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ABSTRACT

We first review the way in which Hasselmann’s paradigm, introduced in 1976 and recently honored with the Nobel Prize, can, like many
key innovations in complexity science, be understood on several different levels. It can be seen as a way to add variability into the pioneering
energy balance models (EBMs) of Budyko and Sellers. On a more abstract level, however, it used the original stochastic mathematical model of
Brownian motion to provide a conceptual superstructure to link slow climate variability to fast weather fluctuations, in a context broader than
EBMs, and led Hasselmann to posit a need for negative feedback in climate modeling. Hasselmann’s paradigm has still much to offer us, but
naturally, since the 1970s, a number of newer developments have built on his pioneering ideas. One important one has been the development
of a rigorous mathematical hierarchy that embeds Hasselmann-type models in the more comprehensive Mori–Zwanzig generalized Langevin
equation (GLE) framework. Another has been the interest in stochastic EBMs with a memory that has slower decay and, thus, longer range
than the exponential form seen in his EBMs. In this paper, we argue that the Mori–Kubo overdamped GLE, as widely used in statistical
mechanics, suggests the form of a relatively simple stochastic EBM with memory for the global temperature anomaly. We also explore how
this EBM relates to Lovejoy et al.’s fractional energy balance equation.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0187815

Hasselmann’s stochastic energy balance model embodies a long-
standing paradigm in climate science. Recent evidence that cli-
mate may show long-range memory has, thus, motivated newer
stochastic models such as Lovejoy et al.’s fractional energy

balance equation (FEBE). Physical arguments for extending the
Hasselmann formalism are more general than this, however, and
are motivated by many other well-known features of the sys-
tem, including periodicity. We, thus, need a model that allows a
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more general range of dependency structures than either just the
shortest possible or the longest possible ranged behaviors while
allowing both as limiting cases. In this article, we propose the use
of such a formalism to extend Hasselman’s EBM, the stochastic
Mori–Kubo generalized Langevin equation (GLE).

I. INTRODUCTION

The value of climate science would be substantial even with-
out anthropogenic interference in the climate system. The presence
of such an interference, however, raises a number of categorically
new challenges. The context of human-induced climate change has
made it important to quantify the observed changes, understand
their origin, and, as far as possible,1,2 predict their future scope, in the
presence of the nontrivial intrinsic variability that is already present
(see, e.g., Refs. 3 and 4). The development of this need has coincided
with the rise of the science of complexity, which has itself both pio-
neered and promoted new approaches to similar problems across a
very wide range of topical application areas.5

Several key achievements in the study of fluctuations, at the
interface6–8 of climate modeling and the fast-developing sciences
of complexity, have recently been recognized by the award of the
2021 Nobel Prize for Physics to Hasselmann, Manabe, and Parisi.
The Nobel Committee have given a very useful and accessible short
introduction9 to these branches of science, but two more recent arti-
cles have demonstrated between them an emerging dichotomy in
responses to the Prize. Our paper seeks to reconcile them.

In Ref. 10, Franzke et al. have shown how “the Hasselmann pro-
gram,” first enunciated in Ref. 11, of explaining how slow climate
arises from fast weather using stochastic EBMs, has given rise to
decades of productive and insightful research. The original stochas-
tic EBMs were Markovian, depending only on the current values of
their (stochastic) variables, and by construction assumed strongly
separated fast and slow time scales. A reader might easily infer
from this excellent review, however, that the broader “Hasselmann
program” built around such stochastic EBMs, their developments,
and his subsequent spatiotemporal fingerprinting methods has fully
solved the problems of realistic climate modeling. This impression
is reinforced by the fact that the paper does not delve into more
recent, and maximally non-Markovian, EBMs that exhibit “long-
range memory” (LRM; though see a complementary review of this
by Franzke et al.,12 and recent work by him with his colleagues13).

In contrast, Lovejoy14 has stressed the differences between
Hasselmann’s Markovian paradigm and more recent developments
in complexity science, especially those related to LRM and frac-
tional responses. He has articulated15–17 the view that only models
incorporating LRM can fully describe the already known proper-
ties of climate data. Arguments for the relevance of LRM have at
times been received with skepticism by some climate scientists,18

while others (e.g., Ref. 19), who do acknowledge its importance,
have nevertheless emphasized the deterministic behavior present
in the climate system because of the predictability that it affords.
Recently, however, the Nobel Committee has remarked9 on an
increasing awareness that “on decadal timescales of relevance to
humans, evidence is consistent with the memory becoming effectively
infinite . . ..”

An AGU editor highlight (Ana Baros, “Eminently Complex
– Climate Science and the 2021 Nobel Prize,” January 1, 2023)
described Ref. 14 as making “the case that for the last 100 years
there has been little communication between atmospheric sciences
and nonlinear geophysics, and this must change to improve useful
predictability (i.e., lead time) of climate models.” In this paper, we
address the need for communication between these two fields in a
number of ways.

(i) First, by reviewing the topic, we will show that the situa-
tion is in some ways already better than it may appear, because,
in fact, there has been work, notably that of Ref. 20, reviewed
in Ref. 8, which, while proceeding directly from the Hasselman
paradigm, has allowed the construction of models with a non-
Markovian structure, via the use of memory kernels. It seems
not to have always been very accessible to a wider audience,
perhaps because it exploits the Mori–Zwanzig formalism,21 well
known in applied mathematics, data assimilation, and statisti-
cal mechanics, to decompose the effect of fast degrees of free-
dom into a memory term and a noise-like term. The fundamen-
tal (and nonlinear) equation that expresses the Mori–Zwanzig
decomposition is an identity, and deterministic, but confusingly,
to those already familiar with the linear stochastic equation first
studied by Langevin in 1908; it is sometimes8,10,20–23 referred to
as the generalized Langevin equation (GLE). This Mori–Zwanzig
GLE is intractable without further approximations21 or other
modifications.8

(ii) In view of this intractability, our paper takes an alternative,
more direct stochastic approach to an EBM with memory, based
on an already existing extension of Langevin’s original equation24

of 1908. We advocate for the use of Mori’s and Kubo’s stochastic
GLE, widely known and applied since the 1960s in condensed matter
theory, quantum optics, and physical chemistry.25–29 We show how
the form of the Mori–Kubo GLE, occasionally known as the non-
Markovian Langevin equation,30 suggests an analogous generalized
Hasselmann stochastic EBM for the global temperature anomaly.
Our paper expands on and revises our contribution to the 2020
International Conference on Complex Systems,31 which was itself
expanded as Ref. 32.

(iii) We go on to show that Hasselmann’s model is one limit-
ing case of our proposed EBM, that of short-ranged memory, while
Lovejoy’s fractional model, FEBE,16,33 is closely related to the oppo-
site special case, long-ranged memory. FEBE differs only by using
a Riemann–Liouville fractional derivative, instead of a Caputo. We,
thus, bridge these two seemingly opposed perspectives. We further
note that an EBM based on the Mori–Kubo GLE can handle not
just the two extremes of delta-correlated (shortest ranged) or power
law decaying (longest ranged) memory kernels but also those with
intermediate-ranged memory such as that which arises from a few
widely separated timescales. In addition, modifications of such an
EBM could, in principle, accommodate many types of periodic (or
quasiperiodic) determinism that are present, such as ENSO. As early
as 1976, Mitchell34 asserted that “there are no known deterministic
mechanisms of climatic variability that are internal to the atmosphere
. . . or any other part of the climatic system.” From this viewpoint, the
emergence of any deterministic mode(s), even if nonlinear and only
quasiperiodic, is, thus, crucial to predictability35 and its inclusion
essential in any compact description.
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(iv) We conclude by noting that an EBM based on the
Mori–Kubo GLE would have the option of embodying a fluctua-
tion–dissipation relation (FDR) by construction, because this was the
main original purpose of their stochastic GLE.

We hope our contribution will open a new channel of com-
munication between two disparate worlds and will facilitate the
construction of a new class of EBMs, which will, in turn, improve
the study of climate predictability.

In Sec. II, we will first briefly recap the basic notions of EBMs
and then discuss some ways in which nonlinearity and stochasticity
have been incorporated into them.

II. ENERGY BALANCE MODELS

A. Nonlinearity in EBMs

The first energy balance models36–38 of Budyko and Sellers were
deterministic. As the name implies, they captured how the earth’s
surface temperature T will, after a perturbation, evolve in time t to
restore the balance between the incoming R ↓ and outgoing R ↑ heat
fluxes at the earth’s surface, expressed by the following equation:

CP

dT

dt
= R ↓ −R ↑ . (1)

Here, CP is the effective heat capacity per unit area.
The Budyko–Sellers model in its simplest form then makes the

outgoing and incoming radiation terms in (1) explicit. The former is
modeled with the Stefan–Boltzmann law and the latter includes an
albedo feedback function a(T),

CP

dT

dt
= S0(1 − a(T)) − εσSBT4, (2)

where S0 is the mean solar radiation incident per meter squared
at the earth’s surface,36 ε is the earth’s emissivity, and σSB is the
Stefan–Boltzmann constant.

Since the 1960s, EBMs have been explored and extended in
many directions. In particular, much work has been done on non-
linear and stochastic climate dynamics in this framework, one topic
of the recently edited book by Franzke and O’Kane.6

Considerable attention has been focused on the nonlinearity of
the complicated potential created by the interplay of the T4 term and
the albedo feedback, for example. Taking a quadratic choice for the
latter gives the model studied by Fraedrich,39

CP

dT

dt
= 1

4
µI0(1 − a2 + b2T

2) − εσSBT4, (3)

where I0 is the solar constant, µ is a fractional premultiplier36 that
gives the radiation incident at the earth’s surface, and the quarter
results in an average over the planet’s surface.

B. Stochasticity in EBMs

Stochasticity can be introduced into nonlinear EBMs in a num-
ber of ways, such as white noise ξ(t) with a controllable variance σ 2

added as an extra term to Eq. (3) by Sutera.40 This changes it from
an Ordinary Differential Equation (ODE) to a stochastic differential
equation (SDE), an important subtlety.

The Fraedrich–Sutera model is Markovian because its deter-
ministic part depends only on the current value of its single variable,
the temperature T(t), while its stochastic part, Gaussian white noise,
is delta-correlated and, thus, also has no memory of its previous
state.

The marginal distributions of such a Markovian climate model
need not be Gaussian, however.41 Reference 42 is a comprehensive
study of α-stable Lévy noise of the more recent Ghil–Sellers exten-
sion to the original EBMs. The PDF of the noise here has an infinite
variance and is heavy-tailed.

C. Memory in EBMs

The Markovian restriction on the earliest EBMs has since been
relaxed in several different ways. A pioneering approach was that of
Bhattacharya et al.,43 who introduced memory into the deterministic
part via a modification of the albedo term. The resulting work has
been based on delay differential equations.44

Multi-box (and, thus, multivariate) stochastic models have
incorporated memory effects through the presence of a range of
feedback time scales in their different “boxes.”45–47

Most of the remainder of this paper concerns memory in
stochastic EBMs, but in Sec. III, we first examine the simplest linear
Markovian stochastic models in more detail. In particular, we con-
sider the univariate autonomous and non-autonomous versions in
which they have been used to model the earth’s global temperature
anomaly.

III. THE HASSELMANN PROGRAM I: LINEARIZED

MARKOVIAN STOCHASTIC EBMs

Linear Markovian stochastic EBMs were explored in detail in
the second of Hasselmann’s classic mid-1970s papers,48, comple-
menting the treatment in the first paper,11 which was largely in PDE
(Fokker–Planck) rather than SDE (Langevin) terms. They can be
motivated in several ways.

The first is an ansatz and was essentially the approach fol-
lowed by Mitchell in the 1960s (Sec. III). It recognizes that the
discrete time autoregressive first-order Markov process AR(1), and
the continuous time Langevin Eq. (9) whose solution is called the
Ornstein–Uhlenbeck (O–U) process, are the simplest possible linear
stochastic models of the response to perturbation.49

A more physically intuitive argument, summarized in Sec. III B,
and given more fully by Lemke in Ref. 50, comes from linearizing
deterministic EBMs of the Budyko–Sellers type and adding white
noise. At this level of abstraction, it is already apparent that the
result is what we will refer to as Hasselmann’s autonomous SDE.
However, Hasselmann’s SDE is isomorphic to not one but two such
equations arising in Brownian motion (BM); so Sec. III C describes
the dilemma posed by the choice of possible mappings.

Hasselmann’s mathematical analogy with Brownian motion
was not limited simply to mapping an EBM to a Langevin equation.
The most sophisticated and abstract level of his program, proposed
first in Ref. 11, replaced Mitchell’s ansatz, which has sometimes been
seen as being purely statistical, with a postulate, inspired by statisti-
cal physics: that of the separation of fast and slow timescales, and the
identification of the former with weather and the latter with climate.

Chaos 34, 072105 (2024); doi: 10.1063/5.0187815 34, 072105-3
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It is very important to realize that Hasselmann’s postulate is
potentially quite generally applicable to climate variables and not
just to the global mean temperature (GMT) anomaly—it was not
simply a way to make a stochastic EBM, but to kick off a research
program.

A. Mitchell’s stochastic models of 1966

Mitchell’s pioneering chapter,51 in a RAND Corporation con-
ference proceedings volume from December 1966, proposed two
stochastic climate models.

The first, as he put it, bore “primarily on the origins of relatively
rapid fluctuations, as, for example, those reflected in the interannual
variability of temperature observed at a wide variety of locations dur-
ing the past century.” He postulated that the air temperature anomaly
in a marine environment was composed of two additive parts, one
proportional to the sea surface temperature (SST) anomaly and one
independent of it. He then gave arguments suggesting that each
component’s data, comprising monthly values, would follow first-
order Markov or “AR(1),” stochastic processes. An AR(1) process
is defined at discrete times; in this case, the set t, t + dt, t + 2dt, . . .,
and takes the following form:

x(t + dt) = φx(t) + ξ(t), (4)

where 0 < φ < 1 and ξ(t) are an iid normal random variable of zero
mean and unit variance, respectively.

Mitchell derived the standard results for the autocorrelation
function and power spectrum of the resulting compound first-order
linear Markov process and pointed out that the measurements of
SST implied that its φ would be in the range 0.5–0.9, giving a red
noise behavior. He also fitted the compound model to the famous
269-year (1689–1957) Manley series of monthly temperatures for
central England, illustrating how the two component model’s Auto-
correlation Function (ACF) gave a good description of the observed
one. Hasselmann was made aware of Mitchell’s work by a referee
and took care to credit it, both in Ref. 11 and subsequently, e.g., the
oral history of Ref. 52.

Mitchell’s second model operated on longer time scales than his
first and is less directly relevant to Hasselmann’s work. He viewed it
as bearing “contrastingly on the origin of much longer fluctuations,
and” thought that it might “have some unexpected relevance to the
origins of the glacial-interglacial succession of the Pleistocene ice age.”
In a sense, it anticipated the previous section’s Fraedrich–Sutera
model and is further evidence of how far Mitchell was ahead of his
time.

B. Adding noise to a linearized Budyko–Sellars model

Following Ref. 9, we start with Budyko–Sellers model (2) and
expand T about the steady state average surface temperature TS,

T = TS + 1T.

So,

CP

d(TS + 1T)

dt
= S0(1 − a(TS + 1T)) − εσSB(TS + 1T)4,

from which we can subtract the corresponding steady state values to
get

CP

d1T

dt
= −S0

∂a

∂T
1T − 4εσSBT3

S1T + O(1T3),

and, thus, dropping terms in 1T of third order and above, we obtain

CP

d1T

dt
= −

[

4εσSBT3
S − S0

∣

∣

∣

∣

∂a

∂T

∣

∣

∣

∣

]

1T = −31T, (5)

where we have additionally used the fact that albedo sensitivity,
∂a/∂T, is negative and have defined a feedback parameter 3.

As in the Fraedrich–Sutera model, high frequency fluctuations
are then introduced as additive white noise ξ(t), a standard Gaus-
sian random variable (with zero mean and unit variance) to give
Hasselmann’s stochastic EBM in its SDE form,

CP

d1T

dt
= −31T + σξ(t). (6)

This SDE is Markovian in the sense that it depends only on the
current value of its variable, which is now the global mean temper-
ature (GMT) anomaly 1T. This SDE is a Langevin equation gov-
erning the OU process 1T(t). It expresses the competition between
the Gaussian fluctuations and the mean-reverting −31T, which
produces a dynamic steady state.

There is also a non-autonomous version of Hasselmann’s
model, in which F(t) represents the deterministic part of forcing, in
particular, that arising from anthropogenic carbon emissions,

CP

d1T

dt
= F(t) − 31T + σξ(t). (7)

Equations (6) and (7) are formal and, like all SDEs, contain
objects whose meanings must be made explicit and rigorous. For
white noise-driven SDEs, this process has taken decades of math-
ematical work in developing the now mature field of stochastic
calculus.21,53 In that Markovian case, there is a widely used conven-
tion to write SDEs as differentials rather than derivatives. We do not
use this notation here because many of the equations we study have
colored or even fractional noise driving terms for which there is less
of a notational consensus.

C. Relation of EBM to the equations of Brownian

motion

Hasselmann was directly inspired by a conceptual and math-
ematical analogy with Brownian motion. As he observed in an AIP
oral history interview,52 “my stochastic model is an application of the
concept of Brownian motion . . . One of the simplest stochastic pro-
cesses. The idea that one could explain long-term climate variability
very simply by the short term fluctuations of the atmosphere in anal-
ogy with Brownian motion, is really rather obvious and I thought I
would write it up somewhere in a little note.”

His paper explored an important distinction between the math-
ematical and physical usages of the term Brownian motion (BM).
For mathematicians, the Wiener process defines BM, while for
physicists, the underdamped LE defines BM. Hasselmann showed
that the former was already insightful in addition to the then-current
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paradigms for fluctuations in climate but that the latter was neces-
sary to create a power spectrum that more closely resembled those
already being observed.

Interestingly, however, there are not one but two possible SDEs
in physical BM to choose from, the underdamped and overdamped
Langevin equations. If Hasselmann had proceeded purely by map-
ping one of these onto an EBM, he could ostensibly have used either,
as we now show. While this ambiguity was relatively unimportant
to his work, we will then argue that it becomes significant when
thinking about extensions to the Hasselmann EBM.

1. Underdamped Langevin equation

The fundamental SDE used in Brownian motion is the under-
damped Langevin equation,

M
dv

dt
= −V′(y) − γ v + σξ(t). (8)

It describes the acceleration dv/dt, where velocity v = dy/dt, of
a particle of mass M, which experiences a deterministic force due to
a potential V(y), a stochastic force σξ(t), and a linear damping force
−γ v.

If we (i) map velocity into GMT anomaly, and mass into heat
capacity CP, (ii) ignore the question of mapping and meaning of the
position variable y, and (iii) replace the derivative of a potential by
deterministic forcing we obtain the non-autonomous version (7) of
the Hasselmann EBM.

Autonomous version (6), with F(t) = 0, is also frequently stud-
ied, e.g., Ref. 54, where an attempt has been made to remove the
prompt effects of the deterministic forcing from the time series.

2. Overdamped Langevin equation

We now consider forced Brownian motion in a potential. If the
mass is very large and the particle motion is close to a minimum
of the potential, we can neglect the acceleration term in (8) and set
V′(y) ≈ −ky. This gives the overdamped Langevin equation,

γ
dy

dt
= −ky + σξ(t). (9)

The solution of this for the position of the overdamped particle is
the O–U process.

Equation (9), thus, offers an alternative conceptual starting
point for a stochastic EBM, where instead of velocity, it is the posi-
tion that is mapped to 1T. The result is an autonomous equation,

CP

d1T

dt
= −31T + σξ(t). (10)

Although mathematically identical to the unforced version of
(7), rather than the mass M being mapped to the heat capacity
CP, it is now the friction constant γ , which is so mapped. This is

why although γ is usually absorbed into k̄ and σ̄ , did not do so in
Eq. (9). Another conceptual difference is that the linear term in 1T
of Eq. (10) arises from mapping a linearized potential rather than a
friction coefficient.

The overdamped Langevin equation can be modified to study
problems with additional deterministic forcing of the velocity, such

as the ion trap modeled by Ref. 55, and so its analogous Hasselmann
EBM could also have an additional deterministic forcing term.

3. Which of the underdamped or overdamped

Langevin equations is closer to Hasselmann’s EBM ?

The conceptual differences between the underdamped and
overdamped Langevin equations start to become important when
we try to derive EBMs from first principles. This is even more true
if we want to extend them to include effects such as long-range
memory and fluctuation–dissipation relations. We illustrate this in
Sec. IV by considering Hasselman’s own motivation11 of his stochas-
tic model embodied in Eq. (10), and the outline derivation of it
offered by the Nobel Committee.9 We will find that the latter, in
particular, has more in common with the overdamped than the
underdamped Langevin equation.

IV. THE HASSELMANN PROGRAM II: FLUCTUATIONS,

FAST AND SLOW

A. Assumptions of the Hasselmann program

A modernized version of Hasselmann’s argument is sketched
by the Nobel Committee,9 who describe it as an “interpretative and
notationally uncluttered outline.” We follow it and its notation here,
supplemented by reference to Hasselmann.11

1. Fast and slow variables

Hasselmann assumes that the instantaneous state of the atmo-
sphere–ocean–cryosphere–land system is described by a finite set of
discrete variables z = (z1, z2, . . .). He then assumes that its evolution
is described by a series of prognostic equations like

dzi

dt
= wi(z) (11)

and then divides the system into two subsystems z = (x, y).
The set of fast “weather” variables x have a response time scale

τx of the order of a few days and evolve under one set of ODEs,

ẋi = fi(x, y), (12)

while the slow “climate” variables y, such as sea surface temperature,
ice coverage, and land foliage, have a longer response time scale τy,
of the order of months, years, or more:

ẏi = gi(x, y). (13)

Here, f, g correspond to u, v in Hasselmann’s original notation.11

2. Conditional average over fast dynamics

In Ref. 11, Hasselmann then discusses the key idea of averaging
over the fast dynamics. The Nobel Committee’s argument9 writes
the dynamics of the fast variables in terms of the slow ones and is
simplified without the loss of generality by considering scalar x and
y; hence,

x = 〈x|y〉 + x∗, (14)

where following Hasselman, the first term is an ensemble average of
a set of values of x for a given y, i.e., a conditional average, and the
second term defines a fluctuation with respect to this average.
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B. The Nobel Committee’s derivation

1. Drift force and multiplicative noise

At this stage, the Nobel Committee9 gives a simpler but more
explicit argument for a Langevin-based EBM than Hasselmann’s
own. His original paper, in contrast, dealt with both Langevin and
Fokker–Planck approaches.

Their approach is to substitute for x using Eq. (14) in the
equation for the slowly varying dynamics ẏ, and then, Taylor expand
in the relatively small but fast fluctuations x∗,

ẏ = g(x, y)

= g(〈x|y〉 + x∗, y) ≈ g(〈x|y〉, y) + ∂xg(〈x|y〉, y)x∗.

One can then model the slowly varying first term as a drift force
arising from a potential U(y), while the fast fluctuations are modeled
as white noise ξ(t) whose strength σ̄ is dependent on the value of y,
i.e., this noise is not additive but multiplicative,

ẏ = −dU(y)

dy
+ σ̄ (y)ξ(t). (15)

2. Linearizing the drift force and assuming additive

noise

To transform the more general model Eq. (15) into the specific
Hasselmann form with linear damping and additive noise, the Nobel
Committee then argues that noise intensity is small, so its amplitude
can be taken to be approximately constant,

σ̄ (y) ≈ σ̄ (16)

and that in the case of interest, the system loiters near a dynamical
fixed point yE around which the potential and, thus, the drift force
can be expanded,

U(y) = U(yE) + (y − yE)
dU(yE)

dy
+ 1

2!
(y − yE)

2 d2U(yE)

dy2
+ . . .

and linearized by dropping terms above second order in y − yE.
The SDE for the resulting dynamics then has the well-known

O–U solution, but we can see from the above arguments that the
SDE must be in the variable y∗ = y − yE, which tracks the relative
distance from the fixed point, rather than y,

dy∗

dt
= −γ̄ y∗ + σ̄ ξ(t). (17)

The result can be compared to the autonomous Hasselmann
model (10), which is in 1T, not T.

V. STOCHASTIC EBMs AND IAMs

Economic assessments of climate change typically rely on
a suite of integrated assessment models (IAMs) descended from
the work of another Nobel laureate, Nordhaus.56,57 These models
have now been refined and extended in many directions—from
increasing their spatial and sectoral resolutions58–60 to explicitly
modeling technological choices61 to incorporating agent-based and
non-equilibrium models of the economy.62–64 Yet, although Hassel-
mann himself contributed to the early development of IAMs,65,66

the climate modules of IAMs are generally based on deterministic
EBMs.67

Climate stochasticity, when it is acknowledged at all, most
commonly enters in the form of uncertain temperature thresholds
(effectively “tipping points”) at which the model’s parameter values
suddenly change.68

One strand of economic research has added noise to the tem-
perature dynamics directly.69–71 The main objective has been to study
how fast we can learn the model’s parameter values—the equilib-
rium climate sensitivity, in particular—when we observe a noisy
temperature time series. Anticipated learning tends to reduce the
effect of parameter uncertainty on the optimal mitigation policy, but
there is no agreement on whether this anticipated learning-channel
is quantitatively meaningful.72

One possible reason that the research on IAMs has paid so
little attention to temperature stochasticity is that this source of
uncertainty does not affect the marginal warming resulting from an
additional tonne of carbon emissions. As a consequence, tempera-
ture stochasticity itself has very little effect on the optimal mitigation
policy.73,74 However, a recent paper by Calel et al.,73 which perhaps
offers the first example of a Hasselman EBM coupled to an economic
damage function, points out that temperature variability could still
greatly affect optimal investment in adaptation. They conclude that
a forward-looking social planner would be willing to make sub-
stantial investments to avoid or reduce the effects of temperature
fluctuations. Evidently, Hasselman’s “obvious” idea still has much
to teach us.

VI. BUT SHOULD STOCHASTIC CLIMATE MODELS

REALLY BE MARKOVIAN?

A. Leith’s “infrared climate problem”

In addition to Mitchell and Hasselmann, a third great climate
pioneer, Leith, argued for the use of Langevin models in the mid-
1970s. In his case, this was explicitly because of their connection with
fluctuation–dissipation relations. As he put it at an NCAR confer-
ence on statistics and climate in 1994,75 “a stochastic climate model
that incorporates the fluctuation–dissipation relation can be devised
and would provide a crude estimate of climate sensitivity. This model
would be of the Langevin type.”

However, by then, he had identified a problem of enduring rel-
evance that “there is evidence that this kind of model, would not on
its own be satisfactory to capture some of the low frequency phenom-
ena observed in the atmosphere.” He referred to this, in a phrase
that has sadly not gained currency, as the “infrared climate problem.”
This was not a literal reference to thermal radiation but rather to an
“infrared catastrophe” in fluctuations in temperature, i.e., the “piling
up of extra variance at low frequencies.”

The Nobel Committee9 illustrates and acknowledges the con-
tinuing relevance of Leith’s worry. It points out that the Markovian
nature of Hasselmann-type models results in an exponential decay
of their autocorrelation functions,

R(τ ) = 〈y∗(t)y∗(t + τ)〉. (18)
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Such a model predicts that the typical power spectrum of a
climate variable would be Lorentzian,

P(ω) = σ̄ 2/(γ̄ 2 + ω2) (19)

and that the ratio of strength σ̄ of the rescaled noise term and,
γ̄ , the rescaled damping term would control the spectrum’s shape.
The power spectral density would, thus, be flat at low frequencies, a
property that was reported in early comparisons of the Hasselmann
paradigm with data from weather ships.

B. Phenomenological evidence for LRM in climate

The simplest stochastic process with memory, AR(1) Eq. (4), is
Markovian, being formulated only in instantaneous variables. It can
additionally be given random initial conditions, although this is not
always the relevant case for climate, where, for example, the initial
temperature anomaly may be set to zero.

The emergent physics of the earth system on larger scales need
not be similarly memoryless, though, and in fact, the Nobel Com-
mittee’s summary states that in contrast to the atmosphere “the
ocean has a very long memory of events, at least in the hundreds
. . . 1000 year range.” As we noted in our introduction, the commit-
tee then remarks on the increasing awareness of effectively infinite
memory and that “this suggests a potential self-similarity or fractal
character,” citing Moon et al.’s study76 in support of their statement.
Moon et al. in their turn refer to the by now quite extensive literature
on long-range dependence in climate, from several research teams.
We note, in particular, the groups at Tromso (Refs. 47, 77, and 78)
and Montreal,16,33,79 and the recent PAGES CVAS group.12

In Ref. 14, Lovejoy addressed the issue of LRM directly.
He compared Frankignoul and Hasselmann’s original Markovian
power spectral fit48 to 16 years of sea surface temperature data from
the Ocean Weather Ship India, with the data now available from 452
stations over about 100 years. He argued that a compound power law
fit S(f) ∼ f−0.6at low frequencies and ∼f−1.8 at higher frequencies is
much more satisfactory.

C. Theoretical approaches to LRM in climate

In other papers,16,33 Lovejoy and colleagues have argued for a
fractional energy balance equation (FEBE) as a method for incorpo-
rating long-range memory into EBMs.

In Sec. VII, we will emphasize that there was already a well-
studied and standard way, the Mori–Kubo GLE,80–83 to incorporate
memory in a Langevin equation. The Mori–Kubo GLE is suitable for
use as a univariate stochastic equation, and thus, to add memory to
EBMs of the Hasselman type. We show that FEBE, but with a Caputo
fractional derivative rather than the Riemann–Liouville type used by
Lovejoy et al., corresponds to one particular limit of this equation.

VII. WHAT IS A GENERALIZED LANGEVIN EQUATION?

As frequently happens when mathematics and physics inter-
sect, the terminology used in this subject varies, which has some-
times caused confusion.

An example is the otherwise excellent Nobel Committee
article,9 which describes the SDE corresponding to the O–U process
as a “generalized Langevin equation.” It is literally so, but only in the

relatively limited sense that both the underdamped and overdamped
Langevin equations have the same mathematical form, and that any
other linearly damped model with additive white noise will also obey
an SDE of this same form, whether physical in origin or not.

Two other equations which much more substantially merit the
description “generalized” are

• the equation which has been widely studied in applied mathemat-
ics as a concise statement of the Mori–Zwanzig decomposition,
and which is occasionally referred to as the GLE8,22 and

• the stochastic Mori–Kubo GLE which has found widespread
application in statistical physics.

The Mori–Zwanzig decomposition has played an important
conceptual role in formalizing an approach to modeling the dynam-
ics of a few preferred degrees of freedom in the presence of many
other unobserved ones in many areas of science, notably quantum
mechanics. The resulting equations are sometimes directly derived
from Hamiltonian equations of motion for the whole system, for
example, in a reservoir plus subsystem model.22 The technique is not
restricted to such cases, though, and it has also become arguably the
most influential paradigm for thinking about how to make the Has-
selmann program mathematically rigorous and has been employed
in climate science to order empirical modes20 (see also Ref. 8).

In contrast, throughout the statistical mechanics community,
the more standard usage of the term GLE25–29 is to refer to the lin-
ear integrodifferential Langevin equation of Mori and Kubo with a
memory kernel on its velocity term,

M
d2y

dt2
= −V′(y) −

∫ t

tm

dt′γ (t − t′)
dy(t′)

dt′
+ ν(t), (20)

where the Markovian friction term γ dy/dt is replaced by a non-
Markovian integral over past values of the velocity starting at a
“memory time” tm (cf. Ref. 55).

In the Mori–Kubo formalism, the autocorrelation function of
noise ν(t) is proportional to γ (t − t′) with the prefactor depending
on the temperature of the medium

< ν(t)ν(t′) > = kBTγ (t − t′),

where T is the temperature of the medium and kB is the Boltzmann
constant. It is, thus, non-white noise.

VIII. THE MORI–KUBO GENERALIZED LANGEVIN

EQUATION: A NEW APPROACH TO THE INFRARED

CLIMATE PROBLEM?

A. The overdamped Mori–Kubo GLE

Just as there is an overdamped Langevin equation whose solu-
tion is the O–U process (9), there is a corresponding overdamped
generalized Langevin equation, shown here for motion near the
minimum of the potential V(y),

∫ t

tm

dt′γ (t − t′)
dy(t′)

dt′
= −ky + ν(t). (21)

We note that the memory kernel is on the left hand side of this
equation, on the term in dy/dt. We also remark that the same FDR
as that for the underdamped Mori–Kubo GLE also applies here. The

Chaos 34, 072105 (2024); doi: 10.1063/5.0187815 34, 072105-7

© Author(s) 2024

 01 N
ovem

ber 2024 14:48:54

https://pubs.aip.org/aip/cha


Chaos REVIEW pubs.aip.org/aip/cha

power spectrum of the noise ν(t) is matched to that of the kernel
γ (t − t′), and so as above, ν(t) is no longer white noise.

It is important to realize that while mathematically this is
adding memory to the Langevin model, physically it is simply mak-
ing explicit something that was already known, the presence of finite
collision times in physical Brownian motion.

B. An EBM with memory

The significance of the Mori–Kubo GLE for our purposes is
that it allows us to suggest a Mori–Kubo GLE-based extension of
the Hasselman EBM. We show our suggested EBM below in its
autonomous version,

∫ t

tm

dt′CP(t − t′)
d1T(t′)

dt′
= −31T + ν(t). (22)

We remark that an integral over a time dependent heat capacity
CP(t − t′) has replaced the previous constant C. We do not prescribe
the form of the noise, so the notation ν(t) does not presume that a
fluctuation–dissipation relation exists.

C. A Mori–Kubo GLE with power law kernel: The

fractional Langevin equation

An interesting special case of the overdamped Mori–Kubo GLE
arises when we take a decaying power law form for its memory
kernel

γ (t − t′) = (t − t′)−α

0(1 − α)
(23)

instead of an arbitrary memory function.
The resulting integrodifferential SDE is written as (for nonin-

teger α)

1

0(1 − α)

∫ t

tm

dt′(t − t′)
−α dy(t′)

dt′
= −ky + να(t), (24)

and is known in the physics literature as the overdamped fractional
Langevin equation (FLE). Both overdamped and underdamped
cases of the FLE have been extensively studied84–87 following the
pioneering investigation by Mainardi and Pironi88 of the α = 3/2
case.

The notation να here acknowledges the presence of a relation-
ship, the FDR,89,90 between the noise and the damping kernel.

D. Fractional derivatives

The integrodifferential form of the FLE is sometimes simplified
by the use of a fractional derivative. Fractional calculus forms a large
and growing field of research in itself (see, e.g., Refs. 91–93), so to
aid the reader, we have included the Appendix to summarize those
aspects we have used here. We again emphasize that the FLE is only
one special case of the more general Mori-GLE, and that we remain
“agnostic” about its relevance to the climate system, preferring to
suggest a model with a more flexible memory kernel.

The (left-handed) Caputo derivative of order α for a suitable
function f(x) is defined94,95 for 0 < α < 1 as

C
a Dα

x f(x) = 1

0(1 − α)

∫ x

a

duf ′(u)(x − u)−α , (25)

where f′(u) = df/du.
As well as its order α, the Caputo derivative has a sec-

ond parameter, the lower limit a of the integral in its definition.
The Caputo fractional derivative has physically more intuitive ini-
tial conditions than the most widely used alternative to it, the
Riemann–Liouville derivative. This is because they are specified as
integers rather fractional powers of physical quantities. However,
as noted by Wei et al.,95 the problem can be circumvented by the
Schneider–Weiss formulation of the Riemann–Liouville derivative.

The Caputo derivative also has a nice property that while of
fractional order for α < 1 it becomes the familiar integer derivative
in the α = 1 case, i.e., C

a D1
xf(x) = df/du, as is shown in Sec. 2.4.1 of

Ref. 92. A Caputo FLE can, thus, be defined as

C
tm

Dα
t y = −ky + να(t) (26)

that straightforwardly encompasses the familiar Langevin equation
as its α = 1 case. This equation and its close relatives are increasingly
being studied in several disciplines,96–100 typically under the name
“Caputo fractional SDE,” though typically specialized to the case of
white noise driving.

E. The LRM EBM special case and its relation to FEBE

In the same way, we can postulate a decaying power law form
for the kernel in the EBM above

C(t − t′) = (t − t′)−α

0(1 − α)
(27)

instead of an arbitrary memory function and can, thus, write the
integral over the kernel in our EBM as a Caputo fractional derivative,
giving an autonomous version as follows:

C
tm

Dα
t 1T = −31T + να(t). (28)

In this picture, the external climate forcing can then be incor-
porated as an additional term F2(t); so, we obtain

C
tm

Dα
t 1T = −31T + να(t) + F2(t), (29)

which can be seen to be closely related to Lovejoy and co-workers’
FEBE by comparison with, for example, Eqs. (13) and (14) of
Ref. 16. The key difference is that we have a Caputo derivative
rather than their Riemann–Liouville one. We postpone to future
work the exploration of the implications of this choice in the model’s
design. Importantly, the α = 1, H = 1/2 limit of both derivatives is
of course the same and gives the Hasselmann model as required. The
determination of the order of the Caputo derivative empirically is an
area of current research, both generally and in the specific climate
context. It is directly related to the form of the response function of
the system under study, if the Caputo model is itself applicable, and
indirectly related to the power spectral density of the main observ-
able, here 1T. The specific relationship, if any, between the response
function and the noise driving depends on the presence or absence
of a fluctuation–dissipation relation.
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We note that although the integral in the Caputo derivative
is frequently started at tm = 0 (including, for example, in its cur-
rent implementation in Mathematica), its definition allows it to
start anywhere on the real line.101 It, thus, naturally encompasses the
tm = −∞, “Weyl” case to which Lovejoy33 has drawn attention in
the climate context, without additional effort.

IX. SOLVING THE MORI–KUBO GLE AND THE FLE

ANALYTICALLY

In this section and the following one, we have used the words
“analytic,” “numerical,” and “solution” as is commonly done in the
physics literature. The mathematics literature has different conven-
tions and the reader is advised to beware.

A. General solution of the overdamped Mori–Kubo

GLE

There are by now numerous sources in the literature for
analytic solutions of the Mori–Kubo GLE, starting from near-
contemporary work such as that of Fox.83 They typically use Laplace
transform methods, e.g., those of Ref. 86.

In our present application to climate, it is important to note
that solutions of the GLE have not been limited to assuming a
starting time tm of zero. A notable recent example is where tm has
been more general is Ref. 55 whose authors studied an overdamped
Mori–Kubo GLE,

∫ t

tm

dt′K(t − t′)ẋ(t′) + kx(t) = F2(t) + ξ(t),

which described a particle of mass M moving in a harmonic con-
fining potential V(x) = (1/2)kx2 (in their case, an optical trap) and
experiencing an additional deterministic forcing (from dragging of
the trap) F2(t) and a stochastic forcing which they assumed to be
white noise ξ(t).

The authors obtained the general solution of their Mori–Kubo
GLE as

x(t) = xtm(1 − kχ(t − tm)) +
∫ t

tm

dt′χx(t − t′)[F2(t
′) + ξ(t′)],

(30)

where xtm denoted the initial condition for position x(t = tm). The
position susceptibility χx(t) here was defined through its Laplace
transform

χ̂x(s) = [Ms2 + sK̂(s) + k]
−1

and the integral of it appearing in their solution was defined as

χ(t) =
∫ t

0

dt′χx(t
′).

The cases treated in Ref. 55 were relatively tractable, so they
should, in principle, also allow some special cases of our proposed
stochastic EBM to be solved analytically-a problem which we expect
to return to in future work.

B. Solving the FLE by Green’s functions

1. The overdamped FLE

For now, though, we will specialize to the fractional special
case of the overdamped Mori–Kubo GLE, i.e., the overdamped FLE.
We recall that this will specialize further for α = 1 to the familiar
exponential solutions of the Hasselmann model.

The overdamped FLE, both with and without determinis-
tic forcing, has been studied in the mathematics and statistical
physics literature, e.g., in 2017 by Li et al. in Ref. 102. With a Rie-
mann–Liouville derivative rather than the Caputo type, it has been
studied by Lovejoy and co-workers as a stochastic climate model
since 2019, and dubbed “the fractional energy balance equation.”

The overdamped forced FLE,
[

C
tm

Dα
t + k

]

x(t) = F2(t) + να(t), (31)

can be seen to have an entirely deterministic fractional operator on
its left hand side, while the right hand side incorporates both the
deterministic forcing term F2(t) and a stochastic term να .

2. The delta function-forced Caputo FDE and Green’s

function of the FLE

One way to solve the overdamped forced FLE is to first obtain
the solution of the deterministic relaxation and oscillation frac-
tional differential equation, i.e., the Caputo FDE, when forced by
a δ-function,

[

C
tm

Dα
t + k

]

x(t) = δ(x), (32)

which can be done using Laplace transforms, e.g., Ref. 103.
With an appropriate initial condition, this gives the impulse

response of the fractional operator, which can then be used to con-
struct Green’s function to solve either the deterministic or stochastic
versions of the inhomogenous equation.

The Laplace transform solution of (32) for tm = 0 and x(0) = 0
is

x(t) = tα−1Eα,α(−ktα),

as can be checked in version 13.1 or later of Mathematica using its
CaputoD and DiracDelta functions.

Figure 1 plots x(t) for values of α from 1 to 1/2, and k = 1. On
the semilog axes chosen, we can see that the α = 1 case is exponen-
tial while smaller values of α correspond to more slowly decaying
tails in the Mittag–Leffler function Eα,α(t) and to an increasingly sin-
gular “spike” at zero from the power law prefactor. It may be com-
pared with Figs. 2 and 3 of Ref. 16, which used a Riemann–Liouville
derivative.

3. Step function forcing of the Caputo FDE and FLE

If we then include deterministic forcing F2(t) and take
tm = 0, x(tm) = x0, the solution becomes

x(t) = x0Eα(−ktα) +
∫ t

0

F2(τ )(t − τ)α−1Eα,α[−k(t − τ)α]dτ .

In the well-studied case most relevant to climate science, when forc-
ing becomes a Heaviside step function applied from t = 0 onward,
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FIG. 1. Impulse response of the fractional relaxation–oscillation equation for
α = 1 to 0.5.

i.e., F(t) = θ(t), the integral can be evaluated and the solution
becomes

x(t) = x0Eα(−ktα) + tαEα,1+α[−ktα],

which again can be confirmed by Mathematica.
This function is illustrated in Fig. 2, which plots x(t), again for

values of α from 1 to 0.5, but now for k = 0.1. The topmost, blue,
line is the α = 1, exponential, case, and x0 = 0.

The effect of memory for the cases where α < 1 is clear in
lengthening the time it takes for the solution to take its asymptotic
value. In a simplest forcing experiment, such as doubling CO2, for
a stochastic EBM, this would correspond to the approach to a new
equilibrium value of the GMT anomaly.

4. The overdamped FLE with arbitrary deterministic

and stochastic forcing

We finally come to the full overdamped forced FLE (31), again
with tm = 0, when the stochastic term has also been included. This is

FIG. 2. Step response of the fractional relaxation–oscillation equation for
k = 0.1, α = 1 to 0.5.

too general to have a useful analytic solution, but we can make some
comments to help elucidate its meaning.

When written in integral form, the SDE has three parts. The
first and second are those seen in the previous sections, while the
third must be interpreted as a stochastic integral. We will not deal
with this term, corresponding to να(t) in (31), in full generality but
will instead consider the case of fractional Gaussian driving,

x(t) = x0Eα(−ktα) +
∫ t

0

(t − τ)α−1F2(τ )Eα,α[−k(t − τ)α]dτ

+ CH

∫ t

0

(t − τ)α−1Eα,α[−k(t − τ)α]dBH(τ ). (33)

The above stochastic integral is best understood in the H = 1/2
case of white noise when it can be described by Itô calculus, although
there is by now also a substantial mathematical literature concerning
integrals with respect to fractional Brownian motion94,104 (fBm).

Furthermore, when we then specialize to F2 = 0 and α = 1, the
solution then corresponds to the very well studied O–U process,

x(t) = x0 exp(−kt) + σ̄

∫ t

0

e−k(t−τ)dW(τ ).

The stochastic integral in this case can be defined as the limit
of a sum and dW as a suitably rescaled increment of the Brownian
motion,

∫ t

0

e−k(t−τ)dW(τ ) = lim
1→0

n−1
∑

j=0

e−k(j1−τ)(W((j + 1)1) − W(j1)),

as described on pages 90–91 of Ref. 21.

X. NUMERICALLY EVALUATING TRAJECTORIES OF

THE MORI–KUBO GLE AND FLE

As is so often the case, analytical intractability of the most phys-
ically interesting and relevant SDEs means that we must evaluate
them numerically. We discuss this below, first for the Mori–Kubo
GLE and then for its fractional special case.

A. Numerics for the Mori–Kubo GLE

There are by now several modern sources of numerical
algorithm for the stochastic Mori–Kubo GLE, e.g., Refs. 28, 29, 105,
and 106.

The algorithm of Lim28 requires that the system of SDEs to be
solved must be “Bohl,” i.e., the matrix elements of the memory ker-
nel K(t) are finite linear combinations of the functions of the form
tkeβt cos(ωt) and tkeβt sin(ωt), where k is an integer and β and ω are
real numbers. As Lim28 notes, when these functions decay as a power
law, for example, the resulting fractional Mori–Kubo GLE cannot be
studied as a finite-dimensional SDE system. Although one can work
formally in an infinite-dimensional setting, numerics will typically
resort (e.g., Ref. 107) to approximating the power law, frequently by
using a weighted sum of exponentials.

B. Numerics for the overdamped FLE

The overdamped FLE can be solved in a number of ways. Love-
joy et al.’s work15,16 on FEBE has so far used Fourier methods similar
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to those widely used to simulate fBm and its increment, fGn, and has
focused on an initial condition specified at tm = −∞. In our paper,
we will instead consider finite tm, which allows the infinitely distant
case as a limit, and wish to use a non-Fourier based algorithm for its
flexibility in potential future developments.

Our approach is illustrative, rather than rigorous. We use the
explicit solution of the overdamped FLE and evaluate it at each
required value of t. We do this by discretizing t using the definitions
of the stochastic and deterministic integrals as the limits of sums.
However, we must stress that even in the O–U case, it is known (e.g.,
Ref. 24) that this algorithm will not ensure that a solution will have
the required autocorrelation properties. This is why our results must
be considered illustrative rather than definitive for now.

In our future work, in order to achieve the required ACF, a
time evolution equation rather than an integral will be needed. A
prototype of such algorithms was derived by Gillespie24,108 for the
O–U case. Candidates include the spectral method of Ref. 98, and
the recently developed fast Euler–Maruyama algorithm given in
Refs. 109 and 110.

Here, we also restrict ourselves to the white noise-forced case,
but with the additional deterministic forcing term, and intend to
explore colored noise forcing in future work.

We first approximate the stochastic integral using

∫ t

0

(t − τ)α−1Eα,α(−k(t − τ)α)dW(τ )

≈
n−1
∑

j=0

(t − j1)α−1Eα,α(−k(t − j1)α)(W[(j + 1)1] − W(j1))

=
n−1
∑

j=0

1α−1(n − j)α−1Eα,α(−k1α(n − j)α)11/2N
(j+1)1
j1 ,

where following Ref. 24, each finite difference of W has been
replaced by the scaled Gaussian random number 11/2N.

The deterministic integral is approximated by

∫ t

0

F2(τ )(t − τ)α−1Eα,α(−k(t − τ)α)dτ

≈
n−1
∑

j=0

1α−1(n − j)α−1Eα,α(−k1α(n − j)α)1, (34)

where F2(τ ) = θ(τ ) for the step function problem.
In Fig. 3, we illustrate the behavior of the FLE by plotting 100

sample paths obtained this way for forcing by a Heaviside step func-
tion 2(t) and a stochastic term of amplitude σ̄ = 0.16. We used
MATLAB’s function boxplot where for each box, the central mark
indicates the median, and the bottom and top edges of the box
indicate the 25th and 75th percentiles, respectively. The whiskers
extend to the most extreme data points not considered outliers, and
the outliers are plotted individually using the “+” marker symbol.
Parameters were tm = 0, x(tm) = 0, k = 0.1, and α = 0.7. The mean
of the paths is overplotted and is seen to compare well with its
known analytic result.

FIG. 3. Box plot of an ensemble of 100 sample paths of the overdamped fractional
Langevin equation, forced by a Heaviside step function2(t) and a stochastic term
of amplitude σ̄ = 0.16. The parameters were tm = 0, x(tm) = 0, k = 0.1, and
α = 0.7. Overplotted is the analytic solution, which can be seen to coincide well
with the means of the ensemble.

C. Numerics for our proposed Mori–Kubo GLE-type

EBM driven by RCP 8.5

We now briefly illustrate how our stochastic GLE-based EBM,
in its fractional Caputo special case (29), can be used to study
the global mean surface temperature. We do this in the white
noise driven (να = σ̄ ξ ) case by repeating the previous subsection’s
approach, but this time taking the deterministic part of the driving
from the RCP 8.5 Representative Concentration Pathway111, a (worst
case) model of anthropogenic forcing. We first write the fractional
EBM, with its parameters and scalings made more explicit, as

C
0 Dα

t 1T + τ−α
H 1T = τ−α

H

F

λ
+ σ̄ ξ ,

where s is the climate sensitivity, λ = 1/s, C(α) is an α-dependent
scale factor for the effective heat capacity (see Refs. 16 33), τH

= C(α)/λ is the Hasselmann time, and the noise term has variance
σ̄ 2. We used MATLAB’s quadrature function trapz to speed up
the deterministic part of the integration, a step size of 0.1 years,
and, as in section X.B used Podlubny and Kacenak’s function mlf

from the MATLAB contributed toolbox to evaluate the Mittag-Leffler
functions. Figure 4 is a box plot of 64 paths for 1T, again with
the, at present arbitrary, choice α = 0.7 , and with representative
values λ = 1.23, τH = 25.78 years and σ̄ = 0.1. The appropriate
choice of parameter values for such models remains an area of
active research16. Future more detailed investigations will, rather
than quadrature, use a more accurate SDE solver suitable for all
GLE-derived EBMs, not just fractional ones, as discussed above.
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FIG. 4. Box plot of 64 paths for global mean temperature anomaly1T from from
a fractional Caputo EBM driven by RCP 8.5 (shown in the inset) with added white
noise. α = 0.7, λ = 1.23, τH = 25.78 years and σ̄ = 0.1.

XI. ARE THERE ALTERNATIVE STOCHASTIC

GLE-BASED EBMs?

Although this paper is focused on a stochastic EBM inspired
by a mapping to the overdamped Mori–Kubo Langevin equation,
other options exist—some of which have been explored so far in the
literature.

A. Mori–Kubo GLE-based EBMs and other intrinsically

stochastic approaches

In addition to Lovejoy et al.’s FEBE discussed in some detail
above, and the overdamped GLE-based EBM we have proposed
here, there have been several other proposals that extend the Has-
selmann formalism to include multiscale memory. We enumerate
some below. As noted in the introduction, Ghil et al.19 have argued
that a key requirement of any such model is the ability to add
quasiperiodic determinism as well as stochasticity.

1. Modified fractional Brownian motion

In several pioneering papers,77,78 Rypdal and colleagues dis-
cussed various extensions of the fractional Brownian motion as
generalizations of the Hasselman EBM. The main limitation of their
idea was the absence of the damping term, as noted by Lovejoy.16,33

2. Direct mapping to underdamped generalized

Langevin equation rather than overdamped GLE

In our earlier conference proceedings chapter31 and subse-
quent preprint,32 we considered a different GLE-based EBM. Here,
the mapping was made from the underdamped Langevin equation
rather than the overdamped Langevin equation.

This results in a mapping from velocity onto GMT anomaly,
rather than from position. We erroneously thought that in its frac-
tional special case, our suggested stochastic EBM was isomorphic

to FEBE after suitable conversions between their parameters, but in
fact, the comparisons made in Sec. VIII of the present paper show
that FEBE is much closer to the overdamped Langevin equation and,
thus, to our newer proposal.

3. Two box models

The two box EBM is an interesting alternative which may be
useful in some cases. It replaces the single decay scale of Hassel-
mann’s model with two. This allows, for example, the atmosphere
and ocean timescales to be explicitly represented.

As shown in Ref. 45, the two box model results in a second
order SDE with constant coefficients, isomorphic to the under-
damped Langevin equation for position.

Interestingly, this second order equation is also an alternative
representation for the Mori–Kubo GLE when its memory kernel is
of exponential form, as shown in Ref. 112, a special case of a more
general result given in Ref. 106.

4. Multibox models

The above methods can be extended to the case of many relax-
ation time scales, an approach studied extensively for SDEs in the
applied mathematics literature and also in climate science.22,46 Eigen-
value analysis can be used to predict some of the spectral properties
of such multibox models, as done, for example, by Fredriksen and
Rypdal.47

5. The fractional Ornstein–Uhlenbeck equation

The Langevin equation can be modified to be driven by frac-
tional Gaussian noise rather than white noise while still keeping the
friction term constant. This has been studied in the mathematical
finance literature extensively94 and has been suggested in the climate
context.113 These authors also develop a time series model113,114 based
on the discrete time autoregressive fractionally integrated moving
average ARFIMA process, which generalizes AR(1).

6. Yuan et al.’s generalized stochastic time series

model

A fractional time series model, not simply isomorphic to
ARFIMA or other existing models, has been proposed13 to sys-
tematically separate the “forcing-induced direct” and the “memory-
induced indirect” trends in data.

B. Other stochastic Mori–Zwanzig GLE-based EBMs

As noted in our introduction, the Mori–Kubo GLE is in princi-
ple a subset of the more complete Mori–Zwanzig formalism, which
has at its heart a deterministic identity expressing the division of a
system into observed and unobserved degrees of freedom.27 Space
does not permit a full discussion of this here, but we refer the
reader to a short introduction,23 and reviews of the method21 and
its applications to climate.8

XII. FLUCTUATION–DISSIPATION RELATIONS

Fluctuation–dissipation relations (FDRs) have been studied
extensively in climate science (see, e.g., the reviews of Refs. 3 and 4
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and recent examples like Ref. 115). We do not discuss them at length
here, but simply note some aspects that relate to the stochastic EBMs
we study.

A. Emergent parameters in the OU process

The meaning of the phrase “fluctuation–dissipation relation”
can sometimes be as simple as its usage by the Nobel Committee,9

who noted that the variance 〈y2〉 of the OU process, which solves the
overdamped Langevin equation (9) is proportional to the ratio of the
noise amplitude σ̄ 2 to the mean reversion term γ̄ . The Nobel docu-
ment appears to us to be stressing that any system to which the O–U
process has been applied must in consequence obey this limited kind
of FDR. This is because there will then always be a ratio of σ 2/2γ̄
and it will empirically determine the value of < y2 >. This is not a
trivial observation in the climate context because either the value of
〈y2〉 or the noise amplitude σ̄ are in this sense “emergent” param-
eters whose values are unknown a priori, cf. the FDR-like relation
found in Ref. 54.

B. The FDR in the Brownian motion

In the physical context (the motion of a tracer particle in a
fluid) from which the underdamped and overdamped Langevin
equations originated,4,24 however, this ratio was not a free or empir-
ically determined parameter. It was instead constrained to be pro-
portional to the temperature T of the surrounding heat bath. A
proportionality to T is seen both in the Brownian motion special
case of Kubo’s “FDR2,”89,90,116–118 i.e., the ratio of the noise ampli-
tude to the mean reversion (friction) term in the underdamped
Langevin equation, and in a corresponding expression arising from
the overdamped Langevin equation. Importantly, these fluctuations
are entirely “internal,” and the fast and slow terms in the Langevin
equation arose from the same physics. This is not straightfor-
wardly the case when an EBM is written down or derived for the
climate problem, and extensive debates have occurred about the
applicability or otherwise of the FDR in a climate context.3,4

C. The FDR as seen in the Mori–Kubo GLE

As we noted above, the Mori–Kubo GLE (here in its over-
damped form)

∫ t

tm

dt′γ (t − t′)
dy(t′)

dt′
= −ky + ν(t) (35)

was designed to embody an FDR which relates the covariant struc-
ture of the noise ν(t) to the auto-correlation structure of the kernel
γ (t − t′), so that they are not free to vary independently. In the orig-
inal context for the GLE, Brownian motion, this FDR is literally a
fluctuation–dissipation relation because the ν(t) term is a fluctuat-
ing noise and the integral operator over γ (t) is a friction term acting
to reduce the magnitude of the velocity dy/dt.

If we naively take this functional form of the GLE over to the
climate context, however, the integral operator is doing a physically
different job. It is now an integral over a heat capacity CP(t − t′), and
so, an “FDR” of the classic GLE type would be relating the covariance
structure of heat capacity to that of the noise ν(t).

This would still be doing essentially the same thing in the sense
of balancing the noise and the kernel, scale by scale, in order to allow
the system to relax to a steady state, but further investigation would
be necessary to establish whether it made physical sense.

XIII. CONCLUSIONS

Hasselmann’s realization that the Brownian motion could be
used as a mathematical superstructure to organize fast weather and
slow climate fluctuations was a very powerful one, and his recent
Nobel prize provided a timely context for our review. As we have
shown, recent progress in going beyond his paradigm has generated,
what at first sight seem to be divergent positions, exemplified by the
recent reviews of Franzke et al. in Ref. 10 and Lovejoy in Ref. 14.

In this paper, we have sought to facilitate an improved dia-
logue between these views, and have found them to have more points
of contact than was initially apparent. We first drew attention to
the existing climate work using the Mori–Zwanzig approach and
proposed using the stochastic GLE of Mori and Kubo as a frame-
work to study memory in one-dimensional stochastic EBMs. We
then related the stochastic GLE-based EBM to Lovejoy’s fractional
energy balance equation and concluded with some speculations on
fluctuation–dissipation relations.
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APPENDIX: SUMMARY OF FRACTIONAL CALCULUS

Because of their relationship to long-range dependence in time
series and heavy-tailed amplitude distributions, fractional differen-
tial equations (FDEs) and fractional stochastic differential equations
(FSDEs), such as those in the present paper, have also been exten-
sively studied in complexity science. In order to make the paper
more accessible to readers who have had little need to deal with
fractional integration and differentiation, we give here a very brief
summary of the results which we use. Fractional derivatives and the
associated FDEs are now implemented directly in some numerical
packages, like Mathematica whose demonstrations we encourage the
reader to explore.

This Appendix follows the notational conventions of the
physics literature. Readers seeking a more detailed but similarly
physics-inspired treatment are referred to Ref. 119 and also the very
useful general overview article of Ref. 120.

Readers who prefer a more mathematical development may
consult Refs. 92, 93, 103, 121, and 122. In addition, two books which
study SDEs driven by the fractional Brownian motion are Refs. 94
and 104.

1. Fractional integral

It is possible to begin by defining a fractional derivative but we
follow most authors by starting with the inductive definition of inte-
gration, which the fractional integral generalizes. We are used to the
idea that the taking of a derivative of a function f(t) with respect to

time t is the inverse of integrating it with respect to t′ up to time t,
∫ t

a

f(t′)dt′. (A1)

The nth derivative is, thus, an inverse to the n-fold repeated integra-
tion,

∫ t

a

dt′1

∫ t′1

a

dt′2 . . .

∫ t′n

a

dt′nf(t′n), (A2)

and requires us to use the integral identity,

∫ t

a

∫ t′1

a

. . .

∫ t′n−1

a

f(t′n)dt′n . . . dt′1 = 1

(n − 1)!

∫ t

a

f(t′)(t − t′)
n−1

dt′.

(A3)
The form of the right hand side of this expression shows why we

can then allow n to be replaced by a non-integer value α, thus defin-
ing an integral of fractional order. In defining a fractional integral,
we use the relationship between the factorial and the gamma func-
tion, 0(n) = (n − 1)! the discovery of which was a consequence of
the earliest work on fractional calculus.123

The left-sided Riemann–Liouville fractional integral operator
of order α on a finite interval (a, b) of the real line, acting on a
function f(t) is then

(aI
α
t f)(t) = 1

0(α)

∫ t

a

f(t′)(t − t′)
α−1

dt′. (A4)

Note that this definition requires that α > 0. Typically, α < 1 is
also assumed, but this is not obligatory.101 Other notations exist for
this integral, e.g., (Iαa+f)(x) used widely in the mathematics literature.

Taking α = 1 recovers the usual integral of f(t) from a to t,

(aI
1
t f)(t) =

∫ t

a

f(t′)dt′, (A5)

whereas α = 1/2 gives

(aI
1/2
t f)(t) = 1

0(1/2)

∫ t

a

f(t′)√
t − t′

dt′, (A6)

which was one of the first fractional integrals to receive study in
physics, chemistry, and engineering, notably in the heat transfer
problem.91

Instead of being over a finite interval, we can define the left-
sided Riemann–Liouville fractional integral of f(t) on the complete
real line,

(−∞Iαt f)(t) = 1

0(α)

∫ t

−∞
f(t′)(t − t′)

α−1
dt′. (A7)

2. Riemann–Liouville fractional derivative

We can now define fractional differentiation as the inverse of
fractional integration. In practice, this is done by taking a fractional
integral of order 1 higher than the desired order of the derivative,
and then, using the usual integer derivative to lower its order by one.
Because fractional integration and differentiation do not commute,
two possible fractional derivatives exist, depending on whether the
fractional integral of f(t) is done first or the integer derivative. These
are the Riemann–Liouville and Caputo cases, respectively.
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Taking the Riemann–Liouville case first, and considering the
finite time interval (a, b), we define a derivative which is based on
the inverse of the left-sided Riemann–Liouville integral. We use the
fact that the Riemann–Liouville fractional derivative of the function
f(t) of order α, aD

α
t f(t), is its Riemann–Liouville integral of order

−α. We calculate this by first writing the integral of order 1 − α,
where 0 < α < 1,

(aI
1−α
t f)(t) = 1

0(1 − α)

∫ t

a

f(t′)(t − t′)
−α

dt′, (A8)

and then differentiating

(aI
−α
t f)(t) = (aD

α
t f)(t) = 1

0(1 − α)

d

dt

∫ t

a

f(t′)(t − t′)
−α

dt′. (A9)

The lower limit of this integral is usually taken to be 0, though
this is not, in fact, essential.101 As in the case of the fractional integral,
we can define the integral in the derivative over the whole real line,
so a can be −∞. This case is sometimes referred to as the Weyl or
Riemann–Weyl derivative.

3. Caputo fractional derivative

If instead we take the integer derivative first, before doing the
fractional integral, we can define the Caputo fractional derivative,

(C
a Dα

t f)(t) = 1

0(1 − α)

∫ t

a

dt′(t − t′)
−α df

dt′
(t′). (A10)

The Caputo derivative can be defined via the Riemann–
Liouville derivative,

(C
a Dα

t f)(t) = (aD
α
t f)(t) − t−α

0(−α)
f(t), (A11)

so the Caputo and Riemann–Liouville fractional derivatives will
coincide for negative orders α. One advantage of the Caputo
definition over the Riemann–Liouville case is that it uses the val-
ues of f(t) and its integer rather than fractional derivatives at 0 (or,
in general, at any lower-limit point a). This is well suited to solving
fractional-order initial-value problems using Laplace transforms, a
popular approach for both FDEs and FSDEs.
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