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1  Introduction

Anticipated as the upcoming significant leap, self-driving 
cars have the potential to decrease collision occurrences 
and ease the burden on drivers (Fujii and Shiobara 1971; 
Kockelman et al 2014). Overcoming the technological obsta-
cles linked to autonomous vehicles in diverse scenarios like 
adverse weather conditions remains a prominent challenge. 
It’s projected that autonomous vehicles could constitute 
around 40% of total kilometers journeyed across European 
nations by 2030 (Five trends transforming the Automo-
tive Industry 2023). Additionally, beyond 2040, most new 
car purchases in city regions of the United States might be 
attributed to shared self-driving vehicles, reaching over 70%. 
There is a significant problem for the commercial deploy-
ment of self-driving automobiles, as more technological 
advancements are required before practical autonomous pub-
lic vehicles can form the basis for sustainable transport and 
innovative mobility services. The deployment of self-driving 
cars can reduce traffic, make roads safer, reduce parking and 
travel costs (Fagnant and Kockelman 2015).

Many forecasts concerning the applications of self-driv-
ing automobiles have been made. As, there is a psychologi-
cal obstacle in adapting autonomous vehicles. The most 
potential drawbacks are increased infrastructure, vehicle 
costs, security issues in specific situations (such as system 
errors, etc.), and potentially poor job prospects (López-Lam-
bas and Alonso 2019). The knowledge and desires of pas-
sengers need to be improved in the advancement of autono-
mous vehicle technology. Merely 10% of individuals in the 
United States express confidence in feeling more secure 
while operating a self-driving vehicle, juxtaposed with 78% 
who admit to harboring apprehensions about such a pros-
pect (Hands Off Not Quite. 2023; Yang and Coughlin 2014). 
In the UK, France, Germany, Norway, and Spain, over 80 
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percent of the people are reluctant to entrust their loved ones 
to technology (Phinnemore et al. 2021). An experiment in 
Berlin-Schoenberg, Germany, underscores the sway of fac-
tors like functionality, user-friendliness, and societal impli-
cations on the acceptability and integration of autonomous 
vehicles within public transportation systems (Merat et al. 
2017). Most consumers in Finland favor testing and using 
autonomous vehicles if reliability and safety can be ensured 
(Liljamo et al. 2018).

Methods based on prior knowledge are good techniques 
for creating reliable and flexible systems under complex 
conditions. Therefore, the International Society of Auto-
motive Engineers (SAE) often creates perception and deci-
sion systems based on digital maps (Woodward and Klieštik 
2021). Building a robust identification system considering 
severe weather is another significant challenge (Yoneda et al. 
2019). Difficult and severe weather conditions encountered 
in typical driving situations include rain, sun, snow, and fog. 
Therefore, it is essential to design reliable decision-making 
and recognition systems for such situations because each 
sensor of an autonomous vehicle has its strengths and weak-
nesses in various environmental conditions.

The Arctic’s weather is erratic, with significant sea-
sonal variations (as depicted in Fig. 1) and lengthy, bitter 
winters. This makes it difficult for road transportation to 
operate and maintain, as well as in terms of traffic vol-
ume, travel times, risks, and ecological effects. Due to 
its geographical features, including high mountains, deep 
fjords, lakes, and rivers, several Norwegian highways are 

particularly vulnerable to bad weather. In general, incon-
venience, and risk affect shipping costs and volumes. The 
accessibility and high expense of alternate routes and ways 
of transport, the kind and number of cargo, and challenges 
with operation and maintenance are additional factors that 
affect the cost of shipping and volumes.

Major issues related to the maintenance and opera-
tion of Arctic highways include the maintenance of open 
roads and highways, controlling emissions from machin-
ery being serviced, and the effects of chemicals on the 
air, the soil, and water. On icy and snowy roads, a lower 
average speed increases travel time and fuel consumption. 
The chance of a crash resulting in damage or even death 
is significantly raised by poorly maintained and bad cars, 
in addition to the pollution in the air brought on by higher 
consumption of fuel and CO2 emissions.

We will now briefly outline the sections in the paper. 
Section 2 will discuss different Technologies for Autono-
mous vehicles. Section 3 will give a detailed review of 
Simultaneous localization and mapping (SLAM). Sec-
tion 4 discusses different Open-Source Simulators used 
for Autonomous Driving in different weather conditions. 
Section 5 will cover the current commercial market of 
autonomous vehicles. Section 6 will introduce the public 
datasets available for autonomous driving in normal and 
Arctic weather conditions. Section 7 will highlight the 
Limitations and Technological requirements in the Arctic 
Region. By the end of this paper, the reader will know the 
distinct challenges involved in autonomous vehicles, as 
well as the fundamental technologies that constitute them.

Fig. 1   Average Temperature 
of Arctic
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2 � Technologies for autonomous vehicle

Actuators, sensors, and processors are the three main parts 
of the hardware system of autonomous driving cars (Kato 
et al. 2015; Lim et al. 2019). The ability of self-driving 
cars to do physical activities like steering, speeding up, 
and braking is made possible by the actuators, which are 
essential components of the technology. Actuators are 
crucial for the accurate and safe management of the auto-
mobile in response to various road conditions and driv-
ing scenarios. Electric motors are among the actuators 
because they transform electrical power into mechanical 
power, which powers each vehicle wheel. With their help, 
self-driving cars can be stopped or only slightly slowed 
down by their braking system, which applies pressure to 
the wheels. Self-driving automobiles also use actuators 
in their driving capabilities to control the vehicle’s move-
ment. Electric power steering (EPS) is recommended for 
autonomous automobiles because it offers better control 
and reliability than typical hydraulic systems. Self-driving 
automobile suspension systems can also utilize actuators 
to adapt the height and strength of the vehicle’s settlement 
in reaction to road conditions.

Understanding the surrounding environment and antici-
pating potential changes is critical, as self-driving cars use 
onboard sensors, including cameras, Light Detection and 
Ranging(lidar), radar, odometry, and ultrasonic sensors; 
these are used to recognize their surroundings and make 
situational judgments based on that recognition. Drivers 
must also be able to recognize road features such as traffic 
lights so that the car can function properly in various traffic 
conditions. Path planning is the next technology (Campbell 
et al. 2020).

The GPS is primarily utilized in autonomous for adapta-
tion, directions, and maps. GPS can give precise real-time 
location information for self-driving cars to operate safely 
and effectively. Self-driving automobiles are capable of 
accurately identifying themselves on the route and driving 
to the planned place by fusing GPS data with information 
from other sensors, including LiDAR and cameras. Self-
driving cars can select the best route based on the current 
situation using GPS to offer live traffic and roadway condi-
tions information. The travel duration can be shortened, and 
the effectiveness of the public transport system increases as a 
result. Numerous self-driving vehicles employ HD maps on 
all kinds of roadways, including city streets. Digital maps’ 
high degree of precision and the diversity of data that may be 
recorded lower the level of skill needed for autonomous driv-
ing. On the other hand, using onboard sensors to determine 
the location of the auto on a map with excellent precision is 
always crucial for better usage of HD maps. This ought to 
be correct to the closest decimeter in most cases. Another 
method is environmental scouting (Dong et al. 2010).

By integrating automatic localization, knowledge of 
the environment, and recognition results from digital car-
tographic data, the vehicle’s behavior must be planned in 
real-time by the central computer of the self-driving car. 
These three technologies were created for mobile robots (Ge 
and Cui 2000).

2.1 � Vehicle positioning technology

It is important to effectively use maps to estimate vehicle 
positions accurately. The Global Navigation Satellite Sys-
tem (GNSS) was often used to determine one’s position. 
Although the GNSS can measure position, it isn’t easy to 
use for automatic driving. For example, accurate location 
determination in urban environments filled with tall build-
ings is difficult due to the multipath effects of GNSS signals. 
It is also impossible to pinpoint the position due to the lack 
of signal from satellites within the tunnel. Thus, it is essen-
tial to determine the car’s location on a map in actual time 
(Borenstein et al. 1997; https://​www.​wired.​com/​2015/​04/​
cost-​of-​senso​rs-​auton​omous-​cars/).

Many studies have used map-matching techniques 
between digital reference maps and sensor observations for 
self-localization. The reference map contains precise loca-
tion information of sensor feature information around the 
highway. Three different map structures (2D image map, 
structured vector map, and 3D point cloud map) are com-
monly used as predefined maps. The 3D point cloud details 
3D features around the highway. Although they are low 
maintenance, these maps are data intensive. Extract pave-
ment features from 3D point clouds and convert them into 
2D map images. Therefore, the data size is smaller than that 
of a 3D map. The vector map contains polynomial curves 
for curbs, white lines, and other lane and road boundaries.

Due to the sensor’s high measurement accuracy and 
resistance to daily fluctuations, LiDAR-based technologies 
with decimeter accuracy are being explored. Related publi-
cations describe map-matching techniques, including histo-
gram filters (Levinson and Thrun 2010) and sweep matching 
(Yoneda et al. 2015; Akai et al. 2017), which typically use 
road paint and map buildings along the road. Vehicles are 
used as waypoints to estimate the position of the vehicle. 
Some camera-based techniques have also been proposed to 
transfer imagery observations to 3D LiDAR maps (Wolcott 
and Eustice 2014; Xu et al. 2017). On the other hand, self-
location techniques based on non-LiDAR maps have also 
been considered (Ziegler, et al. 2014). Some techniques esti-
mate positions using reference maps from images or MWR 
features (Schuster et al. 2016; Park et al. 2016). But cur-
rently, location results are less accurate than LiDAR-based 
methods. Choose an appropriate method based on driving 
conditions, sensor characteristics, and required accuracy.

https://www.wired.com/2015/04/cost-of-sensors-autonomous-cars/
https://www.wired.com/2015/04/cost-of-sensors-autonomous-cars/
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2.2 � Environmental sensing technology

To execute current detection in the object identification envi-
ronment, road components like traffic signals and related 
obstructions and traffic users like vehicles, pedestrians, and 
bikes must use in-vehicle sensors. It is crucial to recognize 
the road components when traveling on the road to follow 
traffic laws. By recording this information in advance on a 
digital map, static road features such as speed limits and 
stop lines can be identified without looking. Still, it must 
also recognize dynamic road features such as traffic lights 
in real-time.

Therefore, when crossing an intersection, the traffic light 
is one of the most important dynamic elements of the road. 
Because it is important to classify lighting colors, only color 
cameras can detect traffic lights. Visiting traffic lights more 
than 100 m away is important for navigating intersections. 
A map-based detection method has been proposed in related 
works (Fairfield and Urmson 2011; Levinson et al. 2011; 
John et al. 2015).

Basic traffic light shapes, circular features (Omachi and 
Omachi 2009; Yoneda et al. 2016), and recognition methods 
using DNNs have all been published. Accurate measure-
ment accuracy is required for the vehicle to perceive static 
obstacles. Long-range sensors like LiDAR, stereo cameras, 
and MWR are usually used to find nearby obstacles. The 
occupancy grid map is constructed as a static 2D or 3D 
obstacle map with free space, processed as a time series 
using a binary Bayesian filter to limit the impact of transient 
false detections.

Additionally, classification is performed by machine 
learning to identify nearby traffic participants using image 
data and object shapes learned from remote sensors as 
input features. When a remote sensor recognizes an object, 
its views are merged, and the class of the object is deter-
mined by machine learning techniques, such as Ad-boost 
and Support Vector Machine (SVM), which depend on the 
characteristics of each object (Spinello et al. 2010; Teich-
man et al. 2011; Irfan et al. 2021). When the object is only 
a few tens of meters away, a dense observation point cloud 
can be obtained to confirm the exact shape of the object. 
The problem is that the generated point cloud needs to be 
sparser, making it difficult to collect accurate shape data 
from distant objects.

Compared with lidar, using camera images for recon-
naissance can obtain rich observation information, and 
objects beyond 100 m can be distinguished by using a suit-
able lens. Since GPU-based acceleration became possible 
(Liu, et al. 2016; Redmon and Farhadi 2018), deep neural 
network (DNN)-based recognition has recently emerged as 
a high-quality camera-based recognition method accuracy. 
However, since these algorithms can produce rectangular 
bounding cache detections in images, it is difficult to directly 

determine the distance of objects. Therefore, the distance 
information must be determined by sensor fusion using ste-
reo cameras or other distance sensors to determine the rela-
tive position of the detected object.

Typically, probabilistic methods such as particle filters 
or Kalman filters are used to estimate the state of nearby 
objects. Distance sensors, namely LiDAR, MWR, and stereo 
cameras, estimate the distance to objects (Granström et al. 
2016). In addition, techniques using a single camera (Kura-
moto et al. 2018) have also been proposed. Robust recogni-
tion of objects is possible with a single sensor and when a 
variety of sensor systems are coupled.

The geometry of the route and its connection information 
can be utilized to forecast how a component will act within 
seconds and identify the object’s current motion state. Addi-
tionally, it is possible to forecast more appropriate behaviors 
by considering the development of traffic regulations and 
the interactions between neighboring traffic actors (Schulz 
et al. 2018).

2.3 � Path planning techniques

Decision-making for autonomous driving requires three dif-
ferent contextual judgments. The first technology is route 
planning. They are normal car navigation systems, etc., but 
they need to find the route from the current location to the 
destination at the track level. Dynamic programming can 
be used to find paths along intersections in environments 
where traffic information from digital maps exists. If there is 
no explicit route information, such as parking or large areas 
(Dolgov et al. 2023; Likhachev et al. 2023; Do et al. 2013), 
an optimal route must be found from the drivable area. The 
second technique is transportation-based trip planning. It 
is important to observe traffic rules when using this route. 
Considering the recognition results of traffic light status, 
stop line position and the position relationship of incoming 
vehicles and pedestrians at the intersection, it is particularly 
important to ensure safety procedures when making traffic 
decisions at intersections. The distance priority relationship 
between the current and destination routes is also important. 
Therefore, assessing the situation while managing the route 
rationally is crucial in this traffic situation. Trajectory opti-
mization is the third technique. Path planning is performed 
for discovered routes, to find the cheapest and collision-
free paths (Werling et al. 2010). Polynomial functions are 
used in road planning to produce smooth roads and reduce 
acceleration (bumps), gross driving behaviors, including dis-
tance control and speed maintenance, were characterized 
in a previous study (Tehrani et al. 2013). Designing driv-
ing behavior on public roads as a decision-making model 
will enable flexible, autonomous driving. In theory, these 
trajectory generation methods guarantee the consistency 
and regularity of the trajectories selected using polynomial 
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functions. On the other hand, DNNs have been studied and 
used to propose machine learning-based methods to create 
control assignments (Bojarski, et al. 2016) or trajectories 
(Bansal et al. 2018). The input data includes multidimen-
sional information, such as camera images or the location 
of nearby objects. The neural network can then provide the 
drive output behavior, such as smooth acceleration. DNN 
can be deployed in various situations as it can acquire adap-
tive behavior through machine learning. However, since 
learning behaviors such as following while driving is still 
very simple and primitive, it is necessary to use a rule-based 
approach to create the learning model.

2.4 � Hardware and software interfacing

Besides physically installing sensors, ensuring their accurate 
calibration and alignment is important. This process involves 
fine-tuning the sensor’s position or orientation to maximize 
effectiveness. Notably, determining the optimal arrangement 
of sensors on an autonomous vehicle is a multifaceted and 
iterative undertaking that demands meticulous evaluation 
of variables such as sensor category, vehicle configuration, 
and prevailing surroundings. Figure 2 illustrates the strate-
gic sensor layout of an autonomous vehicle. Engineers and 
designers could employ computer simulations and practical 
assessments to refine sensor placement, guaranteeing their 
intended functionality.

Vehicles should be able to discern objects coming from 
diverse directions when driving in cities, such as pedes-
trians on zebra crossings, approaching cars at crosswalks, 
and cars coming from behind in neighboring lanes. To see-
ing objects from all angles, the layout of the sensor must 
be considered. A robust system should cover the viewing 
area with many sensors to assess particularly important 

locations. To make the right decisions in each situation, 
autonomous driving systems must also evaluate large 
amounts of sensor data in real-time (Seif and Hu 2016).

The sensors integrated into autonomous vehicles col-
laborate harmoniously to offer a holistic perspective of 
the vehicle’s surroundings. This integration, termed sensor 
fusion, amalgamates data from diverse sensors to construct 
a more precise depiction of the vehicle’s environment. 
Typically, an onboard computer processes this sensor data, 
employing machine-learning algorithms and rule-based 
mechanisms to formulate decisions.

Large databases of actual driving events are used to 
train these algorithms, teaching the car how to respond in 
various circumstances. One of the most important duties 
carried out by sensors in autonomous vehicles is determin-
ing the position and direction of the vehicle. For this, iner-
tial measurement units (IMUs), GPS, and wheel encoders 
are typically combined (Fadadu, et al. 2022). While IMUs 
and wheel translators provide more accurate measures of 
the vehicle’s movement, GPS only provides a general 
indication of the vehicle’s position. Sensors are used to 
identify and categorize things in the vehicle’s environ-
ment, location, and orientation. Cameras are frequently 
employed to detect other vehicles, people on the street, 
and traffic signals. LIDAR sensors employ laser beams to 
create a 3D map of the environment that may be used to 
estimate object distance and position. Radar sensors can 
function in poor lighting or inclement weather and are 
used to measure an object’s distance, speed, and direc-
tion. The software algorithms of the vehicle use that data 
to decide the best course of action once entities have been 
recognized. For instance, the software may apply brakes 
to prevent an accident if an individual is seen across the 
road directly in front of the car.

Fig. 2   Mounting of Sensors in 
Autonomous Vehicle (Qin et al. 
2020)
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3 � Review on simultaneous localization 
and mapping (SLAM)

SLAM (Simultaneous Localization and Mapping) is a key 
problem in robotics, computer vision, and autonomous navi-
gation. It involves estimating a robot’s pose (position and 
orientation) in an unknown environment while simultane-
ously constructing a map of that environment (Kumar et al. 
2022). SLAM is crucial for various robotics applications like 
autonomous vehicles, drones, and mobile robots, enabling 
autonomous navigation in unfamiliar environments.

The challenge of SLAM lies in real-time pose estimation 
and map building, accounting for uncertainty from sensor 
noise, odometry errors, and moving objects. As an active 
research area, SLAM continually addresses its limitations. 
Deep learning-based SLAM has emerged as a recent trend, 
utilizing neural networks to learn mapping and localiza-
tion functions directly from sensor data. This approach has 
shown promising results, particularly in complex environ-
ments where traditional SLAM algorithms face difficulties. 
SLAM is critical in autonomous driving systems, facilitat-
ing real-time navigation and localization in dynamic and 
unknown environments. It enables vehicles to detect and 

avoid obstacles, plan safe trajectories, and operate efficiently 
in complex traffic scenarios. Reliable and accurate SLAM 
algorithms are essential for autonomous vehicles to build 
and update maps while estimating their pose. This capabil-
ity is vital for safe and effective operation on urban streets, 
highways, and rural roads. Autonomous driving demands 
the presence of robust, precise, and streamlined SLAM 
algorithms capable of operating in real time with minimal 
latency and exceptional accuracy. Dedicated SLAM algo-
rithms have emerged to cater to the unique requirements of 
autonomous driving. These encompass visual SLAM, lidar 
SLAM, and sensor data integration through sensor fusion 
SLAM. These algorithms employ sensor fusion techniques 
and deep learning models to accurately estimate the vehi-
cle’s pose and map the environment (Jiang, et al. 2022). 
Table 1. gives a comparative analysis of different types of 
SLAMs along with their pros and cons.

3.1 � Visual SLAM

Visual SLAM (Kolhatkar and Wagle 2021) involves using 
cameras and image processing techniques to estimate the 
3D structure of the environment and the camera’s pose. The 

Table 1   Comparative Analysis on different types of SLAM

Method Pros Cons Suitable for

Visual SLAM Kolhatkar and 
Wagle (2021)

1) Provide real-time estimations
2) Creating a map of the environ-

ment
3) improved navigation

1) limited range of cameras
2) sensitivity to changes in light-

ing conditions
3) vulnerability to occlusions
high computational requirements

An environment with visual fea-
tures that can be easily tracked 
and detected by the algorithm

Lidar SLAM Silveira et al. (2008) 1) high accuracy and robustness
2) navigate and avoid obstacles 

quickly and efficiently
3) require minimal maintenance
4) work well in a variety of light-

ing conditions

1) Can be expensive
2) have limited range and vis-

ibility
3) vulnerable to certain weather 

conditions, such as rain, snow, 
and fog

The environment with complex 
structures or features, such as 
urban environments or indoor 
spaces

Sensor Fusion SLAM (Wei et al. 
2021)

1) Cost-Effective
2) Better perception
3) Improved Accuracy

1) Complex Calibration
2) Hardware Limitations
3) Data synchronization
4) Computational requirements

Environments where the available 
sensors can complement each 
other to provide a more complete 
understanding of the environment

Feature based SLAMYeong et al. 
(2021)

1) Can handle sparse features
2) Can be computationally 

efficient
• Can handle partial observability

1) Limited by the quality of fea-
ture extraction

• Susceptible to noise

Environments with distinct features 
(e.g., indoor settings)

EKF SLAM Westman et al. 
(2018)

1) Can handle nonlinear sensor 
models

2) Can be computationally 
efficient

• Can handle sparse observations

1) Requires linearization of the 
system

• Assumes Gaussian noise and 
error distributions

Environments with nonlinear 
motion

PF SLAM Saman and Lotfy 
(2016)

1) Can handle nonlinear sensor 
models and non-Gaussian noise

2) Can handle ambiguous sensor 
data

3) Can handle multi-modal distri-
butions

1) Computationally expensive
• Can suffer from particle degen-

eracy

Environments with high uncertainty 
or nonlinear motion
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procedure first requires identifying and tracking elements 
in the camera images to determine the camera’s velocity 
and the environment’s 3D structure. Visual SLAM benefits 
from being portable and affordable because all it needs is a 
camera, but it could be reactive to changes in illumination 
and have trouble in situations with little roughness.

The technology of visual SLAM has proven crucial 
for autonomous driving. By utilizing data from cameras 
installed on the vehicle, visual Simultaneous Localiza-
tion and Mapping (SLAM) enables the vehicle to precisely 
determine its real-time position and orientation while con-
structing a comprehensive map of its nearby surroundings. 
Visual SLAM is commonly employed in autonomous driv-
ing scenarios alongside additional sensors like LIDAR, 
radar, and GPS. This combination ensures a resilient and 
precise vehicle position and orientation estimation. Visual 
SLAM can be effectively applied with diverse camera types, 
including monocular, stereo, or RGB-D cameras, tailoring 
its usage to the specific demands of each application. The 
structure of Visual SLAM consists of six parts, including a 
camera module, Feature detection, Feature Tracking, Map-
ping, Loop Closure, and Optimization, as shown in Fig. 3. 
The camera module collects image data; the second step is 
to detect key features in the camera images, such as corners, 
edges, or key points, that can be tracked over time. This 
can be done using various feature detection algorithms such 
as Scale-Invariant Feature Transform (SIFT), Speeded-Up 
Robust Features(SURF), Oriented FAST and Rotated BRIEF 
(ORB), or Features from Accelerated Segment Test (FAST). 
The next step is to track the detected features over time as 
the camera moves, using feature tracking algorithms such as 
KLT, Lucas-Kanade, or optical flow. This permits estimation 
of the camera’s motion by analyzing alterations in the posi-
tions of the monitored attributes across sequential frames. 
Leveraging these tracked attributes, it becomes possible to 
gauge the three-dimensional arrangement of the surround-
ings by calculating the triangulated positions of these attrib-
utes in 3D space. These approximated 3D coordinates then 
facilitate the development of an environment map. However, 
with time, inaccuracies might accrue in the projections of 
the camera’s path and the configuration of the environment’s 

three-dimensional structure. Loop closure detects when the 
camera revisits a previously visited location in the environ-
ment and uses this information to correct the accumulated 
errors in the estimates. Once the camera’s trajectory and 
the 3D structure of the environment have been estimated, 
the estimates can be refined using optimization techniques 
such as bundle adjustment or SLAM back-end optimization 
(SumikuraShinya and SakuradaKen 2022).

3.2 � Lidar SLAM

Light-detection and Ranging technology is used in Lidar 
SLAM (Silveira et al. 2008). A scanning laser or lidar sen-
sor is used in lidar SLAM to construct a 3-D cloud of points 
of the surroundings by measuring the distances to various 
objects in the environment. The Lidar SLAM system works 
by iteratively analyzing lidar data that the robot gathers 
around the environment. The algorithm compares the most 
recent lidar scan to determine the robot’s orientation in the 
map to earlier scans. It then recognizes features in the lidar 
data, such as angles and edges, and compares them to fea-
tures on the map that have already been recognized. The map 
is then updated, and the feature correspondences are used to 
estimate the robot’s pose more precisely. The Lidar SLAM 
algorithm calculates the robot’s pose and the map using a 
probabilistic approach. Using the sensor data, it maps and 
updates a probability distribution over the range of poten-
tial positions. To update the probability distributions, the 
algorithm uses methods from Bayesian filtering, such as the 
Kalman filter or the particle filter.

Numerous real-world uses exist for lidar SLAM, includ-
ing in drones, mobile robotics, and autonomous vehicles. 
It makes it possible for these systems to map and navigate 
their surroundings with high precision and dependability. In 
contexts with intricate features or structures, such as urban 
settings or enclosed areas, lidar SLAM is very helpful (Khan 
et al. 2021).

Lidar SLAM is used by autonomous cars to create and 
update maps of their surroundings, including the geometry 
of the roads, obstructions, and other characteristics. The 
vehicle can recognize and identify objects, such as other 

Fig. 3   Structure of Visual 
SLAM
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automobiles, pedestrians, and bicycles, and respond appro-
priately, thanks to the Lidar SLAM algorithm. An autono-
mous vehicle, for instance, can spot someone walking across 
the roadway and safely steer clear of them. The car can pre-
cisely identify and position itself in the environment thanks 
to the high-quality point cloud produced by the Lidar sensor, 
and the SLAM algorithm permits it to change its map as it 
drives through the environment. Additionally, Lidar SLAM 
can be used with other sensor methods, including cameras 
and radar, to offer the autonomous vehicle a more reliable 
perception system. To create a more precise and thorough 
understanding of the surroundings, sensor fusion technolo-
gies can combine input from many sensors, allowing the 
vehicle to make more educated judgments about its course 
of action. As depicted in Fig. 4, the following components 
make up the Lidar SLAM structure.

•	 Lidar sensor: A lidar sensor is the main device for gather-
ing 3D data about the surroundings. It emits laser beams 
and clocks the amount of time needed for the beam to 
return after being reflected off an environmental object.

•	 Odometry: It is employed to monitor the lidar sensor’s 
motion. Based on the sensor’s prior movement and veloc-
ity, it is a technique for determining the sensor’s position-
ing and orientation.

•	 Mapping: This is the procedure for creating an environ-
ment map using the information gathered by the lidar 
device. This is accomplished by using algorithms that 
transform the lidar data into a point-cloud-like represen-
tation of the surrounding area.

•	 Localization: This is the process of determining the cur-
rent location of the lidar sensor in relation to its sur-
roundings. To do this, the received lidar data and the 
previously created map are compared, and the sensor’s 
position is inferred from the intersection of the two.

•	 SLAM: To simultaneously map the surroundings and 
determine the location of the lidar sensor, mapping and 
localization are combined in real-time. Algorithms that 

maximize the prediction of the sensor’s placement and 
the map-making process are used to achieve this.

3.3 � Sensor fusion SLAM

Sensor fusion is a crucial piece of technology that ena-
bles self-driving cars to effectively perceive and navigate 
their surroundings (Wei et al. 2021). Sensor fusion com-
bines data from various sensors to increase environmental 
knowledge’s precision, resilience, and comprehensiveness. 
Technically speaking, sensor fusion combines information 
from many sensor types, including optical, depth, inertial, 
and LiDAR devices, to produce a more complete picture 
of the environment. This entails creating algorithms that 
can effectively combine various data kinds to reduce errors 
and optimize the knowledge acquired. Sensor fusion calls 
for specialized hardware to gather and interpret the data 
and precisely align and sync data from several sensors. 
Additionally, sensor fusion methods may be computation-
ally demanding, necessitating high-performance computer 
infrastructure to handle the massive amounts of data pro-
duced by numerous sensors. Despite these technical obsta-
cles, combining sensors has the power to change various 
applications, from robotics to autonomous vehicles, by 
supplying more precise, resilient, and comprehensive data 
about the environment.

3.4 � Feature based SLAM

Using distinguishing environmental cues, such as edges 
or corners, feature-based SLAM (Yeong et al. 2021) cal-
culates the robot’s pose and maps the surrounding area. 
Techniques like the SIFT or the Harris corner detector 
are frequently used. Once features have been identified, 
they are compared between various frames to ascertain the 
robot’s motion and modify the map. The Fast SLAM algo-
rithms and the EKF-based SLAM system are the two most 
often used algorithms for feature-based SLAM. SLAM 
is computationally efficient and effective in surroundings 
with distinct characteristics based on features. Still, it can 
be challenging in environments with no features or while 
the features are unstable or difficult to detect.

In self-driving instances where the environment pro-
vides distinguishing features, such as lane lines, traffic 
signs, and buildings, feature-based SLAMs can be help-
ful. A high-precision map of surroundings can be made 
using feature-based SLAM, which can be applied to tasks 
like localization path planning and preventing obstacles. 
The sensors frequently found in autonomous cars, includ-
ing cameras, lidar, and radar, can execute feature-based 
SLAM.Fig. 4   Structure of LIDAR SLAM



5067Int J  Syst  Assur  Eng  Manag (November 2024) 15(11):5059–5077	

3.5 � Extended kalman filter (EKF) SLAM

The EKF algorithm, a recursive estimating method that 
defines a non-linear framework and modifies it using the 
Kalman filter, estimates the robot’s pose and the location 
map of the surrounding area in the EKF SLAM (Westman 
et al. 2018). Building an environment map with EKF SLAM 
entails using information from sensors like odometry, laser 
distance finders, or cameras. The Fast SLAM technique and 
the EKF-based SLAM algorithm are the two most often 
used EKF SLAM algorithms. A tried-and-true method with 
a large user base, EKF SLAM can deal with non-linear 
systems and be computationally effective. However, it may 
require careful adjustment of the sensor noise values because 
of linearization imperfections.

When a robot moves in a non-linear setting with a highly 
dynamic environment, EKF SLAM can be helpful. For pur-
poses including the localization of operations planning of 
paths and obstacle avoidance, EKF SLAM can be utilized for 
estimating the robot’s pose and a geographical representa-
tion of the surrounding area. Many sensors, such as cameras, 
lidar, radar, or GPS, can accomplish EKF SLAM.

3.6 � Particle filter (PF) SLAM

PF SLAM (Saman and Lotfy 2016) uses a collection of par-
ticles, each of which stands for a potential theory, to repre-
sent the pose of the robot and the map of its surroundings. 
The particles are transmitted over time using a motion model 
and updated based on data from sensors like odometry, dis-
tance finders, or cameras. The two most often utilized PF 
SLAM algorithms are the Fast SLAM technique and the 
Rao-Blackwellized particles filter. Although PF SLAM is 
a reliable method that can deal with non-linear systems 
and ambiguous measurements, it can be computationally 
challenging and may necessitate careful particle parameter 
tweaking.

By calculating the location and orientation of the vehicle 
while mapping the environment, PF SLAM is essential to 
autonomous vehicles. This method precisely locates the car 
and recognizes landmarks by fusing data collected by sen-
sors from systems like GPS, lidar, or camera with motion 
information. PF SLAM is an important tool for develop-
ing effective and safe autonomous driving because of its 
adaptability to changing situations and compatibility with 
navigational and control systems.

4 � Open‑source simulators for autonomous driving

According to the application and requirements, several open-
source simulators can be utilized in an autonomous vehicle 
because they are accessible for varied weather situations. 

Various simulators can be used to test and develop self-
driving systems in various environmental settings. A com-
parison of a few of the open-source simulators is provided 
in Table 2. These simulators can create and test autonomous 
driving systems, ensuring their dependability and safety 
under difficult circumstances.

4.1 � Carmaker

A complex software platform called a CarMaker (Tang 
et al. 2014) maker simulator created specifically for autono-
mous driving offers an organized virtual environment for 
designing, testing, and improving autonomous vehicles and 
the systems that go with them. Engineers, designers, and 
researchers can design, verify, and improve autonomous 
driving techniques and systems using this simulator without 
the requirement for actual field testing. Users can specify 
alternative scenarios, highway conditions, patterns of traffic, 
and environmental issues within the simulator to assess how 
autonomous vehicles perform in various situations. It ena-
bles experimentation of perception, decision-making pro-
cesses, and control algorithms by simulating data collected 
from lidar, cameras, radar, and other sensors. The simulator 
shortens the development cycle and helps improve the safety, 
effectiveness, and durability of self-driving technology 
before it is used on public roads by simulating real-world 
driving scenarios, such as complex urban environments, bad 
weather, and even rare edge cases.

4.2 � Vortex studio

For simulating intricate connections among vehicles and 
their surroundings, such as topography, the climate, and 
other objects, especially those seen in the Arctic region, 
use Vortex Studio (Rong 2020). The software enables users 
to evaluate numerous situations, such as vehicle handling, 
strength, and performance, in various weather circum-
stances. It can mimic various types of vehicles, including 
cars, trucks, and heavy equipment. Vortex Studio is the per-
fect tool for building and testing new assistance technologies 
and self-driving systems since it offers a complete simula-
tion environment with physics engines, realistic car models, 
and cutting-edge visualization capabilities.

4.3 � SCANeR

A state-of-the-art simulator called SCANeR (Matsumoto, 
et al. 2020) was created exclusively for creating, evaluating, 
and testing technologies for self-driving vehicles. SCANeR, 
created by AVSimulation, offers engineers, scholars, and 
developers a thorough and incredibly realistic virtual envi-
ronment to evaluate self-driving systems’ effectiveness, 
safety, and dependability. One of its distinguishing features 
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is SCANeR’s capacity to generate intricate and complex 
traffic scenarios, enabling users to mimic interactions with 
other automobiles, pedestrians, and cyclists. This capacity 
is essential to evaluate perception, decision-making, control 
algorithms, and examine how autonomous vehicles respond 
to unforeseen circumstances on actual roads.

4.4 � VIRES VTD

The VIRES VTD (Champion et al. xxxx) simulation plat-
form is designed to replicate a diverse range of driving sce-
narios, encompassing conditions frequently encountered 
in Arctic regions, such as snowy terrain, icy surfaces, and 
reduced visibility. This software empowers users to thor-
oughly assess various vehicle categories across various 
distinctive driving situations, ranging from cars and trucks 
to buses. It can mimic a variety of environmental circum-
stances, including diverse surface types and weather condi-
tions. VIRES VTD is the perfect tool for developing and 
testing new assistance technologies and self-driving sys-
tems since it offers a complete simulation environment that 
includes realistic car models, physics engines, and cutting-
edge visualization capabilities.

5 � Technology and innovations in autonomous 
vehicle by different companies

With numerous companies investing in R&D to raise the 
reliability and security of automated vehicles, the techno-
logical sectors relating to automated vehicles have advanced 
significantly over the past two decades. These are a few 
instances of cutting-edge innovation and advancements in 
driverless cars from a few of the top global brands. Table 3. 
shows the comparison of these companies.

5.1 � Waymo (Alphabet subsidiary)

Waymo (Gangel et  al. 2021) Since 2009, a division of 
Alphabet Inc., has been working on autopilot systems. 
The sensors that Waymo’s autonomous vehicles utilize to 
sense their surroundings consist of lidar, laser radar detec-
tors, and cameras. Waymo’s predictive techniques employ 
machine learning methods to forecast other drivers’ actions 
by analyzing their driving patterns and paths. This enables 
the car to recognize possible threats and react accordingly. 
Waymo’s navigation techniques employ algorithmic learning 
to ascertain the best route for the car, considering variables 
like weather, traffic, and road conditions. Waymo used a 
specially designed computer simulation environment named 
"Carcraft" to test and evaluate its autonomous vehicle tech-
niques in a virtualized scenario. Carcraft is not the only 
simulator and tool that Waymo employs for assessment and Ta
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testing; the CARLA model and the Unreal Engine are two 
other examples. Waymo’s autonomous vehicle can travel on 
public roadways rather than with assistance from an actual 
driver. Numerous safeguarding measures, like multiple 
detectors and controls, invulnerable mechanisms, and alter-
nate power sources, are installed in the vehicle.

5.2 � Tesla

Tesla (Google sibling Waymo launches fully autonomous 
ride-hailing service. 2023) has created Autopilot technol-
ogy, allowing its cars to drive somewhat autonomously. 
The business is also working on an FSD system, which will 
eventually enable autonomous driving. A variety of sensors, 
like video cameras, radar, ultrasonic devices, and LiDAR, 
are included in Tesla vehicles. With the help of these sen-
sors, the automobile can perceive everything around it in 
360 degrees, which enables it to recognize and follow things 
like other cars, people walking, and traffic signs. The neural 
networks that form the foundation of Tesla’s autonomous 
vehicle system are taught on vast data. These artificial neu-
ral networks are employed in decision-making processes, 
navigation, and recognition of objects. The precise machine 
learning techniques Tesla uses for their self-driving tech-
nologies are not publicly known. It is generally accepted 
that they are utilizing a blend of behavioral and deep learn-
ing algorithms to accomplish this. Tesla’s cameras can take 
detailed pictures of the area around the car. Afterward, algo-
rithms based on computer vision are used to analyze these 
photos to interpret signs for traffic, recognize road signs, and 
identify anything. The "Tesla Simulation Environment" is a 
private model that Tesla employs to evaluate and verify its 
autonomous vehicle system. The Tesla Simulator System 
can replicate millions of miles of travel in a matter of hours 

thanks to its highly adaptable design. It permits Tesla to test 
its autonomous system in various situations, such as intri-
cate junction situations, unfavorable weather, and uncom-
mon extreme circumstances that might be risky or difficult 
to duplicate.

5.3 � Apple

Since about 2014, Apple (Endsley 2017) has focused on 
developing autonomous vehicle technology, although the 
development effort has encountered various obstacles and 
direction changes. Over the past few years, it has been 
claimed that Apple is now concentrating on creating tech-
nologies for autonomous driving that it may utilize in col-
laboration with other automobile manufacturers rather than 
producing a fully driverless vehicle. Apple has not made 
any formal statements about the detectors and AI tech-
niques that go into its autonomous automobiles. On the 
other hand, speculations and gossip about the technologies 
that Apple employs have surfaced. There are rumors that 
Apple’s autonomous vehicles use Velodyne lidar detectors. 
Additionally, cameras have been integrated into Apple’s 
autonomous cars to record visual data about their surround-
ings. The cameras might be utilized for tracking, identify-
ing, and detecting objects. A different kind of sensor Apple 
could use in its autonomous vehicles is radar. Given Apple’s 
expertise in machine learning, it seems probable that their 
automated cars employ a range of ML methods. Employ-
ing certain algorithms for perception, judgment, and control 
is possible. Like other businesses developing autonomous 
vehicles, Apple is evaluating and confirming its technol-
ogy through models. It’s crucial to remember that Apple 
has not acknowledged any information on its autonomous 
vehicle technology. Thus, these features and sensors are 

Table 3   Comparison of Technologies used by different companies

Company Sensors Algorithms Simulators

Waymo Gangel et al. (2021) Lidar, Radar, Cameras, GPS Deep Autonomy, 
CNNs, LSTM, 
GNN, A*, D*, 
MPC

Carcraft, CARLA, Unreal Engine

Tesla Google sibling Waymo launches 
fully autonomous ride-hailing ser-
vice. (2023)

Forward-facing Radar, Cameras (pro-
vide 360-degree view)

Not Disclosed Tesla Simulation Environment

Apple Endsley (2017) Lidar, Radar, Cameras, GPS Not Disclosed Not Disclosed
BMW Lyu et al. (2020) Optical Cameras, Lidar, Radar, HD 

maps
Not Disclosed Virtual Test Drive (VTD)

VOLVO Dorrer (2018) Radar, Cameras, Multi-beam laser, HD 
3D maps, High precision GPS

Not Disclosed Volvo Autonomous Driving Simulator

Baidu Song et al. (2021) Lidar, Radar, Cameras, GPS CNNs. RNNs, DDPG ApolloScape
Uber ATG Tian et al. (2018) Lidar, Radar, Cameras, GPS, odom-

etry, HD maps
FusionNet, Hector 

SLAM, Rule-based 
systems

Carcraft
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based only on rumors. It’s conceivable that Apple is using 
more sophisticated or different technologies than what has 
been published.

5.4 � BMW

Referred to as "BMW iNEXT," BMW’s autonomous auto-
mobile technology (Lyu et al. 2020) is intended to be a fully 
autonomous drive mechanism that can assume vehicle con-
trol in specific scenarios, such as on a busy road or in con-
gested traffic. The sensor, driving simulator, and techniques 
of BMW’s self-driving auto system likely contain some key 
features, but the manufacturer still needs to make all its tech-
nical data public.

BMW’s autonomous vehicles incorporate an array of sen-
sors, encompassing LiDAR, recording apparatuses, radar 
detection systems, and ultrasonic sensors. This integration 
endows the car with comprehensive environmental aware-
ness, enabling seamless recognition and tracking of dynamic 
entities such as fellow vehicles, pedestrians, and traffic sig-
nals. BMW tests and validates its self-driving technology 
on many simulators. The "Virtual Test Drive" (VTD) is one 
of these simulators that enable BMW to produce lifelike 
simulations of various driving situations. BMW’s cameras 
capture high-resolution images of the vehicle’s surround-
ings. The algorithms in the automobile get smarter and 
can forecast outcomes more precisely as they gather more 
data. The pictures are then processed using computer vision 
algorithms to identify road markings, read traffic signals, 
and detect objects. BMW uses a range of decision-making 
mechanisms to control the vehicle’s mobility. When decid-
ing whether to shift tracks, brake, or accelerate, these algo-
rithms analyze information gathered from cameras and sen-
sors. BMW’s autonomous driving system will probably be 
complicated, including extra simulations and algorithms that 
aren’t on the list.

5.5 � VOLVO

VOLVO (Dorrer 2018) has been working on developing self-
driving car technology for several years. A self-driving car 
of VOLVO has five integrated sensors: cameras, radar, and 
ultrasonic sensors. The multi-beam laser provides excep-
tional vision on a long range of up to 150 m so drivers can 
see far ahead and be warned of a coming danger. Highly 
detailed 3D maps and the high-precision GPS (high-accu-
racy positioning system) are integrated to provide the exact 
location of the car and the surroundings. The map and GPS 
also help find the safest and most efficient way. These sen-
sors are utilized for observation and decision-making, offer-
ing data on the car’s surroundings. While the precise algo-
rithms employed by Volvo remain undisclosed to the public, 
artificial intelligence and machine learning play significant 

roles in their automobile technology. Volvo may use locali-
zation algorithms to determine the vehicle’s position and 
orientation in the environment. These algorithms use data 
from GPS, lidar, and other sensors to estimate the vehicle’s 
location. The company has developed a custom simulator 
called the Volvo Autonomous Driving Simulator, which tests 
different driving scenarios and trains their ML algorithms. 
Volvo’s self-driving car technology is supported by cloud 
computing. Utilizing cloud resources for the processing of 
data, its analysis, and storage enables companies to man-
age massive volumes of data and use distributed computing 
capabilities (Pelliccione et al. 2017).

5.6 � Baidu

The Chinese tech firm Baidu (Song et al. 2021) is working 
on autonomous vehicle development with its Apollo sub-
sidiary. These autonomous vehicles sense their environment 
using a variety of sensors, including lidar, laser radar, cam-
eras, and GPS. They aggregate the data from various sensors 
using sensor synthesis technology to get a more complete 
picture of the surroundings. The position and orientation of 
Baidu’s automated cars are ascertained by combining lidar, 
GPS, and odometry. They employ a localization technique 
that incorporates information from multiple sources to get a 
more precise estimation of the car’s location. High-definition 
maps are used by Baidu’s self-driving cars to navigate their 
surroundings. These maps are made and updated using a 
map system that takes information from the car’s travels. 
In their self-driving cars, Baidu employs various machine 
learning techniques, such as deep learning algorithms for 
segmentation by semantics, object identification, and deci-
sion-making. They specifically employ reinforced teach-
ing methods, recurrent neural networks, and convolutional 
neural networks. Enabling the vehicle with the capacity to 
perceive and respond to its surroundings, these algorithms 
undergo training using extensive collections of actual driv-
ing scenarios. Baidu has harnessed an array of reinforcement 
learning algorithms, including sophisticated iterations, to 
empower their self-driving vehicles. Baidu has harnessed 
an array of reinforcement learning algorithms, includ-
ing sophisticated iterations, to empower their self-driving 
vehicles. Baidu has employed several famous algorithms, 
including Deep Deterministic Policy Gradient (DDPG). 
Baidu has enhanced the capabilities of its self-driving cars 
by combining DDPG with additional deep-learning algo-
rithms. For detecting objects and semantic segmentation, 
they have combined DDPG with convolutional artificial 
neural networks (CNNs) and RNNs (recurrent neural net-
works) when making choices. Regarding the simulator, 
Baidu created ApolloScape, a virtual setting that mimics 
actual driving environment conditions. In a secure and con-
trolled environment, a simulator like this is used to test and 
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certify the functionality of self-driving vehicles. A collec-
tion of resources for data annotations, presentation, and data 
analysis are also included in Apollo Scape. These tools are 
crucial for developing and testing the machine algorithm for 
learning used in self-driving automobiles (China will make 
rapid progress in autonomous vehicles 2018).

5.7 � Uber’s advanced technologies group (ATG)

Uber’s ATG (Tian et al. 2018) research and development 
department aims to advance autonomous vehicle technology. 
Uber ATG’s autonomous cars sense their environment using 
a variety of sensors, such as radar detectors, lidar imaging, 
and cameras. The information collected from these devices 
is combined with a deep learning system known as "Fusion-
Net" to produce a 3D model of the surroundings. To make 
choices, they combine machine learning algorithms with 
rules-based systems. The automobile’s behavior is optimized 
in various settings with reinforcement learning algorithms. 
A combination of lidar, odometry, and GPS is employed to 
ascertain their location and orientation within the surround-
ings. They blend information from multiple sources using 
a localization method called "Hector SLAM" to accurately 
predict the car’s location. They use a mapping system that 
builds and refreshes these maps using information gathered 
while the automobile is driving. They use "Car craft" for 
simulation, which enables them to examine their methods in 
a secure and regulated environment while simulating various 
driving scenarios (Carvalho 2020).

6 � Public datasets available for autonomous 
driving in Arctic

High-quality data access is necessary to advance and assess 
autonomous driving technology. Although gathering exten-
sive datasets for research on autonomous driving can be 
costly and time-consuming, researchers and developers can 
develop and evaluate their automated drive techniques and 
methods using several datasets that are freely accessible. 
These datasets contain annotations for tasks like object iden-
tification, tracking, semantic segmentation, and various sen-
sor data types, including LIDAR, cameras, and GPS/IMU. 
The are various open-source datasets that are available for 
normal weather conditions including Waymo Open Dataset 
(Hagman and Lindh 2019), ApolloScape (Mei, et al. 2022), 
KITTI (Huang, et al. 2018) and Cityscapes (Deschaud 2021). 
A lot of research has been done on these datasets for autono-
mous driving in normal weather conditions. Unfortunately, 
few publicly available datasets exist for autonomous driv-
ing in Arctic environments. Most publicly available autono-
mous driving datasets focus on more common environments, 
such as urban and suburban areas, and do not include data 

collected in snow. However, some companies and organiza-
tions are working on collecting and releasing datasets for 
autonomous driving in snowy conditions, including:

6.1 � Winterdrive dataset

Researchers at the University of Michigan generated the 
Winter Drive dataset (Cordts, et al. 2016), which comprises 
sensor data from a self-driving car operating in ice and 
snowy in Ann Arbor, Michigan. The United States dataset 
contains annotations for tasks including object recognition, 
tracking, and 3D localization, as well as data from various 
sensors, including lidar, cameras, and GPS. The dataset 
comprises weather scenarios, such as snow, ice, and slush, 
and various driving situations, including urban and rural 
areas. The WinterDrive dataset provides a valuable resource 
for researchers and developers working on autonomous driv-
ing systems for winter conditions. It can be used to evaluate 
the performance of algorithms for object detection, track-
ing, and localization in snowy and icy environments, and to 
develop and test new algorithms specifically designed for 
these conditions.

The data is stored in a variety of formats, including pho-
tos and videos in JPEG, PNG, MP4, or AVI, LiDAR data 
in.pcd or.bin, radar data in proprietary binary formats, and 
GPS/IMU data in CSV or JSON. Annotations contain object 
labels with bounding boxes, as well as segmentation masks 
for automobiles, people, and road signs in COCO JSON, 
Pascal VOC XML, and KITTI label formats. Semantic seg-
mentation labels road surfaces and snow covering at the 
pixel level, typically in PNG masks or JSON files, whereas 
temporal annotations allow for object tracking across frames.

The dataset’s size can reach several terabytes and is 
separated by weather conditions, time of day, and loca-
tion to allow for targeted research. It is accessible through 
academic portals or cloud storage services such as AWS 
and Google Cloud. All sensor data is synchronized using 
exact timestamping, which is commonly done with GPS or 
high-precision clocks. Calibration details, such as intrinsic 
parameters for camera lenses and LiDAR, as well as extrin-
sic sensor modifications, are provided to assure precise spa-
tial alignment.

6.2 � nuScenes winter dataset

This dataset was created by nuTonomy, a startup acquired 
by Aptiv in 2017, and consists of over 1,000 driving scenes 
recorded in urban environments in Boston and Singapore 
from various autonomous vehicle platforms in winter 
environments, including snowy conditions. The dataset 
comprises GPS and IMU metrics, radar, lidar, and excel-
lent-quality camera photos. Tags for object identification, 
monitoring, and classification are also given. The dataset 
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offers a broad spectrum of city drive circumstances, encom-
passing driving during the day and at night. They may be 
employed to evaluate how well autopilot programs function 
in various environments (Kurup and Bos 2022).

Although these datasets are tailored for self-driving in 
arctic situations, they are still small and have a narrow focus. 
Further study and data gathering are required to promote the 
development of driverless vehicles that can function effi-
ciently in snow.

The collection is thoroughly organized, with photos in 
JPEG format, LiDAR data in.pcd files, radar data in.pkl files, 
and GPS/IMU data in CSV files, all synchronized with pre-
cise timestamps to assure temporal alignment. Annotations 
include bounding boxes for things like as vehicles, pedestri-
ans, and bicycles, as well as pixel-level semantic segmenta-
tion and object tracking information across frames, allowing 
for more advanced perception and tracking research.

The nuScenes Winter Dataset contains several terabytes 
of data and is divided into several scenes, each with 20-s 
video and related sensor data. This vast amount of high-res-
olution data is available via the nuScenes website and linked 
academic platforms, which normally need user registration 
and compliance to conditions of use.

Sensor data is synchronized using GPS time or high-
precision internal clocks, and all sensors are calibrated with 
detailed intrinsic and extrinsic parameters to ensure accurate 
spatial alignment. This dataset has a variety of uses, includ-
ing training and testing perception models in winter settings, 
improving SLAM techniques, developing robust path plan-
ning and control algorithms for icy roads, and producing 
realistic winter driving scenarios in simulation environ-
ments. The nuScenes Winter Dataset is a great resource for 
improving autonomous driving technology in harsh winter 
conditions.

7 � Limitation and technological requirements 
in arctic region

The difficulties presented by the topography and climate of 
the Arctic have substantial effects on self-driving in the area. 
The emergence of autonomous vehicles holds the potential 
to revolutionize transportation on various fronts, yet the 
unique environmental challenges of the Arctic region war-
rant careful consideration. Notably, melting ice stands as a 
significant hurdle during the summer months. The sea ice 
layer that covers much of the Arctic Ocean starts melting as 
temperatures rise, posing various dangers for people trave-
ling through the area (Bull, et al. 2020). Some examples 
of these dangers include open sea, which can be hazardous 
for ships and boats, and ice floes that can change and cre-
ate impediments. Permafrost, or permanently frozen soil, 
can also melt throughout the summer, which might cause 

issues. Permafrost thawing can lead to ground instability, 
heightening the susceptibility to hazards like landslides. Fur-
thermore, this process risks releasing substantial amounts 
of methane, a potent greenhouse gas, into the atmosphere, 
consequently expediting the progression of climate change. 
Last but not least, Arctic summer storms can also be espe-
cially violent, with powerful gusts, copious rain, and even 
lightning strikes (Iijima et al. 2016).

Navigation presents a significant obstacle for autonomous 
cars in the Arctic. Vehicle navigation can be challenging in 
the face of melted ice and moving ice floes. Conventional 
mapping systems must be more precise and current to offer 
trustworthy guidance (Reid, et al. 2019). This could be 
especially troublesome for autonomous cars, which depend 
largely on precise data from maps to make judgments. The 
specific sensors and equipment requirements may present 
another challenge for autonomous vehicles in the Arctic. To 
safely travel the area, vehicles may need sophisticated sen-
sors to recognize and react to shifting weather conditions, 
including unexpected storms or blizzards.

Additionally, they could require specialist tires or other 
tools that can withstand the bitter cold and ice conditions. 
Additionally, ice in the Arctic may provide difficulties for 
self-driving cars. As previously indicated, permafrost thaw-
ing can make the ground unstable and result in landslides or 
other dangers. To operate securely in the area, autonomous 
cars would be required to be able to recognize and steer clear 
of these dangers (Lima and Victorino 2015).

The harsh winter climate is the major barrier to the locali-
zation of autonomous vehicles (AVs) and autonomous driv-
ing (AD) uses in northern latitudes. Because of the presence 
of snow, fog, mist, and darkness, this weather can reduce the 
efficacy of imaging sensors and harm sensor performance. 
Due to this weather, the various kinds of detectors used in 
autonomous driving cars may have particular difficulties. 
In snowy conditions, cameras may encounter lower vision 
and contrary, making detecting objects challenging. Lidar 
sensors may have signal dispersal, absorption, and attenu-
ation problems, which can produce inaccurate results and 
insufficient information for the perception algorithm. Radar 
sensors could identify objects in icy conditions but might 
not be able to classify them, affecting the detection system’s 
accuracy (Koopman and Wagner 2017).

An experiment called the Volvo Vehicles Winter Test 
(Billones, et al. 2018) was conducted in the Arctic region to 
gauge how well autonomous vehicles operated in subzero 
conditions. The test was conducted in northern Sweden, near 
Arjeplog, in January 2020. The test’s autonomous trucks 
came with various sensors, cameras, and Lidar devices that 
allowed them to navigate and run independently. The trucks 
were put through a series of movements on a closed track, 
including acceleration, braking, and turning. But the harsh 
Arctic climate, with its snow, ice, and freezing temperatures, 
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posed serious difficulties for self-driving vehicles. The 
frigid temperatures impacted the batteries’ efficiency in the 
vehicles and the precision of the Lidar observations. The 
vehicles struggled to maintain stability and traction while 
navigating the blocked track due to the snow and ice on the 
ground. The Volvo team created specialized software that 
could consider the difficult Arctic circumstances to handle 
these issues. The software could adjust the vehicles’ move-
ment and speed to consider the low traction circumstances 
and maximize battery life in chilly weather.

Additionally, the Volvo team tried to increase the Lidar 
readings’ accuracy by employing stronger lasers that could 
cut across the snow and ice on the floor. They also created 
a mechanism that could regularly clean them to prevent ice 
and snow from building on the Lidar sensors. The Volvo 
Trucks Snow Test emphasizes the value of testing autono-
mous cars in difficult terrains like the Arctic to ensure their 
safe and dependable operation in harsh conditions. The test’s 
findings have assisted Volvo Trucks in further refining their 
automated driving technology for usage in hostile environ-
ments and enhancing the functionality of the many sensors 
and communications technologies employed in their auto-
mated trucks.

Initiated in 2015, the NOAA Arctic Project (Manley and 
Systems 2003), spearheaded by the National Oceanic and 
Atmospheric Administration (NOAA), aims to investigate 
the impact of climate change on Arctic marine ecosystems. 
This research employs autonomous underwater vehicles 
(AUVs) equipped with sensors to access data from beneath 
the ice. The AUVs were made to acquire data from behind 
the ice by navigating through the difficult Arctic environment 
autonomously. Low light levels, freezing temperatures, and 
ice formation that could harm the vehicles were key obsta-
cles the AUVs faced in the Arctic. The NOAA team created 
specialized navigation algorithms to handle these issues and 
take into account the harsh Arctic environment. According 
to the algorithms, the AUVs could move around the ice for-
mations and gather data from below without becoming stuck 
or hurt. The sonar, acoustic detectors, and cameras that the 
AUVs were fitted with allowed them to gather information 
on the biological and physical aspects of the Arctic region. 
The information gathered by the AUVs was put to use to 
learn more about how the Arctic’s marine ecosystems are 
being impacted by climate change. The NOAA team had 
to create specially designed communication technologies 
to provide dependable communication between the AUVs 
and the control systems. The severe Arctic environment may 
impair wireless communications, making it difficult for the 
AUVs to maintain contact with the control equipment. The 
NOAA Arctic Project emphasizes the significance of creat-
ing specialized sensor technology, communication networks, 
and navigation algorithms to guarantee self-driving vehicles’ 
safe and dependable operation in harsh Arctic conditions. 

The experiment shed important light on how climate change 
affects marine ecosystems and showed how autonomous 
technology may help scientists gather data in difficult and 
isolated locations.

Simulation is useful for testing and refining how autono-
mous cars behave in inclement weather. It allows engineers 
to simulate various environmental and scenario factors, 
offering a thorough and effective testing strategy. In contrast 
to physical testing, simulation doesn’t require waiting for 
real snowfall, and results are accessible virtually instantly. 
This makes it possible for producers of self-driving cars to 
create weather-aware self-driving systems more swiftly. 
Snow presents particular and difficult problems despite mod-
eling successfully forecasting results in extreme conditions 
like space and the deep sea. The model used for simula-
tion must consider various details to effectively represent 
the effects of snow, including the size, shape, location, and 
optical characteristics of each snowflake, as well as the loca-
tion and form of the snow area on the road surface. By con-
sidering these elements, simulation can offer helpful insight 
into how autonomous vehicles behave in icy circumstances, 
enhancing their performance and safety.

The potential for autonomous vehicles to revolutionize 
transportation is evident from a broader perspective. How-
ever, realizing their effective utilization in Arctic settings 
hinges on tackling the distinct challenges of the region’s 
geographical and climatic factors. This endeavor will prob-
ably entail substantial dedication toward specialized sen-
sors, cutting-edge mapping technologies, and purpose-built 
equipment. Furthermore, continuous research and develop-
ment efforts will be pivotal in accommodating the dynamic 
environmental changes characteristic of the Arctic.

8 � Conclusion

This paper presented the unique challenges that were asso-
ciated with the deployment of autonomous cars in Arctic 
regions. Technological limitations associated with deploying 
autonomous cars in Arctic regions are also discussed. The 
paper highlights various open-source simulators that can be 
used for self-driving cars in the Arctic Region. Moreover, 
public datasets for self-driving cars in the Arctic region are 
also mentioned. The researchers can use these datasets.

It is impossible to overestimate the significance of auton-
omous vehicles functioning in all forms of weather and on 
all types of routes. Advanced solutions and systems are 
required for autonomous cars to function effectively in good 
and bad weather. It is also crucial to have timely, accurate 
operating and safety performance forecasts and data on the 
state of the roads’ weather.

As technology advances solve the difficulties of oper-
ating automatic cars in severe weather conditions, the 
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potential use of self-driving automobiles in the Arctic 
region appears bright. Self-driving cars have the potential 
to significantly improve mobility in Arctic regions with 
further research and development, especially in isolated 
communities with little road infrastructure. The achieve-
ment of autonomous cars in Arctic areas will also depend 
on the regulatory environment and public perception. 
Organizations and governments must be involved in its 
development and implementation to guarantee that the sys-
tem is secure and satisfies the requirements of the Arctic 
community.

Several new research questions have evolved because 
of the study’s findings, offering a greater knowledge of the 
future direction of this research.

•	 How can sensor technology be tuned to detect obstacles 
and navigate terrain in extreme Arctic weather condi-
tions, such as heavy snow and ice?

•	 What advances in machine learning algorithms are 
required to improve autonomous cars’ decision-making 
ability in unexpected Arctic conditions?

•	 How can real-time meteorological data be integrated to 
improve the safety and efficiency of autonomous vehicle 
operations in the Arctic?

•	 What unique legislative and policy frameworks are 
required to facilitate the deployment and operation of 
autonomous cars in Arctic regions?

•	 How can public perception and acceptability of self-
driving vehicles in Arctic communities be measured?

•	 What are the best methods for ensuring that autonomous 
cars’ hardware and software systems work well in the 
severe Arctic climate?

•	 How can the existing infrastructure in Arctic regions be 
altered or enhanced to facilitate the widespread usage of 
self-driving vehicles?

Moving forward, this research will take a multifaceted 
approach. Collaboration among technology developers, 
politicians, and Arctic people is required to answer these 
research questions. Furthermore, pilot studies and field tests 
in Arctic settings will give essential data for improving tech-
nology and methods. Continued developments in AI and 
sensor technology, together with rigorous regulatory frame-
works and community participation, will pave the road for 
the successful integration of autonomous cars in the Arctic, 
revolutionizing mobility and improving the quality of life.
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