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Abstract
Uncrewed Aerial Systems (UAS) offer a versatile solution for monitoring forest ecosystems. This study aimed to develop and 
assess an individual tree-based methodology using multi-temporal, multispectral UAS images to track changes caused by the 
European spruce bark beetle (Ips typographus L.). The approach encompassed four key steps: (1) individual tree detection 
using structure-from-motion point clouds, (2) tree species classification, (3) health classification of spruce trees as healthy, 
declined, or dead, and (4) change detection, identifying fallen/removed trees and alterations in tree health status. The devel-
oped methodology was employed to quantify changes in a bark beetle outbreak area covering 215 hectares in southeastern 
Finland during 2019–2021. The dataset included two managed and two conserved forest areas. The uncertainty estimation 
demonstrated the overall accuracies ranging from 0.58 to 0.91 for individual tree detection, 0.84 for species classification, 
and 0.83–0.96 for health classification, and a F1-score of 0.91 for the fallen or removed tree detection. Maps and statistics 
were produced, containing information on the health of the spruce trees in the area and information on changes, including 
trees that died during monitoring and those that fell or were removed from the forest. The results demonstrated successful 
control of the outbreak in the managed stands, evidenced by moderate tree mortality. Conversely, in the conserved stands, 
the outbreak resulted in dramatic tree mortality. This method serves stakeholders by enabling large-scale outbreak impact 
monitoring, facilitating timely risk assessment, and validating bark beetle outbreak management strategies.
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Introduction

Boreal forests in central and northern Europe are threat-
ened by biotic and abiotic stresses at an increasing rate 
as a consequence of climate change (Patacca et al. 2023; 
Barrere et al. 2023). The risk of outbreaks by the European 
spruce bark beetle (Ips typographus L.) has increased in 
Norway spruce (Picea abies L.) stands. At normal cir-
cumstances, the bark beetle improves the biodiversity 
in the forest, composing small gaps and increasing a 
mosaic structure of a forest. However, a trend of earlier 
spring and warmer summer months since the 1990s, have 
increased the outbreaks rapidly as defense mechanisms of 
the spruces weaken due to dry spells. Even if the role of 
the bark beetle is debatable in conserved forests, it evi-
dently causes a threat to diversity and ecosystem services 
of stands, and to economic value in managed forests at a 
gradation peak (Hlásny et al. 2021).

The analysis of forest disturbances through field inspec-
tions is laborious and expensive, making it unsuitable for 
covering large areas (Barta et al. 2022). There is thus a 
great relevance to develop remote sensing techniques that 
offer cost-efficient mapping possibilities (Rhodes et al. 
2022). While optical satellite remote sensing has proven 
to be a powerful tool for monitoring large areas, its spatial 
resolution does not reach the individual tree level, and 
datasets are only accessible under cloud-free conditions. In 
contrast, Uncrewed Aerial Systems (UAS) equipped with 
high-resolution remote sensing cameras, combined with 
machine learning (ML) based data analysis, offer a highly 
promising and advanced approach for monitoring forest 
conditions at the individual tree level (Sun et al. 2021; 
Ecke et al. 2022; Rhodes et al. 2022).

UAS remote sensing methods have proven to be effec-
tive in analyzing bark beetle infestations (Ecke et al. 2022). 
The methods are based on the study of the crown discol-
oration symptoms that occur when the transport of water 
and nutrients in the tree is disturbed. As the infestation 
progresses, the color of the crown changes from green to 
yellow, red-brown and finally gray when the tree dies com-
pletely (Barta et al. 2022). The first stage of infestation, 
when the signs of the attack, such as entrance holes, resin 
flows, and boring dust, are already visible on the trunk but 
the crown is still green, is called the "green attack" stage 
(Huo et al. 2023). Previous studies have shown that the 
advanced, visible crown color symptoms, can be detected 
with a good accuracy, with F1-scores ranging from 0.80 
to 0.9 and above, using a variety of technologies, includ-
ing color (RGB) cameras (Safonova et al. 2022; Kanerva 
et al. 2022), multispectral cameras (Fraser and Congalton 
2021; Minarik et al. 2021; Junttila et al. 2022; Huo et al. 
2023) or hyperspectral cameras (Honkavaara et al. 2020; 

Turkulainen et al. 2023). Outcomes of forest health analy-
sis during an outbreak are tree health maps, where indi-
vidual spruce trees are detected and given health classes 
(e.g., Junttila et al. 2022).

Analysis of forest health at one point in time gives valu-
able information on the state of the forest, but multi-tempo-
ral data gives an overview of the declining and disturbance 
spreading process. A previous review by Ecke et al. (2022) 
promoted the value of multi-temporal analysis in forest dis-
turbance analysis, but at the same time showed that the sci-
entific literature on this field is still limited and highlighted 
the importance of further research on the topic. In the case 
of bark beetle outbreak monitoring, studies using multi-
temporal datasets have investigated how and when spruces 
start showing spectral differences after the infestation 
(Honkavaara et al. 2020; Huo et al. 2023) and studied ideal 
season for detecting decline (Junttila et al. 2022; Klouček 
et  al. 2019). The multi-temporal analysis has improved 
detection of pine wilt disease, which is another serious tree-
killing biotic disturbance (Wu et al. 2021; Yu et al. 2021). 
Furthermore, Dash et al. (2017) demonstrated the feasibility 
of temporal monitoring in a case of simulated disturbance. 
Multi-temporal UAS imagery has shown promising results 
in challenging combined species and health analysis tasks 
(Michez et al. 2016; Abdollahnejad and Panagiotidis 2020; 
Grybas and Congalton 2021), which will become relevant 
when analyses are expanded over larger areas. Recent studies 
have also shown feasibility of multi-temporal UAS images 
and point clouds in analysis of vegetation dynamics and 
disturbance monitoring (Dandois and Ellis 2013; Guerra-
Hernández et al. 2017; Araujo et al. 2021), phytosanitary 
analysis (Pádua et al. 2017), and drought stress detection 
(D’Odorico et al. 2021). Studies have thus far mostly used 
data from one season. Multi-temporal data covering sev-
eral years, however, could enable analysis and enhance our 
understanding of the outbreak dynamics and spreading.

Studies on multi-temporal UAS-based monitoring of bark 
beetle outbreak areas have focused on analysis of health 
status of standing spruce trees and have not analysed other 
aspects of forest ecosystem such as structural changes and 
fallen trees. For structural analysis, 3D point clouds can 
be produced using Light Detection and Ranging (LiDAR) 
(Lefsky et al. 1999; Næsset 2002; Liang et al. 2022) or pho-
togrammetric structure-from-motion (SfM) techniques (Igl-
haut et al. 2019). In this study, multi-temporal photogram-
metric point clouds were used to detect tree crown losses in 
the forest. The photogrammetric approach is cost-effective 
when UAS images are needed for health analysis, as in such 
cases, the images and point clouds can be produced with a 
single sensor. Photogrammetric point clouds have demon-
strated good performance in structural analysis (Dandois and 
Ellis 2013; Araujo et al. 2021; Nuijten et al. 2021), although 
LiDAR based approaches have outperformed SfM in 
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structural analysis (Ramalho De Oliveira et al. 2020; Chung 
et al. 2022). The predominant reasons for tree crown loss 
during bark beetle outbreaks are generally associated with 
tree falls due to death or tree removal as part of forest man-
agement operations. Fallen trees laying on ground can be 
detected using image-based techniques (Panagiotidis et al. 
2019; Thiel et al. 2020; Polewski et al. 2021) or through the 
use of LiDAR (Polewski et al. 2015; Heinaro et al. 2023).

The objective of this study was to develop an individual 
tree-level methodology for monitoring changes in a forest 
ecosystem using a remote sensing-based approach with 
multi-temporal multispectral UAS images. The method was 
applied to investigate the disturbances in a bark beetle out-
break area in Southeast Finland, using imagery collected in 
August of 2019, 2020, and 2021. The study aimed to address 
two major research questions: (1) What is the performance 
of the proposed methodology? (2) What insights does the 
UAS-based method provide regarding the development of 
the outbreak in managed and conserved forests?

Materials and methods

Overview of the methodology

The proposed UAS remote sensing approach for outbreak moni-
toring consists of two major phases: data capture and data analy-
sis (Fig. 1). Data capture involves UAS data capture flights as 
well as subsequent photogrammetric processing steps to produce 
point clouds, canopy height models (CHM), and orthomosa-
ics. Additionally, in situ references are collected to facilitate the 
implementation and validation of supervised ML methods. The 

proposed data analysis pipeline comprises five major steps: (1) 
tree detection, (2) image feature extraction, (3) species classifi-
cation, (4) tree health estimation, and (5) change detection and 
analysis including fallen tree detection and spruce tree health 
change detection. In the first step, UAS point clouds are used to 
detect trees. Following this, features are extracted from the mul-
tispectral images for subsequent remote sensing analysis tasks. 
In the third step, tree species classification is performed using 
multispectral features to identify spruce trees susceptible to bark 
beetle attacks. The fourth step determines the health classes of 
the detected spruce trees. In the final step, forest changes are 
identified by detecting fallen/removed trees and comparing tree 
health maps from different years. This process generates maps 
and statistics, providing insights into the impacts and changes 
within the area.

The proposed approach for the continuous monitoring in 
a practical application (as sketched in Fig. 1) involves con-
ducting tree detection and species classification using data 
from the first year to identify the initial state of the forest 
ecosystem. Datasets from the subsequent years are then used 
for health classification of spruce trees and change analysis.

Study area and field reference capture

The study area was a multiyear monitoring site for the Euro-
pean spruce bark beetle (Ips typographus L.) in Ruokolahti, 
Finland (61°29′ 21.840″ N, 29°3′ 0.720″ E) (Fig. 2). The 
area was hit by a serious summer storm in 2010 and a bark 
beetle outbreak initiated four years later in standing trees. 
Since 2014, populations showed a fluctuating and sporadic 
nature, depending on prevailing weather conditions (see 

Fig. 1  Methodology for tree health monitoring from multi-temporal UAS datasets
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Kosunen et al. 2019). Temperature of summer months in 
2018 was high and precipitation low, promoting reproduc-
tion of I. typographus. However, clusters of dead and clearly 
declined trees were still quite small in 2019–2021. The ref-
erence data was collected in four study sites: Murtomäki, 
Paajasensalo, Ryhmälehdonmäki, and Viitalampi. Of these 
sites, Paajasensalo and Viitalampi are nature conservation 
areas, while Ryhmälehdonmäki and Murtomäki are managed 
forests. All the study sites are dominated by mature Norway 
spruce trees (Table 1).

Bark beetle symptom field data was collected late in the 
summer during 2019–2021. In total, 66 circular sample 
plots were measured by forest experts. Each sample plot 
had a radius of 10 m and included 10–30 trees. The center 
coordinate of each plot was measured using a Trimble Geo 
TX GPS-device (Trimble Navigation Ltd., Sunnyvale, CA, 
USA) and the surrounding trees were located measuring the 

distance and azimuth from the plot center. For each tree, tree 
species, height, diameter at breast height (DBH), and the 
health status were recorded (Table 1). The age was measured 
for every seventh spruce across the plots. Suppressed trees 
with a height of less than 10 m and a DBH of less than 10 cm 
were ignored. Also, potential fallen trees were identified. 
Tree health data was collected by experts evaluating various 
symptoms and their severity levels (Table 2). The bark beetle 
symptom categories were crown discoloration, defoliation, 
bark damage, resin flow, and entrance and exit holes. Each 
symptom was rated with 3–4 different scores based on the 
symptom severity. More details about the health evaluation 
procedure can be found from Blomqvist et al. (2018).

Field measurements indicated a significant number of 
dead spruce trees, attributed to a strong earlier coloniza-
tion pressure. The proportion of recently infested reference 
trees showing discoloration symptoms was small due to a 

Fig. 2  Location of the study sites in Ruokolahti 2019–2021 and Evo 2018. Background map (raster) from Finnish National Land Survey (NLS) 
09/11/2023 https:// www. maanm ittau slait os. fi/ en/ opend ata- licen ce- cc40

Table 1  Main parameters of the trees (height ≥ 10 m, DBH ≥ 10 cm) on plots in each study site

Ave: average; Sd: standard deviation

Study site Year Study site parameters Species composition (%)

Age (years) DBH (cm) Height (m) N Trees/ha Spruce Deciduous Pine

Paajasensalo 2019 Ave 127.52 22.24 18.75 555 89 4 7
Sd  ± 48.31  ± 7.61  ± 4.77  ± 150

Viitalampi 2019 Ave 96.97 24.47 21.10 407 86 11 3
Sd  ± 28.20  ± 8.88  ± 5.54  ± 195

Ryhmä-lehdonmäki 2019 Ave 47.40 23.99 20.33 500 92 3 5
Sd  ± 6.47  ± 6.20  ± 3.67  ± 94

Murtomäki 2019 Ave 48.63 21.93 19.41 668 98 2 1
Sd  ± 7.32  ± 6.04  ± 3.37  ± 146

https://www.maanmittauslaitos.fi/en/opendata-licence-cc40
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surpassed outbreak peak. While the majority of reference 
trees exhibited green crowns, a considerable number of these 
green trees displayed trunk symptoms, attributed to either 
low population densities or an early phase of colonization. 
The multi-year dataset revealed that many trees with low 
or moderate stem symptoms managed to recover from the 
attack, possibly due to higher resistance or a low population 
density.

An additional dataset from a different location, Evo, Fin-
land (61°10′ 19.835″ N, 25°8′ 7,808″ E) (Fig. 2), was used 
to increase the amount of tree species training data. The 

dataset included four forest plots of size 20 m by 20 m with 
individual tree species information (spruce, pine and birch). 
In this study, species information of dominant and co-dom-
inant trees that were visible in the aerial images was used to 
increase training data for species classification. Details of 
the forest area are described by Liang et al. (2018). Further-
more, 150 additional not-spruce trees were visually selected 
from the orthomosaics to increase the number of not-spruce 
trees.

The dataset was further filtered so that trees less than 
10 m tall were removed from the dataset. These trees were 
most likely suppressed trees. Furthermore, previous results 
have shown that bark beetles attack spruces with a DBH of 
minimum 10 cm (Kärvemo et al. 2014; Müller et al. 2022) 
that corresponds to tree height of 10 m in the test area. The 
coordinates of the reference trees did not perfectly align with 
the remote sensing datasets collected from the area due to 
the challenges of global navigation satellite system (GNSS) 
based positioning inside forest. To address this, the coor-
dinates of the trees were refined by using orthoimages to 
match the remote sensing data. An overview of the filtered 
set of reference trees is presented in Table 3.

UAS datasets

UAS data acquisition in Ruokolahti bark beetle monitor-
ing site was carried out at the end of the summer season in 
August in each year (Table 4). Multispectral image data was 
captured using a Micasense Altum (AgEagle Aerial Systems 
Inc., Wichita, KS, USA) camera, which included bands in 
the blue (central wavelength: 475 nm), green (560 nm), red 
(668 nm), red-edge (717 nm), and near-infrared (842 nm) 
spectral range. The flight height was around 140–150 m 
resulting in a ground sample distance (GSD) of 6–8 cm 
(Table 4). Images were pre-processed into point-clouds 
and multispectral orthomosaics using SfM techniques with 

Table 2  Bark beetle infestation symptoms and the different classes 
given to describe the health status of a spruce tree (adopted and 
adapted from Blomqvist et al. 2018)

The number of entrance and exit holes indicate the case up to 2  m 
height

Symptom Class Description

Number of resin flows 1 < 2
2 2–30
3 > 30 spots

Number of entrance and exit holes 1 < 2
2 Mild infestation (2–10)
3 Severe infestation (> 10)

Bark 1 Healthy
2 Minor damage
3 Major damage

Discoloration 1 Healthy, green
2 Yellowish
3 Reddish
4 Dead, gray

Defoliation 1 0–25%
2 26–50%
3 51–75%
4 76–100%

Table 3  The number of 
reference trees (height ≥ 10 m, 
DBH ≥ 10 cm) used from each 
study site, discoloration class 
of spruces and number of other 
species

Study site Year Spruce Not-spruce

Green Yellowish Reddish Grey Deciduous Pines

Paajasensalo 2019 52 5 0 39 11 10
2020 56 1 0 39 11 10
2021 51 5 1 39 11 10

Viitalampi 2019 151 1 0 110 32 11
2020 149 3 0 110 32 11
2021 143 7 0 112 32 11

Ryhmälehdonmäki 2019 51 0 0 0 0 4
2020 51 0 0 0 0 4
2021 48 3 0 0 0 4

Murtomäki 2019 110 0 0 0 1 1
2021 110 0 0 0 1 1

Evo 2018 126 0 0 0 44 128
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Agisoft Metashape software (Agisoft LLC, St. Petersburg, 
Russia) following the procedure described by Nevalainen 
et al. (2017). For the 2021 Altum images, the precise real-
time kinematic (RTK) GNSS positioning was available. For 
the 2019–2020 datasets, ground control points (GCPs) were 
placed in 4–8 locations in each area and measured using the 
RTK GNSS receiver (Topcon Hiper HR; Topcon, Tokyo, 
Japan) with an expected accuracy of 0.03–0.05 m. However, 
the accuracy of GNSS measurements in a forested environ-
ment might be reduced due to limited satellite visibility. 
Therefore, additional GCPs extracted from existing ortho-
mosaics of the area were used whenever needed to support 
georeferencing. Radiometric calibration into reflectance val-
ues was conducted using the panel provided by Micasense.

The orthomosaics from 2019 and 2020 required an addi-
tional geometric processing to accurately align them with 
the orthomosaics of 2021. This process used the ‘georef-
erencer’ plugin in QGIS (QGIS.ORG, Grüt, Switzerland) 
with a 2nd order polynomial transformation. This additional 
image transformation was necessary due to geometric mis-
matches between orthomosaics from different years that 
could potentially disrupt change analysis. The 2021 dataset 
had an accurate georeferencing because the UAS had precise 
RTK GNSS positioning onboard. In the 2019 and 2020 data-
sets, there were a small number of GCPs that possibly had 
reduced accuracy due to difficulties of GNSS positioning 
inside the forest caused by limited satellite visibility.

The Evo data, utilised for species classification, was 
captured in early August 2018 with a Micasense Red Edge 
camera that had similar spectral characteristics as the Altum 

camera. The data was processed similarly to the datasets 
from Ruokolahti.

Procedure for forest plot analysis

Tree detection

The local maximum algorithm (FUSION version 4.21, US 
Department of Agriculture, Forest Service, Pacific North-
west Research Station; Nevalainen et al. 2017) was used to 
detect all trees from the CHMs calculated by subtracting the 
national digital terrain model (DTM 2 m) data from the UAS 
point cloud produced using the SfM method. The DTM 2 m 
is produced by the National Land Survey of Finland (NLS) 
using the laser scanning datasets of the national topographic 
data production program and is openly available. Detected 
suppressed trees with a height under 10 m were ignored as 
they were not considered at risk of the bark beetle attack 
(Kärvemo et al. 2014; Müller et al. 2022). Additionally, trees 
close to orthomosaic edges were ignored and trees with sev-
eral maxima were filtered so that each tree was represented 
by one point. As the local maximum algorithm is a direct 
method for tree detection, without involving ML, reference 
tree data could be utilised as independent test data to assess 
the performance of the tree detection.

Image feature extraction and machine learning

The coordinates of the reference trees, and the detected trees 
were used to extract features from the multispectral images 
to be used as explanatory variables in the subsequent ML 

Table 4  Details of the remote 
sensing datasets

FA: Flying altitude; GSD: Ground Sample Distance; MM: Murtomäki, PS: Paajasensalo, RM: Ryhmäleh-
donmäki, VL: Viitalampi

Dataset Date Area (ha) Weather FA (m) GSD (cm) Equipment

MM_2019 28.8.2019 60 Sunny 140 6 Altum Quadcopter
MM_2021 31.8.2021 90 Varying 150 7 Altum, DJI Matrice 300 RTK
PS_2019 28.8.2019 45 Sunny 140 6 Altum, Quadcopter
PS_2020 27.8.2020 32 Varying 140 6 Altum, Quadcopter
PS_2021 31.8.2021 75 Varying 140 6 Altum, DJI Matrice 300 RTK
RM_2019 27.8.2019 27 Sunny 140 6 Altum, Quadcopter
RM_2020 27.8.2020 20 Sunny 140 6 Altum, Quadcopter
RM_2021 30.8.2021 45 Varying 150 7 Altum, DJI Matrice 300 RTK
VL_2019 27.–28.8.2019 120 Sunny 140 8 Altum, Quadcopter
VL_2020 27.8.2020 80 Varying 140 6 Altum, Quadcopter
VL_2021 30.8.2021 120 Varying 150 7 Altum, DJI Matrice 300 RTK
Evo_2018 1002 3.8.2018 6 Varying 120 8 Red Edge, Quadcopter
Evo_2018 1009 8.8.2018 5 Sunny 120 7 Red Edge, Quadcopter
Evo_2018 1014 3.8.2018 5 Sunny 120 8 Red Edge, Quadcopter
Evo_2018 1060 8.8.2018 6 Varying 120 7 Red Edge, Quadcopter
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analysis. The features included spectral values and vegeta-
tion indices (VIs) for each individual tree.

The features were calculated as an average of all pixels 
within a circle with 1 m diameter, centered at the position 
of the detected treetop. The spectral band features of the 
five bands were normalised using the spectral feature length 
(Euclidean distance) to reduce the effect of illumination and 
other differences between the years; the normalization com-
pensated for well these differences and the spectral data of 
different datasets were highly consistent (Fig. 4, Appendix 
A). The following 24 VIs were calculated: ARVI (Atmos-
pherically Resistant Vegetation Index), ARVI 2, BNDVI 
(Blue Normalized Difference Vegetation Index), CI (Chlo-
rophyll Index), CIG (Chlorophyll Index-Green), CVI (Chlo-
rophyll Vegetation Index), DATT1 (Estimation of chloro-
phyll content), DATT6, ExG (Excess Green), ExGR (Excess 
Green minus Excess Red), ExR (Excess Red), GLI (Green 
Leaf Index), GNDVI (Green Normalized Difference Vegeta-
tion Index), LogR (Logarithmic Ratio), MTVI (Modified 
Triangular Vegetation Index), NDRE (Normalized Differ-
ence Red Edge), NDVI (Normalized Difference Vegeta-
tion Index), OSAVI (Optimized Soil Adjusted Vegetation 
Index), RDVI (Renormalized Difference Vegetation Index), 
RE1 (Red Edge), RGBVI (Red–Green–Blue Vegetation 
Index), RGBVI2, SAVI (Soil Adjusted Vegetation Index), 
TCI (Temperature Condition Index). Equations of different 
indices are given in Table 11 (Appendix B).

Random Forest (RF) (Breiman 2001) ML method was 
used to train the classifiers, considering its successful perfor-
mance in similar use cases (Nevalainen et al. 2017; Abdol-
lahnejad and Panagiotidis 2020; Hartling et al. 2021; Junttila 
et al. 2022). The main parameters of the RF (number of 
trees; criterion, i.e., the quality of a split in each decision 
tree; maximum tree depth; maximum features; class weight) 
were fine-tuned using a grid search method (Bergstra and 
Bengio 2012). Three different feature selection methods 
were compared: using all features, K-best, and RF-recursive 
features. K-best selects the k features (in this case, 5) based 
on Analysis of Variance (ANOVA) and eliminates all oth-
ers. Recursive feature selection ranks the features by the 
importance computed for the ML algorithm (Pedregosa et al. 
2011). The training data was divided into training (80%) and 
validation (20%) datasets for parameter tuning. Both VIs and 
normalised spectral features were used as input features. The 
described ML method was implemented using the python 
module Scikit-learn (Pedregosa et al. 2011).

Tree species classification

Trees were classified into three classes: not-spruce trees 
(deciduous and pine trees), spruce trees, and dead spruce 
trees. The ML model for species classification was trained 
using the tree species reference data from Ruokolahti 

(Viitalampi: 2019, 2020; Murtomäki: 2020; Ryhmäleh-
donmäki: 2019, 2020; Paajasensalo: 2020) and Evo. From 
Ruokolahti, datasets from 2019 and 2020 were used, as these 
datasets had consistent reflectance values. The Paajasensalo 
2019 dataset from Ruokolahti was used as an independent 
test data for evaluating the performance of the classifier. 
Only those reference trees that were considered as detected 
in the tree detection phase (when using the 1 m criteria 
for reference and detected tree top positions) were used to 
reduce the effect of off-centered coordinates. The final num-
bers of reference trees were 325 spruce trees, 265 not-spruce 
trees, and 126 dead spruce trees.

RF was used to train the species classifier model as 
described in Section “Image feature extraction and machine 
learning”. After training, the species classification was done 
for the multispectral orthophotos from 2019 to provide spe-
cies information for the detected trees over the entire study 
area.

Spruce tree health classification

Spruce tree health classification was carried out using two 
symptom rules that were based on the health indexes cal-
culated based on the spruce tree symptom observations 
(Table 2): one based on crown color symptoms (Eq. 1), and 
one based on both crown and trunk symptoms (Eq. 2), symp-
tom rules 1 and 2, respectively.

Based on the health index, three classes “Healthy”, 
“Declined” and “Dead” were defined. The health index 1 is 
commonly used when analyzing bark beetle outbreaks (e.g., 
Näsi et al. 2015; 2018; Minarik et al. 2021; Safonova et al. 
2022). The health index 2 was initially proposed by Junttila 
et al. (2022) while Kanerva et al. (2022) studied the use of 
health indices 1 and 2 using RGB images. For the symptom 
rule 1, the health index value of 1 was considered as healthy, 
of 2 and 3 as declined, and of 4 as dead. For the symptom 
rule 2, the health index values of 5–7.5 were considered as 
healthy, of 7.5–14 as declined, and of 14–18 as dead. The 
resulting numbers of reference trees were 664 healthy, 17 
declined, and 284 dead spruce trees for the symptom rule 
1, and 405 healthy, 281 declined, and 284 dead spruce trees 
for the symptom rule 2.

The RF method was used to train the spruce tree health 
classifier model, as described in Section “Image feature 
extraction and machine learning”. The reference trees from 
Ryhmälehdonmäki, Viitalampi, and Murtomäki from the 
years 2019, 2020, and 2021 were used as training data, while 

(1)Health index 1 = Discoloration

(2)
Health index 2 = 1.5(Discoloration + Defoliation)
+ Resin flow + Bark damage
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the Paajasensalo datasets were used as independent test data 
to ensure reliable performance assessments. After training 
the classifier, the spruce trees detected in each test area were 
classified into different health classes.

Change analysis

Change analysis included fallen/removed tree detection and 
the analysis of tree health change.

In this study, we did not specifically analyze the reasons 
for trees' disappearance from the forest. Potential causes 
include the death and falling of the tree due to bark bee-
tle infestation or intentional felling and removal as part of 
forest management. Fallen/removed trees were detected by 
comparing changes in CHMs from 2019 and 2021. A CHM 
raster difference layer (ΔCHM) was created using raster cal-
culation in QGIS:

At the start of the monitoring, standing trees were identified 
using point clouds from the 2019 dataset, following the meth-
odology outlined in Section “Tree detection”. Subsequently, 
change detection analysis was applied to these identified trees. 
Firstly, a tree was considered fallen/removed if the mean ΔCHM 
within a 1 m radius of the tree position was larger than 5 m. Due 
to the characteristics of the photogrammetric point clouds, sev-
eral additional filtering steps were necessary. SfM technique pro-
vided high point densities for tree crowns in all datasets because 
they were well illuminated and had suitable textures and thus 
were well suited for image matching. However, in shady forest 
gaps where fallen/removed trees were located, the point clouds 
often had imperfections, manifested as lower point densities 
and noise. Furthermore, the point densities were lower in the 
2019 dataset than in the 2021 dataset. To account for the areas 
with incomplete point clouds, a raster of point density layer with 
1 m × 1 m resolution was generated for each dataset using the 
‘Lasgrid’ function from LASTools (version 210,720) (rapidlasso 
GmbH, Gilching, Germany). In 2019 dataset, trees that had a 
mean point density less than 30 points/m2 were considered as 
low-quality point clouds and were disregarded from analysis. 
Next, considering the imperfections of point clouds in the for-
est gaps and differences in point cloud quality across different 
years, two criteria were considered using the point density raster: 
(a) trees that had the mean point density less than 80 points/
m2 in the 2021 point cloud and (b) trees having significantly 
higher (> 1.5 times higher) point cloud density in the 2019 data-
set than in the 2021 dataset were considered as fallen/removed 
trees. These limits were selected by visual analysis of datasets.

Since the proposed method directly identified missing 
crowns from the point clouds, fallen/removed trees between 
2019 and 2021 in the reference data served as independent 

(3)ΔCHM = CHM2019 − CHM2021.

ground truth for performance assessment. Only trees taller 
than 10 m were considered in the reference data to align with 
the detected tree data.

To study the development of the outbreak, the changes that 
occurred in the spruce health classes between 2019 and 2021 
were analysed. The focus of this analysis was to understand how 
the outbreak has spread, using the appearance of newly dead 
trees as an indicator of the outbreak’s expansion. This analysis 
was conducted using the ‘Kernel Density’ heatmap analysis in 
QGIS.

Performance assessment

Performance of each phase of the process was evaluated 
using independent test data followed by calculating descrip-
tive statistics, including precision, recall, F1-score and over-
all accuracy (OA). Precision represents the ratio between 
correctly predicted values and the total number of predicted 
values in that class:

where TP is true positives and FP is false positives.
Recall represents the correctly predicted fraction of the 

ground truth as

where FN is false negatives.
Precision and recall are inversely related metrics. As the 

precision increases, the recall typically decreases, and vice 
versa. The F1-score provides a measure of the optimal bal-
ance between these two metrics and is calculated as the har-
monic mean value of precision and recall:

OA is calculated by dividing the number of correctly pre-
dicted values with the total number of values as.

In this context, it is important to note that the performance 
of each stage was assessed using independent test data. ML was 
not employed in tree detection and fallen tree detection, and 
therefore, the reference datasets served as independent test data. 
For assessing ML models of species and tree health classifica-
tion, one of the test areas was excluded from the training set and 
used as unseen test data. For tree detection, OA was computed 
by verifying whether a reference tree was found within a radius 
of 1 m from the detected treetop (Section “Tree detection”). The 
tree species classification model’s performance was assessed 

(4)precision =
TP

(TP + FP)
,

(5)recall =
TP

(TP + FN)
,

(6)F1 − score = 2 ⋅
precision ⋅ recall

precision + recall
.

(7)OA =
TP + TN

TP + FP + TN + FN
.
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using the Paajasensalo 2019 dataset (Section “Tree species clas-
sification”) and to assess the performance of the tree health clas-
sification models, the Paajasensalo datasets were utilised (Sec-
tion “Spruce tree health classification”). Fallen/removed tree 
detection performance was evaluated using the fallen trees pre-
sent in the field measured dataset (Section “Change analysis”).

Results

Remote sensing method development

Tree detection

Table 5 displays the number of reference trees, the number of 
detected reference trees, the achieved OA, and the total number 
of detected trees for each area. Ryhmälehdonmäki had the best 
results with an OA of 0.91, and Murtomäki had the second-best 
OA of 0.74; these areas were the managed forests and poten-
tially had better separation of individual trees. Results in the 
conserved forests were poorer, with an OA of 0.58–0.70. It is 
likely that many of the smaller reference trees were hidden under 
dominating trees. The combined OAs were 0.80 for managed 
forests, 0.61 for conserved forests, and 0.66 for all areas. Also, 
it is possible that the distance limit between a detected tree and 
its reference tree should have been larger than the 1 m radius 
used in this study.

Tree species classification

For the tree species classification model, the OA was 0.84 for 
the training validation dataset and 0.89 for the independent 
Paajasensalo 2019 testing dataset (Table 6). F1-scores were 
0.86, 0.83, and 1.00 for not-spruce, spruce, and dead spruce 
classes, respectively, in the independent test data. The confusion 
matrix and statistics evaluation indicated that the healthy and 
dead spruce trees were correctly classified, but that some of the 
not-spruce trees were misclassified as spruce trees (Table 7).

The parameter tuning provided the following parameters 
for the RF classifier model: Number of trees: 100; Crite-
rion: entropy; Maximum depth of tree: 20; Max features: 
sqrt; Class weight: balanced, Feature selection: RF recursive 
method. The most significant features were normalised spec-
tra at 475 nm, BNDVI, and normalised spectra at 668 nm, 
the importance for all selected features are given in Fig. 5 
(Appendix C).

Spruce tree health classification

In the spruce tree health classifier model training, the OA was 
0.97 for the symptom rule 1 and 0.76, for the symptom rule 2 
when evaluated with the validation data. For the independent 
test data, the OA was 0.96 and 0.83, for the symptom rule 1 and 
2, respectively (Table 8). With the symptom rule 1, that used 
the crown color to classify tree health, the F1-scores were 0.96, 
0.40, and 0.98 for the healthy, declined, and dead classes, respec-
tively, for the independent test data (Table 8). For the symptom 

Table 5  Results of tree detection in each area with 2021 data, includ-
ing the reference trees and their detection OA as well as the total 
number of detected trees

Area Reference trees Detected trees

Field data Detected OA

Viitalampi 305 176 0.58 17,923
Paajasensalo 117 82 0.70 16,361
Murtomäki 112 83 0.74 34,457
Ryhmälehdonmäki 55 50 0.91 11,698

Table 6  Analysis of tree species 
classification performance

Random Forest (RF) validation statistics were derived from an 80/20 training/validation split, while RF 
testing results were obtained using the independent Paajasensalo 2019 test dataset. N-ref (train; val; tet): 
Number of reference trees used for training, validation and testing; OA: Overall Accuracy

Class RF validation RF testing N-ref (train; val; test)

Prec Recall F1 OA Prec Recall F1 OA

Not-spruce 0.87 0.75 0.80 1.00 0.75 0.86 153; 60; 52
Spruce 0.75 0.87 0.81 0.70 1.00 0.83 239; 55; 31
Dead spruce 1.00 0.97 0.98 1.00 1.00 1.00 66; 29; 32
OA 0.84 0.89 458; 144; 115

Table 7  Confusion matrix for the species classification model 
showing predicted and true labels for the independent test dataset 
Paajasensalo 2019

Predicted label

Not-spruce Spruce Dead spruce Tot

True label Not-spruce 39 13 0 52
Spruce 0 31 0 31
Dead spruce 0 0 32 32
Tot 39 44 32 115
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rule 2 that was evaluating tree health based on both trunk and 
crown symptoms, the F1-scores were 0.64, 0.70, and 0.99, for 
the healthy, declined, and dead classes, respectively (Table 8). 
Confusion matrices for classification on test data are presented 
in Table 9.

The symptom rule 1 thus gave high classification accuracy 
for healthy and dead spruce trees. However, this model was poor 
in detecting declined trees. It is worth noting that with the symp-
tom rule 1 there were only 18 reference trees for the declined 
class (training: 11, validating: 3, testing: 4) that explains the 
poor performance of the declined class (Table 8). The symptom 
rule 2 model gave good detection results for dead spruce trees, 
but the separation between healthy and declined trees was less 
accurate (Table 9).

The best performing model for both symptom rules was 
using all features. The most significant features were the nor-
malised mean spectra at 668 nm, NDVI, and GLI for the symp-
tom rule 1, and the RGBVI, GLI, and normalised mean spectra 
at 668 nm for the symptom rule 2; importance for all selected 
features are given in Figs. 6, 7 (Appendix C). For the symptom 
rule 1, the parameter tuning provided the following main model 
parameters: Number of trees: 200; Criterion: gini; Max depth of 
tree: 20; Maximum features: sqrt; Weighting: balanced. For the 
symptom rule 2, the parameter tuning gave the following main 

parameters: Number of trees: 300 trees; Criterion: entropy; Max-
imum depth of tree: ‘None’; Maximum features: log2; Weighting: 
no class weight balance.

Detection of fallen trees

The performance of fallen tree detection was evaluated using 
the field reference trees that had fallen between 2019 and 2021. 
From the total of 98 fallen reference trees, 24 were excluded 
from the assessment because they were not detected in the tree 
detection stage. A total of 62 trees were correctly detected as 
fallen, 3 fallen trees were undetected, and 9 standing reference 
trees were detected as fallen. This resulted in a precision of 0.87, 
a recall of 0.95, and a F1-score of 0.91.

Change analysis in Ruokolahti

The entire monitoring methodology (Fig. 1) was applied to ana-
lyse spruce health status and its changes in Ruokolahti area using 
the datasets from 2019 and 2021. The dataset from 2020 was 
not included in the analysis because it did not cover the entire 
study area. After detecting trees (Section “Tree detection”) and 
identifying spruce trees (Section “Tree species classification”), 
spruce tree health analysis was carried out (Section “Spruce 

Table 8  Analysis of the spruce tree health classification model performance on validation and testing datasets

Random Forest (RF) validation statistics are derived from an 80/20 training/validation split, and RF testing results were obtained using inde-
pendent test datasets. N-ref (train; val; test): Number of reference trees used for training, validation and testing. SR1: symptom rule 1; SR2: 
symptom rule 2; OA: Overall accuracy

Symptom rule Class RF validation RF testing N-ref (train; val; test)

Prec Recall F1-score OA Prec Recall F1-score OA

SR1 Healthy 0.98 0.98 0.98 0.92 1.00 0.96 508; 100; 58
Declined 1.00 0.33 0.5 1.00 0.25 0.40 11; 3; 4
Dead 0.95 1.00 0.97 1.00 0.97 0.98 183; 38; 63
OA 0.97 0.96 702; 141; 125

SR2 Healthy 0.69 0.94 0.80 0.67 0.62 0.64 306; 70; 29
Declined 0.60 0.09 0.16 0.67 0.73 0.70 215; 33; 33
Dead 0.95 1.00 0.97 1.00 0.98 0.99 181; 38; 63
OA 0.76 0.83 702; 141; 125

Table 9  Confusion matrices for spruce tree health classification models with symptom rules 1 and 2 showing predicted and true labels of for the 
independent test dataset Paajasensalo

Symptom rule 1 Symptom rule 2

True label Predicted label True label Predicted label

Healthy Declined Dead Tot Healthy Declined Dead Tot

Healthy 58 0 0 58 Healthy 18 11 0 29
Declined 3 1 0 4 Declined 9 24 0 33
Dead 2 0 61 63 Dead 0 1 62 63
Tot 63 1 61 125 Tot 27 36 62 125
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tree health classification”). Fallen trees were detected using the 
method described in Section “Detection of fallen trees”.

The tree health status map in 2021 was generated using the 
classification results from symptom rule 2 for Ryhmälehdon-
mäki (Fig. 3a) and Viitalampi (Fig. 3b), representing managed 
and conserved stands, respectively. The healthy and declined 
tree classes were merged into a single living tree class because 
they could not be reliably distinguished. This resulted in two 
final classes: dead and living. Changes caused by the outbreak 
are visualised for Ryhmälehdonmäki in Fig. 3c and for Viital-
ampi in Fig. 3d. In these visualizations, the dead trees show the 
spatial distribution of the outbreak in 2019. The transition from 
the living (healthy or declined) tree status in 2019 to the dead 
tree status in 2021 is represented using a red heatmap, indicat-
ing the concentration of new dead trees per hectare in 2021. 
These hotspot areas emphasise the stands where the outbreak 
was spreading during the monitoring period. Additionally, the 
trees that were standing in 2019 (living or dead spruce trees) and 
had fallen/removed in 2021 are visualised.

In the managed forest, the dead trees appeared as scattered 
individual trees across the entire forest area, while the fallen/
removed trees formed clusters in stands where there were ini-
tially no dead trees (Fig. 3c). In the conserved forest, the situ-
ation was reversed, with dead trees appearing as clusters, and 
fallen/removed trees appearing as scattered individual trees often 
located close to trees that were dead at the beginning of the mon-
itoring (Fig. 3d). Quantitative analysis revealed a significantly 
larger number of dead trees in the conserved forests (11–12 per 
hectare) compared to the managed forests (2–3 per hectare) 
(Table 10). It is interesting to note that in the conserved forests, 
a large proportion of the detected fallen/removed trees were dead 
at the beginning of monitoring (45–63%), while in the managed 
forests, a much smaller proportion of the fallen/removed trees 
were dead at the beginning of monitoring (6–24%) (Table 10).

Discussion

Remote sensing methodology

This study presented a novel individual tree-based analysis 
pipeline to monitor bark beetle outbreaks using a low cost UAS 
multispectral imaging system. The assessment, conducted across 
a 215 hectares area in Ruokolahti, Southeast Finland, demon-
strated good accuracy and yielded consistent analysis outcomes. 
Despite these promising results, some challenges also emerged. 
The following discussion addresses these aspects and anticipates 
advancements and new possibilities as technology continues to 
progress.

Tree detection and forest structural change analysis relied on 
the analysis of point clouds generated through the SfM tech-
nique. The point clouds were generally dense, with hundreds 
of points per square meter making them suitable for individual 
tree-based analysis. Forest density significantly influences the 

detection of ground points in photogrammetric methods. There-
fore, a LiDAR-based DTM was used to provide the ground 
elevation data and generate CHMs. The performance of tree 
detection depended on the type of forest management practice; 
the OA ranged from 0.74 to 0.91 for managed forests and from 
0.58 to 0.70 for conserved forest. This dependency on forest 
management type was attributed to higher tree density and larger 
proportion of suppressed trees in conserved forests, posing chal-
lenges in detecting all trees. Notably, the filtering of reference 
trees was based solely on height, potentially leading to some 
reference being obscured by dominant trees and consequently, 
going undetected. Additionally, the chosen radius of 1 m for 
tree detection evaluation might have influenced the results. This 
is because the detected treetop could be positioned differently 
in the point cloud compared to the initial image-based tree top 
detection, particularly for large reference trees. Because of these 
factors, the performance results obtained could potentially be 
pessimistic. Overall, these results can be considered acceptable 
for the application, aligning with our earlier findings using the 
same algorithms (Nevalainen et al. 2017) and contributing to 
consistent conclusions regarding the outbreak behavior. With 
a similar tree detection approach using photogrammetric data, 
Fujimoto et al. (2019) achieved tree detection accuracy of 0.92, 
but with a sparse forest. Recent UAS-based LiDAR studies have 
achieved tree detection accuracies ranging from 0.79–0.95 (Sun 
et al. 2022; Qin et al. 2022).

The detection of missing tree crowns through SfM point 
cloud comparison yielded a F1-score of 0.91. The good results 
are consistent with earlier studies (Dandois and Ellis 2013; 
Guerra-Hernández et al. 2017; Araujo et al. 2021). The effi-
cacy in identifying fallen/removed trees was influenced by the 
quality of tree detection and point clouds. Specifically, deficient 
dynamic range in shadowed forest gaps disturbed detection of 
missing trees locally in some areas. While implementing this 
method for a multi-year forest inventory is relatively straight-
forward, it requires some user interaction for setting the method 
parameters, understanding dataset characteristics, and knowl-
edge of forest management practices in the study stands and 
adjacent areas. In future studies, it will also be relevant to incor-
porate methods for detection of trunks laying on the ground. 
Image-based analysis methods, as demonstrated by Panagiotidis 
et al. (2019), Thiel et al. (2020), and Polewski et al. (2021), offer 
a straightforward approach using the proposed multispectral 
remote sensing approach. Alternatively, LiDAR-based methods, 
as explored by Heinaro et al. (2023) and Polewski et al. (2015), 
could also be considered.

In the tree species classification, dead spruce trees were the 
easiest to classify correctly, while distinguishing between living 
spruce trees and not-spruce trees showed poorer performance. 
The resulting 89% OA aligns with previous studies (Nevalainen 
et al. 2017; Abdollahnejad and Panagiotidis 2020; Deur et al. 
2020; Kuzmin et al. 2021). The primary challenge in this stage 
was the limited number of training samples for not-spruce trees 
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because the areas were dominated by spruce trees. It is antici-
pated that the performance will improve with a larger volume 
of training data.

In the context of spruce tree health status classification, the 
best results were obtained for dead trees, while the separation 

Fig. 3  Spruce health classification to living and dead trees in year 
2021 in (a) Ryhmälehdonmäki and (b) Viitalampi. (c) Detected 
change between years 2019–2021 in Ryhmälehdonmäki and (d) Vii-
talampi. In change analysis, red points indicate spruces that were 

classified as dead in 2019. Blue points visualise fallen trees that were 
alive (dark blue) or dead (light blue) in 2019. The heatmap visualises 
the number of trees per hectare that altered from living 2019 to dead 
2021 indicating possible new bark beetle outbreak clusters
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between healthy and declined trees showed poorer accuracy. 
Symptom rules based on crown color as well as on a combina-
tion of trunk and crown color symptoms were compared, in a 
similar way as in the study by Kanerva et al. (2022). Both symp-
tom rules provided good results in detecting dead trees (F1-score 
0.97–0.99). The method based on crown color symptoms (symp-
tom rule 1) provided a high F1-score of 0.96 for classifying 
green trees, but the training sample of discolored trees was too 
small for training a reliable classification model. Considering 
symptom rule 2, a significant portion of trees with green crown 
exhibited trunk symptoms, leading to their assignment to the 
declined class. F1-scores of 0.64, 0.70, and 0.99 were obtained 
at best for the healthy, declined, and dead classes, respectively. 
The results thus indicated that the spruce trees with green crown 
but with trunk symptoms could not be distinguished accurately 
from the healthy spruce trees. On the other hand, these results 
outperformed the F1-scores of 0.50, 0.52 and 0.81, obtained 
using RGB images and You-Only-Look-Once deep learning 
framework by Kanerva et al. (2022) in a similar setting. The 
enhanced performance is likely attributed to the use of a mul-
tispectral camera instead of an RGB camera, consistent with 
the findings of Turkulainen et al. (2023). The best separation 
between the healthy and declined classes would be expected in 
cases where the crowns exhibit changes in color, as observed in 
the previous study by Junttila et al. (2022); a promising separa-
tion of healthy and declined trees was achieved by using multi-
spectral camera and RF-method in a different study area where 
there were more yellowish/yellow trees in the declined class. 
In the best scenario, the classification accuracies (recall) were 
0.95, 0.46 and 0.96, for the healthy, declined, and dead classes, 
respectively, in spring, and 0.71, 0.79, 0.99, respectively, in 

fall season. The obvious improvement of the method should 
focus on separation of color casts e.g., a transition within green, 
because typically needle color remains greenish or pale green 
far late, when bark already has a high damage level due to inten-
sive colonization of I. typographus. The trunk symptoms show 
more intense much earlier than crown symptoms. The status of 
infestation will impact on the detection rate of infested trees, as 
highlighted in previous studies by Klouček et al., (2019), Junttila 
et al., (2022), and Huo et al., (2023). Increasing the volume of 
training data, coupled with advancements in camera and analysis 
technology, is expected to enhance the classification accuracy 
for separating the healthy and declined trees.

In 2019–2020, this study used the previous generation of 
UAS equipment, lacking precise RTK GNSS positioning, 
whereas the 2021 dataset was collected using a new genera-
tion of UAS equipment equipped with RTK GNSS. Anticipated 
advancements include overcoming many of the identified chal-
lenges with the improved UAS remote sensing equipment, lev-
eraging RTK GNSS for precise positioning, and enhancing cam-
era technologies. Radiometric challenges arising from changing 
illumination conditions during flights are also expected to see 
improvements with advancements in incident light sensors and 
processing (e.g., Suomalainen et al. 2021).

In this study, multispectral cameras were used, facilitating 
the creation of an inexpensive and lightweight UAS monitor-
ing system. The use of single-sensor solutions provided all 
necessary datasets for monitoring. However, employing more 
advanced remote sensing instruments could potentially enhance 
performance levels. Improved spectral resolution achieved 
through hyperspectral imaging, in particular, might offer ben-
efits, especially for early detection of bark beetle damage and 

Table 10  Number of trees for 
living and dead classes given as 
an absolute number for the area 
(No/area) as well as number of 
trees per hectare (No/ha)

The numbers of fallen/removed trees are given considering whether they were living or dead in 2019

Area Health class 2019 2021

No/area No/ha No/area No/ha

Viitalampi
Conserved
Area: 76 ha

Living 10,081 133 10,106 133
Dead 862 11 837 11
Fallen/removed (living in 2019) – – 344 5
Fallen/removed (dead in 2019) – – 285 4

Paajasensalo
conserved
Area: 39 ha

Living 8472 217 8442 217
Dead 445 11 475 12
Fallen/removed (living in 2019) – – 60 2
Fallen/removed (dead in 2019) – – 103 3

Ryhmälehdonmäki
managed
Area: 37 ha

Living 7843 212 7834 212
Dead 64 2 73 2
Fallen/removed (living in 2019) – – 220 6
Fallen/removed (dead in 2019) – – 13 (0.4)

Murtomäki
managed
Area: 63 ha

Living 13,450 213 13,493 198
Dead 181 3 138 2
Fallen/removed (living in 2019) – – 65 1
Fallen/removed (dead in 2019) – – 20 (0.3)
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species classification (Lin et al. 2023; Turkulainen et al. 2023). 
Also, thermal imaging could support analysis of tree health sta-
tus (Zakrzewska et al. 2023; Junttila et al. 2017). LiDAR point 
clouds could provide advantages in the individual tree detection 
(Kaartinen et al. 2012; Jaskierniak et al. 2021) and canopy gap 
and structure analysis (Chung et al. 2022), which could improve 
performance of fallen tree detection. The drawbacks of these 
systems would include elevated costs, increased system weights, 
and added complexity. Nevertheless, the remote sensing tech-
nology proposed in this study was proven to be highly relevant, 
demonstrating valuable performance for monitoring tasks. It 
is worth noting that the performance levels of these low-cost 
sensing systems are also improving, and many of the identified 
challenges could be successfully addressed.

ML techniques are also evolving rapidly and recent advance-
ments in deep learning methods have demonstrated enhanced 
accuracies (Nezami et al. 2020; Minarik et al. 2021; Onishi & 
Ise 2021; Safonova et al. 2022; Turkulainen et al. 2023). How-
ever, deep learning requires large training datasets, which are 
often challenging to obtain. This challenge was also faced in 
this study, and therefore classical ML techniques were success-
fully used. For tasks focused on detecting living and dead trees, 
the state-of-the-art object detection networks and low-cost RGB 
camera-based approaches could already provide acceptable 
results, as shown in recent studies (e.g., Kanerva et al. 2022; 
Safonova et al. 2022). On the other hand, for more challenging 
tasks, such as declined tree detection and “green attack” detec-
tion, the multispectral and hyperspectral camera system have 
shown promising results (Huo et al. 2023; Turkulainen et al. 
2023).

Insights into changes in bark beetle outbreak 
monitoring sites

The principal contribution of this study was the development of 
a comprehensive UAS multispectral imaging pipeline for moni-
toring changes in the forest ecosystem due to bark beetle out-
break. Utilising this new pipeline, maps and statistics illustrating 
changes in the study areas were generated, providing insights 
into the impacts and changes within different forest environ-
ments (Fig. 3; Table 10). To the best of the authors’ knowledge, 
this study was the first to present a comprehensive UAS-based 
multiyear monitoring approach for an area affected by a bark 
beetle outbreak.

This study used the change of the spruce tree status from 
healthy to declined, dead or fallen/removed during the period 
as the indicators of the spread and host colonization of the bark 
beetle outbreak (Fig. 3). Detection of dead trees can be effi-
ciently performed using remote sensing images, as discussed 
previously, making it a promising approach for monitoring the 

outbreak. However, it should be noted that the results indicated 
that in the conserved forest, 40–60% of fallen, and in the man-
aged forest, 77–94% of fallen/removed trees were alive at the 
beginning of the monitoring period (Table 10. In the studied 
areas, the analysis of standing dead trees alone would not have 
provided comprehensive information about changes in the for-
est. Therefore, it was relevant to estimate the number of fallen/
removed trees when drawing conclusions about the impact of 
the outbreak. On the other hand, our study did not extend to 
the identification of the actual fallen tree trunks. Especially 
in managed areas, part of the fallen (or removed) trees can be 
explained as clear cuttings or thinning, but in the conserved 
areas the majority of fallen trees were killed by the bark beetle 
four to seven years before falling due to abundance of optimal 
resources available for the pest (Mezei et al. 2014).

The overall analysis showed great differences in the con-
served and managed areas on the numbers of dead trees per 
hectare as well as the rate of new tree deaths (Fig. 3; Table 10). 
The observations on mortality patterns in Section “Change anal-
ysis in Ruokolahti” are consistent with expected forest manage-
ment operations and their impacts in conserved and managed 
forests. In the managed forests, sanitary cuttings had taken place 
to remove stands with the dead and infested trees, and these cut-
tings are likely to explain the clusters of fallen/removed trees in 
the area. As a result of an outbreak management, the numbers 
of newly died trees were low, and only 2–3 dead trees per hec-
tare appeared. Meanwhile, in the conserved forest, the outbreak 
was spreading in an uncontrolled way, which appeared as large 
numbers of detected dead trees (11–12 per hectare) and great 
mortality rates (Fig. 3, Table 10), as also Kärvemo et al. (2017) 
observed in other study areas. According to Eriksson et al. 
(2007), higher volume and basal area of spruce elevate a risk of 
a bark beetle disturbance, which was evident in the conserved 
forests. The scattered fallen/removed trees indicated a pattern 
of host searching and colonization by the beetle (Wermelinger 
2004). The fact that only a few fallen/removed trees were dead 
in the beginning of monitoring in the managed forest also indi-
cated an influence of sanitary cuttings and an active removal 
of infested trees, while in the conserved forests the trees were 
dying and then falling. It can be concluded that the observed 
impacts indicate successful control of infestation in the managed 
forests. On the other hand, the situation in the conserved forests 
shows that if the outbreak is not controlled, the damage can be 
dramatic, supporting the findings by Kärvemo et al. (2017) on 
forest conservation measures, creating a high risk of coming I. 
typographus infestations.

While the detection of dead trees yielded good results, chal-
lenges arose in classifying declined trees. These challenges were 
attributed to the small portion of trees with crown color symp-
toms in the area and the difficulty in identifying trees with trunk 
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symptoms among the set of spruce trees with a green crown. In 
particular, finding declined trees at early stages is crucial when 
the goal is to actively mitigate the spread of bark beetles. The 
emerging remote sensing technologies also offer many possi-
bilities in this regard, as envisioned in Section “Remote sensing 
methodology”

In comparison to visual field surveys, the UAS method 
offers a more complete insight on how the infestation has 
progressed in the entire area. This information could be 
used, for example, by risk modelers, forest experts, and for-
est managers to understand the dynamics of the infestation. 
Also, private and public forest owners and state organiza-
tions could use this information as documentation of the 
destruction due to outbreak e.g., to make management deci-
sions or for insurance purposes. The analysis results clearly 
showed the benefits of active control measures in managed 
forests, in comparison to the uncontrolled spread of the out-
break in the conserved forests.

On the other hand, the aerial surveys by UAS did not com-
pletely replace field surveys when considering different aspects 
of outbreak monitoring. The field surveys collect versatile infor-
mation about the infestation, particularly the severity of the 
trunk symptoms such as intensity of entrance and exit holes in 
the bark or new resin flows (Blomqvist et al. 2018; Table 2). The 
first symptoms such as new entrance holes can only be observed 
in close range to the trunk. Our results on finding declined trees 
with visible trunk symptoms and still green crown using the 
multispectral aerial images indicated promises in comparison 
to the earlier study using RGB images by Kanerva et al. (2022); 
our F1-scores in the study area were 0.64, 0.70, and 0.99 in 
comparison to 0.49, 0.52 and 0.81 of Kanerva et al. (2022). 
Our further studies will focus on improving the remote sensing 
component by using advancing multispectral and hyperspectral 
sensors and high temporal resolution datasets to enable more 
sensitive detection of tree decline using remote sensing tech-
niques instead of field inspection, e.g., following the approach 
by Huo et al. (2023). Also, our objective is to implement fast 
decision support tools for forest managers during the outbreak.

The results strongly suggest that a UAS-based approach 
is an efficient and precise tool for monitoring a bark bee-
tle outbreak area. The proposed method demonstrated high 
accuracy in quantifying the impacts of various management 
strategies, such as sanitation and salvage cuttings. The meth-
odology could be further employed in various tasks related 
to outbreak management, including the consideration of 
impacts of mixed stands with a larger share of deciduous tree 
species (Müller et al. 2022). In future analyses, UAS tech-
niques could be leveraged to characterise forest regeneration 
and to inform restoration programs (Nuijten et al. 2021).

Conclusion

This study developed and evaluated a novel analysis 
pipeline for monitoring the European spruce bark beetle 
outbreak areas on an individual tree basis, using multi-
temporal data collected by a low-cost multispectral 
UAS remote sensing system. The methodology was then 
employed to gain insights into changes at a multiyear 
bark beetle monitoring site in southeastern Finland, com-
prising two conserved and two managed forest areas. The 
approach included tree detection, tree species classifica-
tion, spruce tree health classification, and change analy-
sis including fallen/removed tree detection and mortality 
hotspot evaluation. The performance was assessed using 
unseen test datasets. Individual trees were detected by 
analyzing photogrammetric point clouds with an overall 
accuracy (OA) of 0.58–0.91, depending on the complex-
ity of the forest area. Species classification using random 
forest algorithm presented an OA of 0.89. For health sta-
tus estimation, the study compared the use of the crown 
color symptoms alone as well as an integrated symptom 
scoring using both trunk and crown symptoms, achiev-
ing OAs ranging between 0.83 and 0.96. In the spruce 
tree health estimation, the healthy and dead spruce trees 
were detected with a high accuracy, whereas identifi-
cation of intermediate states between healthy and dead 
was less accurate. The study further showed that fallen/
removed trees could be detected using multi-temporal 
structure-from-motion point clouds with a F1-score of 
0.91. The maps depicting dead and fallen/removed spruce 
trees, along with newly attacked stands demonstrated 
the evolution of the outbreak between August 2019 and 
August 2021. Results indicated successful control of the 
outbreak in terms of tree mortality in managed stands 
while the outbreak resulted in disastrous tree mortality in 
conserved stands. The produced monitoring information 
could serve various stakeholders by illustrating and doc-
umenting the impact of the outbreak on the forest area. 
Additionally, it creates timely risk assessment and man-
agement measures to control the bark beetle outbreak.

Appendix A

See Fig. 4.
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Fig. 4  Normalised mean 
reflectance spectra for the three 
classes of species reference 
trees in Ruokolahti (a) 2019, (b) 
2020 and (c) 2021. Orange: not-
spruce, green: spruce, red: dead 
spruce. In Ryhmälehdonmäki 
and Murtomäki, there were no 
dead spruces in the collected 
reference dataset
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Appendix B

See Table 11.

Appendix C

See Figs. 5, 6, 7.

Table 11  Equations of extracted 
VIs

Feature Equation Reference

Normalised spectral 
value ReflectanceB∕

�

∑

ReflectanceB
2

 (B ∈ 1…number 
of bands)

ARVI R800−(R670−1∗(R470−R670))

R800+(R670−1∗(R470−R670))
Kaufman and Tanré (1992)

ARVI2 −0.18 + (1.17
R800−R670

R800+R670

) Kaufman and Tanré (1992)

BNDVI R800−R440

R800+R550

Yang et al. (2004)

CI R670−R445

R670

Escadafal et al. (1994)

CIG R800

R670

− 1 Gitelson et al. (2003)

CVI R800

R670

R550
2

Vincini et al. (2008)

DATT1 R850−R710

R850−R680

Datt (1999)

DATT 6 R860

R550∗R708

Datt (1998)

ExG 2 ∗ R550 − R670 − R470 Woebbecke et al. (1995)
ExGR 2 ∗ R550 − R670 − R470 − 1.4 ∗ R670 − R470 Neto (2004)
ExR 1.4 ∗ R670 − R470 Meyer and Neto (2008)
GLI 2∗R550−R670−R475

2∗R550+R670+R475

Gobron et al. (2000)

GNDVI R800−R550

R800+R550

Gitelson et al. (1996)

LogR log
R800

R670

MTVI 1.2(1.2
(

R800 − R550

)

− 2.5
(

R670 − R550

)

) Haboudane (2004)
NDRE R790−R720

R790+R720

Barnes et al. (2000)

NDVI R800−R670

R800+R670

Tucker (1979)

OSAVI (1 + 0.16)
R800−R670

R800+R670+0.16
Wu et al. (2008)

RDVI R800−R670
√

R800+R670

Haboudane (2004)

RE1 R850−R710

R850∕R680

RGBVI R550
2−R470∗R670

R550
2+R470∗R670

Bendig et al. (2015)

RGBVI2 R550
2−R470∗R670

R550
2 + R470 ∗ R670

SAVI (1 + 0.5)
R800−R670

R800+R670+0.5
Huete (1988)

TCI (R800+1.5∗R550)−R675

R800−R700

Gao (2006)
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Fig. 5  Random forest feature 
importance for species clas-
sification

Fig. 6  Random forest feature 
importance for health estima-
tion, symptom rule 1
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