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Abstract: Object detection in maritime environments is a challenging problem because of the continu-
ously changing background and moving objects resulting in shearing, occlusion, noise, etc. Unluckily,
this problem is of critical importance since such failure may result in significant loss of human
lives and economic loss. The available object detection methods rely on radar and sonar sensors.
Even with the advances in electro-optical sensors, their employment in maritime object detection
is rarely considered. The proposed research aims to employ both electro-optical and near-infrared
sensors for effective maritime object detection. For this, dedicated deep learning detection models are
trained on electro-optical and near-infrared (NIR) sensor datasets. For this, (ResNet-50, ResNet-101,
and SSD MobileNet) are utilized in both electro-optical and near-infrared space. Then, dedicated
ensemble classifications are constructed on each collection of base learners from electro-optical and
near-infrared spaces. After this, decisions about object detection from these spaces are combined using
logical-disjunction-based final ensemble classification. This strategy is utilized to reduce false nega-
tives effectively. To evaluate the performance of the proposed methodology, the publicly available
standard Singapore Maritime Dataset is used and the results show that the proposed methodology
outperforms the contemporary maritime object detection techniques with a significantly improved
mean average precision.

Keywords: maritime object detection; ensemble learning; transfer learning; Singapore maritime
dataset; electro-optical images; near-infrared images

1. Introduction

The world’s oceans, seas, and waterways serve as crucial tools for global commerce,
communication, and resource exploration. However, the surge in global maritime traffic,
escalating demand for offshore resources, and heightened risks associated with navigation
underscore the critical need for robust maritime safety and security measures [1,2]. The
volume of global seaborne trade has witnessed remarkable growth, doubling between
1990 and 2021, with transported goods increasing from around 4 billion tons to an estimated
11 billion tons [3]. This surge underscores the pivotal role of maritime transportation in
global trade, as shown in Figure 1. Effective maritime object detection and tracking systems
are necessary to ensure safe vessel passage and coastal area protection.
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Figure 1. Trade volume from 2010 to 2020 [3]. 

Traditionally, maritime surveillance heavily relied on human operators and radar-
based technologies. While effective, these methods face limitations in handling the com-
plexities of the evolving maritime environment, especially in bad weather circumstances, 
increased sea traffic, low visibility, and when considering the necessity for continuous, 
real-time monitoring. Integrating deep learning and traditional computer vision tech-
niques is crucial in maritime object detection and tracking to handle these challenges and 
enhance maritime navigation [4,5]. Some challenges found in our literature review are as 
follows: 
• Accurate detection and classification of relatively small objects. 
• Classification of maritime objects in different weather conditions. 

In the problem of object detection, deep learning has gained attention for its capabil-
ity to learn and extract complex features from data automatically. Coupled with computer 
vision, which enables machines to interpret visual information, deep learning has the po-
tential to revolutionize the identification and tracking of maritime objects, including ships, 
buoys, fishing vessels, and potential threats such as pirate ships or drifting debris even 
with the aforementioned challenges [6,7]. 

To resolve this problem, this study uses the Singapore Maritime Dataset (SMD), a 
rich and diverse maritime data collection, to explore advanced object detection and track-
ing approaches. Our study explores various methodologies, models, and algorithms by 
using artificial intelligence to detect and track objects in maritime environments, contrib-
uting to improving operational and navigational aids, maritime security, and environ-
mental impact on navigation. 

This study investigates the challenges associated with maritime object detection and 
tracking, encompassing environmental influences, electro-optical and NIR sensors, object 
diversity, and the demand for real-time processing. Deep learning (DL) models like SSD 
Mobile Net and Faster RCNN are explored. It also investigates how different sensors can 
enhance the precision of object detection approaches. 

In conclusion, this research study comprehensively explores the advancements in 
maritime object detection and tracking using DL and computer vision techniques. By us-
ing the potential of these technologies, the aim is to contribute to developing more effec-
tive and reliable systems for enhancing maritime safety, security, and efficiency, ulti-
mately ensuring the sustainable use of our oceans and waterways. 
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Figure 1. Trade volume from 2010 to 2020 [3].

Traditionally, maritime surveillance heavily relied on human operators and radar-
based technologies. While effective, these methods face limitations in handling the com-
plexities of the evolving maritime environment, especially in bad weather circumstances,
increased sea traffic, low visibility, and when considering the necessity for continuous,
real-time monitoring. Integrating deep learning and traditional computer vision techniques
is crucial in maritime object detection and tracking to handle these challenges and enhance
maritime navigation [4,5]. Some challenges found in our literature review are as follows:

• Accurate detection and classification of relatively small objects.
• Classification of maritime objects in different weather conditions.

In the problem of object detection, deep learning has gained attention for its capability
to learn and extract complex features from data automatically. Coupled with computer
vision, which enables machines to interpret visual information, deep learning has the
potential to revolutionize the identification and tracking of maritime objects, including
ships, buoys, fishing vessels, and potential threats such as pirate ships or drifting debris
even with the aforementioned challenges [6,7].

To resolve this problem, this study uses the Singapore Maritime Dataset (SMD), a rich
and diverse maritime data collection, to explore advanced object detection and tracking
approaches. Our study explores various methodologies, models, and algorithms by using
artificial intelligence to detect and track objects in maritime environments, contributing to
improving operational and navigational aids, maritime security, and environmental impact
on navigation.

This study investigates the challenges associated with maritime object detection and
tracking, encompassing environmental influences, electro-optical and NIR sensors, object
diversity, and the demand for real-time processing. Deep learning (DL) models like SSD
Mobile Net and Faster RCNN are explored. It also investigates how different sensors can
enhance the precision of object detection approaches.

In conclusion, this research study comprehensively explores the advancements in
maritime object detection and tracking using DL and computer vision techniques. By using
the potential of these technologies, the aim is to contribute to developing more effective and
reliable systems for enhancing maritime safety, security, and efficiency, ultimately ensuring
the sustainable use of our oceans and waterways.

2. Related Work

Maritime object detection is fundamental for safely navigation of vessels in maritime
environment. In order to obtain a comprehensive understanding of this field, the relevant
traditional and deep learning techniques are presented as in the following subsections.
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2.1. Traditional Computer Vision Approaches

In the initial stages of maritime object detection, traditional computer vision tech-
niques have been the main focus in research and development. Various studies have
contributed towards this line of research. For example, Negahdaripour et al. [8] anticipated
a vision-based system for Autonomous Underwater Vehicles (AUVs) and Remotely Oper-
ated Vehicles (ROVs), with features such as real-time navigation, positioning, and video
mosaicking of seafloor images obtained. Similarly, Cozman et al. [9] utilized sun altitude
measurements for robot localization in completely unfamiliar environments. This proposed
approach uses celestial observations in order to enable a robot to determine its position on
earth, even when conventional methods are not available or functional.

Moreover, Prasad et al. [4] examined the key problems encountered in maritime object
detection and computer vision for video produced by cameras. Even well-documented
problems in videos, like detection of the horizon line and frame registration, proved to be
quite challenging in maritime scenarios. More advanced issues like background subtraction
and object detection in video streams were also complicated due to the continuously
changing background, the absence of static signals, the existence of small objects in distant
backgrounds, and the effects of changing illumination conditions. The paper discussed
these challenges, emphasizing their significance and implications for maritime computer
vision applications.

Another study by González-Sabbagh and Robles-Kelly [10] presented a comprehen-
sive survey of the evolving domain of maritime computer vision. The authors reviewed
approaches involving image formation and image processing approaches to enhance or
correct underwater imagery. The primary motivation behind these efforts is to attain pho-
tometric invariance, like shape retrieval and object identification, even in the face of the
challenging and variable imaging conditions encountered in underwater scenes.

2.2. Deep Learning Advancements

With the advent of DL, the maritime surveillance landscape underwent a transforma-
tive shift. Numerous studies have used deep neural networks to address the limitations of
traditional techniques. For example, the paper by Prasad et al. [11] explored the technical
challenges inherent in object detection within the maritime context using videos, employ-
ing computer vision techniques. Image processing and computer vision techniques were
applied to video streams to detect an array of obstacles. Notably, even fundamental prob-
lems like horizon detection and frame registration become challenging within maritime
scenarios. More advanced challenges include background subtraction and object detection
within these video streams. These difficulties stem from the changing nature of maritime
backgrounds, absence of static reference points, presence of small objects against distant
backgrounds, and influence of varying illumination conditions, all of which are thoroughly
explored in this paper.

Furthermore, Moosbauer et al. [12] addressed the relatively underexplored field of
object detection in the maritime domain, particularly within the field of computer vision.
In this context, comprehensive public benchmarks were absent, starkly contrasting with
the well-established benchmarks available for object detection in automotive applications.
The paper introduced a benchmark framework built upon the Singapore Maritime Dataset
(SMD) to fill this gap. The Faster R-CNN and Mask R-CNN models were applied to the
dataset for testing and training. Both of these models performed good on this dataset;
however, Mask RCNN outperformed Faster RCNN.

Kim et al. [13] applied state-of-the-art YOLO-V5 architecture on an improved maritime
dataset, SMD-Plus. SMD suffers from noisy labels and imprecise bounding box annotations.
The authors created a more accurate and refined dataset called SMD-Plus to address the
issues found in SMD. Authors first corrected the annotations, and then an augmentation
technique utilizing the “Online Copy & Paste” method was used for balancing class
data. The experimental results showed an increase in the performance for detection and
classification using YOLO-V5 on the SMD-Plus dataset.
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Zhao et al.’s [14] paper, titled “YOLOv7-Sea: Object Detection of Maritime UAV
Images Based on Improved YOLOv7”, addressed the role of object detection algorithms
in maritime search-and-rescue missions, particularly in detecting individuals, ships, and
various items in open water environments. Conversely, these presented unique challenges
due to the SeaDronesee dataset’s characteristics, such as small targets and substantial
sea surface interference. The researchers proposed an improved object detector called
YOLOv7-sea. They incorporate the Simple, Parameter-Free Attention Module (SimAM)
to identify interest regions within the view. The experimental results, conducted on the
ODv2 challenge dataset, demonstrate the effectiveness of YOLOv7-sea, with an average
precision (AP) result of 59.00%. This represents a notable improvement of approximately
7% compared to the baseline model (YOLOv7).

Yu et al. [15] aimed for an approach to automating the finding of underwater objects
using side-scan sonar (SSS) pictures. Integration of a Transformer module and YOLO v5,
referred to as “TR–YOLOv5s”, was performed for automatic target recognition. Similarly,
Shin et al. [16] used a data augmentation technique and employed horizon information
for extracting ship data for object recognition. For classification, they utilized ResNet,
RetinaNet, and Mask R-CNN models pre-trained on the MSCOCO.

Moreover, Haghbayan et al. [17] consider the multi-sensor combination method to
address the challenge in object detection. In addition, they introduce an efficient multi-
sensor fusion method grounded in probabilistic data association. This method ensembles
data from sensors—radar, LiDAR, RGB camera, and infrared camera—for enhanced object
recognition and tracking precision. It generates object region proposals through combined
detection outcomes and employs a CNN model trained on real maritime data to classify
object categories within these regions. Experimental results based on datasets collected from
a ferry affirm the efficacy of the proposed approach. The fusion technique improves object
detection rates and mitigates false positives, even under demanding maritime conditions
characterized by noisy radar data and LiDAR reflections. Furthermore, the CNN-based
classification exhibits high accuracy across all object categories, underscoring the strength
of the anticipated approach.

Rekavandi et al. [6] discussed the issue of smaller object detection from the video
and optical images data in their study, a task where advanced general object detection
techniques struggle to locate and recognize such items accurately. Minor objects typically
arise in real practical scenarios owing to a substantial camera-object space, resulting in
these objects occupying only a tiny portion of the entered image (often less than 10%).
As a result, the data available from a limited spot may not be sufficient for effective
decision-making. This paper offers a comprehensive survey of this evolving area. They
also summarized the existing literature and presented a taxonomy to overview current
research trends comprehensively. The focus is on improving minor object detection in the
maritime domain, where precision detection is of utmost importance. The paper establishes
connections between general and maritime research and identifies future research guidance.
It also discusses popular datasets used for SOD in both generic and maritime contexts and
provides assessment metrics for advanced methods on these datasets.

Cane et al. [18] proposed a comprehensive evaluation of deep semantic segmentation
networks for maritime observation. This investigation addressed the inherent challenges
associated with visually detecting objects in maritime environments, characterized by
their diverse and unpredictable nature and the requirement for real-time performance.
They trained various semantic segmentation network architectures using the ADE20k
scene parsing dataset and assessed their capabilities across publicly available maritime
surveillance datasets.

The maritime environment is dynamic in nature particularly due to changing weather
conditions, waves, and a lack of point of reference. Unmanned aerial vehicles (UAVs)
present real-time video streams of areas in which they are flown. Vasilopoulos et al. [19]
used machine learning algorithms to detect and track objects. This study experimented
using a UAV’s on-board computation unit. These experiments were used to find the
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efficiency, accuracy, and speed of the used algorithms. Furthermore, they proposed the
solution for training datasets for optimization of both efficiency and accuracy of object
detection using a UAV at sea.

Similarly, Iancu et al. [20] also worked on improving the object detection using water-
based imagery. This study was aimed at the development of efficient and accurate au-
tonomous systems using improved object detection. Furthermore, domain-specific datasets
for maritime domain object detection are scarce and typically have a restricted number
of images and annotations. This paper fill this gap by re-labeling the ABOships dataset
and conducting a benchmarking study using a proposed detector called Centernet on
the recently annotated dataset, ABOships-PLUS. The study explored Centernet’s perfor-
mance with unique feature separators and investigated how the size of the object and
inter-class variability affect recognition precision. The results demonstrate the suitability
of the ABOships-PLUS dataset for supervised domain adaptation, with Centernet utiliz-
ing DLA (Deep Layer Aggregation) as a feature extraction method, attaining improved
precision in sensing maritime objects, achieving a mAP of 74.4%.

Notably, Rahman et al. [21] evaluated 13 deep learning models based on one-stage and
two-stage object detectors, which included EfficientDet, RetinaNet, YOLOv5, Fast RCNN,
and Faster RCNN, on a three-class weed dataset. RetinaNet (R101-FPN) demonstrated bet-
ter performance, attaining a (mAP @ 0.50) of 79.98%, emphasizing its efficacy in discerning
weeds amidst cotton plants. Some authors have also used various deep learning algorithms
in different types of object detection tasks [22,23]. Similarly, most recently, lightweight
convolutional neural networks such as WearNet are showing remarkable classification
accuracy, with WearNet achieving 94.16% [24].

In conclusion, traditional image processing techniques have laid the groundwork for
research in the maritime computer vision field, but deep learning offers more sophisticated
and dynamic approaches. Models such as YOLO and RetinaNet offered remarkable effec-
tiveness in detecting and tracking objects in maritime environments. Much work has been
performed to refine datasets and methodologies for maritime object detection. The majority
of the work in this field was performed using images captured by UAVs and satellites.
However, limited research has been performed using electro-optical and near-infrared
sensory data. Similarly, integration of above sensors can also offer improved performance.
This study aims to utilize electro-optical and near-infrared images separately for object
detection in a maritime context. Furthermore, an ensemble learning methodology is used
for enhanced performance.

3. The Proposed Methodology

This research focuses on solving the challenge of maritime object detection under
diverse weather conditions by using visible light (camera) sensors and near-infrared (NIR)
imagery, representing distinct data collection modalities. A flowchart of the proposed
model is illustrated in Figure 2. In the preprocessing stage, data from each modality is
prepared for analysis using noise reduction and normalization. The processed data is then
forwarded to these selected models—ResNet 101 and ResNet 50 for image recognition,
and SSD MobileNet, optimized for mobile and embedded vision applications. Predictions
from these models are combined through Majority Voting, an ensemble technique that
enhances decision robustness and accuracy. The outputs from both pathways are integrated
using a logical disjunction (logical OR), resulting in a final decision. Each module in this
flowchart is interconnected, ensuring a systematic approach to sensor-based data analysis
to solve the abovementioned challenge. These models are precisely trained separately on
datasets comprising camera and NIR data, allowing them to become proficient in detecting
maritime objects within their respective modalities.
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Preprocessing Preprocessing

Resnet 101 Resnet 50 SSD 
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Label

End

Figure 2. Flowchart of the proposed model. From the Singapore Maritime Dataset, each sensor
input is learned using ensemble classification separately, and then the output of these ensemble
classifications is combined using logical disjunction.

3.1. Dataset Description

The Singapore Maritime Dataset (SMD) is a comprehensive collection of video data
collected using Canon 70D cameras positioned in the vicinity of Singapore’s waters [4].
The distribution of videos and frames captured through these videos, including onshore,
onboard, and near-infrared environments, are shown in Figures 3 and 4. This dataset
offers valuable resources for various applications and research endeavors. Here are the key
features of the SMD: (1) All videos in the dataset are in high-definition, using a resolution
of 1080 × 1920 pixels. (2) The SMD is divided into three distinct parts, each offering unique
insights and perspectives. Sample onshore and onboard pictures from the dataset are
provided in Figures 5 and 6, respectively.
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Additionally, this dataset comprises videos captured using another Canon 70D camera,
depicted in Figure 7. The camera has its hot mirror removed and a Mid-Opt BP800 Near-
IR Bandpass filter. NIR videos offer insights into the near-infrared spectrum, which can
be valuable for various applications. The videos within the SMD are acquired at various
locations and along different routes. Consequently, they capture a diverse range of maritime
scenes and scenarios. Researchers and practitioners can leverage the Singapore Maritime
Dataset for various applications, including object detection, tracking, and environmental
analysis. The availability of onshore, onboard, and NIR videos ensures versatility in the
dataset and experimentation.

1 
 

 
Figure 5. Example onshore image.
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3.2. SSD MobileNet (Single-Shot MultiBox Detector with MobileNet Backbone)

SSD MobileNet was trained separately on datasets from both domains, electro-optical
and near-infrared, which ensures the in-depth training of the model. This model use
the lightweight MobileNet architecture combined with the Single-Shot MultiBox Detector
(SSD) framework [25]. Using depth-wise separable convolutions, MobileNet reduces
computational complexity while effectively maintaining the capacity to extract crucial
image features. The SSD framework, integrated into SSD MobileNet, facilitates rapid object
detection by partitioning input images into a grid of default bounding boxes at various
aspect ratios and scales, allowing for the efficient detection of objects with diverse sizes
and aspect ratios—training involved fine-tuning the model’s loss function to minimize
classification and localization errors specific to maritime scenarios. In our methodology,
SSD MobileNet was trained separately on both camera and near-infrared (NIR) data to
adeptly handle maritime object detection in varying modalities. SSD MobileNet’s role in our
methodology significantly boosted detection accuracy, making it an essential component
for maritime object detection across diverse weather conditions and modalities.
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3.3. Faster R-CNN (ResNet 50)

Faster R-CNN (ResNet 50) was trained separately on datasets of both domains, as
electro-optical and near-infrared, which ensures the in-depth training of the model [26].
Furthermore, a layered architecture was used to take advantage of residual blocks
to tackle the gradient problems; ResNet 50 provides features to use a residual block
which plays a vital role in handling problems like gradients by bypassing certain
layers during training in both forward and backward passes with the help of skip
connections. The ResNet 50 architecture is a deep convolutional network which extracts
important features and helps Faster R-CNN to construct a regional proposal network.
The trainable features are from images taken in distinct weather environments, such
as haze, fog, and rainy weather. The ResNet 50 model’s depth increases computation
complexity. However, it extracts features that help a lot in efficiently detecting and
classifying objects in the maritime domain.

3.4. Faster R-CNN (ResNet 101)

Similarly, Faster R-CNN with ResNet-101 was also used in our methodology separately
for both datasets. This incorporation of regional proposal networks (RPNs) within the Faster
R-CNN architecture enables rapid generation of region proposals, providing potential boxes
for objects in the image. The proposed approach focuses on a two-stage process as refining
these proposals for accurate object localization and classification. Incorporating region-of-
interest (RoI) pooling ensures constant feature extraction aligns region proposals to a fixed
size. The Faster R-CNN model is finely adjusted to lower the classification and localization
errors specific to a maritime scenario. The model detection and accuracy results make
it necessary for effective maritime object detection across constantly changing weather
conditions and modalities in this case.

3.5. Models Hyperparameter Tuning

In the Faster R-CNN case, Hyperopt was incorporated to automatically search for
the optimal selection of hyperparameters [27], for example, learning rate and momentum
coefficients, improving the model effectiveness, which proved to increase the performance
of each individual model. The Hyperopt function selected a learning rate of 0.0003 and
momentum of 0.9 with a batch size of 8 in the Faster R-CNN case. In the case of SSD
MobileNet, the learning is adjusted to 0.004 and momentum to 0.9 with a batch size of 24.

3.6. Computational Complexity Reduction

Computational complexity is of great importance in AI tasks which are meant to
be deployed in real-time scenarios or cutting-edge devices. To serve that purpose, this
study experimented with some techniques like model caching which can help to reduce
computational cost. Moreover, it was established that using the model caching technique
resulted in the storage of the most recent output during inference [28]. This method
enhances the real-time performance and lowers latency, ensuring our proposed system
can seamlessly operate in challenging and constantly changing maritime scenarios. By
implementing these strategies, computational overhead can be significantly reduced.

3.7. Ensemble Methodology

Leveraging ensemble learning techniques has been exhibited to notably enrich precision
across a spectrum of systems and applications, as highlighted in [29,30]. This study adopted
an ensemble method to enhance the precision and reliability of object detection in two distinct
imaging domains: near-infrared (NIR) and electro-optical images. This ensemble methodology
involved several vital steps.

3.7.1. Dedicated Majority Voting for Each Sensor

Initially, three base object detection models are selected, namely SSD MobileNet v1
FPN, Faster R-CNN with a ResNet-50 backbone, and Faster R-CNN with ResNet-101
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support. These three classifiers have been used as base learners for each sensor and thus
generate a total of six bases. For each sensor, its votes are aggregated separately and these
votes are combined using dedicated majority voting as shown in Figure 2.

3.7.2. Logical Disjunction

In the problem at hand, false negatives are associated with a worse cost compared to
false positives. Thereby, output decisions of the individual ensemble for each sensor are
then combined using logical disjunction. The logical disjunction has been chosen to ensure
that the final decision is positive if any of the base ensemble classifications predict that it
is a positive sample. Thereby, this strategy reduces false negatives with a compromise of
an increase in false positives, as evident by the work of Murtza et al. [31] and as shown in
Equations (1) and (2). In these equations, XFN denotes the number of false negatives for
the first dedicated ensemble classifier, whereas YFN denotes the sum of false negatives for
the second dedicated ensemble classifier.

pLD(FN) =

(
XFN

XTP + XFN

)
YFN

Y
(1)

pLD(FP) =
(

XFP
XFP+XTN

)
YFP
Y +

(
XTN

XFP+XTN

)
YFP
Y

+
(

XFP
XFP+XTN

)(
YTN

YTP+YFN+YTN

)(
1 − YFP

Y

) (2)

4. Results and Discussion

In our comprehensive assessment of object detection models, three key models have
been explored, and their performance has been evaluated across two pivotal imaging
domains: near-infrared (NIR) and electro-optical. The evaluation included speed in mil-
liseconds (ms) and mean average precision (mAP) at a 0.5 intersection over union (IOU)
threshold as performance metrics.

4.1. Base Learners Performance on NIR Sensor

Using NIR images, all three base models demonstrated good performance. The SSD
MobileNet v1 FPN model displayed a higher speed of 52 ms and higher mAP of 84. Faster
R-CNN models with ResNet-50 demonstrated an mAP of 85 but took 173.7 ms per detection.
This makes it suitable for applications where accuracy is essential and real-time constraints
are less critical. Similarly, the Faster R-CNN model with a ResNet-101 backbone excelled in
mAP with a score of 87 but had a speed of 203.6 ms, positioning it as an ideal choice for tasks
demanding the highest accuracy. The results are showed in Table 1 and Figure 8 below.
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Table 1. Average speed and mAP for NIR images.

Sr. # Model Speed (ms) mAP @ 0.5 IOU

01 SSD MobileNet v1 FPN 52 84

02 Faster R-CNN (ResNet-50) 173.7 85

03 Faster R-CNN (ResNet-101) 203.6 87

4.2. Base Learners Performance on Electro-Optical Sensor

For electro-optical images, SSD MobileNet v1 FPN model, with a speed of 56 ms,
managed to maintain a robust mAP of 87, presenting a well-balanced choice for object
detection tasks in this domain. In the electro-optical domain, the Faster R-CNN model with
a ResNet-50 support exhibited a speed of 184.8 ms and excelled in mAP, achieving a score
of 88.5, making it a suitable choice for scenarios prioritizing accuracy over speed. Similarly,
the Faster R-CNN model with a ResNet-101 backbone, although slower at 223.4 ms, fur-
ther elevated accuracy with a mAP of 89, rendering it a valuable model for applications
demanding precision. These results are collectively displayed in Table 2 and Figure 9.

Table 2. Average speed and mAP for EO images.

Sr. # Model Speed (ms) mAP @ 0.5 IOU

01 SSD MobileNet v1 FPN 56 87

02 Faster R-CNN (ResNet-50) 184.8 88.5

03 Faster R-CNN (ResNet-101) 223.4 89
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4.3. Ensembl Results

The problem at hand is a 08-class maritime object detection classification problem.
This problem is achieved as eight different binary (one versus all) classification problems.
Thereby, each binary classification problem has training data in which the number of
positive samples are significantly small as compared to the number of negative (all other
classes) samples. This data imbalance problem is likely to affect the prediction of the binary
classifier. Unluckily, because of the smaller number of positive samples, this bias is against
the prediction of positive samples.

In addition to this, a false negative means to miss a maritime object and false positive
means to falsely identify a maritime object. Thereby, there is a significant cost difference
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between a false negative and false positive, i.e., the cost of a false negative is significantly
greater than the cost of a false positive. The ensemble classification mechanism employed
in the proposed technique is basically designed to discourage false negatives with the
compromise of an increase in false positives.

Table 3 demonstrations the performance metrics of the ensemble learning model for
both near-infrared (NIR) and electro-optical images. The speed (ms) column indicates
the average time in milliseconds required for the ensemble model to process and detect
objects in images from each domain. The mAP @ 0.5 IOU column shows the mean average
precision at a 0.5 intersection over union threshold, which reflects the model’s accuracy in
object detection. Whereas, classification results are given in Table 4.

Table 3. Speed and mAP using ensemble learning.

Domain Metric

NIR images
243 Speed (ms)

91.5 mAP @ 0.5 IOU

Electro-optical images
256 Speed (ms)

92.2 mAP @ 0.5 IOU

Table 4. Performance measures (confusion matrices, precision, recall, and accuracy) for each maritime
object for the final logical-disjunction-based ensemble classification which is built upon individual
EO and NIR ensemble classification models.

EO
Ensemble

NIR
Ensemble

Logical
Disjunction

EO
Ensemble

NIR
Ensemble

Logical
Disjunction

FN 74 73 6 112 112 35
TP 651 652 719 261 261 338
FP 120 72 192 110 165 270
TN 2287 2335 2215 2649 2594 2489

Precision 84.44 90.06 78.92 70.35 61.27 55.59
Recall 89.79 89.93 99.17 69.97 69.97 90.62

Accuracy 93.81 95.37 93.68 92.91 91.16 90.26
(a) ferry (b) Buoy

EO
Ensemble

NIR
Ensemble

Logical
Disjunction

EO
Ensemble

NIR
Ensemble

Logical
Disjunction

FN 184 340 19 38 38 0
TP 2714 2558 2879 340 340 378
FP 218 202 233 165 110 266
TN 16 32 1 2589 2644 2488

Precision 92.56 92.68 92.51 67.33 75.56 58.70
Recall 93.65 88.27 99.34 89.95 89.95 100.00

Accuracy 87.16 82.69 91.95 93.52 95.27 91.51
(c) Vessel/Ship (d) Speed Boat

EO
Ensemble

NIR
Ensemble

Logical
Disjunction

EO
Ensemble

NIR
Ensemble

Logical
Disjunction

FN 173 173 119 66 66 3
TP 73 73 127 586 586 649
FP 86 202 284 74 173 242
TN 2800 2684 2602 2406 2307 2238

Precision 45.91 26.55 30.90 88.79 77.21 72.84
Recall 29.67 29.67 51.63 89.88 89.88 99.54

Accuracy 91.73 88.03 87.13 95.53 92.37 92.18
(e) Boat (f) Kayak

EO
Ensemble

NIR
Ensemble

Logical
Disjunction

EO
Ensemble

NIR
Ensemble

Logical
Disjunction

FN 194 194 59 93 91 52
TP 450 450 585 66 68 107
FP 124 74 194 118 144 256
TN 2364 2414 2294 2855 2829 2717

Precision 78.40 85.88 75.10 35.87 32.08 29.48
Recall 69.88 69.88 90.84 41.51 42.77 67.30

Accuracy 89.85 91.44 91.92 93.26 92.50 90.17
(g) Sail Boat (h) Flying Plane
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These results underscore the usefulness of the ensemble method in combining the
strengths of individual models to attain a synergy of speed and precision in object recogni-
tion tasks, making it a valuable asset for various real-world applications. In addition to this,
it also fixes the data imbalance problem very effectively. From these experiments, the NIR,
onshore, and onboard images in Figure 10 show confidence scores along with bounding
boxes of the ensemble method on the sample captured images.

1 
 

 Figure 10. Confidence score on different scenes.

4.4. Discussion

In our thorough evaluation of object detection models for near-infrared (NIR) and
electro-optical (EO) images, we uncovered significant insights into their performance
characteristics, guiding their applicability in practical scenarios.

The results clearly demonstrates that a balance between speed and accuracy was
achieved in NIR images by utilizing different base learners. The SSD MobileNet v1 FPN
showed to be a more favorable choice for applications that prioritize precision and speed
in NIR object detection by achieving a slightly higher speed of 52 ms and mAP of 84.
The Faster R-CNN models were slower, but they achieved a good mAP score. The Faster
R-CNN with ResNet 101 backbone achieved a mAP of 87, but was slower for both of them.
In the EO domain, similar trends were seen in model performance. Meanwhile, the SSD
MobileNet v1 FPN model maintained a robust mAP of 87 with a speed of 56 ms, making it
a balanced and good choice for object recognition tasks in the maritime domain. The Faster
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R-CNN models continued to perform exceptionally well, achieving an mAP score of 89
with the ResNet-101 variant, but were slower in terms of speed.

An ensemble approach was utilized to enhance the mAP of approximately 91.5% in
NIR and 92.2% in electro-optical images, providing a significant improvement in detection
accuracy as compared to individual models. Moreover, the ensemble approach demon-
strated its effectiveness in combining the strengths of unique models to achieve a balanced
combination of speed and accuracy. Choosing an object detection and classification model
for a specific task requires several considerations; while some models prioritize speed,
others excel in accuracy, while an ensemble approach provides a solution to balance these
trade-offs. Our analysis provides practitioners with valuable insights for informed decision
making in deploying object detection in NIR and EO imaging.

The fusion of electro-optical and near-infrared (NIR) sensor data presents both chal-
lenges and significant advantages. Electro-optical sensors are good at capturing high-
resolution visible-spectrum images, which are effective in well-lit conditions but can
struggle with occlusions and varying light conditions. In contrast, NIR sensors excel
in low-light environments and can penetrate through certain types of occlusions, providing
valuable information where visible-spectrum data might be obscured by smoke, fog, or
other obstructions. Combining these modalities leverages their complementary strengths.
Electro-optical sensors offer detailed texture and color information, while NIR sensors
provide enhanced visibility in challenging lighting conditions.

Although the proposed methodology has achieved successful results, it is essential
to mention that Singapore Maritime Dataset (SMD) does not completely represent the
real-world environment or the dynamic nature of the sea. In this regard, the proposed
model may perform differently when deployed in real-time applications. This requires
further fine-tuning and experimentation of the model in real-world scenarios. Similarly, it
was also observed that some objects within the dataset were not labeled, such as human
beings and birds. Before deployment, it is essential to incorporate these objects in the model
for better performance and to avoid any accidents at sea. Moreover, our dataset lacks
videos in adverse weather conditions such as storms, cyclones, and hail. For real-world
applications, it is essential that models must be trained on both calm weather and adverse
conditions. Finally, ensemble techniques require more computational resources than a
single model because multiple models are initially trained and then combined.

Future research could place emphasis on numerous crucial areas to advance the field
of sensor fusion and object detection in maritime environments. Firstly, improving sensor
fusion techniques could involve the development of more sophisticated algorithms that
better integrate electro-optical and NIR data. Advances in machine learning and data
fusion methods may enhance the accuracy and robustness of these systems, particularly in
challenging conditions.

5. Conclusions

In this research, an ensemble of advanced models were successfully trained on the
challenging Singapore Maritime Dataset (SMD). The proposed ensemble model achieved
an increase in mean average precision and also maintains a balance between computational
speed and precision. The development resulted in increased sensitivity in maritime object
detection as compared to the base learners. This is possible because of the unique em-
ployment of a logical-disjunction-based final ensemble classification mechanism using the
dedicated sub-ensemble classifiers for each NIR and electro-optical sensor object detection
and classification. Because of this logical-disjunction-based decision combination, the pro-
posed model resulted in discouraging false negatives with an appropriate and acceptable
tradeoff with false positives and thus, the proposed model is basically designed to ensure
that if an object is present, the chances of missing its presence are minimized.

In conclusion, while the maritime object detection system presented in this research
shows promise, ongoing work aims to enhance its adaptability, accuracy, and applicability
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in dynamic maritime environments, contributing to the continual evolution of maritime
surveillance and navigation technologies.

Further along this line of research, these are several potential areas that can be explored
for optimizing ensemble configuration and model weights for specific maritime applications
depending on the operational requirements. Another area that can be explored is the
integration of physical phenomena and environmental factors that can possibly enhance the
adaptability. Ongoing research can focus on continually upgrading the dataset, addressing
evolving maritime challenges. In particular, combining visible light and infrared images
will expand the adaptability of the system in diverse weather conditions.
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