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Abstract: Sea ice exhibits time-dependent non-linear behaviour. This is evidenced by both lab 

and field experiments with known phenomena such as creep and stress relaxation. This time-

dependent material behaviour becomes particularly pronounced at larger temporal scales. In 

this study, we present a novel approach to simulate time-dependent fractures in sea ice using 

peridynamics (PD), a particle integral scheme. PD's inherent capability to handle crack 

initiation and multi-crack propagation offers a powerful alternative to mesh-based methods. 

We augment the linear-elastic constitutive relationship in the PD framework with a viscous 

relaxation term derived from Maxwell's theory. The failure is modelled using critical stretch 

criterion for the comparison with linear elastic results. Our developed model is applied to 

idealized simulations of sea ice deformation and fracture, providing insights into crack 

propagation dynamics. This work contributes to the advancement of understanding viscoelastic 

fracture in sea ice, offering an alternative methodology with the potential to address intricate 

crack problems inherent in larger-scale ice fracture scenarios. 
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1. Introduction  

 

Sea ice exhibits non-linear elastic behavior with loading (and strain) rate dependence, as 

evidenced by both lab and field experiments (Cheng et al., 2017; Dempsey, 2002), showcasing 

phenomena such as creep and stress relaxation. Ice can fracture under a given load if given 

enough time. This behaviour of ice fracture is related to its viscoelastic properties. This 

viscoelastic fracture are significant phenomenon with applications in climatology, glaciology, 

planetology, engineering and material science (Schulson and Duval, 2009).  

 

While numerous analytical and numerical methods (e.g., discrete crack approach and smeared 

damage approach etc.) have been employed to investigate the viscoelastic fracture properties 

of sea ice, many of these models, primarily developed through mesh-based approaches, face 

limitations in addressing complex crack problems (either crack track approaches and extra 

crack propagation criteria are required to descript explicit crack, or cracks are considered as 

the final consequence of damage accumulation). 

 

Recognizing the constraints mentioned above, peridynamic theory (PD) emerges as a non-local 

computational approach for analyzing discontinuity problems (Silling, 2000). Peridynamics is 

developed utilizing integral equations rather than derivatives of displacement components, 

enabling the initiation and propagation of damage at any location within the deformed body. It 

has demonstrated successful application in identifying damage positions across various 

problem scenarios, including ice-structure interaction (Zhang et al., 2021a; Zhang et al., 

2021b). 

 

In this study, we present a novel model to simulate viscoelastic deformation and fracture in sea 

ice using PD. We augment the linear-elastic constitutive relationship in the PD framework with 

a viscous relaxation term derived from Maxwell's theory. Then both tension deformation and 

tensile fracture of sea ice is modelled and compared with existing experiment, providing 

insights into time-dependent behaviour and crack propagation dynamics. 

 

This work contributes to the advancement of understanding viscoelastic fracture in sea ice, 

offering a valuable alternative methodology with the potential to address intricate crack 

problems inherent in larger-scale scenarios. 

 

2. Numerical Model 

2.1. Ordinary state-based peridynamics formulations (OSBPD) 

In PD theory, the equation of motion for a material point is defined in Eq. [1] (Madenci and 

Oterkus, 2014). The discretization of the domain in PD involves particles that interact with 

their neighboring particles within a specific distance known as the horizon (
xH ). 

( ) ( , ) ( ( , , ) ( , , )) ( , )

xH

x x t t t dV t      = − − − − − +u t u u x x t u u x x b x                 [1] 

 

in which, x  [m] and x [m] represent the positions of two interacted particles in cartesian 

coordinate system. Under the influence of external forces (either displacement/velocity 

boundaries or body force ( , )tb x  [N/m3]), the particles experience displacements u  [m] and 

u  [m], respectively. Consequently, this deformation induces a force state term t  (called force 

density), which has a unit of [N/m6] acting on the one particle and another force state term t  

[N/m6] acting on the interacted particle in the horizon.  In addition, ( ) x  [kg/m3] represents 
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the density of the sea ice, 𝐮̈(𝐱, 𝑡) [m/s2] is the acceleration of the discretized ice particle and 𝑉′ 
denotes the volume of a single particle. 

 

Madenci and Oterkus (2016) derived expression of force density with dilatational and 

distortional components ( dilt  and dist  respectively) and it is: 

2
( ) ( 2 )dil dis disdila d
t t bs


 

 − −
= + = +

  − − −

y y y y
t

y y x x y y
                          [2] 

where   refers to the radius of horizon,   is dilatation. 
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2.2. Viscoelastic constitutive relation in OSBPD 

Under the assumption of incompressibility in viscous fluid, the distortional force density and 

stretch are further decomposed into elastic part _dis es  and viscous part _dis viss . Figure 1 shows 

3 kinds of viscous model, and these models can be expressed by Prony series as 

/

0 0

1 1

( ) (1 )
i i

i

N N
t

i i

i i

t e
    −

= =

= − +                                                   [4] 

in which ( )t is ice modulus (elastic modulus, shear modulus and bulk modulus), i  is a 

coefficient and 
1

0 1
iN

i

i


=

  . When i  is closer to 0, the ice response is highly elastic while it  

approximately equals to Maxwell model when i  is closer to 1. 
0 is instantaneous modulus 

at time 0t = . 
i  is time relaxation constant of ice. 

iN  represents the total number of Maxwell 

model in generalized Maxwell model, shown in Figure 1. 
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Figure 1. Viscoelastic model (left: Maxwell model; middle: standard linear solid; right: 

generalized Maxwell model)  
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With the Boltzmann principle of superposition and assumption of _ 0dis viss →  when t →− , 

the force density and viscous stretch are derived (Madenci and Oterkus, 2017): 

_

0
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iN
dil dis dis dis visdil

i

i

a d
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2.3. Damage representation in PD 

Ice failure simulation can be viewed at two levels. The first level is the particle-particle 

interaction elimination through a binary damage function (i.e., 0 or 1), as shown in Eq. [7]. The 

failure at this level does not necessarily entail a complete failure for a material point.  

1,  ,  unbroken or visible bond 
( , )

0,  ,   broken or invisible bond  

C

C

s s
t

s s



− = 


x x .                                      [7] 

The unitless critical stretch Cs   is derived from the critical energy release rate cG  [N/m]. The 

2D state-based version of Cs  is expressed by bulk modulus K  and shear modulus   as 

2

6 16
( 2 )

9

c
C

G
s

K  
 

=
 

+ − 
 

.                                                              [8] 

 

The second level failure involves a domain damage concept in Eq. [9], in which, a percentage 

of particle-particle interactions within the horizon of a material point is eliminated. This 

percentage (from 0 to 1) is termed as a damage variable and is a continuous function represents 

the level of ‘damage’, with ‘1’ representing the complete break-off of a material point. Any 

other value in between 0-1 gives us the possibility to characterize the location of a macroscopic 

crack, e.g., with a damage variable of 0.5, it represents a crack cutting through the material 

point, whose 50% particle-particle connections in the horizon have been eliminated. 

( , )
( , ) 1 x

x

H

H

t dV
t
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


 −
= −







x x
x .                                                     [9] 

 

2.4. Numerical implementation and validations 

The numerical implementation adopted consists of nested spatial and temporal numerical 

integration procedures to solve Eq. [1]. Following the work of Madenci and Oterkus (2014), 

the ice body is discretized into particles, and spatial integration is conducted within each 

particle’s horizon to evaluate the total force acting on an ice particle at a given time. The time 

integration procedure tracks the positions of ice particles over time. 

 

For dynamic solutions, the forward Euler method is utilized to compute the accelerations, 

velocities, and displacements at each time step. For static solutions, adaptive dynamics 

relaxation (ADR) techniques are utilized to achieve fast calculations under the assumption of 

disregarding the inertia force in viscous deformation (Kilic and Madenci, 2010). 

 

We implemented our model in Fortran and carried out three benchmark cases to verify the 

constitutive model and the accuracy of the program before the sea ice study. 

• The first case involves a relaxation test with two interacting particles, as described in 

Mitchell (2011). The force relaxation response of a single bond (interaction between 
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two particles) is calculated using the model described in the previous subsections and 

is compared with the analytical solution, matching the Figure 5 in (Mitchell, 2011). 

• The second case utilizes the middle model in Figure 1 (standard linear solid) to simulate 

the creep response of a 1D viscoelastic bar subjected to a constant axial load and a 2D 

plate subjected to tension loading and unloading, respectively. The model setup and 

results match Fig. 4, 5, 6 presented in Galadima et al. (2023). 

• The third case utilizes the generalized Maxwell model (right) in Figure 1 to simulate a 

viscoelastic membrane under uniaxial tension loading. This model includes a total of 

15 Maxwell components. The end displacement over time agrees well with the 

literature, matching Fig. 8 in Madenci and Oterkus (2017). 

 

3. Cases Study and Results 

The numerical simulations for viscoelastic ice behaviour initially focus on an ice plate under 

tension without fracture in 2D. Subsequently, the capability to predict crack growth is 

demonstrated by considering the splitting of an edge-cracked rectangular ice plate in 2D.  

 

Considering our future goal of predicting large-scale sea ice fractures rather than solely 

focusing on finding accurate models for small-scale sea ice damage, and based on the fact that 

the Maxwell model described in most literature (Dansereau et al., 2016) conforms to the time-

dependent damage characteristics of large-scale sea ice, we have chosen the Maxwell model 

(left) in Figure 1 for these two cases. Both cases utilize ADR and have a numerical time step 

of 1 sADRt =  and an ice viscous response time step of 1 svist = .  

 

3.1. Creep-recovery deformation of ice 

This case is inspired by the Creep-recovery test of lab-grown saline ice (Leclair et al., 1999). 

A rectangular plate specimen of S2 columnar saline ice was subjected to a uniform tensile 

stress perpendicular to the long axis of the column structure. This loading was chosen to 

represent the stress field occurring in the plane of natural ice covers under tension. Loading 

history is presented in Figure 2. Each load-hold-unload sequence was applied as a trapezoidal 

wave function. The stress on load-up was applied in 3 s and stress on load-release was applied 

in 2 s. 

 

The length and width of the plate are specified as 0.306 mL =  and 0.153 mW = ,  

respectively, with thickness, 0.051 mh = . Representative model and boundary conditions are 

depicted in Figure. 3. Ice properties are: elastic modulus 
/

0 1 1 0( ) (1 ) it
E t E E e

  −
= − +  (as 

explained in Eq. [4]) with 0 7400 MPaE = , 1 1.0 = , and 1 900 s =  is chosen according the 

theorical analysis and experiment study in Londono et al. (2016); Poisson’s ratio 0.3 = ; ice 

density 3900 kg/m = ; bulk response is assumed elastic, and the shear response is viscoelastic 

as 0

2(1 )

E
K


=

−
,  

/0 0
1 1( ) (1 )

2(1 ) 2(1 )
itE E

t e
  

 

−
= − +

+ +
 .  

 

As for numerical concerns, the parameter is horizon size 3 x =   with particle spacing 

0.0102 mx = . Ice plate is generated with a uniform grid of 30 15  particles. 

 

The elongation (displacement in tensions direction) of the ice plate is depicted in Figure 4. This 

result is compared with experiment data, elastic response and an analytical results of its primary 

creep response in Kavanagh and Jordaan (2022).  
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Despite some numerical oscillations, the Maxwell model with PD framework effectively 

captures the creep deformation trend of ice under tension. However, the most basic Maxwell 

model cannot perfectly match the creep characteristics of the lab-growth saline ice. Instead, it 

matches well with the primary creep behaviour of the theoretical analysis scheme. This 

suggests that the Maxwell model may not be entirely universal for simulating the temporal 

deformation behaviour of ice across multiple scales. 

 

 
Figure 2. Loading condition (Stress vs time) for creep-recovery deformation simulation of ice 
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Figure 3. Representative model for creep-recovery deformation simulation of ice 
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Figure 4. Result: the elongation (displacement in tensions direction) of the ice plate  

 

3.2. Tensile fracture of viscoelastic ice 

An edge cracked rectangular ice plate with length and width of  30.0 mL W= = , thickness of  

1.8 mh =  is modelled, as shown in Figure 5. Ice properties are: 0 5000 MPaE = , 1 1.0 = ,  

1 900 s = , Poisson’s ratio 0.3 = , ice density 3920 kg/m = , bulk response is assumed 

elastic, and the shear response is viscoelastic (calculated as the previous case).  

 

 
Figure 5. Model description of tensile fracture of viscoelastic ice 

 

As for numerical concerns, the parameter is horizon size 3 x =   with particle spacing 

0.3 mx = . Ice plate is generated with a uniform grid of 100 100  particles. These parameters 

lead to a critical stretch of 56.805 10Cs −=   by Eq. [8].  

 

Both elastic crack growth and viscoelastic crack growth are simulated. A snap short of crack 

growth for both cases at the same time is illustrated in Figure 6 (e.g., 1300 st =  and 

2400 st = ). We can see that there is a delay in the crack propagation for the viscoelastic 
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scenario. Figure 7 further illustrates this. In Figure 7, we plot the crack path length versus time 

for both scenarios. In viscoelastic fracture (see the orange line in Figure 7), the crack 

experiences creep deformation before propagating, as evident before 1500 st =  in Figure 7.  

After, the rapid increase of crack path length in viscoelastic model is captured. The crack path 

length versus time after 3000s if influenced by the compression failure which takes place near 

the top edge of the ice plate. 

 

   

Data ①: elastic, 1300 st =                            Data ②: viscoelastic, 1300 st =  

   

Data ③: elastic, 2400 st =                            Data ④: viscoelastic, 2400 st =  

Figure 6. Crack propagation of tensile fracture of sea ice at 1300 st =  and 2400 st =
(corresponding the data point indicated in Figure 7) 
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Figure 7. Time history of crack path length 

 

4. Conclusions 

The viscoelastic deformation and fracture of sea ice have been investigated using the Maxwell 

model within the PD framework. The creep-recovery deformation of an ice plate under tension 

is studied using the proposed model, revealing that while the Maxwell model, crucial for large-

scale ice fracture studies, captures significant aspects of ice behavior, it may not fully simulate 

behavior across all scales. 

 

The fracture of an edge-cracked rectangular ice plate under tension is preliminarily simulated 

using both linear elastic and viscoelastic material models. We have successfully captured some 

viscous-elastic fracture behaviour of sea ice, particularly the delayed fracture events and the 

subsequent rapid propagation in viscoelastic materials. However, further studies are necessary 

to comprehensively address additional properties of ice's temporal fracture behavior. 

 

This work presents an initial study of ice's time-dependent fracture using the PD method at a 

small scale, laying the groundwork for our broader aim of conducting high-resolution 

rheological studies on ice damage at larger scales. 
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