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ABSTRACT  
 
With the progress of innovative technologies, ships in future with 
different autonomy levels are anticipated to enter the realm of maritime 
transportation. As a result, the scenarios of multi-ship encounters at sea 
can become more complex and the risk of potential collisions can be 
difficult to elevate. To support navigation safety and guarantee the 
required situation awareness level, it is therefore essential to acquire ship 
navigation states with a greater degree of precision. The Kalman Filter 
(KF)-based techniques are one of the popular approaches for deriving the 
ship navigation state by merging the prior estimates from physics-based 
models with measurements from onboard sensors. However, many KF-
based estimates are calculated by assuming constant system and 
measurement uncertainties during the iterative process. In this study, an 
adaptive tuning mechanism in the KF-based techniques is utilized to 
estimate ship navigation states. This approach enables the estimation 
processes to skillfully reduce both system and measurement noises 
estimations. Consequently, it results in the generation of smoother and 
more responsive estimates of the respective vessel states, particularly 
when confronted with variations in rudder orders or encountering 
abnormal measured positions. 
 
KEY WORDS: State estimation; Kalman Filter (KF); Unscented 
Kalman Filter (UKF); Kinematic motion model; Adaptive tuning 
mechanism; Gaussian Process Regression. 
 
INTRODUCTION 
 
Autonomous shipping is expected to exist and show its benefits in 
maritime transportation in the coming future. With respect to the current 
development of autonomous ships, onboard sensors are considered as 
one of the fundamental parts (Perera, 2019;Thombre et al., 2022). These 
sensors are specifically designed to provide digital navigators of 

autonomous ships with precise navigation information, ensuring the 
maintenance of adequate situation awareness. Since not all ship 
navigation information can be directly measured, and the measurements 
from sensors may contain measurement noise, it is generally considered 
to implement KF-based techniques to generate estimated states with 
higher precision. 
 
Given the convenience of kinematic motion models, using KF-based 
estimation combined with these models is a favorable choice (Li and 
Jilkov, 2003). One advantage of employing kinematic motion models is 
the ignorance of hydrodynamic coefficients which are associated with 
external forces and moments. The influences of external disturbances 
can be modeled as system noises in kinematic motion models. The 
curvilinear motion model (CMM) and the constant turn rate and 
acceleration model (CTRA) represent two kinematic motion models 
which can encompass diverse motions exhibited by ships. As a result, 
these models are widely employed in numerous research studies to 
provide essential ship navigation states (Perera, 2017;Wang et al., 2023). 
Nevertheless, it is important to recognize that these kinematic motion 
models operate under the assumption of constant accelerations and turn 
rates. Clearly, this assumption becomes invalid when ships execute new 
rudder orders or adjust engine power. Consequently, the utilization of 
constant system noises in the CMM and CTRA within the KF-based 
estimation can lead to less precise estimates. Another crucial factor to 
consider is the potential for measurement bias when utilizing GNSS 
systems. To enhance measurement precision, the augmentation of GNSS 
is actively encouraged. However, it is important to note that while such 
augmentation can improve precision, it does not guarantee the 
elimination of measure abnormalities (Baybura et al., 2019). When the 
measured outliers exceed certain thresholds, the KF-based estimation 
may yield questionable results. 
 
Therefore, from a practical perspective, the application of KF-based 
techniques should incorporate adaptive tuning of system and 



 

measurement noises to enhance robustness. This adjustment ensures that 
the filtering process remains resilient to varying conditions, contributing 
to more reliable and precise state estimates. 
 
Adaptive filtering 
 
There are several approaches which are used for tuning system and 
measurement noises adaptively. The first approach involves a statistical 
analysis of the innovation (Hu et al., 2003). In the KF-based techniques, 
the innovation is the difference between the observed measurements and 
the prior estimates. Through an examination of the statistical properties 
of innovations, one can assess the evolving characteristics of the 
associated system and measurement noises over time. An alternative 
adaptive approach utilizes the innovation as a criterion to identify the 
occurrence of new maneuvers of ships. When new maneuvers are 
identified, a scale factor is employed to adjust the system noises (Efe et 
al., 1999;Almagbile et al., 2010). Instead of the scale factor, there are 
studies which introduce the forgetting factor with a comparable function 
for adjusting system noises (Ohhira et al., 2021;Wu et al., 2021). There 
are also proposed approach which contains multiple models, such as 
Interacting Multiple Models (IMM) and Multiple Model Adaptive 
Estimation (MMAE) (Mazor et al., 1998;Alsuwaidan et al., 2011). These 
methods incorporate multiple models to account for system uncertainties. 
IMM employs an interaction mechanism facilitating seamless transitions 
between different models based on measurements. In contrast, MMAE 
is designed to dynamically select the most suitable model from a set of 
candidates, adapting to the evolving characteristics of measurements. 
 
In the first category of methods, the accurate determination of the 
statistical properties of innovation necessitates the specification of the 
quantity of historical data. An analysis relying on a smaller dataset may 
fail to accurately reflect the proper statistical properties, while an 
analysis utilizing a larger dataset runs the risk of averaging out these 
statistical properties. Within the second category of methods, the 
determination of both the scale factors and forgetting factors needs to be 
done artificially. Furthermore, it is essential to explore multiple factors 
associated with optimal maneuver fits in advance. Concerning IMM and 
MMAE, a significant portion of the computational cost is allocated to 
identifying the most suitable models. The MMAE may struggle in 
situations where there is uncertainty or ambiguity in the selection of 
appropriate models, which can impact its overall performance. The IMM 
is sensitive to model switching so that incorrect model switching 
decisions can happen in rapidly changing or unpredictable environments.  
It is worth noting that models which can be utilized in the IMM 
framework must share identical system states. This constraint serves as 
a limitation when employing the IMM. 
 
In this study, an adaptive tuning mechanism is designed for ship 
navigation state estimation using KF-based techniques and kinematic 
motion models. The design takes into account that ships, often of 
substantial tonnage, primarily undergo maneuvers triggered by different 
rudder orders rather than changes in engine states. Considering 
measurements obtained from onboard sensors, the adaptive tuning 
mechanism primarily focuses on outliers in GNSS measurements. This 
is rational as the precision of GNSS measurements relies on the 
operational status of satellites and ground equipment, factors not under 
the control of ships. Therefore, the proposed adaptive tuning mechanism 
for ship maneuvers primarily deals with two scenarios: new rudder 
orders and abnormal GNSS measurements.  
 
The paper follows a structured outline. The next section, Preliminaries, 
encompasses all the methods employed in this study. Subsequently, the 
Simulation and Experiment Setup section makes a brief presentation of 
the simulated and sea-trial experiments. This is succeeded by the 

presentation of Experiment Results and Related Discussions. The section 
of Conclusions is in the last. 
 
METHODOLOGY 
 
Kinematic motion models 
 
Three kinematic motion models will be used to describe the ship 
maneuvers—the Constant Angular Acceleration (CAA) model, the 
Curvilinear motion model (CMM), and the Constant Turn Rate & 
Acceleration (CTRA) model. The states described by these models are 
illustrated in Fig.1. The onboard sensors, including the GNSS, gyroscope, 
and IMU, are assumed to be positioned at the geometric center of the 
ship, denoted as point C. The acquired measurements include the UTM 
coordinates of C (𝑍ே஼ , 𝑍ா஼), ship’s true heading (𝑧ట೅

), turn rate (𝑧௥), 
and the accelerations in the vessel body reference frame (𝑍௔௨, 𝑍௔௩). It is 
essential to highlight that, as the measured position is converted into 
UTM coordinates, the heading utilized in the CMM and CTRA is 
adjusted to align with grid north 𝜓ீ . Given that the measured heading 
𝜓் is in true north, a deviation which is denoted as grid convergence 𝛾 
can exist. Specific corrections are necessary, and details on correction 
methods can be found in (Kawase, 2013).  
 

 
Fig.1. States used in the CAA, CMM, and CTRA. Onboard sensors 

(GNSS, gyroscope, and IMU) are installed in C. 
 
The system and measurement models of the utilized kinematic motion 
models are listed in Tab.1-3. In the KF-based state estimation, the CAA 
is initially executed to generate estimated values for heading, turn rate, 
and angular acceleration. These estimates are then utilized as parameters 
in the CMM and CTRA (Eq.4-6). It is crucial to emphasize that the 
kinematic motion models are constructed on the assumption of constant 
accelerations and turn rates. When the ship adopts new rudder orders, 
these assumptions are no longer valid. Consequently, the uncertainties 
𝒘𝒙  and 𝒘𝒛  must be adaptively reevaluated to ensure enhanced 
estimation precision. As 𝒘𝒙  and 𝒘𝒚  is assumed to be white Gaussian 
noises, the covariance matrix 𝑸 and 𝑹 are thus needs to be adaptively 
assigned. 
 

Table 1: 
CAA: 𝒙(𝑡) = [𝜓், 𝑟, 𝑟̇]்;      𝒛[𝑡௞] = ൣ𝑧ట೅

, 𝑧௥൧ 

system model: 
𝒙̇(𝑡) = ൥

0 1 0
0 0 1
0 0 0

൩ ∙ 𝒙(𝑡) + 𝒘𝒙      (1) 

൫𝒘𝒙~𝒩(𝟎, 𝑸 ∈ ℝଷ×ଷ)൯ 
measurement  
model: 

𝒛[𝑡௞] = ቂ
1 0 0
0 1 0

ቃ 𝒙[𝑡௞] + 𝒘𝒛       (2) 

൫𝒘𝒛~𝒩(𝟎, 𝑹 ∈ ℝଶ×ଶ)൯ 

 



 

Table 2: 
CMM: 𝒙(𝑡) = [𝑁஼ , 𝐸஼ , 𝑣ே஼ , 𝑣ா஼ , 𝑎𝑡஼ , 𝑎𝑛஼]் 

𝒛[𝑡௞] = [𝑍ே஼ , 𝑍ா஼ , 𝑧௔௨ , 𝑧௔௩] 
system model: 

𝒙̇(𝑡) =

⎣
⎢
⎢
⎢
⎢
⎡

𝑣ே஼

𝑣ா஼

𝑎𝑡஼  𝑓௩ಿ಴ − 𝑎𝑛஼  𝑓௩ಶ಴

𝑎𝑡஼  𝑓௩ಶ಴ + 𝑎𝑛஼  𝑓௩ಿ಴

0
0 ⎦

⎥
⎥
⎥
⎥
⎤

+ 𝒘𝒙           (3) 

൫𝒘𝒙~𝒩(𝟎, 𝑸 ∈ ℝ଺×଺)൯ 

𝑓௩ಿ಴ =
𝑣ே஼

𝑉
, 𝑓௩ಶ಴ =

𝑣ா஼

𝑉
 ቆ𝑉 = ට𝑣ே஼

ଶ + 𝑣ா஼
ଶ ቇ 

measurement  
model: 𝒛[𝑡௞] = ൦

𝑍ே஼

𝑍ா஼

ℎଵ cos(𝜓ீ) + ℎଶ sin(𝜓ீ)

ℎଵ cos(𝜓ீ) − ℎଶ sin(𝜓ீ)

൪ + 𝒘𝒛       (4) 

൫𝒘𝒛~𝒩(𝟎, 𝑹 ∈ ℝସ×ସ)൯ 
ℎଵ = 𝑎𝑡௖  𝑓௩ಿ಴ − 𝑎𝑛௖  𝑓௩ಶ಴ + 𝑟 𝑣ா஼ 
ℎଶ = 𝑎𝑡௖  𝑓௩ಶ಴ + 𝑎𝑛௖  𝑓௩ಿ಴ − 𝑟 𝑣ே஼ 

 
Table 3: 

CTRA: 𝒙(𝑡) = [𝑁஼ , 𝐸஼ , 𝑢஼ , 𝑣஼ , 𝑎𝑢஼ , 𝑎𝑣஼]் 
𝒛[𝑡௞] = [𝑍ே஼ , 𝑍ா஼ , 𝑧௔௨ , 𝑧௔௩] 

system model: 

𝒙̇(𝑡) =

⎣
⎢
⎢
⎢
⎢
⎡
𝑢஼ cos(𝜓ீ) − 𝑣஼ sin(𝜓ீ)

𝑣஼ cos(𝜓ீ) + 𝑢஼ sin(𝜓ீ)
𝑎𝑢஼

𝑎𝑣஼

0
0 ⎦

⎥
⎥
⎥
⎥
⎤

+ 𝒘𝒙        (5) 

൫𝒘𝒙~𝒩(𝟎, 𝑸 ∈ ℝ଺×଺)൯ 

measurement  
model: 𝒛[𝑡௞] = ൦

𝑍ே஼  
𝑍ா஼

𝑧௔௨ − 𝑣஼  𝑟
𝑧௔௩ + 𝑢஼  𝑟

൪ + 𝒘𝒛                 (6) 

൫𝒘𝒛~𝒩(𝟎, 𝑹 ∈ ℝସ×ସ)൯ 

 
KF-based state estimation 
 
It is evident that CAA and CTRA are linear models, while CMM is 
nonlinear. In this study, the KF is employed for estimating states in CAA 
and CTRA, and the UKF is utilized in CMM for estimating related states. 
As the system models are described in continuous-time, the KF-based 
estimation requires the implementation of numerical solutions for the 
corresponding continuous-time differential equations. The algorithms 
for KF and UKF are presented in Fig.2 and 3. These algorithms are based 
on the constant 𝑸  and 𝑹  which required to be initialized in the 
initialization stage. 
 
In the execution of the KF-based estimation, the states in the CAA will 
be estimated firstly. This is attributed to the fact that the innovation of 
the turn rate in the CAA (𝑦௥) can be employed as the criterion to assess 
whether the ship maintains a constant turn rate. A variation in the turn 
rate is anticipated to result in altered values of 𝑦௥. When deviated values 
of 𝑦௥  are identified, 𝑸 in the CMM and CTRA will be increased by 
multiplying it with a scale factor 𝛼. The establishment of a relationship 
between 𝑦௥  and 𝛼  is essential. Details of this relationship will be 
elaborated upon in the following subsection. 
 
Regarding 𝑹 in the CMM and CTRA, the innovations of the position, 
denoted as 𝑦ே and 𝑦ா, are employed to identify potential biases in the 
measured positions (Fig.4). If the innovation exceeds a predefined 
threshold, a substantial scaling factor is implemented on 𝑹, prioritizing 
the computation of the Kalman gain. The threshold is determined 
through GNSS testing. In this study, the threshold is set to 2 [m] and a 
scaling factor of 1000 will be multiplied to 𝑹 if the innovations are larger 
than the threshold. It is important to note that the assumption is made 

that abnormal data from the GNSS occur infrequently, typically during 
short navigation periods. The occurrence of abnormal GNSS data over 
an extended period could lead to issues in inertial navigation, which is 
beyond the scope of this paper.  
  

 
Fig. 2. KF algorithm (used for the CAA and CTRA) 

 

 
Fig.3. UKF algorithm (used for the CMM) 



 

 

 
 
Fig.4. The measurement noise 𝑹 will be modified if position innovations 
are outside the colored circle that is regulated by a pre-defined threshold. 
 
Gaussian process regression in adaptive tuning 
 
Gaussian process regression (GPR) is widely utilized in machine 
learning and statistical analysis. GPR models demonstrate exceptional 
proficiency in capturing complex relationships within datasets, drawing 
on foundational principles rooted in probability theory. For an input with 
arbitrary 𝑁  samples (𝒙𝟏, 𝒙𝟐, … , 𝒙𝑵) , if the corresponding output 𝒇 =

൫𝑓(𝒙𝟏), 𝒇(𝒙𝟐), … , 𝒇(𝒙𝑵)൯  follows a multiple Gaussian distribution 
𝒩(𝝁, 𝑲), it can be defined that 𝒇 follows a Gaussian process: 
 
𝒇~𝐺𝑃(𝝁, 𝑲)                                                                                        (7)  
where 𝝁 = ൫𝜇(𝒙𝟏), 𝜇(𝒙𝟐), … , 𝜇(𝒙𝑵)൯, 𝐾௡௡ᇲ = 𝑘(𝒙𝒏, 𝒙𝒏ᇲ). 
 
In many cases, through suitable data transformations, it is often feasible 
to assume 𝝁 as 0, making the explicit modeling of 𝝁 unnecessary. The 
elements 𝐾௡௡ᇲ in the covariance matrix 𝑲 are referred to as the kernel 
function. This function possesses the property that if two inputs exhibit 
similarity, the corresponding element in the matrix will have a higher 
value. In this study, the squared exponential kernel function is used 
(Eq.8). 
 

𝑘(𝒙𝒏, 𝒙𝒏ᇲ  |𝜽) = 𝜃ଵ exp ቆ−
(𝒙𝒏 − 𝒙𝒏ᇲ)்(𝒙𝒏 − 𝒙𝒏ᇲ)

2 𝜃ଶ
ቇ + 𝜃ଷ𝛿(𝒙𝒏, 𝒙𝒏ᇲ)  

                   (8) 
where 𝛿 is the Kronecker-delta. 
 
Given the known datasets 𝒟 = {(𝑥ଵ, 𝑦ଵ), … , (𝑥ே , 𝑦ே)}, if the function 𝒇 
which satisfies 𝒚 = 𝒇(𝒙) is generated by 𝐺𝑃൫0, 𝑘(𝒙𝒏, 𝒙𝒏ᇲ)൯, the output 
of a unknown input 𝑥∗ can be also represented by a Gaussian distribution 
(Eq.9). 
 
𝑝(𝑦∗|𝑥∗, 𝒟) = 𝒩 ቀ𝑘∗

𝑇𝐾−1𝑦, 𝑘∗∗ − 𝑘∗
𝑇𝐾−1𝑘∗ቁ                                             (9) 

where: 𝑘∗ = 𝑘(𝒙𝒏, 𝑥∗ |𝜽), 𝑘∗∗ = 𝑘(𝑥∗, 𝑥∗ |𝜽) 
 
Based on Eq.9, the expectation of 𝑦∗ is equal to 𝑘∗

்𝐾ିଵ𝑦. It should be 
noted that Eq.9 only covers the case where the input 𝑥∗ is single, which 
is the primary focus of this study. However, it is worth mentioning that 
GPR is also applicable to scenarios involving multiple unknown inputs.  
 
Another task involving the utilization of GPR is the determination of the 
hyperparameter 𝜽. Given that the elements 𝑘(𝒙𝒏, 𝒙𝒏ᇲ  |𝜽) are influenced 
by 𝜽, the matrix K is consequently dependent on θ. In this scenario, the 

probability of y based on dataset D can be expressed as: 
 

𝑝(𝑦|𝒟) = 𝒩(𝑦|0, 𝐾𝜽) =
1

(2𝜋)ே/ଶ

1

|𝐾𝜽|ଵ/ଶ
exp ൬−

1

2
𝑦்𝐾𝜽

ିଵ𝑦൰       (10) 

 
The method of maximum likelihood estimation can be employed to 
determine 𝜽. The logarithm of 𝑝(𝑦|𝒟) can be expressed as: 
 
𝐿 = log 𝑝(𝑦|𝒟) ∝ −𝑙𝑜𝑔|𝐾ఏ| − 𝑦்𝐾ఏ

ିଵ𝑦 + 𝑐𝑜𝑛𝑠𝑡                               (11) 
with: 

 
డ௅

డఏ
=

డ௅

డ௄ഇ

డ௄ഇ

డఏ
= −𝑡𝑟 ቀ𝐾ఏ

ିଵ డ௄ഇ

డఏ
ቁ + ൫𝐾ఏ

ିଵ𝑦൯
் డ௄ഇ

డఏ
൫𝐾ఏ

ିଵ𝑦൯                  (12) 

 
Utilizing the gradient of 𝐿  (Eq.12), optimization algorithms can be 
applied to estimate 𝜽. In this study, the L-BFGS algorithm is chosen to 
compute 𝜽, and further details about this algorithm can be found in 
(Andrew and Gao, 2007). 
 
In this study, the absolute value of the innovation of turn rate |𝑦௥| and 
the optimally-fitted scaling factor 𝛼  undergo initial testing through 
simulated maneuvers in the UiT bridge simulator. The training dataset is 
consequently formed by pairs of |𝑦௥|  and 𝛼 . Figure 5 illustrates the 
comprehensive workflow of the proposed adaptive tuning mechanism. 
In each iteration, |𝑦௥| from the CAA is employed in the trained GPR 
model to dynamically determine 𝛼. The system noise 𝑸 is consequently 
modified by 𝛼, resulting in 𝑸∗ in the CMM and CTRA. Concurrently, 
the innovations 𝑦ே  and 𝑦ா  from the CMM and CTRA are utilized to 
assess whether the measured positions exhibit abnormal behavior. When 
abnormalities are detected, 𝑹 is substituted with 𝑹∗  to ensure that the 
filters reduce the emphasis on the measured data. 
 

 
 
Fig.5. The workflow of the proposed adaptive tuning mechanism 
 
EXPERIMENT PREPARATION 
 
In this study, both simulated and sea-trial experiments will be conducted 
to validate the adaptive tuning mechanism. The simulated experiment 
takes place in the UiT bridge simulator (Fig.6).  
 



 

  
 

Fig.6. UiT bridge simulator and the execution of simulated maneuvers  
 
The sea-trial experiment is conducted using the UiT autonomous ship 
named "Ymir" in the Tromsø area (Fig.7). The ship is equipped with a 
variety of sensors, and a specialized data collection platform is designed 
to acquire the necessary measurements from selected sensors. 
 

  
 
Fig.7. The equipped sensors in the autonomous ship “Ymir” and the sea 
trail experiment in Tromsø area. 
 
Training data sets 
 
During simulated maneuvers, the actual ship navigation states can be 
obtained directly from the simulator. Consequently, the optimal 𝛼 with 
respect to |𝑦௥| can be determined through multiple offline trials. It is 
noteworthy that one of the advantages of employing GPR is that it does 
not necessitate an excessive number of experimental trials, implying 
significant cost savings. The training data sets are obtained from a 
simulated maneuver which contains straight line, starboard turning, and 
port turning. In Fig.8, it can be observed that |𝑦௥| have significant change 
in several time steps which imply that the ship has a new rudder order in 
the related steps. The innovation is further categorized into four groups 
by different levels of values.  
 

 
 
Fig.8. The absolute value of innovation of turn rate from the CAA. The 
maneuver is executed in the UiT bridge simulator. The |𝑦௥| values are 
categorized into four distinct groups, each assigned with an optimal 𝛼. 
 
The training dataset 𝒟 is randomly chosen from the four groups, with a 
slightly greater number of samples from groups exhibiting a larger range 

of (Fig.9). Artificial noises are introduced to each group's optimal 𝛼. The 
introduction of artificial noises has a negligible impact on estimation 
precision, yet it plays a role in enhancing the fitting within the Gaussian 
process. 
 

 
 
Fig.9. Sampled data set 𝒟 used for the training of GPR. Noted that the 
values of the optimal 𝛼 in each group are added with artificial white 
Gaussian noises. 
 
RESULTS AND DISCUSSIONS 
 
Parameters initialization. 
 
The parameters requiring initialization are outlined in Tab.4. The initial 
values for 𝑸 in all kinematic motion models are optimized for straight-
line maneuvers, while the initialization of 𝑹 is based on the sensors' 
performance characteristics. For the numerical solution in both the KF 
and UKF, the second-order Runge–Kutta explicit method is employed 
with a discretized time step 𝛿𝑡. 
 

Table.4. initialized parameters used in the KF-based estimation 
parameters value 

𝑑𝑡  
0.13[𝑠] 
(time interval between consecutive measurements) 

𝛿𝑡  
0. 0065 [s] 
(time interval used in temporal discretization) 

𝑸 (CAA) 𝑑𝑖𝑎𝑔 ቆ൬
0.1𝜋

180
൰

ଶ

, ൬
0.01𝜋

180
൰

ଶ

, ൬
0.001𝜋

180
൰

ଶ

ቇ 

𝑸 (CMM) 𝑑𝑖𝑎𝑔(1ଶ, 1ଶ, 0.5ଶ, 0.5ଶ, 0.25ଶ, 0.25ଶ) 
𝑸 (CTRA) 𝑑𝑖𝑎𝑔(0.3ଶ, 0.3ଶ, 0.1ଶ, 0.1ଶ, 0.03ଶ, 0.03ଶ) 

𝑹 (CAA) 𝑑𝑖𝑎𝑔 ቆ൬
0.5𝜋

180
൰

ଶ

, ൬
0.01𝜋

180
൰

ଶ

ቇ 

𝑹 (CMM) 𝑑𝑖𝑎𝑔(1ଶ, 1ଶ, 0.01ଶ, 0.01ଶ) 
𝑹 (CTRA) 𝑑𝑖𝑎𝑔(1ଶ, 1ଶ, 0.01ଶ, 0.01ଶ) 

𝜆  
1.72 
(unscented transform parameter used in the UKF) 

θ 
(𝜃ଵ, 𝜃ଶ, 𝜃ଷ) = (0.2, 0.4, 0.15) 
(hyperparameters in the kernel function) 

 
Gaussian Process Regression Training 
 
The regression outcome derived from the data set 𝒟  is illustrated in 
Fig.10. The red solid line depicts the expected values of predicted 𝛼 
across a range of 300 |𝑦௥| , spanning from 0 to 0.03. The plot also 
includes 95% prediction intervals. Following training, the optimal 𝜽 is 
determined to be (0.0023, 8.7554, 0.7914) . It is noticeable that the 
predicted 𝛼 exhibits a gradual increase between distinct groups, with the 
predicted values in group 3 and group 4 displaying linear distributions.  



 

 
 
Fig.10. The predicted scaling factor 𝛼 with the sampled data sets 𝒟 from 
the simulated maneuver. 
 
State estimation with sea-trail data 
 
Two maneuvers conducted by "Ymir" serve as the basis for evaluating 
the proposed adaptive tuning mechanism. These maneuvers encompass 
a zigzag and a port-turning maneuver, with Fig.11 illustrating the 
measured positions during these maneuvers. Notably, during the port-
turning maneuver, unusual measurements become evident as the ship 
undergoes the turning phase, with recorded positions remaining static for 
several seconds. Due to the absence of actual true data from sea-trial 
experiments, innovations are employed to assess the estimation 
performances of the CMM and CTRA. Large values of innovations can 
suggest a suboptimal fit or model inaccuracies. Therefore, it is 
anticipated that the innovations should be maintained on a small scale 
for precise estimation. 
 

   
(a)                                                 (b) 

 
Fig.11. The measured position of the zigzag and port-turning maneuver. 
There exist outliers of measurements in the port-tuning maneuver. 
 
In the zigzag maneuver, the predicted scaling factor 𝛼  is depicted in 
Fig.12. It is evident that as the magnitude of |𝑦௥|  increases, a 
comparatively higher 𝛼 is computed using the trained GPR model. The 
adaptive tuning facilitated by this GPR model results in the scaling factor 
𝛼 tending to be larger when the ship executes a zigzag maneuver. This 
observation implies that the final estimates will assign greater 
importance to the measured data during the zigzag stage. 
 

 
Fig. 12. |𝑦௥| and predicted 𝛼 of the zigzag maneuver  

 
The innovations of northing and easting (𝑦ே & 𝑦ா) are illustrated in 
Fig.13. In the absence of adaptive tuning, the innovations exhibit 
significant fluctuations during the zigzag stage. Conversely, the adaptive 
tuning mechanism mitigates these fluctuations, resulting in lower 
innovations during the same stage. This indicates that with tuned 𝑸, both 
the CMM and CTRA demonstrate higher accuracy compared to the same 
models with constant 𝑸. 
 

 
 
Fig. 13. The comparison between the 𝑦ே and 𝑦ா w/o adaptive tuning in 
the CMM and CTRA (zigzag maneuver). 
  
The estimated velocities are presented in Fig.14-15. It is noticeable that 
velocities estimated with adaptive tuning exhibit a relatively faster 
reaction time when the ship receives new rudder orders. This attribute 
holds significance in real-time applications that necessitate swift 
responses to environmental changes. 
 

 
Fig. 14. Estimated velocities (𝑣ே஼  & 𝑣ா஼) from the CMM 

 



 

 
 

Fig. 15. Estimated velocities (𝑢஼  & 𝑣஼) from the CTRA 
 
The computed 𝛼 for the port-turning maneuver is depicted in Fig16. It is 
evident that 𝛼 tends to exhibit higher values once the ship initiates the 
turning process. The significant magnitude of |𝑦௥| during the turning 
stage suggests that the ship encounters disturbances more frequently than 
in the initial phase when executing a straight-line maneuver. These 
disturbances during the turning stage are attributed partly to the influence 
of a strong sea current, as evidenced by the measured positions indicating 
the ship’s drift (Fig.11(b)). 
 

 
 

Fig. 16. |𝑦௥| and predicted 𝛼 of the port turning maneuver  
 
The innovations of northing and easting from the port turning maneuver 
are illustrated in Fig.17. Similar to the zigzag scenario, the innovations 
exhibit less fluctuation with the adaptive tuning mechanism. However, a 
significant deviation in the innovations is noticeable during time steps 
when abnormal measured positions are recorded. In such cases, the 
adaptive tuning of 𝑹 is activated. The estimated positions and velocities 
are presented in Fig.18-20. It is observed that with the adaptive tuning of 
𝑹, the posterior estimates rely more on the system models once abnormal 
measurements are detected. The estimated velocities with adaptive 
tuning appear smoother compared to those with constant Q and 𝑹. 
 

 
 

Fig. 17. The comparison between the 𝑦ே and 𝑦ா w/o adaptive tuning in 
the CMM and CTRA (port turning maneuver). The large value of 
innovations is caused by the outliers of measured positions. 
 

 
 

Fig. 18. Estimated velocities (𝑣ே஼  & 𝑣ா஼) from the CMM 
 

 
 

Fig.19. Estimated velocities (𝑢஼  & 𝑣஼) from the CTRA 



 

 

  
 
Fig.20. Estimated positions in the port turning maneuver. The time steps 
during which abnormal measurements occur are magnified for closer 
examination. 
 
Additionally, it can be observed that the CMM exhibits greater 
robustness than the CTRA when confronted with abnormal measured 
positions. The positions estimated by the CMM appear smoother than 
those from the CTRA. The estimated sway velocity from the CTRA still 
displays discontinuous jumping. This indicates that the ship navigation 
states used in the CTRA can be more sensitive to measurement outliers. 
 
CONCLUSIONS 
 
An adaptive tuning mechanism is implemented in the KF-based state 
estimation, where the system models are generated by the kinematic 
motion models. Simulated maneuvers from the UiT bridge simulator are 
utilized to determine the optimal scaling factor for the system noise 𝑸. 
Subsequently, a GPR model is trained by using the sampled simulated 
data. The sea-trial experiment data from the vessel 'Ymir,' comprising 
zigzag and port-turning maneuvers, is used to further evaluate the 
adaptive tuning mechanism. The results reveal that, with the adaptive 
tuning mechanism, the innovations in positions exhibited reduced 
fluctuations compared to positions estimated with constant 𝑸 and 𝑹. The 
estimated velocities adapt more swiftly to new rudder orders. In 
instances where the measured positions contained abnormalities, the 
adaptive tuning mechanism contributed to the enhanced smoothness of 
the estimated states.  
 
In this research, the assessment of the adaptive tuning mechanism is 
constrained to relying solely on innovations due to the absence of actual 
ship navigation states. Consequently, the upcoming sea-trial experiment 
aims to collect a more diverse range of data from the installed onboard 
sensors through multiple trails so that more comprehensive evaluations 
by various criteria can be feasible. Additionally, the exploration of 
training a GPR model using datasets from the sea-trial experiment is 
under consideration. These datasets encompass unforeseen uncertainties 
stemming from the complex navigation environment. 
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