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A B S T R A C T

Natural Language Processing (NLP) methods have shown promise for the assessment of formal thought disorder,
a hallmark feature of schizophrenia in which disturbances to the structure, organization, or coherence of thought
can manifest as disordered or incoherent speech. We investigated the suitability of modern Large Language
Models (LLMs - e.g., GPT-3.5, GPT-4, and Llama 3) to predict expert-generated ratings for three dimensions of
thought disorder (coherence, content, and tangentiality) assigned to speech samples collected from both patients
with a diagnosis of schizophrenia (n = 26) and healthy control participants (n = 25). In addition to (1) evaluating
the accuracy of LLM-generated ratings relative to human experts, we also (2) investigated the degree to which
the LLMs produced consistent ratings across multiple trials, and we (3) sought to understand the factors that
impacted the consistency of LLM-generated output. We found that machine-generated ratings of the level of
thought disorder in speech matched favorably those of expert humans, and we identified a tradeoff between
accuracy and consistency in LLM ratings. Unlike traditional NLP methods, LLMs were not always consistent in
their predictions, but these inconsistencies could be mitigated with careful parameter selection and ensemble
methods. We discuss implications for NLP-based assessment of thought disorder and provide recommendations of
best practices for integrating these methods in the field of psychiatry.

1. Introduction

Thought disorder is a major component in the overall presenting
phenomenology in schizophrenia, and the presence and characterization
of this thought disorder is important in differential diagnosis. Its pres-
ence is inferred from the speech of patients, which may be of reduced
intelligibility and be increasingly disorganized such that it is difficult,
and sometimes impossible, for the listener to comprehend. This genre of
speech is then inferred to be indicative of disturbances in the structure,
organization, and coherence of the assumed underlying thought pro-
cesses. Speech, therefore, provides an important modality for assessing
thought disorder (Andreasen and Grove, 1986; Corcoran and Cecchi,
2020; DeLisi, 2001). Thought disorder is generally evaluated via

observation of speech during a clinical examination, and formally
measured using semi-structured scales such as the Thought and Lan-
guage Disorder (TALD) scale (Kircher et al., 2014) or the Scale for
Assessment of Thought, Language, and Communication (TLC)
(Andreasen, 1986). These scales provide a structured procedure to
evaluate speech for signs of thought disorder, however they are
time-consuming to administer, require extensive training to conduct,
and can suffer from suboptimal inter-rater reliability in practice.

In contrast to human-administered assessments, computerized nat-
ural language processing (NLP) tools provide the possibility of auto-
matically and consistently quantifying elements of speech (e.g.,
incoherence) indicative of thought disorder if the speech prompts and
study design are optimized (Elvevåg et al., 2017; Foltz et al., 2023).
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Accordingly, NLP methods have been heralded as promising instruments
that could aid clinicians in the assessment and monitoring of thought
disorders (Corcoran and Cecchi, 2020; Low et al., 2020; Voleti et al.,
2023). However, several studies have identified numerous challenges
with NLP-based assessments of thought disorder, such as a lack of
generalizability across samples and languages (Parola et al., 2023) and
questionable construct validity of computational measures (Hitczenko
et al., 2021). Our own approach to study design has been underpinned
by three assumptions: First, we have increased the probability of the
speech signal of interest (e.g., incoherence) appearing at every mea-
surement time point by creating tasks that push participants to their
cognitive limit at which point an assay may be said to be sensitive
enough to elicit this cognitive vulnerability, namely thought disorder.
Second, these resulting script-like speech responses can thus be rated by
expert humans on specific dimensions (e.g., amount of content
remembered and overall coherence) and these ratings thus used to train
machines to automate the process and optimize design for longitudinal
studies (Chandler et al., 2020a, 2021a). Third, since these speech
prompts very likely elicit the signals of interest, and can be fully auto-
mated (e.g., for monitoring purposes), crucially their very design en-
ables the necessary eventual safeguarding against dangerous machine
learning errors as they are well suited to build in methods for detecting
when a model is out of bounds, which is absolutely essential for any
automated system (e.g., Chandler et al., 2021b).

In an early study on NLP applications in psychiatry, Elvevåg et al.
(2007) used one of the first word-embedding based vector models,
Latent Semantic Analysis (LSA), to detect thought disorder from speech
and predict human ratings (e.g., coherence) assigned to speech samples.
This work introduced a novel methodology: by representing words or
sentences as vectors in a high-dimensional semantic space, concepts
such as semantic incoherence or tangentiality could be computationally
instantiated by comparing the similarity of vectors across a spoken
response. Subsequently, LSA was further employed to detect subtle de-
viations in discourse between patients with schizophrenia, their-first
degree relatives, and unrelated healthy controls (Elvevåg et al., 2010;
Rosenstein et al., 2015). This methodology was later applied to predict
the onset of psychosis in high-risk populations (Bedi et al., 2015) where
it was shown to be effective across different speech collection protocols
and risk cohorts (Corcoran et al., 2018). As word- and
sentence-embedding methods continued to evolve, more sophisticated
embedding methods (e.g., GloVe, word2vec) outperformed LSA in
detecting incoherence from speech (Iter et al., 2018). Other computa-
tional methods, such as speech graph connectivity (Mota et al., 2012),
measures of referential cohesion (Gupta et al., 2018; Iter et al., 2018)
and measures of language connectedness (Voppel et al., 2021) have also
been developed to analyze language and identify indicators of thought
disorder. Notably, these computational approaches have shown sensi-
tivity in discriminating between diagnostic groups (e.g., schizophrenia
vs. mania) exceeding that of traditional psychiatric scales like the Brief
Psychiatric Rating Scale (BPRS) and the Positive and Negative Syndrome
Scale (PANSS) (Mota et al., 2012), suggesting that these quantitative
analyses are complementary, rather than redundant with existing psy-
chometric scales.

In recent years, advances in deep learning and NLP have led to the
development of powerful new neural network-based models. These
models (e.g., BERT, RoBERTa) often called Large Language Models
(LLMs) make use of the Transformer architecture (Vaswani et al., 2017)
and extensive pre-training on large quantities of text, resulting in
state-of-the-art performance on a variety of NLP tasks, including word
and sentence embedding and classification. Accordingly, several recent
studies have applied modern neural network-based sentence embedding
methods to detect thought disorder in speech. For instance, Sarzyn-
ska-Wawer et al. (2021) used Embeddings from Language Models
(ELMo) to represent interview responses (conducted in Polish) and
found that ELMo embeddings were more accurate than word2vec-based
coherence metrics in differentiating patients from healthy controls. In

another study, Tang et al. (2021) used a BERT model to compute em-
beddings of both an interviewer prompt and participants’ responses.
Using these embeddings, they found that patients with schizophrenia
showed higher levels of tangentiality or derailment than healthy con-
trols, as quantified by the change over time in the semantic similarity of
response sentences to the original prompt.

An even more recent advancement in NLP is the rise of generative
LLMs (e.g., ChatGPT, Gemini, LLaMA). Generative LLMs represent a
fundamentally new paradigm in NLP, which has been called “prompt-
based learning” (Liu et al., 2023). Unlike traditional supervised learning,
which depends on labeled training data to build a predictive model,
generative LLMs can be “prompted” with written instructions in natural
language to elicit predictions or generate text. They have also been
accompanied by web-based user interfaces and APIs (application pro-
gramming interfaces; software interfaces that allow programmatic ac-
cess to the models) which have made these methods accessible to a much
wider audience of users. Accordingly, the field of psychiatry has inves-
tigated the use of generative LLMs for a variety of applications, including
answering clinical questions related to psychiatric diagnosis and treat-
ment (Luykx et al., 2023), responding to common patient questions in
mental healthcare (Grabb, 2023), automated textual analysis for per-
sonality estimation (Amin et al., 2023), suicidal tendency detection
(Amin et al., 2023; Lamichhane, 2023; Xu et al., 2023), depression
detection (Lamichhane, 2023; Sadeghi et al., 2023; Xu et al., 2023; Yang
et al., 2023) and sentiment analysis (Rathje et al., 2023). LLMs have also
received increased interest and investment in the broader field of
healthcare (see Thirunavukarasu et al. (2023) for a recent review of
LLMs in medicine in general). In one study highly relevant to the current
investigation, researchers used GPT-4 to automatically generate fluency
ratings for spoken responses to a picture description task (e.g., evalua-
tions of how fluently the participant described the picture, including
identifying key elements of the picture, repetitiveness, and the presence
of unclear phrases). Subsequently, they generated BERT embeddings to
represent these GPT-4 fluency evaluations, which were used along with
embeddings of the original description to classify which participants had
a diagnosis of Alzheimer’s Disease (Bang et al., 2024).

Despite the increased use of these models in the field, there has been
very little research investigating the consistency and reliability of their
output. As stated in a recent intergovernmental organization’s report on
responsible AI for health, “while generative AI is powerful, its creative
nature increases uncertainty and thereby risk for the delivery of
healthcare” (Anderson and Sutherland, 2024, p. 11). Unlike prior NLP
methods applied to measuring mental states, generative LLMs are sto-
chastic models (e.g., non-deterministic). Put differently, they may
generate completely different content, ratings, or decisions given the
same input. Thus, the importance of assessing the consistency of a
model’s output and understanding potential sources of variability
cannot be overstated. It is a key factor in establishing trust in AI systems,
a major barrier to the development of real-world applications for mental
healthcare (Chandler et al., 2020b). In addition to eroding trust by cli-
nicians, patients, or other stakeholders, inconsistent outputs could lead
to misdiagnoses, inappropriate treatment recommendations, or other
potentially harmful consequences in a clinical setting.

In this paper, we have addressed this research gap by using modern
LLMs to re-analyze a subset of the data from Elvevåg et al. (2007),
collected in a structured interview designed to elicit uninterrupted
speech from participants (Experiment 4 in Elvevåg et al. (2007)). Our
study aimed to assess the ability of generative LLMs (specifically, the
latest models in the OpenAI GPT series and the open source Llama 3
model) to predict human ratings of coherence, content, and tangen-
tiality assigned to the spoken responses, and to compare these LLMs with
methods used in previous research. Furthermore, we evaluated the
consistency of LLM-generated ratings. Put differently, we investigated
the degree to which LLMs generated the same ratings given the same
responses over subsequent trials, and the effect of consistency on pre-
diction accuracy. Through this investigation, we aimed to understand
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what factors influenced the consistency of LLM output, recognize limi-
tations in these models, and identify best practices for ensuring the most
accurate and reliable output when utilizing these powerful models for
psychiatric textual analysis.

1.1. Participants

Participants included 26 patients with a formal diagnosis of schizo-
phrenia and 25 healthy controls, providing a diverse sample with which
to conduct our analysis. Patients met the DSM-IV criteria for schizo-
phrenia or schizoaffective disorder, as determined using the Structured
Clinical Interview for DSM-IV (SCID), with three psychiatrists reaching a
consensus diagnosis. Further, the severity of thought disorder was
assessed in patients using a standard clinical measure (the Scale for the
Assessment of Thought, Language and Communication; TLC (Andrea-
sen, 1986)), as described in Elvevåg et al. (2007). Notably, these TLC
ratings were assigned based on a clinical interview separate from the
speech tasks analyzed in this study. Patients’ global TLC scores (on a
scale of 0 to 4, with higher scores representing greater severity of
thought disorder) ranged from 0 (absent) to 3.8 (mean = 1.81, SD =

1.10), indicating a wide range of severity among the patients in this
sample. Characteristics of the patient and control samples are shown
below in Table 1.

1.2. Dataset

The dataset analyzed in this study is a subset of data from Elvevåg
et al. (2007), specifically focusing on the spoken (manually transcribed)
responses to two questions that were asked during the course of a
structured interview conducted in English: (1) “Could you tell me the
story of Cinderella?” and (2) “What are the steps involved when people have
to do laundry?” These tasks were designed to elicit sufficient speech from
participants in a systematic manner to allow reliable human assessment
of dimensions such as coherence, tangentiality and content. Participants
were encouraged to talk for as long as they wished, and there was no
time limit. The dataset contained responses to both questions from all
participants in our sample, with the exception of one control participant
who did not have a response for the Cinderella task, although their data
was not excluded from analysis on the laundry task. All transcripts were
manually checked to verify that they did not contain any personally
identifiable information. In addition to the transcripts of each response,
the dataset also contained human-annotated ratings of coherence, con-
tent, and tangentiality for each response. Each of these three dimensions
was blindly rated by two experts (i.e., the experts were blind to diag-
nostic group membership, but not to the objectives of the study), using a
scoring rubric developed in Elvevåg et al. (2007) (see supplementary
material), in order to characterize the type and level of thought disorder
present in each response. The consistency among the two raters was
good (intra-class coefficients were 0.85, 0.97 and 0.94 for coherence,
content and tangentiality, respectively). Since agreement was high, and

to maintain the independence of sample ratings for analysis, the ratings
were averaged across the two raters to generate a single ground truth
human rating for each response. Table 2 shows the questions used in
both tasks, along with sample responses (one from each task for both
patient and control participants) and their corresponding human
ratings.

As a preliminary step, we investigated the relationship between the
scores from traditional ratings of patients’ thought disorder (i.e., global
TLC scores) and the three human ratings of the spoken responses to the
Cinderella and laundry prompts, which were found to be positively
correlated (Pearson R values range from 0.17 to 0.64), although only
three of the correlations were statistically significant (Table 3). We also
computed the correlations between the three human ratings within each
task. The results (Table 3) show that the three ratings were moderately
correlated with each other (Pearson R values range from 0.46 to 0.74),
although the magnitudes of the correlation are low enough to suggest
the ratings capture distinct dimensions of thought disorder. Importantly,
using human ratings of these responses allows us to move beyond group
differences (e.g., classifying patients vs. control participants, which
themselves are heterogeneous groups that may contain diverse pre-
sentations of the symptoms of interest), and focus on the actual distur-
bances in speech that are known to be present in the data (Hitczenko
et al., 2021).

1.3. Research questions and experiments

Two experiments were designed to evaluate the accuracy and con-
sistency of state-of-the-art LLMs in predicting human ratings (labels) of
coherence, content, and tangentiality from the transcripts in this data-
set. We also compared the performance of LLMs with more traditional
supervised machine learning models using NLP features that have been
applied in previous research. The experiments were guided by the
following research questions.

Question 1: How accurately can state-of-the-art LLMs predict the
human ratings of coherence, content, and tangentiality compared to a
traditional supervised machine learning model that uses NLP features
from prior research?

Question 2: What effect do different model versions (e.g., GPT-3.5 vs.
GPT-4 vs. Llama 3) and parameters (e.g., temperature values; see Section
2.1.3) have on LLM predictions?

Question 3: How consistent are LLM predictions across multiple trials
in this rating task (e.g., how much variance is there when a given
response is rated multiple times)?

Experiment 1 addressed the first and second questions by (1)
developing supervised baseline models that used NLP features from
previous research to predict the three human ratings, and then (2)
comparing the accuracy of these baseline models’ predictions with rat-
ings predicted by the LLM, in order to determine if LLMs can improve on
the performance of the previous generation of models. Further, Experi-
ment 1 investigated different LLM versions and parameters, and the
effect they had on rating predictions. Finally, Experiment 2 answered
the third question by quantifying the consistency of LLM-generated
ratings across multiple trials.

2. Experiment 1: Accuracy of model ratings

2.1. Methods

2.1.1. Training of supervised baseline models
In order to determine how well LLMs may perform relative to

traditional NLP models, we first created a baseline model for each label
(coherence, content, tangentiality), and their rating accuracies were
compared to the accuracies of the LLMs. Our goal was to generate a
reasonable benchmark of traditional NLP performance with which to
compare our results. Because the three labels differ in the underlying
constructs that they each measure (see Table 3), we developed three

Table 1
Characteristics of patient and control participants in the sample.

Patients (n ¼ 26)
19 M, 7F

Controls (n ¼
25)
10 M, 15F

Mean SD Mean SD

Age in years 33.8 7.6 35.4 12.9
WAIS-R IQ* 94.5 13.4 108.0 11.9
WRAT-R IQ* 103.6 11.5 109.3 8.7
Age at 1st hospitalization (years) 21.5 4.2 N/A
TLC global score (0–4 scale) 1.8 (Range: 0–3.8) 1.1 N/A

Intellectual function was assessed with the Wide Range Achievement Test-
Revised Reading (WRAT-R; Jastak and Wilkinson, 1984) and a short form of
the Wechsler Adult Intelligence Scale-Revised (WAIS-R; Wechsler, 1981).
*p < .05 (independent samples t-test).
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distinct sets of language features for our baseline models. The feature
sets were based on previous research (Elvevåg et al., 2007; Iter et al.,
2018; Morgan et al., 2021; Tang et al., 2021), and the technical details of
how the feature sets were derived for each of the three labels are pre-
sented in the supplementary material. After extracting these feature sets
for the three labels, we trained Random Forest Regressor models to
predict the human ratings of these labels. We used a leave-one-out cross
validation scheme to generate predictions for each transcript and eval-
uate the accuracy of these predicted ratings.

2.1.2. Prompt design for LLM ratings
Next, we developed a prompt to elicit ratings for each transcript from

the LLM. Unlike traditional supervised NLP approaches which aim to
learn predictive patterns from labeled data, LLMs can be “prompted” to
generate predictions without using specific examples as training data.
However, this paradigm, known as “zero-shot learning” (Kojima et al.,

2022) depends heavily on the quality of the prompt used to query the
LLM (Liu et al., 2023), and as such, developing good prompts that elicit
accurate predictions for a given task is an important part of the process
(Wang et al., 2023). In this study, we used a prompt similar to the one
outlined in Naismith et al. (2023). Although this example comes from a
different domain (second language learners), the application is very
similar to ours, as they demonstrated promising performance in using
GPT-4 to rate written discourse coherence in a manner consistent with
expert human raters. Our prompt contained four sections: (1) TASK: a
detailed description of the task to be completed by the LLM and desired
output, (2) RUBRIC: the rubric by which to rate the responses (the same
rubric used by the human raters in the original dataset - see supple-
mentary material), (3) GUIDELINES: a more specific set of instructions
for the LLM to complete the task and generate output in the desired
format, and (4) TEXT: the transcript of the question, and the corre-
sponding response to be rated. An example of a full prompt for the
coherence label on the Cinderella task is shown in Fig. 1.

2.1.3. Generation of LLM ratings
We used the prompt shown above to elicit ratings from the LLMs.

Specifically, we used GPT-3.5, GPT-4, and Llama 3. Our general pro-
cedure is illustrated below in Fig. 2. For the GPT models, we queried the
model using the chat completions endpoint of the OpenAI API (OpenAI
Platform, 2023). In this experiment, we tested two models
“gpt-3.5-turbo” and “gpt-4″ as these were the two newest models at the
time of initial testing (October 2023). Although we expected GPT-4 to
perform better, we wanted to compare its performance with GPT-3.5, as
it is more widely accessible than GPT-4 (due to usage limits and
significantly higher cost (80 times) of GPT-4). Additionally, in order to
compare the GPT models with an open source alternative, we utilized
the Meta Llama 3 model (AI@Meta, 2024). Specifically, we queried the
“meta-llama-3–70b-instruct” model using the replicate.com API. In
addition to comparing these three LLMs, we also tested different values

Table 2
The two speech tasks analyzed in this study, along with a sample response to each (for both patient and control participants) and the corresponding human ratings
assigned to the sample responses. Note: the sample responses shown below are based on actual responses in the dataset but are not presented verbatim and have been
lightly edited as an extra precaution to preserve anonymity.

Prompt Could you tell me the story of Cinderella? What are the steps involved when people have to do laundry?

Patients N = 26 responses N = 26 responses

Mean number of words (range) 237 (34–634) 139 (35–684)
Sample response “um let’s see cinderella she uh I forget how it starts she gets hooked up

with her dad hooks up with the evil stepmother who has evil kids and
they make her do the housework and chores then cinderella meets a
fairy godmother who can make her wishes come true so she goes to the
ball and meets the prince loses a slipper they get married or
something”

“well you’re living with people so you have to have your own day
when you do your laundry a day when you get all your dirty clothes
you put them in either hot or cold water hot is for the same colors like
white if you put a whole bunch of stuff in there the same color or
different colors you put it on cold and you uh cold and you set it on
large and when it’s done you put it in the washing machine or in the
dryer I mean and that’s it you’re done so you put your clothes away
and you have nice clean clothes”

Human ratings for sample response
(1–7 scale)

Coherence: 3
Content: 2.5
Tangentiality: 1

Coherence: 3.5
Content: 4
Tangentiality: 2.5

Controls N = 24 responses N = 25 responses

Mean number of words (range) 452 (170–1292) 162 (36–603)

Sample response “cinderella was the um the stepdaughter of somebody who got stuck in
the house doing all the chores and um the uh daughters of the mother
of the house were invited to the ball and cinderella wanted to go to the
ball but she wasn’t able to go and then she found her fairy god mother
who made her a nice dress and gave her a um transportation but told
her she to be back by midnight so she went to the ball and it was a
smashing success um but it was close to midnight and she was dancing
with the prince who liked her and she ran out at the stroke of midnight
and lost her shoe her uh let’s see then he went around looking for
whoever belonged to the shoe and it fit cinderella and they got
married and lived happily ever after”

“well first you need dirty clothes to wash but generally speaking you
would uh sort the clothes um by colors so separate those for soak and
general soak um put ’em in the washing machine um add the cleaning
ingredients put the top down turn the knobs and put it on to start um
then wait until it’s um done pull ’em out put ’em in the dryer and dry
’em out”

Human ratings for sample response
(1–7 scale)

Coherence: 1.5
Content: 2.5
Tangentiality: 1

Coherence: 1
Content: 2
Tangentiality: 1

Table 3
First row: Correlations (Pearson R) between global TLC scores and the three
human ratings on both the Cinderella and Laundry speech tasks, for patients
only (as control participants were not given a TLC interview). Below: Within-
task correlations between the three human ratings, computed using all data in
the sample (both patient and control participants).

Cinderella Laundry

Coh. Cont. Tang. Coh. Cont. Tang.

TLC Score
(Patients)

0.59* 0.37 0.36 0.64* 0.54* 0.17

Coherence – 0.58* 0.55* – 0.74* 0.64*
Content – – 0.46* – – 0.49*
Tangentiality – – – – – –

Note: Coh. = Coherence, Cont. = Content, Tang. = Tangentiality.
*p < .01
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for the “temperature” parameter to investigate its effect on model ac-
curacy and consistency. The temperature parameter is described in the
OpenAI API documentation (as of October 2023): “The API is
non-deterministic by default. This means that you might get a slightly

different completion every time you call it, even if your prompt stays the same.
Setting temperature to 0 will make the outputs mostly deterministic, but a
small amount of variability will remain. […] Lower values for temperature
result in more consistent outputs, while higher values generate more diverse

Fig. 1. Example of a prompt used to query the LLMs. This specific prompt is for the coherence label and the Cinderella prompt.

Fig. 2. The procedure for eliciting ratings from the LLMs and evaluating accuracy and consistency.
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and creative results.” The temperature parameter can range from 0 to 2
for the OpenAI models, and 0 to 5 for Llama 3 (via replicate.com). For all
three LLMs, we tested temperature values of 0, 0.5, and 1 (as we found
that the models would not reliably generate output in the desired format
using values greater than 1).

We generated two predictions for each label (coherence, content, and
tangentiality) with these three temperature values for each transcript
from the Cinderella and laundry tasks using the GPT-3.5, GPT-4, and
Llama 3 models. To assess model accuracy, we computed a Pearson
correlation to the human ratings (averaged across the two generated
predictions).

2.2. Results

2.2.1. Accuracy of supervised baseline models
Pearson correlations between the baseline model-predicted ratings

and human ratings are shown below in Table 4. Overall, the correlations
were low to moderate, and performance was worse on the laundry task
than Cinderella. Notably, at the level of individual labels, our baseline
predictions were less accurate than every LLM-generated prediction
with the exception of tangentiality on the Cinderella task, where the
baseline model yielded the best performance (correlation of 0.60).

2.2.2. Accuracy of LLMs
The Pearson correlations between the LLM-generated ratings and the

human ratings are also shown in Table 4. Since two iterations of ratings
were generated (to assess model consistency, see Experiment 2), we
computed the correlations to human ratings separately for each itera-
tion, and we report the mean in Table 4. Our results indicate that all
three LLMs were able to predict human ratings for coherence, content,
and tangentiality with a moderate degree of accuracy. On average, GPT-
4 matched or exceeded GPT-3.5 performance in both the Cinderella
(highest mean correlation of 0.49 vs. 0.48) and Laundry (0.66 vs. 0.58)
tasks, while Llama 3 matched GPT-4 performance in the Cinderella task
(also achieving 0.49) and outperformed GPT-4 in the laundry task (0.69
vs. 0.66).

These results indicate that on average, LLM-generated predictions
are far more accurate to human ratings than the supervised baseline
predictions. This demonstrates that the “zero-shot” method used to elicit
ratings from LLMs is a promising approach to predicting human ratings
of thought disorder. It also suggests that LLMs are able to use the rubric
included in the prompt to predict these ratings in a manner consistent
with humans, even without access to labeled training examples. How-
ever, it also highlights some limitations to our baseline method. One
possible explanation for the poor performance of the baseline models is
that given the small size of our dataset, the supervised models did not
have enough data to learn patterns from the baseline feature sets that
reliably predict the human ratings. Another reason for the low

performance could be that the feature sets we chose were suboptimal,
and accuracy could be improved by modifying these features or adding
additional features. However, in this paper we chose not to conduct
additional experiments to try to improve our supervised baseline results,
because (1) altering our features after evaluating their performance on
the dataset (e.g., after performing cross-validation) may violate the in-
dependence of training and test data and lead to overly optimistic re-
sults, and (2) the primary goal of our paper is to evaluate the accuracy
and consistency of LLM-generated predictions, not to conduct a
comprehensive comparison with traditional supervised NLP methods.
Thus, for the rest of the paper we focus on the factors affecting the
consistency of LLM-generated ratings.

3. Experiment 2: Consistency of model ratings

3.1. Methods

3.1.1. Consistency across two iterations
This experiment aimed to assess the consistency of LLM ratings

across multiple trials and investigate the factors that influence this
consistency. The procedure used to generate ratings for each transcript
with different model and temperature combinations is described above
in Experiment 1 (see Fig. 2). Critically for this experiment, we generated
two iterations of predictions for each transcript, model, and temperature
combination. Essentially, generating two iterations is analagous to
having human raters rate the same transcripts twice without remem-
bering how they rated it the first time. Having two iterations of ratings
allows us to assess the consistency of LLM predictions by investigating
the extent to which the ratings are correlated across trials (e.g., a highly
consistent model would yield a high correlation across the two trials). To
do so, we computed a Pearson correlation between the two iterations of
ratings for each model and temperature combination. This design also
allows us to determine the effect that the temperature parameter has on
model consistency and identify possible tradeoffs between accuracy and
consistency.

3.1.2. Consistency across 25 iterations
In addition to evaluating consistency using the two iterations of

ratings as described above, we also sought to quantify the consistency of
ratings across a larger number of iterations (n = 25). To do so, we
focused specifically on the Cinderella task and the coherence label. This
decision was made because the cost of running a large number of iter-
ations for all three labels on both tasks was prohibitive, so we selected a
single task and label to conduct experiments with a higher number of
iterations. The same methods described in Experiment 1 were used to
generate an additional 25 iterations of ratings for all three models (GPT-
3.5, GPT-4, and Llama 3), and all three temperature values (0, 0.5, 1).
These experiments were conducted with the GPT models approximately

Table 4
Accuracy of Baseline and LLM Ratings. Table shows Pearson correlations between LLM-generated ratings (mean of two iterations) and human ratings for all three
models and temperature parameter values (0, .5, and 1). Note: Coh. = Coherence, Cont. = Content, and Tang. = Tangentiality.

Task Cinderella Laundry

Label Coh. Cont. Tang. Mean Coh. Cont. Tang. Mean

Baseline 0.22 0.31 0.60 0.38 0.05 0.18 0.25 0.16
GPT-3.5
Temp = 0 0.45 0.49 0.49 0.48 0.56 0.58 0.59 0.58
0.5 0.54 0.46 0.28 0.43 0.39 0.52 0.46 0.46
1 0.48 0.40 0.23 0.37 0.40 0.47 0.52 0.46
GPT-4
0 0.59 0.39 0.46 0.48 0.62 0.65 0.65 0.64
0.5 0.54 0.45 0.43 0.47 0.63 0.61 0.73 0.66
1 0.54 0.47 0.46 0.49 0.69 0.56 0.65 0.63
Llama 3
0 0.57 0.39 0.46 0.47 0.69 0.66 0.71 0.69
0.5 0.56 0.44 0.48 0.49 0.68 0.67 0.73 0.69
1 0.57 0.37 0.44 0.46 0.66 0.68 0.69 0.68
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4 months after our initial testing (February 2024), and with the Llama 3
model in July 2024.

Using these new distributions of 25 ratings per response, we quan-
tified the consistency in three ways. First, for each of the n = 50 re-
sponses (e.g., 1 response for each of the 50 participants), we computed
the variance of the predicted ratings across all 25 iterations. This metric
allowed us to quantify the spread of the distribution of ratings for each
individual response. Second, for each response we computed the range
of the predicted ratings across the 25 iterations. This metric quantified
the difference between the most extreme ratings (out of 25) for a given
individual’s response. Thus, while the variance provided an estimate of
how much (on average) a single rating differed from the mean, the range
gave a worst-case estimate of how far apart two ratings for the same
response could be. For our third metric we computed the overall accu-
racy for each of the 25 iterations using the same methods described
above (Pearson correlation of predicted ratings to human ratings). This
metric allowed us to visualize the overall distribution of accuracy across
the 25 iterations, as well as capture informative statistics on the range of
accuracies (e.g., mean, max, and min correlations).

Finally, we used the distributions of 25 ratings to investigate a
technique for improving the accuracy and stability of our predictions:
ensemble learning. An ensemble prediction system works by combining
the predictions of multiple models, which can potentially result in su-
perior predictive performance than a single model alone (Nori et al.,
2023). In this experiment, we created a simple ensemble prediction by
computing the mean predicted rating for each response across all 25
iterations. The goal of this experiment was to compare the accuracy of
the ensemble prediction with the overall distribution of accuracies from
the 25 iterations.

3.2. Results

3.2.1. Consistency across two iterations
Pearson correlations between the two iterations of LLM-generated

ratings are shown below in Table 5. Our findings indicate that the
consistency of LLM ratings is highly dependent on both the model choice
and the temperature parameter. Notably, Llama 3 exhibited the highest
consistency of the three models across all temperature values (mean
correlations ranged from 0.94 to 1.00). At temperature = 0, Llama 3
showed perfect consistency (correlations of 1.00) for all labels and
maintained high consistency (mean correlation >= 0.94) even at tem-
peratures of 0.5 and 1. Similarly, both GPT-3.5 and GPT-4 exhibited high
consistency at temperature = 0, with mean correlations ranging from
0.96 to 0.98. However, we found that at higher temperature values of
0.5 and 1 there were notable differences between the consistency of
GPT-3.5 and GPT-4. For example, at a temperature of 0.5, GPT-3.5
showed only moderate consistency (mean correlations of 0.70 and
0.62 in the Cinderella and laundry tasks, respectively) compared to GPT-

4, which remained highly consistent (mean correlations of 0.92 and
0.95, respectively). This gap in consistency widened even further at the
higher temperature value of 1.

The overall trend shows that the consistency of GPT-3.5 is highly
impacted by the temperature parameter, GPT-4 remains relatively
consistent even at higher temperature values, and Llama 3 maintains
very high consistency across all temperature values tested. This suggests
that the selection of a lower temperature value is crucial to generating
consistent output, particularly with GPT-3.5. This finding is concerning,
given that many studies which have used GPT models for analysis did
not report a selection of the temperature parameter at all. Additionally,
the default value for this parameter in the API and web interface is 1,
likely because this value is optimized for the generation of creative
content (which may be the primary use case for many users). However,
this suggests that by default, much of the output from these models
would be highly inconsistent across multiple trials.

3.2.2. Consistency of coherence ratings across 25 iterations
The distributions of the three metrics used to quantify consistency

across 25 iterations are shown below in Fig. 3. Kernel Density Estimate
(KDE) plots were created to visualize the distributions. In addition to the
plots shown in Fig. 3, complete descriptive statistics (including the
mean, max, and min correlations across the 25 iterations, as well as the
mean variance and mean range) for these results can be found in the
supplementary material.

The large sample of iterations (n = 25) in this experiment provided
additional insight into the consistency of LLM-generated ratings. In line
with our previous findings (Table 5), GPT-3.5 showed much higher
variance than GPT-4 at higher temperatures, while having slightly lower
variance at temperature = 0. Similarly, Llama 3 showed by far the
lowest variance across all temperature values, producing a mean vari-
ance of 0.056 even at temperature = 1, compared to 0.511 and 0.194 for
GPT-3.5 and GPT-4, respectively (see supplementary material). A
similar pattern was observed in the range of ratings across 25 iterations.
Notably, at temperature = 1, the mean within-response range for GPT-
3.5 was 2.38, compared to 1.21 for GPT-4, and only 0.54 for Llama 3.
This finding illustrates that Llama 3 maintains very high consistency
even at higher temperature values, as on average, any two individual
ratings (out of 25 trials) for the same response only differed by at most
half a point (on the 7-point scale). Overall, these results illustrate that
given an appropriate choice of model and temperature value (e.g., Llama
3, or GPT-4 with temperature = 0.5), the ratings can be quite consistent
over 25 iterations. However, at higher temperature values, particularly
with the older GPT-3.5 model, the consistency can decrease
substantially.

The third row of Fig. 3 illustrates the effect of inconsistency on the
overall accuracy of the ratings. For all three models, the range of ac-
curacies (Pearson R values) increases with the temperature value. In

Table 5
Consistency of LLM Ratings. Table shows Pearson correlations between two iterations of LLM-generated ratings, for all three models and temperature values. Note:
Coh. = Coherence, Cont. = Content, and Tang. = Tangentiality.

Task Cinderella Laundry

Label Coh. Cont. Tang. Mean Coh. Cont. Tang. Mean

GPT-3.5
Temp = 0 0.97 0.97 1.00 0.98 1.00 0.97 0.91 0.96
0.5 0.70 0.81 0.58 0.70 0.59 0.86 0.39 0.62
1 0.36 0.48 0.11 0.32 0.18 0.53 0.26 0.32
GPT-4
0 0.93 0.96 0.99 0.96 0.96 0.98 0.96 0.97
0.5 0.93 0.95 0.89 0.92 0.98 0.94 0.92 0.95
1 0.71 0.90 0.85 0.82 0.81 0.88 0.96 0.88
Llama 3
0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.5 0.97 0.96 0.95 0.96 0.99 0.98 0.98 0.98
1 0.95 0.95 0.91 0.94 0.98 0.98 0.97 0.98
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other words, a higher temperature value will yield a wider distribution
of accuracies, particularly with GPT-3.5. However, for all three models
the highest mean correlation (over 25 iterations) was obtained with
temperature = 0.5 (see supplementary material), suggesting an advan-
tage in terms of accuracy for intermediate temperature values, albeit at
the cost of greater variance.

The ensemble method used to aggregate predictions across iterations
proved to be an effective way to improve accuracy, particularly at higher
temperature values in models with higher variance. As seen in Fig. 3, for
all three models, the accuracy of the ensemble prediction (colored ver-
tical lines) was higher than the mean accuracy, and at the higher tem-
peratures this was especially evident. The Llama 3 ensemble prediction
improved performance the least (relative to the GPT models), likely
because of the low levels of variance in the Llama 3 ratings to begin with.
Still, the Llama 3 ensemble method was more accurate than 60–68% of
the 25 individual iterations, depending on temperature value (see sup-
plementary material). The accuracy of the GPT-3.5 ensemble prediction
was higher than 96% of the 25 individual iterations at temperature =

0.5, and higher than 100% of iterations at temperature = 1.0, suggesting
a significant improvement in accuracy from ensembling. Likewise, for
GPT-4, the ensemble prediction was more accurate than 80 and 84% of
the 25 iterations at temperature = 0.5 and 1.0, respectively, and the
highest overall accuracy (Pearson R = 0.639) was obtained from the

GPT-4 ensemble with temperature = 1. This finding indicates that there
is an advantage to using a higher temperature if predictions are
ensembled across multiple iterations and suggests that the higher vari-
ability in ratings leads to a more accurate ensemble prediction. This also
shows that ensembling predictions can be an effective way to mitigate
the inconsistency inherent in LLM output, as it was shown here to
improve accuracy on average, and using the mean value across multiple
iterations is robust to the variability of individual ratings.

4. Discussion

The results of our study provide valuable insights into the use of
generative LLMs for predicting human ratings of thought disorder in the
context of psychiatric textual analysis. Our findings demonstrate that
LLMs, specifically GPT-3.5, GPT-4, and Llama 3 can generate ratings
that correlate moderately well with human ratings. This suggests that
LLMs have potential utility in psychiatric research settings, particularly
for use in tasks that involve linguistic analysis and rating. However, the
inconsistency of these models’ output highlights potential limitations
and steps needed to improve their reliability.

The observed difference in consistency between GPT-3.5, GPT-4, and
Llama 3, especially at higher temperature values, emphasizes the need
for careful model selection and parameter tuning when applying LLMs in

Fig. 3. Consistency metrics using 25 iterations of ratings for the coherence label (Cinderella task). The first row shows the distributions of within-response variance
(computed across 25 ratings for all 50 responses). The second row shows the distributions of the range of ratings for each individual response (also computed across
25 ratings for all 50 responses), and the third row shows the distribution of overall accuracies (Pearson R correlations with human labels) for all 25 iterations. The
vertical lines in the third row show the accuracy of the ensemble predictions described above.
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psychiatric research. High variability in LLM’s output could potentially
lead to inconsistent results, which might negatively impact decision-
making processes in a clinical setting. Further, inconsistent output
may undermine trust in AI-based systems, limiting the potential for
these powerful tools to eventually be utilized in real-world settings. This
is particularly concerning for the field because many recent studies have
employed these GPT models without any mention of parameter selection
(e.g., temperature value) or evaluation of output consistency across
multiple trials. Our findings show that resorting to GPT’s “default” pa-
rameters may result in inconsistent output and results that do not
replicate. Our results also highlight several possible approaches for
mitigating LLM inconsistency. We found that ratings were more
consistent when using GPT-4 with lower temperature values (0 and 0.5),
and that overall Llama 3 produced much more consistent ratings than
the GPT models. Further, we found that model accuracy could be
increased via a simple ensemble method, which improves consistency by
averaging across multiple iterations of ratings. Notably, the ensemble
method worked best with higher temperature values. This finding
demonstrates an important tradeoff: higher temperature values will
result in less consistent individual ratings, but a more accurate overall
ensemble, while lower temperature values yield more consistent indi-
vidual ratings yet a less accurate ensemble. Indeed, the ensemble
method is analogous to having 25 separate raters pooling their judg-
ments, and our results show that the more variable the raters’ judge-
ments are, the more accurate their pooled predictions will be.

4.1. Ethical considerations

This paper focused primarily on the issue of LLM consistency as a
practical challenge to developing computational methods for assessing
thought disorder. However, the application of LLMs in psychiatry also
requires careful consideration of several ethical concerns (Diaz-Asper
et al., 2024; Li et al., 2023). As discussed above, the risk of inconsistent
assessments could lead to adverse consequences in a clinical setting
(e.g., misdiagnosis) and a loss of trust by stakeholders, particularly given
the lack of explainability of these models (He et al., 2023). Thus, it is
essential to appropriately convey the limitations of these methods,
ensure rigorous verification of their outputs, develop methods to in-
crease their transparency, and design safeguards to manage these risks.
Beyond the challenges associated with a lack of consistency, there are
significant risks of LLMs producing biased or harmful content (Bender
et al., 2021; Guo and Caliskan, 2021; Singhal et al., 2022), resulting in
systems that may perpetuate bias pertaining to race, sex, or culture.
Additionally, the use of LLMs in psychiatry presents a number of ethical
concerns pertaining to data privacy (Minssen et al., 2020). Textual data
input to LLM APIs may contain sensitive protected health information or
personally identifiable information, and many commercial AI com-
panies lack transparency in how they use or store this textual data (Li
et al., 2023). Thus, another critical step is to implement strict controls
for the de-identification of data that may be analyzed by an LLM.
Alternatively, some models can be downloaded onto a secure and pri-
vate server, which negates the risks of uploading sensitive information
to a company’s API, although thus far most research in the field has not
used this approach. Obviously, much work remains to be done to address
these challenges and work toward the responsible, trustworthy, and
ethical application of AI in healthcare (Anderson and Sutherland, 2024;
Diaz-Asper et al., 2024). This paper focused on one important piece of
this work (evaluating LLMs for accuracy and consistency) and illustrates
the critical need for developers and clinicians to understand and miti-
gate their limitations as they work to incorporate these powerful tools in
psychiatric research and practice.

4.2. Limitations and future work

This study has a number of limitations, which highlight several di-
rections for future research. First, our study only investigated three

LLMs (GPT-3.5, GPT-4, and Llama 3), although there are many other
models that could be compared (e.g., Gemini, Claude). We chose to focus
on these GPT models because of their popularity (both with the general
public as well as in recent research in psychiatry and medicine), and to
highlight issues with their consistency. Further, we tested Llama 3 to
include an open-source LLM to compare with the GPT models. However,
future work should conduct a more comprehensive evaluation of the
strengths and weaknesses of a larger group of LLMs in this domain (see
Jin et al., 2023; Xu et al., 2023 as examples).

Second, we restricted our experiments to a “zero-shot” approach,
where only a rubric and guidelines were provided to the LLM, as
opposed to a “few-shot” approach where the model is also provided with
a small number of labeled examples from the dataset. However, research
in other domains has shown that providing even a few training examples
can improve model performance (Wang et al., 2020), so future work can
investigate this strategy and the effect it has on model accuracy and
consistency. Similarly, we only investigated a simple ensemble strategy
(averaging ratings across multiple iterations) for mitigating inconsis-
tency. Future work should investigate additional prompting methods
and ensemble strategies (e.g., chain-of-thought prompting,
self-consistency prompting, ensemble refinement (see Singhal et al.,
2023) for improving the consistency of LLM output in similar psychiatric
applications).

Third, it is worth noting that this study analyzed speech that was
transcribed manually, and thus does not represent a fully automated
approach in its current form. However, this genre of speech (e.g., story
recall) has been shown to be very suitable for automatic speech recog-
nition (ASR), with fully automated systems yielding comparable results
to manual transcription (Holmlund et al., 2020). Thus, this likely does
not represent a significant barrier to implementing these methods as part
of a fully automated, end-to-end system, although it would be necessary
to have a method in place to check the accuracy of ASR transcription
(Diaz-Asper et al., 2022). Also of note is that the speech data studied was
in English only, which raises the question of how well the method
generalizes to other languages. Existing LLMs do have multi-lingual
capabilities, and other research has investigated features such as
coherence in a variety of other languages (e.g., German, Danish, Chi-
nese) with different levels of success, which may be attributed to factors
in the model, or aspects of coherence in the language itself (Just et al.,
2020; Parola et al., 2023). This is another important area for future
research. Finally, we focused exclusively on the numeric ratings and did
not analyze the explanations generated by the LLMs. We chose to
prompt the model to generate explanations in addition to numeric rat-
ings because previous work has shown that this method can produce
more accurate results than generating a rating alone (Naismith et al.,
2023). However, in this study, we report only on the accuracy and
consistency of the numeric ratings, leaving further analysis of the ex-
planations to future work. In subsequent research we aim to investigate
both the quality and consistency of these explanations as well, as this is
potentially a promising step towards developing more trustworthy and
explainable AI systems.

4.3. Conclusion

The application of generative LLMs in psychiatry presents exciting
opportunities, particularly in assessing thought disorders from speech.
Our study has shown that these models are capable of predicting human
ratings of thought disorder, even without task- or domain-specific tun-
ing, or access to labeled training data. However, our study also identified
major concerns with the inconsistency of LLM output. In light of these
concerns, we showed that inconsistency could largely be mitigated by
careful model and parameter selection. Further, our experiments indi-
cated that LLM ensembles are a promising method to improve the con-
sistency and reliability of LLM output, and we suggest that future
research should investigate additional prompting and ensemble strate-
gies to improve performance. We also recommend that future research
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applying LLMs in psychiatric applications include rigorous evaluations
of consistency, reporting and testing of model parameters, and focus on
creating mechanisms to control and manage the inconsistency inherent
in these models. In conclusion, the novel use of LLMs for assessing
thought disorder, though promising, necessitates a thorough under-
standing of their functioning to ensure their eventual safe and effective
application in clinical settings.

Declaration of generative AI and AI-assisted technologies in the writing
process

During the preparation of this work the author(s) used GPT-4 in
order to improve readability of some portions of the manuscript, as well
as to create some python functions to aid in the analyses. After using this
tool/service, the author(s) reviewed and edited the content as needed
and take(s) full responsibility for the content of the publication.

CRediT authorship contribution statement

Samuel L. Pugh:Writing – review& editing, Writing – original draft,
Visualization, Software, Methodology, Formal analysis, Conceptualiza-
tion. Chelsea Chandler: Writing – review & editing, Software, Meth-
odology. Alex S. Cohen: Writing – review & editing, Supervision.
Catherine Diaz-Asper: Writing – review & editing, Supervision. Brita
Elvevåg: Writing – review & editing, Supervision, Project administra-
tion, Data curation, Conceptualization. PeterW. Foltz:Writing – review
& editing, Supervision, Project administration, Methodology,
Conceptualization.

Declaration of competing interest

A.S.C., has stock or related interests in Quantic Innovation which
develops and validates digital health measurements. In the past three
years, A.S.C has received honoraria/support from Indivior and Boeh-
ringer Ingelheim.

Supplementary materials

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.psychres.2024.116119.

References

AI@Meta. (2024). Llama 3 model card. Accessed June 27, 2024. https://github.com/met
a-llama/llama3/blob/main/MODEL_CARD.md.

Amin, M.M., Cambria, E., Schuller, B.W., 2023. Will affective computing emerge from
foundation models and general artificial intelligence? A First Evaluation of ChatGPT.
IEEe Intell. Syst. 38 (2), 15–23. https://doi.org/10.1109/MIS.2023.3254179.

Anderson, B., Sutherland, E., 2024. Collective Action For Responsible AI in Health.
OECD. https://doi.org/10.1787/f2050177-en.

Andreasen, N.C., 1986. Scale for the assessment of thought, language, and
communication (TLC). Schizophr. Bull. 12 (3), 473–482. https://doi.org/10.1093/
schbul/12.3.473.

Andreasen, N.C., Grove, W.M., 1986. Thought, language, and communication in
schizophrenia: diagnosis and prognosis. Schizophr. Bull. 12 (3), 348–359. https://
doi.org/10.1093/schbul/12.3.348.

Bang, J.-U., Han, S.-H., Kang, B.-O., 2024. Alzheimer’s disease recognition from
spontaneous speech using large language models. ETRI J 46, 96–105. https://doi.
org/10.4218/etrij.2023-0356.

Bedi, G., Carrillo, F., Cecchi, G.A., Slezak, D.F., Sigman, M., Mota, N.B., Ribeiro, S.,
Javitt, D.C., Copelli, M., Corcoran, C.M., 2015. Automated analysis of free speech
predicts psychosis onset in high-risk youths. NPJ. Schizophr. 1, 15030. https://doi.
org/10.1038/npjschz.2015.30.

Bender, E.M., Gebru, T., McMillan-Major, A., Shmitchell, S., 2021. On the dangers of
stochastic parrots: can language models be too big?. In: Proceedings of the 2021
ACM Conference on Fairness, Accountability, and Transparency, pp. 610–623.
https://doi.org/10.1145/3442188.3445922.

Chandler, C., Foltz, P.W., Cohen, A.S., Holmlund, T.B., Cheng, J., Bernstein, J.C.,
Rosenfeld, E.P., Elvevåg, B., 2020a. Machine learning for ambulatory applications of
neuropsychological testing. Intell. Based. Med. 1, 100006 https://doi.org/10.1016/j.
ibmed.2020.100006.

Chandler, C., Foltz, P.W., Elvevåg, B., 2020b. Using machine learning in psychiatry: the
need to establish a framework that nurtures trustworthiness. Schizophr. Bull. 46 (1),
11–14. https://doi.org/10.1093/schbul/sbz105.

Chandler, C., Holmlund, T.B., Foltz, P.W., Cohen, A.S., Elvevåg, B., 2021a. Extending the
usefulness of the verbal memory test: the promise of machine learning. Psychiatry
Res. 297, 113743 https://doi.org/10.1016/j.psychres.2021.113743.

Chandler, C., Foltz, P.W., Cohen, A.S., Holmlund, T.B., Elvevåg, B., 2021b. Safeguarding
against spurious AI-based predictions: the case of automated verbal memory
assessment. In: Proceedings of the NAACL-HLT 2021 Workshop on Computational
Linguistics and Clinical Psychology. https://www.aclweb.org/anthology/2021.clps
ych-1.20.pdf.

Corcoran, C.M., Carrillo, F., Fernández-Slezak, D., Bedi, G., Klim, C., Javitt, D.C.,
Bearden, C.E., Cecchi, G.A., 2018. Prediction of psychosis across protocols and risk
cohorts using automated language analysis. World Psychiatr. 17 (1), 67–75. https://
doi.org/10.1002/wps.20491.

Corcoran, C.M., Cecchi, G.A., 2020. Using language processing and speech analysis for
the identification of psychosis and other disorders. Biol. Psychiatr. Cogn. Neurosci.
Neuroimag. 5 (8), 770–779. https://doi.org/10.1016/j.bpsc.2020.06.004.

DeLisi, L.E., 2001. Speech disorder in schizophrenia: review of the literature and
exploration of its relation to the uniquely human capacity for language. Schizophr.
Bull. 27 (3), 481–496. https://doi.org/10.1093/oxfordjournals.schbul.a006889.

Diaz-Asper, M., Holmlund, T.B., Chandler, C., Diaz-Asper, C., Foltz, P.W., Cohen, A.S.,
Elvevåg, B., 2022. Using automated syllable counting to detect missing information
in speech transcripts from clinical settings. Psychiatry Res. 315, 114712 https://doi.
org/10.1016/j.psychres.2022.114712.

Diaz-Asper, C., Hauglid, M.K., Chandler, C., Cohen, A.S., Foltz, P.W., Elvevåg, B., 2024.
A framework for language technologies in behavioral research and clinical
applications: ethical challenges, implications, and solutions. Am. Psychol. 79 (1),
79–91. https://doi.org/10.1037/amp0001195.

Elvevåg, B., Foltz, P.W., Rosenstein, M., DeLisi, L.E., 2010. An automated method to
analyze language use in patients with schizophrenia and their first-degree relatives.
J. Neurolinguistics. 23 (3), 270–284. https://doi.org/10.1016/j.
jneuroling.2009.05.002.

Elvevåg, B., Foltz, P.W., Rosenstein, M., Ferrer-i-Cancho, R., De Deyne, S., Mizraji, E.,
Cohen, A., 2017. Thoughts about disordered thinking: measuring and quantifying
the laws of order and disorder. Schizophr. Bull. 43 (3), 509–513. https://doi.org/
10.1093/schbul/sbx040.

Elvevåg, B., Foltz, P.W., Weinberger, D.R., Goldberg, T.E., 2007. Quantifying
incoherence in speech: an automated methodology and novel application to
schizophrenia. Schizophr. Res. 93 (1–3), 304–316. https://doi.org/10.1016/j.
schres.2007.03.001.

Foltz, P.W., Chandler, C., Diaz-Asper, C., Cohen, A.S., Rodriguez, Z., Holmlund, T.B.,
Elvevåg, B., 2023. Reflections on the nature of measurement in language-based
automated assessments of patients’ mental state and cognitive function. Schizophr.
Res. https://doi.org/10.1016/j.schres.2022.07.011.

Grabb, D., 2023. The impact of prompt engineering in large language model
performance: a psychiatric example. J. Med. Artif. Intell. 6 https://doi.org/
10.21037/jmai-23-71.

Guo, W., Caliskan, A., 2021. Detecting emergent intersectional biases: contextualized
word embeddings contain a distribution of human-like biases. In: Proceedings of the
2021 AAAI/ACM Conference on AI, Ethics, and Society, pp. 122–133. https://doi.
org/10.1145/3461702.3462536.

Gupta, T., Hespos, S.J., Horton, W.S., Mittal, V.A., 2018. Automated analysis of written
narratives reveals abnormalities in referential cohesion in youth at ultra high risk for
psychosis. Schizophr. Res. 192, 82–88. https://doi.org/10.1016/j.
schres.2017.04.025.

He, K., Mao, R., Lin, Q., Ruan, Y., Lan, X., Feng, M., Cambria, E., 2023. A Survey of Large
Language Models for Healthcare: From Data, Technology, and Applications to
Accountability and Ethics. arXiv arXiv:2310.05694.

Hitczenko, K., Cowan, H., Mittal, V., Goldrick, M., 2021. Automated coherence measures
fail to index thought disorder in individuals at risk for psychosis. In: Goharian, N.,
Resnik, P., Yates, A., Ireland, M., Niederhoffer, K., Resnik, R. (Eds.), Proceedings of
the Seventh Workshop on Computational Linguistics and Clinical Psychology:
Improving Access. Association for Computational Linguistics, pp. 129–150. https://
doi.org/10.18653/v1/2021.clpsych-1.16.

Holmlund, T.B., Chandler, C., Foltz, P.W., Cohen, A.S., Cheng, J., Bernstein, J.C.,
Rosenfeld, E.P., Elvevåg, B., 2020. Applying speech technologies to assess verbal
memory in patients with serious mental illness. NPJ Digit. Med. 3, 1–8. https://doi.
org/10.1038/s41746-020-0241-7.

Iter, D., Yoon, J., Jurafsky, D., 2018. Automatic detection of incoherent speech for
diagnosing schizophrenia. In: Loveys, K., Niederhoffer, K., Prud’hommeaux, E.,
Resnik, R., Resnik, P. (Eds.), Proceedings of the fifth workshop on computational
linguistics and clinical psychology: from keyboard to clinic. Association for
Computational Linguistics, pp. 136–146. https://doi.org/10.18653/v1/W18-0615.

Jastak, S.R., Wilkinson, G.S., 1984. WRAT-R: Wide range Achievement Test-Revised
Administration Manual (1984 rev. Ed). Jastak Associates.

Jin, H., Chen, S., Wu, M., Zhu, K.Q., 2023. PsyEval: A Comprehensive Large Language
Model Evaluation Benchmark for Mental Health. arXiv arXiv:2311.09189.

Just, S.A., Haegert, E., Koranova, N., Broecker, A.-L., Nenchev, I., Funcke, J., Heinz, A.,
Bermpohl, F., Stede, M., Montag, C., 2020. Modeling incoherent discourse in
nonaffective psychosis. Front. Psychiatr. 11, 1–11. https://doi.org/10.3389/
fpsyt.2020.00846.

Kircher, T., Krug, A., Stratmann, M., Ghazi, S., Schales, C., Frauenheim, M., Turner, L.,
Fährmann, P., Hornig, T., Katzev, M., Grosvald, M., Müller-Isberner, R., Nagels, A.,
2014. A rating scale for the assessment of objective and subjective formal thought

S.L. Pugh et al. Psychiatry Research 341 (2024) 116119 

10 

https://doi.org/10.1016/j.psychres.2024.116119
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.1109/MIS.2023.3254179
https://doi.org/10.1787/f2050177-en
https://doi.org/10.1093/schbul/12.3.473
https://doi.org/10.1093/schbul/12.3.473
https://doi.org/10.1093/schbul/12.3.348
https://doi.org/10.1093/schbul/12.3.348
https://doi.org/10.4218/etrij.2023-0356
https://doi.org/10.4218/etrij.2023-0356
https://doi.org/10.1038/npjschz.2015.30
https://doi.org/10.1038/npjschz.2015.30
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1016/j.ibmed.2020.100006
https://doi.org/10.1016/j.ibmed.2020.100006
https://doi.org/10.1093/schbul/sbz105
https://doi.org/10.1016/j.psychres.2021.113743
https://www.aclweb.org/anthology/2021.clpsych-1.20.pdf
https://www.aclweb.org/anthology/2021.clpsych-1.20.pdf
https://doi.org/10.1002/wps.20491
https://doi.org/10.1002/wps.20491
https://doi.org/10.1016/j.bpsc.2020.06.004
https://doi.org/10.1093/oxfordjournals.schbul.a006889
https://doi.org/10.1016/j.psychres.2022.114712
https://doi.org/10.1016/j.psychres.2022.114712
https://doi.org/10.1037/amp0001195
https://doi.org/10.1016/j.jneuroling.2009.05.002
https://doi.org/10.1016/j.jneuroling.2009.05.002
https://doi.org/10.1093/schbul/sbx040
https://doi.org/10.1093/schbul/sbx040
https://doi.org/10.1016/j.schres.2007.03.001
https://doi.org/10.1016/j.schres.2007.03.001
https://doi.org/10.1016/j.schres.2022.07.011
https://doi.org/10.21037/jmai-23-71
https://doi.org/10.21037/jmai-23-71
https://doi.org/10.1145/3461702.3462536
https://doi.org/10.1145/3461702.3462536
https://doi.org/10.1016/j.schres.2017.04.025
https://doi.org/10.1016/j.schres.2017.04.025
http://refhub.elsevier.com/S0165-1781(24)00404-9/sbref0027
http://refhub.elsevier.com/S0165-1781(24)00404-9/sbref0027
http://refhub.elsevier.com/S0165-1781(24)00404-9/sbref0027
https://doi.org/10.18653/v1/2021.clpsych-1.16
https://doi.org/10.18653/v1/2021.clpsych-1.16
https://doi.org/10.1038/s41746-020-0241-7
https://doi.org/10.1038/s41746-020-0241-7
https://doi.org/10.18653/v1/W18-0615
http://refhub.elsevier.com/S0165-1781(24)00404-9/sbref0031
http://refhub.elsevier.com/S0165-1781(24)00404-9/sbref0031
http://refhub.elsevier.com/S0165-1781(24)00404-9/sbref0032
http://refhub.elsevier.com/S0165-1781(24)00404-9/sbref0032
https://doi.org/10.3389/fpsyt.2020.00846
https://doi.org/10.3389/fpsyt.2020.00846


and language disorder (TALD). Schizophr. Res. 160 (1), 216–221. https://doi.org/
10.1016/j.schres.2014.10.024.

Kojima, T., Gu, S.(Shane, Reid, M., Matsuo, Y., Iwasawa, Y., 2022. Large language
models are zero-shot reasoners. Adv. Neural Inf. Process. Syst. 35, 22199–22213.

Lamichhane, B., 2023. Evaluation of ChatGPT For NLP-based Mental Health
Applications. arXiv. arXiv:2303.15727. http://arxiv.org/abs/2303.15727.

Li, H., Moon, J.T., Purkayastha, S., Celi, L.A., Trivedi, H., Gichoya, J.W., 2023. Ethics of
large language models in medicine and medical research. Lancet Digit. Health 5 (6),
e333–e335. https://doi.org/10.1016/S2589-7500(23)00083-3.

Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., Neubig, G., 2023. Pre-train, Prompt, and
predict: a systematic survey of prompting methods in natural language processing.
ACM. Comput. Surv. 55 (9), 1–35. https://doi.org/10.1145/3560815.

Low, D.M., Bentley, K.H., Ghosh, S.S., 2020. Automated assessment of psychiatric
disorders using speech: a systematic review. Laryngoscope Investig. Otolaryngol. 5
(1), 96–116. https://doi.org/10.1002/lio2.354.

Luykx, J.J., Gerritse, F., Habets, P.C., Vinkers, C.H., 2023. The performance of ChatGPT
in generating answers to clinical questions in psychiatry: a two-layer assessment.
World Psychiatr. 22 (3), 479–480. https://doi.org/10.1002/wps.21145.

Minssen, T., Gerke, S., Aboy, M., Price, N., Cohen, G., 2020. Regulatory responses to
medical machine learning. J. Law Biosci. 7 (1) https://doi.org/10.1093/jlb/lsaa002.
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