Line Loses of Bus 7 for OPF and MARL with 50 Percent Loading
0.0005 4

—— 7 thline Losses for OPF

—— 7 thline Losses after applying Multi-Agent Reinforcement Learning

0.0004 -

0.0003

0.0002 4

0.0001 4

— A

from matplotlib import pyplot as plt

buses_list =

for

plt.plot( range(150),
plt.plot( range(150),

[14]

i in buses_list:

plt.title("Output Bus Line Loses of Bus 14 for OPF and MARL with 50 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("MW")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()
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opf_csv_file_line_loses_with_PV_with_50.iloc[50:200,i+1], label='{} th line Losses for OPF '.format(i))
out_line_loss[50:200,i], label='{} th line Losses after applying Multi-Agent Reinforcement Learning '.format(i),

Output Bus Line Loses of Bus 14 for OPF and MARL with 50 Percent Loading

le-9

—— 14 th line Losses for OPF

2.40 1 —— 14 th line Losses after applying Multi-Agent Reinforcement Learning

4.39 1

4.38 1

4.371

4.36 1

] M

0 20 40 60 80
Time Steps

100 120 140

Plotting the results for the 150% overloading

opf_csv_file_vm_pu_with_PV_with_150 = pd.read_excel("./opf_with_pv_150_percent/res_bus/vm_pu.x1lsx")
opf_csv_file_p_mw_with_PV_with_150 = pd.read_excel("./opf_with_pv_150_percent/res_bus/p_mw.x1lsx")
opf_csv_file_q_mvar_with_PV_with_150 = pd.read_excel("./opf_with_pv_150_percent/res_bus/q_mvar.x1lsx")
opf_csv_file_loading_percentage_with_PV_with_150 = pd.read_excel("./opf_with_pv_150_percent/res_line/loading_percent.x1lsx")
opf_csv_file_line_loses_with_PV_with_150 = pd.read_excel("./opf_with_pv_150_percent/res_line/pl_mw.x1sx")

HitHEHEEHE Plotting the Comparison results of Bus 1 without PV, with PV and OPF Voltages for the 1 DAY Data with 150 Percent Loading ##
from matplotlib import pyplot as plt

buses_list = [1]

for i in buses_list:
plt.plot( range(150),
plt.plot( range(150),
plt.plot( range(150),

opf_csv_file_vm_pu with_PV_with_150.iloc[:150,i+1], label='{} th Bus Voltages for OPF '.format(i))
csv_file_vm_pu_150_percent.iloc[:150,i+1], label='{} th Bus Voltages for Power Flow without PV '.format(i))
out_bus_voltage[:150,i], label='{} th Bus Voltages after applying Multi-Agent Reinforcement Learning '.format(i,

plt.title("Output Voltage Per Unit values for Power Flow of Bus 1 without PV, MARL, and OPF Analysis with PVs with 150 Percent Loading")
plt.xlabel("Time Steps")
plt.ylabel("Voltage Per Unit")
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plt.legend(bbox_to_anchor=(1.0, 1.0))
plt.show()

Output Voltage Per Unit values for Power Flow of Bus 1 without PV, MARL, and OPF Analysis with PVs with 150 Percent Loading

—— 1 th Bus Voltages for OPF
—— 1 th Bus Voltages for Power Flow without PV
—— 1 th Bus Voltages after applying Multi-Agent Reinforcement Learning
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HitHHEHE# Plotting the Comparison results of Bus 6 without PV, with PV and OPF Voltages for the 1 DAY Data with 150 Percent Loading ##
from matplotlib import pyplot as plt
buses_list = [6]

for i in buses_list:
plt.plot( range(150), opf_csv_file_vm_pu_with_PV_with_150.iloc[:150,i+1], label="{} th Bus Voltages for OPF '.format(i))
plt.plot( range(150), csv_file_vm_pu_150_percent.iloc[:150,i+1], label="{} th Bus Voltages for Power Flow without PV '.format(i))
plt.plot( range(150), out_bus_voltage[:150,i], label='{} th Bus Voltages after applying Multi-Agent Reinforcement Learning '.format(i]

plt.title("Output Voltage Per Unit values for Power Flow of Bus 6 without PV, MARL, and OPF Analysis with PVs with 150 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Voltage Per Unit")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

Output Voltage Per Unit values for Power Flow of Bus 6 without PV, MARL, and OPF Analysis with PVs with 150 Percent Loading

—— 6 th Bus Voltages for OPF
0.98 ~—— 6 th Bus Voltages for Power Flow without PV
—— 6 th Bus Voltages after applying Multi-Agent Reinforcement Learning

Voltage Per Unit

o 20 40 60 80 100 120 140
Time Steps

A Plotting the Comparison results of Bus 7 without PV, with PV and OPF Voltages for the 1 DAY Data with 150 Percent Loading ##
from matplotlib import pyplot as plt
buses_list = [7]

for i in buses_list:
plt.plot( range(150), opf_csv_file_vm_pu_with_PV_with_150.iloc[:150,i+1], label='{} th Bus Voltages for OPF '.format(i))
plt.plot( range(150), «csv_file_vm_pu_150 percent.iloc[:150,i+1], label="'{} th Bus Voltages for Power Flow without PV '.format(i))
plt.plot( range(150), out_bus_voltage[:150,i], label="{} th Bus Voltages after applying Multi-Agent Reinforcement Learning '.format(i

plt.title("Output Voltage Per Unit values for Power Flow of Bus 7 without PV, MARL, and OPF Analysis with PVs with 150 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Voltage Per Unit")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()
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Output Voltage Per Unit values for Power Flow of Bus 7 without PV, MARL, and OPF Analysis with PVs with 150 Percent Loading
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—— 7 th Bus Voltages for OPF
—— 7th Bus Voltages for Power Flow without PV
—— 7th Bus Voltages after applying Multi-Agent Reinforcement Learning

H#HHHHHE I Plotting the Comparison results of Bus 14 without PV, with PV and OPF Voltages for the 1 DAY Data with 150 Percent Loading #

from matplotlib import pyplot as plt

buses_list = [14]

for i in buses_list:
plt.plot( range(150),
plt.plot( range(150),
plt.plot( range(150),

opf_csv_file_vm_pu_with_PV_with_150.iloc[:150,i+1], label='{} th Bus Voltages for OPF '.format(i))

csv_file_vm_pu_150_percent.iloc[:150,i+1], label='{} th Bus Voltages for Power Flow without PV '.format(i))
out_bus_voltage[:150,i], label='{} th Bus Voltages after applying Multi-Agent Reinforcement Learning '.format(i,

plt.title("Output Voltage Per Unit values for Power Flow of Bus 14 without PV, MARL, and OPF Analysis with PVs with 150 Percent Loading";

plt.xlabel("Time Steps")

plt.ylabel("Voltage Per Unit")
plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

Output Voltage Per Unit values for Power Flow of Bus 14 without PV, MARL, and OPF Analysis with PV's with 150 Percent Loading

1034

1032

1.030

Voltage Per Unit

1.028

1.026

w

0 20 40 60 80 100 120 140
Time Steps

—— 14 th Bus Voltages for OPF
—— 14 th Bus Voltages for Power Flow without PV
—— 14 th Bus Voltages after applying Multi-Agent Reinforcement Learning

HitHHEEHEE Plotting the Comparison results of bus 1 without PV, with PV and OPF Reactive Power for the 1 DAY Data with 150 Percent Loac

from matplotlib import pyplot as plt

buses_list = [1]

for i in buses_list:

plt.plot( range(150-10),
plt.plot( range(150-10),
plt.plot( range(150-10),

plt.title("Output PV Reactive values of Bus 1 for OPF and MARL with 150 Percent Loading")

plt.xlabel("Time Steps")
plt.ylabel("Mvar")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()
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opf_csv_file_g_mvar_with_PV_with_150.iloc[10:150,i+1], label='{} th PV Reactive for OPF '.format(i))
out_bus_reactive[10:150,1i], label="{} th PV Reactive after applying Multi-Agent Reinforcement Learning '.forn
abs(opf_csv_file_q_mvar_with_PV_with_150.iloc[10:150,i+1]- out_bus_reactive[10:150,i]) , label='Difference Be¢
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Ooutput PV Reactive values of Bus 1 for OPF and MARL with 150 Percent Loading

—— 1th PV Reactive for OPF
—— 1 th PV Reactive after applying Multi-Agent Reinforcement Leaming
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A Plotting the Comparison results of bus 6 without PV, with PV and OPF Reactive Power for the 1 DAY Data with 150 Percent Loac
from matplotlib import pyplot as plt
buses_list = [6]

for i in buses_list:
plt.plot( range(150-10), opf_csv_file_qg_mvar_with_PV_with_150.iloc[10:150,i+1], label='{} th PV Reactive for OPF '.format(i))
plt.plot( range(150-10), out_bus_reactive[10:150,i], label="{} th PV Reactive after applying Multi-Agent Reinforcement Learning '.forn
plt.plot( range(150-10), abs(opf_csv_file_q_mvar_with_PV_with_150.iloc[10:150,i+1]- out_bus_reactive[10:150,i]) , label='Difference Be¢

plt.title("Output PV Reactive values of Bus 6 for OPF and MARL with 150 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Mvar")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

Output PV Reactive values of Bus 6 for OPF and MARL with 150 Percent Loading

0.08 4 —— 6 th PV Reactive for OPF
—— 6 th PV Reactive after applying Multi-Agent Reinforcement Learning
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A Plotting the Comparison results of bus 7 without PV, with PV and OPF Reactive Power for the 1 DAY Data with 150 Percent Loac
from matplotlib import pyplot as plt
buses_list = [7]

for i in buses_list:
plt.plot( range(150-10), opf_csv_file_qg_mvar_with_PV_with_150.iloc[10:150,i+1], label='{} th PV Reactive for OPF '.format(i))
plt.plot( range(150-10), out_bus_reactive[10:150,i], label="{} th PV Reactive after applying Multi-Agent Reinforcement Learning '.forn
plt.plot( range(150-10), abs(opf_csv_file_qg_mvar_with_PV_with_150.iloc[10:150,i+1]- out_bus_reactive[10:150,i]) , label='Difference Be

plt.title("Output PV Reactive values of Bus 7 for OPF and MARL with 150 Percent Loading")
plt.xlabel("Time Steps")
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plt.ylabel("Mvar")
plt.legend(bbox_to_anchor=(1.0, 1.0))
plt.show()

Output PV Reactive values of Bus 7 for OPF and MARL with 150 Percent Loading

—— 7 th PV Reactive for OPF
16 —— 7 th PV Reactive after applying Multi-Agent Reinforcement Learning
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HitHHEEHE Plotting the Comparison results of bus 12 without PV, with PV and OPF Reactive Power for the 1 DAY Data with 150 Percent Lo:
from matplotlib import pyplot as plt
buses_list = [12]

for i in buses_list:
plt.plot( range(150-10), opf_csv_file_qg_mvar_with_PV_with_150.iloc[10:150,i+1], label='{} th PV Reactive for OPF '.format(i))
plt.plot( range(150-10), out_bus_reactive[10:150,i], label="{} th PV Reactive after applying Multi-Agent Reinforcement Learning '.forn
plt.plot( range(150-10), abs(opf_csv_file_qg_mvar_with_PV_with_150.iloc[10:150,i+1]- out_bus_reactive[10:150,i]) , label='Difference Be

plt.title("Output PV Reactive values of Bus 12 for OPF and MARL with 150 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Mvar")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

Output PV Reactive values of Bus 12 for OPF and MARL with 150 Percent Loading
0,08 ]

—— 12 th PV Reactive for OPF
—— 12 th PV Reactive after applying Multi-Agent Reinforcement Learning
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AR Plotting the Comparison results of bus 14 without PV, with PV and OPF Reactive Power for the 1 DAY Data with 150 Percent Lo:
from matplotlib import pyplot as plt
buses_list = [14]
for i in buses_list:
plt.plot( range(150-10), out_bus_reactive[10:150,1i], label='{} th PV Reactive for OPF '.format(i))
plt.plot( range(150-10), opf_csv_file_q_mvar_with_PV_with_150.iloc[10:150,i+1], label='{} th PV Reactive after applying Multi-Agent Re
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plt.plot( range(150-10), abs(opf_csv_file_qg_mvar_with_PV_with_150.iloc[10:150,i+1]- out_bus_reactive[10:150,i]) , label='Difference Be

plt.title("Output PV Reactive values of Bus 14 for OPF and MARL with 150 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("Mvar")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

Output PV Reactive values of Bus 14 for OPF and MARL with 150 Percent Loading
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—— 14 th PV Reactive after applying Multi-Agent Reinforcement Learning
0.08 —— Difference Between Above 2

0.07 1

0.06

Mvar

0.05 1

0.04 4

0.03 —\/

0 20 40 60 80 100 120 140
Time Steps

HitHEEHEEHE Plotting the Comparison results of Bus 1 without PV, with PV and OPF line Losses for the 1 DAY Data with 150 Percent Loading
from matplotlib import pyplot as plt
buses_list = [1]

for i in buses_list:
plt.plot( range(150), out_line_loss[:150,i], label='{} th line Losses for OPF '.format(i) )
plt.plot( range(150), opf_csv_file_line_loses_with_PV_with_50.iloc[:150,i+1], label='{} th line Losses after applying Multi-Agent Reir

plt.title("Output Bus Line Loses of Bus 1 for OPF and MARL with 150 Percent Loading")
plt.xlabel("Time Steps")

plt.ylabel("MW")

plt.legend(bbox_to_anchor=(1.0, 1.0))

plt.show()

Output Bus Line Loses of Bus 1 for OPF and MARL with 150 Percent Loading

—— 1th line Losses for OPF
0.175 - —— 1 th line Losses after applying Multi-Agent Reinforcement Learning
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A Plotting the Comparison results of Bus 6 without PV, with PV and OPF line Losses for the 1 DAY Data with 150 Percent Loading
from matplotlib import pyplot as plt
buses_list = [6]

https://colab.research.google.com/drive/1FNVdWLpcJ9g72ckfsTgDzQ3_tulESEHh?usp=sharing#printMode=true 69/70



5/20/23, 1:35 PM

for i in buses_list:

plt.plot( range(150),
plt.plot( range(150),

plt
plt
plt

.title("Output Bus Line Loses of Bus 6 for OPF and MARL with 150 Percent Loading")
.xlabel("Time Steps")

.ylabel("MW")

plt.
plt.

legend(bbox_to_anchor=(1.0, 1.0))
show()

Output Bus Line Loses of Bus 6 for OPF and MARL with 150 Percent Loading
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opf_csv_file_line_loses_with_PV_with_50.iloc[:150,i+1], label='{} th line Losses for OPF '.format(i))
out_line_loss[:150,i], label='{} th line Losses after applying Multi-Agent Reinforcement Learning '.format(i))

H#HEHEHEHE# Plotting the Comparison results of Bus 7 without PV, with PV and OPF line Losses for the 1 DAY Data with 150 Percent Loading

from matplotlib import pyplot as plt

buses_list = [7]

for i in buses_list:

plt.plot( range(150),
plt.plot( range(150),

plt

plt.

plt

plt.
plt.

https://colab.research.google.com/drive/1FNVdWLpcJ9g72ckfsTgDzQ3_tulESEHh?usp=sharing#printMode=true

.title("Output Bus Line Loses of Bus 7 for OPF and MARL with 150 Percent Loading")
xlabel("Time Steps")

.ylabel("MW")

legend(bbox_to_anchor=(1.0, 1.0))

show()

Output Bus Line Loses of Bus 7 for OPF and MARL with 150 Percent Loading

0.0005 + —— 7 thline Losses for OPF

—— 7 th line Losses after applying Multi-Agent Reinforcement Learning
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opf_csv_file_line_loses_with_PV_with_150.iloc[:150,i+1], label="{} th line Losses for OPF '.format(i))
out_line_loss[:150,i], label='{} th line Losses after applying Multi-Agent Reinforcement Learning '.format(i))
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