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Chapter 1

Introduction

In the first part of this introduction, we motivate statistical approaches to
biological data analysis. We are especially concerned with basic features of
temperature effects on cold adapted enzymes. We will study these features
with respect to the concept of evolution applied to the functional constraints
of a funneled protein energy landscape and minimum frustration. In the
second part, we provide summary of the research reported in this thesis.

1.1 Motivation : biological data analysis

One of the applications of protein sequence and structural data is to con-
struct methods to classify and characterize these data according to function.
Protein sequences are invaluable sources of information for inferring evolu-
tionary relationships between the species and hence to model the molecular
mechanisms by which these species evolve. While it is presumed that homol-
ogous sequences have diverged from a common ancestral sequence through
iterative molecular changes, it is not known what the ancestral sequence
was; all we have to observe are the sequences from extant organisms. In a
multiple sequence alignment (MSA), like the one shown in Fig. 1, it is often
apparent that certain regions of a protein or specific amino acids are more
highly conserved than others. This information may be suggestive of which
residues are more crucial for a maintaining a protein’s structure or function.
It is therefore desirable, from sequence analysis, to identify amino acid sites
that are responsible for functional and structural divergence.

Computational methods have been developed that allow for biological
discovery based on MSA. Unlike nucleotide sequences, which are composed
of four bases that are chemically rather similar, yet distinct, the alphabet
of the 20 amino acids found in proteins allows for much greater diversity of
structure and function, primarily because the differences in chemical makeup
of these amino acid residues are more pronounced. Each residue can influ-
ence the overall physico-chemical properties of the protein because the amino
acids are charged (acidic or basic), polar or hydrophobic as shown by the
different colors in Fig. 1. Valencia and coworkers [33, 34] used principal
component analysis (PCA) and self-organizing maps to extract sequence
patterns characteristic of subfamilies. This approach has great potential for
functional genomics because it is cost effective. Methods of distinguishing
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5. 10. 15. 20. 25. 30. 35. 40. 45. 50. 55. 60. 65. 70. 75. 80.
Human VVGGTEAGRNSWPSQISLQYRSGGSRYHTCGGTLIRQNWVMTAAHCVDYQKTFRVVAGDHNLSQNDGTEQYVSVQKIVVH
Monkey VVGGTEAGRNSWPSQISLQYLSGGSWYHTCGGTLIRQNWVMTAAHCVDSPKTFRVVVGDHNLSQNDGTEQYVSVQKIVVH
Pig VVGGTEAQRNSWPSQISLQYRSGSSWAHTCGGTLIRQNWVMTAAHCVDRELTFRVVVGEHNLNQNDGTEQYVGVQKIVVH
Rat VVGGAEARRNSWPSQISLQYLSGGSWYHTCGGTLIRRNWVMTAAHCVSSQMTFRVVVGDHNLSQNDGTEQYVSVQKIMVH
Rat2 VVGGAEARRNSWPSQISLQYLSGGSWYHTCGGTLIRRNWVMTAAHCVSSQMTFRVVVGDHNLSQNDGTEQYVSVQKIVVH
Bovine VVGGTAVSKNSWPSQISLQYKSGSSWYHTCGGTLIKQKWVMTAAHCVDSQMTFRVVLGDHNLSQNDGTEQYISVQKIVVH
Frog VIGGSEASRNSWPWQISLQYSSSGSWYHTCGGSLIRANRVMTAAHCVDRAVSYRVVVGDHNIYQNDGTEQYISVSRIVKH
Halibut VVGGEVARPNSWPWQISLQYRSGSKYYHTCGGTLIERGWVMTAAHCVDSNRMWRVVMGEHDLYSNSGREQIMDVIQVFIH
Halibut2 VVGGEVARPNSWPWQISLQYKSGSNFHHTCGGTLIRRGWVMTAAHCVDRSRTWRVVLGDHNINSHEGSEQYMSVSRVYLH
Salmon VVGGRVAQPNSWPWQISLQYKSGSSYYHTCGGSLIRQGWVMTAAHCVDSARTWRVVLGEHNLNTNEGKEQIMTVNSVFIH

85. 90. 95. 100. 105. 110. 115. 120. 125. 130. 135. 140. 145. 150. 155. 160.
Human PYWNSDNVAAGYDIALLRLAQSVTLNSYVQLGVLPQEGAILANNSPCYITGWGKTKTNGQLAQTLQQAYLPSVDYAICSS
Monkey PYWNSNNVAAGYDIALLRLAQSVTLNSYVQLGVLPQEGAILANDSPCYITGWGRTKTNGQLAQTLQQAYLPSVDYAICSS
Pig PYWNTDDVAAGYDIALLRLAQSVTLNSYVQLGVLPRAGTILANNSPCYITGWGLTRTNGQLAQTLQQAYLPTVDYAICSS
Rat PTWNSNNVAAGYDIALLRLAQSVTLNNYVQLAVLPQEGTILANNNPCYITGWGRTRTNGQLSQTLQQAYLPSVDYSICSS
Rat2 PNWNSNNVAAGYDIALLRLAQSVTLNNYVQLAVLPQEGTILANNNPCYITGWGRTRTNGQLSQTLQQAYLPSVDYSICSS
Bovine PSWNSNNVAAGYDIAVLRLAQSATLNSYVQLGVLPQSGTILANNTPCYITGWGRTKTNGQLAQTLQQAYLPSVDYATCSS
Frog ANWNPNNIAGGYDIAVLHLASSATLNSYVKLAQLPADGAVLGHNYNCVVTGWGKTSNNGNLASALQQAPLPVVAHATCSS
Halibut PGWDSSNVGNGWDIALLRISSDATLNSYVQLGSLPPSGQILPHNNLCYVTGWGRTSTGGNLSAQLKQAYLPVVDYKTCSS
Halibut2 PNWNSNNVAGGWDIALLRLSSDASLNNNVQLGALPPSGQVLPHNNACYITGWGRTQTGGQISAQLKQASLPVVDHRTCSS
Salmon SGWNSDDVAGGYDIALLRLNTQASLNSAVQLAALPPSNQILPNNNPCYITGWGKTSTGGPLSDSLKQAWLPSVDHATCSS

165. 170. 175. 180. 185. 190. 195. 200. 205. 210. 215. 220. 225. 230. 235. 240.
Human SSYWGSTVKNTMVCAGGDGVRSGCQGDSGGPLHCLVNGKYSLHGVTSFVSSRGCNVSRKPTVFTQVSAYISWINNVIASN
Monkey SSYWGSTVKNTMVCAGGDGVHSGCQGDSGGPLHCLVNGKYSVHGVTSFVSKQGCNVSRKPTVFTRVSAYISWINKTIASN
Pig SSYWGSTVKNSMVCAGGDGVRSGCQGDSGGPLHCLVNGQYAVHGVTSFVSRLGCNVTRKPTVFTRVSAYISWINNVIASN
Rat SSYWGSTVKTTMVCAGGDGVRSGCQGDSGGPLHCLVNGQYSVHGVTSFVSSMGCNVSKKPTVFTRVSAYISWMNNVIAYT
Rat2 SSYWGSTVKTTMVCAGGDGVRSGCQGDSGGPLHCLVNGQYSVHGVTSFVSSMGCNVSRKPTVFTRVSAYISWMNNVIAYN
Bovine SSYWGSTVKTTMVCAGGDGVRAGCQGDSGGPLHCLVNGQYAVHGVTSFVSSLGCNVSKKPTVFTRVSAYISWINNAIASN
Frog GSYWGSTVKSTMVCAGGDGVRSGCQGDSGGPLNCPVNGVYQVHGVTSFVSSSGCSTYLKPTVFTRVSAYIGWINNNI...
Halibut SSWWGSTIKTTMVCGGG.GAEAGCNGDSGGPLNCLVNGKYYVHGIASFVSGYGCNTPKKPTVFTRVSAYIEWMDSIMA..
Halibut2 YGWWGSTVKDSMVCAGG.GSNSGCQGDSGGPLNCSVNGRWVVHGVTSFVSSSGCNAYRKPTVFTRVSAYINWMNNIMG..
Salmon SGWWGSTVKTTMVCAGG.GANSGCNGDSGGPLNCQVNGSYYVHGVTSFVSSSGCNASKKPTVFTRVSAYISWMNGIM...

Fig. 1. Alignment of amino acid sequences of elastase type I. Gaps are shown in dots,
amino acids forming the catalytic triad and the specificity pocket are shaded in red and
green colors, respectively. Shown at the top is the numbering scheme of the residues as
they appear in the alignment.
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hydrophobic and hydrophilic regions of proteins [26] have been used to pre-
dict three-dimensional (3D) structure of proteins, their likely home within
the cell, and their broad functional characteristics. It has been realized
very early that protein sequences can be represented by various profiles,
the most prominent one being the amino acid’s hydrophobicity [26, 28], but
also using other physico-chemical properties such as charge and secondary
structure properties. Structural profiles, on the other hand, can also be re-
duced to profiles describing structural properties of the amino acids in the
fold [24, 27], prominently secondary structures and solvent accessibility [25].
Recently, a 1D representation of the protein structure has been introduced
[46], which is found to be related to the sequences attaining that structure
via their hydrophobicity profiles [60].

A protein is capable of self-assembly and reliable functioning in a fluc-
tuating environment. Understanding how these remarkable properties arise
as the result of evolution is central to the development of a protein fold-
ing theory [3]. The energy landscape theory, formulated by Wolynes and
coworkers [19, 7, 4], describes folding as occurring on a free energy surface
in the shape of a rugged funnel. Therefore, protein folding can be described
as a progressive organization of an ensemble of liquid partially folded states
through which a protein passes on its way to folded state. They showed
via spin-glass theory that there are, at least, two possible transitions : one
to the folded state, which is characterized by a “folding” temperature Tf

below which the folded state is thermodynamically stable, and the other to
a glassy state, which is characterized by a “glass” transition temperature
Tg below which the protein can be trapped in low energy misfolded states.
This approach introduced the principle of minimum frustration, which as-
serts that nature, via evolution, has selected for sufficiently non-frustrated
sequences with folded structures that are substantially stable more than
other local minima on the landscape. Consequently, evolutionary selected
sequences are generally thought to have globally “funneled energy land-
scapes” that are biased towards the folded state through any of the many
pathways and intermediates. The number of pathways progressively reduce
when approaching the folded state. At the bottom of the funnel the folding
rate and the stability of the protein are closely related, being in some sense
the kinetic and thermodynamic side of the same coin.

The minimum frustration principle and the funneling concept, there-
fore, suggests that the main features of folding kinetics can be predicted by
knowing the stabilization energies of elements of the native structure and
the entropic costs of bringing together parts of the scaffold. This design
principle of the energy landscape demonstrates that the main driving force
opposing the transition from the liquid-like states to the folded state is the
necessary loss of conformational entropy of the protein. The mean free en-
ergy difference between the liquid protein states and the folded state is given
by ∆F = ∆E − T∆S, where ∆E is the energy gap between the average en-
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ergies in the folded state and the liquid ensemble and ∆S = S0 − Γ2
l /2T

2 is
the entropy at energy variance Γ2

l and configurational entropy of the chain,
given by S0 = log Ω0. Here the subscript l indicates the liquid-like states, T
is the absolute temperature and Ω0 is the number of conformational states of
the protein chain. A larger ∆E gives a deeper funnel. The liquid ensemble
is thermodynamically stabilized by a larger configurational entropy of the
disordered phase (S0) or a large ruggedness of its energy landscape Γ2

l . Evo-
lution will try to avoid the misfolded disordered regime of negative entropy
T < Tg and unfolding regime of negative free energy difference T > Tf .
Therefore, Tg/Tf should minimized which corresponds to minimization of
the frustration parameter κ−1 = Γl/∆E under the constraint that ∆F > 0
is monitored.

We motivate a statistical approach to biological data analysis and protein
folding funneling picture to parameterization of the free energy landscape
difference in terms of total entropy. The main concern of this thesis will be
environmental temperature effects on cold adapted enzymes. Specifically, we
will be interested in the possibility of parameterizing the environment and
stability effects into evolutionary models. It has been known that prediction
of functional sites and site-specific amino acid distributions can be improved
considerably if phylogenetic trees and evolutionary models are considered.
In the evolutionary models, environment of a protein site within the folded
structure is known to influence the probability of acceptance of a mutation
at that site [12]. Both the mutational process and the selection on protein
folding and function must be therefore taken into account. Evolution works
on a rather crude energy scale, making sure the folding landscapes are ro-
bust and funnel like [3]. Thus, the structures of naturally occurring proteins
are selected by evolution because they have a high sequence entropy (a high
“designability”).

Cold adapted enzymes

Extreme environmental temperatures are those that fall outside the lim-
ited range at which we and most other eukaryotes can survive. Organisms
that are adapted to cold environments are often termed as psychrophiles,
whereas their warm-active counterparts are referred to as mesophiles and
thermophiles. Proteins from these organisms must be stable and functional
throughout the entire range of temperatures that these organisms experi-
ence. Surprisingly, the same mechanisms of protein stabilization act on
both psychrophiles at temperatures close to freezing point of water and hy-
perthermophiles acting at temperatures above the boiling point. Because
the relatively modest thermodynamic stability of proteins (5-15 Kcal/mol)
results from the small difference between large stabilizing (enthalpy) and
destabilizing (conformational entropy) contributions, small changes in the
number and strength of these contributions can cause a large proportional
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change in this difference [20, 21]. In fact, the wide range of interactions
that can be adjusted means that different proteins from different organisms
can use various combinations of modulations to adjust their thermostability.
This has made it difficult to delineate general rules for molecular basis of
temperature adaptation [73].

Although psychrophilic organisms are distributed widely in nature, little
progress has been made in elucidating a molecular basis of cold adaptation.
This could be due to the low number of available sequences and structures
from these enzymes. Recent accumulation of sequence and structural data
from psychrophilic enzymes is beginning to shed light on the adaptation
strategies of these enzymes [76]. The dominating hypotheses of cold adap-
tation strategy for enzymes points towards relationships between stability,
flexibility, and specific activity [76, 74]. The increased flexibility of psy-
chrophilic enzymes could be attributed to global structure, but may equally
well be the result of local flexibility. The local flexibility, especially around
the active site, seems to be a strategy for cold-adapted enzymes to maintain
high catalytic activity at lower temperatures [81, 75, 76, 83]. Common ob-
served trends include : increased clusters of glycine and a reduced number
of proline residues, especially in loop regions to enhance local mobility, a re-
duced number of charged residues like arginine on the surface, and exposure
of bulky hydrophobic residues to reduce packing of the core.

Recently, it has been argued for a funneling picture as an explanatory
model of the folding and catalytic function for cold adapted enzymes in con-
nection with calorimetric experimental data [84, 85]. Essentially, D’Amico
et al.’s [84] funneling picture for cold enzymes activation is relying on the
fact that the psychrophilic protein is accommodated by a larger configura-
tional entropy, a larger ruggedness of the landscape, and a smaller energy
gap as compared to mesophilic and thermophilic proteins. At the same time
there are local flexibility changes in the vicinity of the active site. The heat
liability of both folding and catalytic activity is however such that these
functions are more constrained in temperature scale.

A brief review of the approach

In this thesis we study a specific set of homologous protein sequences from
mesophilic and psychrophilic organisms that differ by a relatively few sub-
stitutions in order to most effectively separate temperature adaptive substi-
tutions from other evolutionary variations. The approach we opt for is to
find good observables that can characterize these proteins (enzymes) from
differently adapted species. Specifically, we will be interested in identify-
ing localized position dependent excess mean property sequence profile dif-
ferences and cross species variations between psychrophilic and mesophilic
enzymes. In this way, we can measure the differences between the two tem-
perature groups of enzymes in terms of drift of the centroid mean property
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sequence and covariance matrix relative to standard mesophilic temperature.
We refer to the localized mean deviated property sequence sites as excess
mean values (EMVs). These EMVs are due to local and global pressures
from evolution without affecting the overall fold of the protein family and
evolutionary selection with respect to protein (enzyme) functionality. The
observed EMVs can be used to identify where the underlying fluctuations
are mainly supported in the 3D structure of a representative protein (from
cold/warm) by mapping the EMVs onto sequence positions in the MSA.

We start by presenting a viable way from biological categorical sequence
data to numerical values through evolutionary and probability parameteri-
zation of these observables. We will be especially interested to model envi-
ronmental temperature effects, like cold adaptation, into Markov models for
standard phylogeny of protein sequences. The complexity of the index space
of a protein sequence family makes it very important to have an efficient and
simple language to express relations. We will, therefore, represent the amino
acid i(l, s) at sequence position s and species l in a MSA, numerically by
amino acid unit counts, defined as Yl,s = Yi(l,s), where Yi(l,s) = (δi(l,s),i).
Here δi(l,s),i is one if amino acid i(l, s) is i, otherwise zero and i ∈ A, one of
the 20 (or 21 if gap is included) known amino acid from the set of characters
A. The unit counts will serve as our basic observable through which other se-
quence observables, like physico-chemical observables, can be obtained via
linear transformations. As we shall see, many “discoveries” can be made
simply by presenting the data and the model in a clear way. With the above
representation, we have that the average over the observed present time leaf
distribution of the protein amino acids at (l, s) is given by the amino acid
distribution E [Yl,s] = pl,s, where E [·] denotes expectation with respect to
phylogenetic distributions. Here for completeness, we have taken into ac-
count that pl,s will vary both on subset of species and positions. Based on
reversible Markov models for protein sequence evolution on a phylogenetic
tree [68], we will carry out correlation analysis of a MSA with cold adapted
representatives. Note that since we are interested in the EMVs and cross
species variations, the pair marginals of the unit counts and related observ-
ables are sufficient to describe these variations if time-dependent irreversible
changes are introduced as localized events in time.

We will also study how the observed differences between the cold and
warm adapted enzymes are due to evolutionary constraints both on the
structural phenotype and the genotype. For us this genotype will be given
by the protein sequence via the unit count sequence and the phenotype
is the state of the protein which in a simple model will be described by
the folded contact network. An interesting observable with respect to the
genotype will be property hydrophobicity, which has long been considered
as one of the primary driving force in the folding proteins. Given a vec-
tor q ∈ R20 of amino acid properties, we can convert a MSA with unit
counts Yl,s to hydrophobicity sequences through unit count projections as
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h(n)
l = (Yl,s · q)s∈{1,...,n}, where the superscript (n) indicates n sequence

sites. We will be interested in both cluster dependent EMVs and position
dependent common sequence means of sets of aligned protein sequences that
share common folds.

We need the position dependent mean hydrophobicity to make possible
the analysis of those positions structurally and functionally important in the
given fold or protein family through the local exponential parameter profile
β = (βs) in the distribution. The local exponential probability distribution
(with βs as parameter) will be derived from maximum entropy (MaxEnt)
principle for sequence statistics evolutionary theory based on the frustration
and mean free energy observables. Such a local exponential distribution in
context of phylogenetic inference has been earlier derived by Bastolla and
coworkers [60], which is based on the correlation of the mean hydrophobic-
ity profile of protein sequences with the same fold and principal eigenvector
(PE) of the contact map Cf = (Cf

st ∈ {0, 1}) of their folded structure (indi-
cated by the superscript f). However, since natural selection may favor only
marginally stable proteins, we will also take into account the liquid partially
folded conformations. The energy in the folded and liquid states are known
to be dominated by a hydrophobicity interaction matrix, like Miyazawa and
Jernigan (MJ) matrix [69], contracted on the contact network C. In the
simple linear model for the pairwise hydrophobicity interactions this turns
out to be possible to decompose into an effective local interaction of the
hydrophobicity sequence with the contact density of the network. From the
observation of excess mean hydrophobicity at a given sequence position, we
will find from our model βs linearly related to the difference of dynamic
mean liquid contact density and the transversal evolutionary mean of the
folded contact density (i.e. δcs). The local exponential parameter βs con-
tains in principle external environmental dependence due to for example
temperature. However, if we want to consider EMVs due to environmental
and evolutionary effects, we cannot avoid keeping the effects of the EMVs
in say different (may be overlapping of very slightly shifted) clusters in the
evolutionary tree.

We will initially apply singular value decomposition (SVD) to cross
species covariance matrix and filtering in order to decorrelate and remove
the eigensequences buried in evolutionary tree. The average hydrophobic-
ity profile is then computed from the first few significant eigensequences
corresponding to the largest eigenvalue of the cross species hydrophobicity
covariance matrix. The filtering action is important from sequence analysis
point of view. We will use a translational invariant, Gaussian filter. The
original idea was to motivate local averaging filters, like wavelets or local
fixed cavity fields, by physical local interactions in a way which is akin to
what amino acids actually “feel”. The introduction of such a local filter
will be more true to the actual network interactions, like charge or isoelec-
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tric point (Ip) interactions and configurational interactions, especially at
the molecular solvent surface, at domain interfaces, at secondary structure
boundaries, at active sites, and at binding sites.

A more selfconsistent way of obtaining low rank mean sequence profiles
is by use of the factor analysis (FA) [48, 50, 49]. Latent variable models, like
FA, have a wide spectrum of application in data analysis. The FA model can
be interpreted in our setting by that we are given a model where the mean
deviated property sequences, say hydrophobicity can be decomposed into
EMVs and a noise term, δhs = δµs + εs, where εs is assumed to be white
Gaussian noise with covariance Ψ. In an FA model, the EMVs are modelled
by δµs = Afs, where the latent vectors fs are assumed to have a zero-
mean, unit variance Gaussian distribution, i.e. fs ∼ N (0, I). Conditional
on fs, the mean deviated property sequences are independently distributed
as N (Afs,Ψ). Unconditionally, the δhs ∼ N (0, AAT + Ψ), where the
cross-species correlations are given by the covariance matrix of the EMVs,
E [δµsδµ

T
s ] = AAT . The model parameters Θ = (A,Ψ) can be estimated in

a maximum likelihood sense, using for instance the expectation maximiza-
tion (EM) algorithm [40, 41]. Given, A and Ψ, the expected value of the
factors can be computed through the linear projection E [fs | hs] = Gδhs,
where G = AT (AAT + Ψ)−1 are the coefficients in (multivariate) regression
of the factors on the sequence variables. These mean profiles and the cor-
responding factor loadings can be used to classify proteins within a family
by identifying significant localized sequence profile differences and cluster
drift between psychrophilic and mesophilic species. Note that in the case
of a large number of contributions to the construction of the observations
and their corresponding estimators both along the sequence and across the
clusters in a family of sequences, we will argue that a structured Gaussian
model is sufficient for estimation of many gross observables. We will stress
that this does not mean that the basic statistical distribution is close to
a Gaussian distribution locally, only that a structured cluster based mean
deviation property profile is a good description together with structured
Gaussian noise across and along the sequences for the observables and esti-
mators of interest. Moreover, it is assumed that the posterior distribution
and the corresponding estimators are well described, for the observables, we
are concentrating our intention on. It has been earlier found that this point
of view is a good description asymptotically in the inverse number of data
involved in the observables [71]. In fact, we will find that the structured fac-
tor model of clusters also fits well with the asymptotic decomposition of our
basic sequence probability distribution model based on the fitness landscape
induced by a funneling picture of protein folding.



1.2. SUMMARY OF THE PUBLICATIONS 9

1.2 Summary of the publications

Paper 1

Said H. Ahmed and Tor Fl̊a, Estimation of evolutionary average hydropho-
bicity profile from a family of protein sequences, PRIB 2007, LNBI 4774,
158–165, Springer-Verlag Berlin Heidelberg 2007.

In this paper, a method to estimate the evolutionary average hydropho-
bicity profile from set of aligned protein sequences is presented, which is
based on SVD and cavity filtering. The idea is to use the eigensequences
related to the inter-species hydrophobicity sequence correlation matrix to re-
move the evolutionary noise from the sequences and hence avoid inspection
of a large database to compute the average hydrophobicity. We performed
cavity filtering on the average hydrophobicity profile. We motivate the fixed
cavity fields by physical local interactions in a way which is akin to what
the amino acids actually “feel”.

We tested the method on aligned sequences from elastase family. The
method effectively removed the evolutionary noise in the hydrophobicity
profiles.

Paper 2

Said H. Ahmed and Tor Fl̊a, Evolutionary parameters in sequence families :
Cold adaptation of enzymes, PRIB 2009, LNBI 5780, 1–12, Springer-Verlag
Berlin Heidelberg 2009.

In this paper, correlation analysis of sets of aligned sequences for a protein
family is presented, which is based on essentially reversible Markov models
for protein sequence evolution on a phylogenetic tree. The goal is to study
environmental temperature effects on cold adapted enzymes. In this con-
nection, we present a viable way from categorical biological, sequence data
to numerical values through evolutionary and probability parameterization
of features and study these features through multiscale and multivariate
methods.

Results from this study showed correlations across and along the aligned
family of distinct (i.e. elastases and trypsins) protein sequences from dif-
ferently adapted species. The observed variations was described as centroid
drifts in terms of mean and covariance matrix based on physico-chemical
properties of the amino acids, indicated by deviations from their constant
mean values and clusters of cold and warm adapted enzymes. We found that
these variations were mainly determined by a few conserved sites within each
cluster of cold and warm adapted enzymes, especially a few amino acid sub-
stitutions around the active site positions.
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Paper 3

Tor Fl̊a, Said H. Ahmed Evolution of cold adapted protein sequences, Se-
quence and Genome analytics : methods and application II (ed. Gabriel
fung, ISBN 9780-9807330-6-8). Concept Press Ltd (2010).

In this paper, a statistical evolutionary model is presented, which describes
self-consistently both for transition and equilibrium probabilities of pro-
tein sequences, how the notion of a fitness landscape can be introduced for
monomorphic populations. The fitness landscape is associated with con-
straints parameterized through the MaxEnt principle by observables from
protein funneling. The concept of funneling on the phenotype state space
of the contact network observables conditional on the genotype sequence
is developed. This is done in such a way that we have the possibility to
define energy and energy variance functionals including both local profile
and global means and the possibility to derive different statistical contribu-
tions for the property sequences and for the contact network case of both
a dynamic and evolutionary nature. From this model, we find a new de-
scription of protein phylogenetic statistics given a tree with the possibility
of irreversible environmental and effective population changes localized in
time. This forms a model based on sequence statistics, phylogenetics and
clustering including fitness constraints and environmental changes like tem-
perature.

Paper 4

Said H. Ahmed and Tor Fl̊a, Position dependent mean hydrophobicity and
structural profiles, unpublished manuscript draft.

In this paper, a method to estimate grand and cluster dependent mean
hydrophobicity profiles is presented, which is based on factor analysis (FA)
and filtering along the the factor sequences. Unlike SVD and PCA, the FA
gives a self-consistent way for cross species noise subtraction in the eigense-
quences. Furthermore, it is a probabilistic model for a linear statistical
problem. In this case, the estimated factor sequence is merely one property,
typically the mean or mode of an entire probability distribution. We use
a one factor model to extract a mean hydrophobicity profile that is com-
patible to the structural profile of a given fold and a two factor model to
extract cluster (of cold/warm) dependent mean hydrophobicity profiles. In
the former case (i.e. the one factor model), we show that the extracted
mean hydrophobicity profile is directly related to the difference of mean
liquid contact density and the transversal evolutionary mean of the folded
contact density through the local exponential distribution parameter profile
β = (βs). This parameter contains in principle external environmental de-
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pendence due to for example temperature. In the latter case (i.e. the two
factor model), an orthogonal rotation is performed on the two extracted
cluster dependent factor sequences. The goal with the orthogonal rotation
is to get a simple structure, that is, to observe changes in the psychrophilic
factor sequence relative to standard mesophilic factor sequence.

We demonstrate that these factor sequences and the corresponding factor
loadings can be used to to classify members of a protein family by identify-
ing significant localized hydrophobicity profile differences and cluster drift
between psychrophilic and mesophilic species.
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Chapter 6

Further work and
perspectives

In this work, we have not studied the clustering effects as localized to dif-
ferent domains. If, as often is the case, the protein consists of two relatively
recent fused domains each with its own evolutionary history and tree, it
will make sense to divide the clustering analysis according to the protein
domain boundaries and let the sequence statistics as a first model consists
of two independent parts with its own clusters. If the fusion of the domain
is not recent, a consensus tree and clustering might again be a useful model
although one might have to be careful and interpret clustering effects on
different domains.

It is possible to generalize the funneling model to more complicated pa-
rameterized energy models than the linear hydrophobicity model. More
complicated state descriptions dynamic and heterogenous in time and se-
quence position and even with several subclusters can also be formulated.
This will be needed for example to compare with more realistic MD simula-
tions and proteins with many domains and binding/active sites.

Close links between different statistical techniques for modeling multidi-
mensional data sets, like FA, probabilistic PCA and independent component
analysis (ICA), should be examined. In particular, it should be investigated
whether tools known from different techniques could be combined into more
powerful machine learning algorithms.
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