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A B S T R A C T

Metal Additive Manufacturing (MAM) has seen significant growth in recent years, with sub-processes like
Metal Material Extrusion (MEX) reaching industrial readiness. MEX, known for its cost-effectiveness and ease
of integration, targets a distinct market segment compared to established high-end MAM processes. However,
despite technological improvements, its overall integration into the industry as a viable manufacturing
technology remains incomplete. This paper investigates the competitiveness of MEX, specifically its integration
into the supply chain and the implications on cost and carbon emissions. Utilizing real-world data, the research
develops a multi-objective optimization (MOO) model for a four-echelon supply chain including suppliers,
airports, production facilities, and customers. The optimization model is combined with a previously developed
cost model for MEX to optimize facility location in Norway using the NSGA-II algorithm. Employing a case
study approach, the paper examines the production of an industrial part using stainless steel 17-4PH, detailing
concrete process costs and system-level costs across four different production scenarios: 10, 100, 1,000, and
10,000 parts. The findings indicate MEX’s potential for cost-effective production at low and diversified volumes,
supporting the trend towards customization and manufacturing flexibility. However, the study also identifies
significant challenges in maintaining competitiveness at higher production volumes. These challenges underline
the necessity for further advancements in MEX technology and process optimization to enhance its applicability
and efficiency in larger-scale production settings.
1. Introduction

Additive Manufacturing (AM) is transforming manufacturing with
its rapid growth across various industries [1]. The International Or-
ganization for Standardization (ISO)/American Society for Testing and
Materials (ASTM) 52900:2021 defines AM as: ‘‘A manufacturing process
of joining materials to make parts from 3D model data, usually layer upon
layer, as opposed to subtractive manufacturing and formative manufacturing
methodologies’’ [2]. This broad definition applies to all material classes,
including metals, polymers, ceramics, and composites.

The classification of AM processes has been a topic of extensive
discussion. Various sources classify AM based on different criteria such
as material feedstock, energy source, or build volume [3]. However, the
above ASTM/ISO [2] standard provides a widely accepted classification
system, categorizing AM processes into seven types: Vat Photopolymer-
ization, Material Jetting (MJ), Binder Jetting (BJ), Material Extrusion
(ME), Powder Bed Fusion (PBF), Directed Energy Deposition (DED), and
Sheet Lamination (SL).

Focusing on metals specifically, PBF has historically led and is by far
the most adopted process [4], particularly due to its high flexibility and
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material selection [5]. Yet, the field is witnessing the rise of emergent
technologies like DED, BJ, and Metal Material Extrusion (MEX) [6],
each contributing to the diversification and expansion of MAM’s ap-
plicability across various industries. Among these, MEX stands out due
to its affordability (60%–80% more economical than PBF [7]) and user-
friendliness, drawing parallels to Fused Deposition Modeling (FDM)
in polymer manufacturing. This combination of low cost and ease of
use lowers the barrier to entry and broadens the scope for practical
applications across various manufacturing settings.

MEX falls under the broader classification of ME, a process widely
accepted and used for polymer 3D printing. The fundamental principle
of ME involves selectively dispensing material through a nozzle or
orifice to build up a part layer by layer [2]. In MEX, the process
begins with a feedstock of metal powders bound in a polymer matrix
which acts as the binding system [8]. This feedstock is fed into a
heated nozzle, where the polymer binder melts, allowing the material
to be extruded layer by layer onto a build platform. As each layer is
deposited, it cools and solidifies, gradually forming the part. Unlike
other MAM methods that rely on high-energy sources like lasers or
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electron beams to melt metal powders or wires, MEX uses the thermal
energy from the heated nozzle to melt the polymer binder, which
holds the metal particles together. This results in a ‘‘green’’ part that is
relatively fragile and requires a debinding and sintering stage similar
to metal injection molding (MIM). The debinding process removes the
polymer binder from the green part. Following this, the part undergoes
sintering, where it is heated, causing the metal particles to fuse together
and densify, resulting in a strong, final part.

The newness of MEX raises questions about its operational effi-
ciency, economic viability, and competitive position within the broader
MAM landscape. While extrusion-based techniques like FDM for poly-
mers have been extensively explored, investigations into MEX, par-
ticularly regarding its operational efficiencies and economic viability
within the metal additive space, are still unfolding [7]. This uncer-
tainty is further compounded by mixed perspectives on MAM’s overall
competitiveness and cost implications. Scholarly discussions reveal a
polarized view: some studies advocate MAM as a pathway to enhanced
competitiveness and potential cost reductions, while others indicate
the opposite [9]. Such divergent views highlight the complexities of
integrating MAM and the need for process-specific analysis.

Current research primarily delves into the technological and op-
erational dimensions of MAM [10], often overlooking the strategic
and economic considerations vital for integrating new technologies
like MEX. While the significant costs associated with high-cost pro-
cesses like PBF, attributed to equipment and raw materials, are well-
acknowledged [11,12], the economic landscape for lower-cost pro-
cesses such as MEX remains less understood. Moreover, several studies
highlight the need for an improved understanding of the environmental
performance of MAM compared to conventional manufacturing [13–
15]. For instance, Kokare et al. [16] clearly state the need to further
investigate the environmental, economic, and social impacts of lesser-
studied AM technologies, particularly as new AM materials, novel AM
processes, and their applications are being developed. This underscores
the need for a holistic assessment to fully appreciate MEX’s potential
within the wider manufacturing ecosystem, particularly in regions
where traditional manufacturing challenges are compounded by unique
geographical and logistical factors.

Addressing this gap, our research zeros in on the economic, envi-
ronmental, and operational feasibility of MEX, with a special emphasis
on production and supply chain-related costs. This includes examining
the specific context of Northern Norway, a region characterized by its
sparse population, long distances between potential customers, and a
predominance of small and medium-sized enterprises (SMEs). These
regional characteristics present a compelling case for the viability of
lower-cost MAM processes like MEX, which could offer more flexible
and economically viable solutions in areas where traditional manufac-
turing faces significant logistical hurdles. By incorporating Northern
Norway as a case study, our analysis not only addresses a notable gap in
the literature but also provides insights into how MEX can be optimally
integrated into manufacturing systems facing similar geographical and
logistical challenges.

Herein, in this paper, we propose a multi-objective optimization
(MOO) model to identify optimal locations of MEX facilities taking
into account a selection of factors including market demand, logistics,
production costs, and environmental impacts. This model builds upon
the theoretical and methodological groundwork established in our
preceding research [17]. Our aim is to conduct a thorough analysis of
both production and supply chain-related costs providing an in-depth
exploration of the economic and operational implications of deploying
MEX technology. Thereby enhancing and broadening the scope of
our initial model with a focus on providing a nuanced understanding
essential for the effective implementation of MEX. We can summarize
the main contributions of the paper as the following:

• Proposed a MOO model specifically tailored to MEX.
• The proposed MOO model has a dual objective, focusing on both
costs and environmental emissions.

63 
• Provides key insights into remote and sparsely populated regions
through a zone-based logistical model tailored to the remote
regions of Northern Norway.

• Conducts an in-depth cost analysis of MEX, taking into account
both production and supply chain-related expenses.

• Gives practical insight through the evaluation of a case study,
providing concrete insight into the feasibility of MEX compared
to CNC machining.

The rest of this paper is structured as follows: Section 2 offers a
literature review, first exploring existing work on MAM supply chains,
then specifically focusing on supply chain optimization for MAM. This
section highlights similar work and clearly distinguishes how our re-
search contributes novel insights to the existing body of knowledge.
Section 3 details the development of our mathematical model for the
MOO model. In Section 4, we demonstrate this model using a real
industrial case, presenting the optimization process, Section 5 presents
the results and Section 5 discusses these findings and their implications.
Finally, Section 6 concludes the paper, summarizing our key insights
and suggesting directions for future research.

2. Literature

2.1. MAM supply chains

The growing use of MAM has intensified the focus on its impact on
supply chain management. MAM goes far beyond pure manufacturing
efficiency, and could positively affect the entire product life cycle
and supply chains [18]. Numerous researchers have discussed AM’s
implication on supply chain structure with both qualitative, exploita-
tive, and quantitative studies [19]. Several studies [9,10,18,20–22]
have specifically reviewed AM and supply chain for expanding the
understanding of this domain and also providing research agendas
towards improving adoption of AM. For instance, Franco et al. [9]
examined the existing literature on AM adoption within operations
and SCM. They identified a range of inconclusive findings, including
competitiveness and costs. The literature is divided, with studies show-
ing AM as both enhancing and diminishing competitiveness. Similarly,
costs associated with AM adoption are debated, with contradictory
views on whether AM leads to increased or decreased costs. Maximilian
et al. [10] analyzed the benefits and diverse applications of AM in
different sectors, emphasizing its significant role in transforming supply
chain management. Their study pointed out crucial areas in need of
further research to optimize the use of AM. One such area is the need
for comprehensive studies on cost optimization and economic trade-offs
in AM, focusing on an in-depth understanding of production expenses
and the wider implications for supply chain costs. Furthermore, Asma
et al. [22] focused on the application of AM specifically for spare parts
supply chain management. Their work highlights the opportunities
and challenges associated with adopting AM for spare parts, including
both quantitative and qualitative models used in industry analyses. The
review underscores the emerging nature of AM technology. Notably,
they identified most existing studies rely on qualitative, analytical, and
optimization analysis. However, quantitative models lack complexity in
terms of SC design instances to produce optimal solutions and call for
more details here, particularly due to the lack of real data and practical
numerical examples from real-world case studies as highlighted by Li
et al. [23].

2.2. MAM and supply chain optimization

The adoption of quantitative modeling in MAM supply chains is
crucial for enhancing their operational efficiency and effectiveness.
Quantitative models, which are becoming increasingly integral in com-
panies’ decision-making processes utilizing AM [24], can be broadly

categorized into optimization and simulation methodologies [22].
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Asma et al. [22] illustrate various methodologies applied in AM
supply chain analysis, highlighting that the predominant focus of op-
timization strategies in this domain has been cost minimization, as
evidenced by several detailed studies [25–29]. Additionally, a few stud-
ies have concentrated on reducing delivery times [30] and minimizing
makespan time [31], indicating the diverse range of optimization goals
in AM supply chains. Furthermore, various simulation methods, includ-
ing System Dynamics (SD) [23,32], Discrete Event Simulation [33–
36], and Monte Carlo Simulation [37–39] have been employed, each
offering unique insights into the complex dynamics of AM supply
chains.

The most relevant literature related to our research is those opti-
mizations focusing on location logistics and resource allocation within
AM supply chains, crucial for minimizing costs and emissions. This
focus is pertinent as it directly impacts transportation logistics and
efficient use of AM capabilities–core to our MOO model for facility
location. Table 1 summarizes these studies.

The study by Bonin et al. [40] explores the economic viability of
decentralized versus centralized manufacturing within the context of
AM, particularly for the aviation industry. They employ a combination
of a Process-Based Cost Model (PBCM) and an uncapacitated facility lo-
cation optimization model. Their research focuses on the cost trade-offs
between production, transportation, and inventory for manufacturing
sites. The scenarios modeled reflect different stages of AM technology
development, suggesting that centralized manufacturing remains cost-
effective for most scenarios except for non-critical components and at
significant production volumes — tens of thousands of units or more
per year. Suggesting that the trend towards regionalization in AM may
not materialize in industries characterized by low production volumes
or where products have stringent specifications.

This finding bears particular relevance to our study, especially
when considering the unique industrial landscape of Northern Norway.
The region does not align with the high-volume demand threshold
identified as a prerequisite for the economic feasibility of decentral-
ized manufacturing. Consequently, our research adopts a centralized
manufacturing perspective, recognizing the limitations imposed by the
regional demand volume in Northern Norway. This approach aligns
with the economic realities and underscores the importance of adapting
AM strategies to specific regional capacities and demand profiles.

Saterbo et al.’s [17] initial study ventured into MAM optimization
for SMEs, presenting a nascent model that mapped out facility locations
against cost and lead times. However, this early model was charac-
terized by a rudimentary description, omitting crucial elements like
sustainability considerations, zone-based transportation, and a com-
petitive analysis framework. Essentially, it crafted the basic outline
of an optimization model without delving into the depth required
for a comprehensive understanding of MAM’s strategic implications.
This foundational work, while pioneering, left significant room for
elaboration, particularly in integrating environmental sustainability
and detailed logistical strategies, which are addressed and substantially
expanded upon in the current research.

Brito’s research [25] examines the strategic positioning of 3D print-
ers within supply chains for enhanced spare parts production, employ-
ing p-median location–allocation modeling with mixed-integer linear
programming to optimize the additive manufacturing resource distribu-
tion. While the study seeks efficient supply chain network optimization,
it also acknowledges the need for developing optimization models
that cater to more complex design instances of AM supply chains.
This points towards exploring heuristic approaches for high-demand
scenarios, suggesting an area ripe for further research that our study
intends to address.

He [30] examines the integration of production and transportation
scheduling within the spare parts supply chain, combining 3D printing
with JiT delivery systems. The model developed seeks to minimize
a combination of delivery times and transportation costs through a

branch-and-price methodology.
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Yilmaz [31] study focuses on optimizing job and vehicle schedul-
ing in a two-stage supply chain through AM, specifically aiming to
minimize makespan using a heuristic-based approach and employing
SLM/DMLS techniques. While providing valuable insights into oper-
ational optimization and emphasizing the capacity utilization of AM
machines for efficiency improvements, the study also highlights areas
for expansion. Yilmaz suggests the investigation of different AM meth-
ods to broaden the applicability of their findings and advocates for the
exploration of alternative algorithms that cater to scenarios involving
multiple manufacturers and customers, indicating potential directions
for further research.

Chowdhury et al. [41] specifically develops an optimization model
for the design and management of an AM supply chain network. The
authors focus on creating a two-stage stochastic programming model
which is used to make strategic decisions about facility location and
capacity selection in the first stage, and operational decisions regarding
production, post-processing, procurement, storage, and transportation
in the second stage after customer demand information is revealed.
Overall they aim to optimize the overall network by considering inter-
dependencies in flow networks, resource constraints, and both process
and system-level costs.

2.2.1. Research gaps
Despite the available quantitative models for MAM supply chains,

there is a notable gap in terms of incorporating the intricacies of the
specific AM processes [22]. While recent advancements have led to
developments in facility location optimization and cost minimization
strategies [25,40], there remains a critical need for more compre-
hensive models that fully integrate the specificity of AM processes.
Although studies by researchers such as Chowdhury [41] have made
some strides in unifying optimization models to consider both process-
and-system level costs along with operational optimizations, these in-
vestigations often focus on prevalent AM technologies like PBF. This
leaves a gap in the exploration of MEX technology, especially in con-
texts characterized by unique operational and cost dynamics, lower
demand volumes, or specific regional requirements. Moreover, the
dual objectives of cost minimization and environmental sustainability
in AM supply chains are not fully addressed in current literature.
The balance between economic efficiency and reducing environmental
impact, including carbon emissions across the entire supply chain
from raw material procurement to final product distribution, remains
underexplored.

To summarize, the research gaps can be described as follows:

• To the authors’ knowledge, this is the first study analyzing the
supply chain network optimization of MEX, considering both
production and supply chain-related costs. Unlike the prevalent
focus on PBF techniques, our research delves into the operational
and cost dynamics of MEX. This not only enriches the academic
literature on AM but also aligns with the need for practical ap-
plications in industrial settings, addressing the lack of real-world
data utilization highlighted by Asma et al. [22].

• Most existing quantitative models for AM fail to address the
intricacies necessary for optimal supply chain design, resulting in
oversimplified parameters that do not align with real-world sce-
narios [22]. For instance, Asma et al. [22] suggest that heuristic
approaches should be adopted to analyze larger demand scenar-
ios. Furthermore, Chowdhury et al. [41] highlighted the need for
analyzing batch optimization for AM. Our study answers these
calls by tailoring the model to the non-linear operational policies
of MEX, incorporating batch optimization for MEX, and adopting
a heuristic approach for analyzing various demand scenarios.

• Current literature often overlooks the integration of sustainability
objectives. Our research addresses this gap by simultaneously
examining economic efficiency and environmental sustainability,
providing a balanced approach to reducing costs and carbon

emissions across the entire supply chain.
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Table 1
Summary of selected papers on AM supply chain optimization.

Ref. Method Goals Objectives Process Gaps Mentioned

[40] PCBM &
MILP

Identify optimal location and number
of facilities, and analyze trade-offs
between production, transportation,
and inventory.

Cost
minimization

DMLS –

[25] MILP Optimizing the deployment of 3D
printers across the SC to minimize
total costs.

Cost
minimization

Polymer
printing
(FDM)

Optimization model development for
complex AM SC instances, with
heuristic approaches for high
demand scenarios.

[30] MILP Optimizing production and transport
schedules for 3D-printed spare parts
to minimize delivery times and costs.

Delivery lead
time
minimization

Not specified –

[31] Heuristics Develops an optimization model to
integrate job and vehicle scheduling
in a two-stage supply chain to
minimize makespan and enhance
capacity utilization.

Makespan
time
minimization

SLM/DMLS Explore various AM methods and
employ alternative algorithms for
multi-manufacturer and customer
scenarios.

[41] Two-stage
stochastic
programming
model

Optimize supply chain network
design for AM by making informed
decisions on facility location and
capacity, accounting for uncertain
customer demand.

Cost
minimization

DMLS Lack of focus on batch production
efficiencies.

[17] NSGA-II Initial exploration of MAM
optimization for SMEs, focusing on
facility location, cost, and lead times.

Cost and lead
time
minimization

MEX Model expansion to include
environmental sustainability and
supplier logistics.
i
c
e

𝐶

𝐶

𝐶

𝑇

3. Mathematical model

The primary focus of this study lies in the enhancement of our previ-
ously developed multi-objective optimization model for MAM [17]. Our
initial model aimed to balance cost and lead time, guiding the strategic
investments of SMEs. However, the evolving business landscape now
demands a deeper emphasis on sustainability, an aspect somewhat
overlooked in the prior model. This paper introduces an enhanced
model to address this gap. We incorporate carbon emissions as a pivotal
metric, aligning with cost. This section outlines our methodological
approach, highlighting the optimization techniques employed.

3.1. Notations

The sets, parameters, and decision variables used in the mathemat-
ical formula are given in the Table 2.

3.2. Objective function

The decision variables are 𝑢𝑗 , 𝑦𝑖𝑚, 𝑋1𝑖𝑗𝑚, and 𝑋2𝑗𝑘𝑝. Here, 𝑢𝑗 is a
binary decision variable. 𝑢𝑗 indicates if facility 𝑗 is open (1) or closed
(0). Another decision variable is 𝑦𝑖𝑚 relating to the choice of suppliers.
On the continuous side, 𝑋1𝑖𝑗𝑚 represents the quantity of material 𝑚
transported from supplier 𝑖 to facility 𝑗, capturing the flow of materials.
𝑋2𝑗𝑘𝑝 denotes the quantity of product 𝑝 shipped from facility 𝑗 to
customer 𝑘, ensuring that customer demands are met while respecting
facility capacities. The optimization problem aims to minimize cost
denoted 𝐶(𝑥) and carbon emission, denoted by 𝐸(𝑥). They are formu-
lated as Eqs. (1) and (18). Here, 𝑥 is the vector component of decision
variables. Through this framework, we aim to balance economic and
environmental considerations in the supply chain.

3.2.1. Cost objective

minimize𝐶 =
∑

𝑗∈𝐽
𝐹𝑗 ⋅ 𝑢𝑗 +

∑

𝑗∈𝐽

∑

𝑝∈𝑃
𝑉𝑗𝑝

∑

𝑘∈𝐾
𝑋2𝑗𝑘𝑝

+
∑

𝑖∈𝐼

∑

𝑚∈𝑀
𝑃𝐶𝑖𝑚

∑

𝑗∈𝐽
𝑋1𝑖𝑗𝑚

+
∑∑

𝐶1𝑖𝑗 ⋅𝑋1𝑖𝑗 +
∑ ∑

𝐶2𝑗𝑘 ⋅𝑋2𝑗𝑘

(1)
𝑖∈𝐼 𝑗∈𝐽 𝑗∈𝐽 𝑘∈𝐾
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The objective function (1) minimizes the total costs. The first three
components are related to the production including the fixed facility
costs, variable cost of production, and purchase costs from suppliers.
The second part is related to the transportation, including the inbound
transportation from the supplier to the production facility, and the
outbound from the production facility to the customers. The fixed
facility cost 𝐹𝑗 are those costs that occur when starting the facility
including, facility rental, salaries, utilities, and equipment depreciation
such as the 3D printer itself, and associated equipment (e.g., sintering
furnace, and wash for debinding). The purchase costs 𝑃𝐶𝑖𝑚 is given
by Eq. (2)
∑

𝑖∈𝐼

∑

𝑚∈𝑀
𝑃𝐶𝑖𝑚

∑

𝑗∈𝐽
𝑋1𝑖𝑗𝑚 =

∑

𝑖∈𝐼

∑

𝑚∈𝑀
𝑣𝑚𝑚 ⋅ 𝑐𝑚𝑖𝑚

∑

𝑗∈𝐽
𝑋1𝑖𝑗𝑚 (2)

Furthermore, an important facet of this work comes from the def-
nition of the variable cost related to the 3D printing facilities, which
aptures the intricacies and non-linearities of the novel metal material
xtrusion production process. The variable production costs 𝑉𝑗𝑝 of the

printing product include costs such as, labor costs 𝐶𝑙, energy costs 𝐶𝑒,
and maintenance costs 𝐶𝑚𝑡, which are based on previous developed cost
model by Saterbo et al. [42]. Tailoring this to a mathematical model for
3D printing we can reformulate, ∑𝑗∈𝐽

∑

𝑝∈𝑃 𝑉𝑗𝑝
∑

𝑘∈𝐾 𝑋2𝑗𝑘𝑝 taking into
account each cost components from Saterbos et al. [42] cost model. Eqs.
(3)–(16) showcases each cost components into the optimization model,
before being compiled into Eq. (17).

𝐶𝑙 =
∑

𝑘∈𝐾

∑

𝑗∈𝐽

∑

𝑝∈𝑃
⌈

𝑋2𝑗𝑘𝑝
𝑄𝑝𝑟𝑖𝑛𝑡

𝑗𝑝

⌉ ⋅ 𝑡𝑏𝑎𝑡𝑐ℎ ⋅ 𝑐𝑙𝑎𝑏𝑜𝑟 (3)

𝑐 =
∑

𝑘∈𝐾

∑

𝑗∈𝐽

∑

𝑝∈𝑃
⌈

𝑋2𝑗𝑘𝑝
𝑄𝑝𝑟𝑖𝑛𝑡

𝑗𝑝

⌉ ⋅ 𝑐𝑐𝑜𝑛𝑠𝑢𝑚 (4)

𝐶Print,energy =
∑

𝑘∈𝐾

∑

𝑗∈𝐽

∑

𝑝∈𝑃
𝑇 𝑝
𝑜 (𝑋2𝑗𝑘𝑝) ⋅ 𝑃𝑝𝑟𝑖𝑛𝑡 ⋅ 𝑐0 (5)

Energy,sintering =
∑

𝑘∈𝐾

∑

𝑗∈𝐽

∑

𝑝∈𝑃
𝑇 𝑠
𝑜 (𝑋2𝑗𝑘𝑝) ⋅ 𝑃𝑠𝑖𝑛𝑡𝑒𝑟 ⋅ 𝑐0 (6)

Energy,wash =
∑

𝑘∈𝐾

∑

𝑗∈𝐽

∑

𝑝∈𝑃
𝑇𝑤
𝑜 (𝑋2𝑗𝑘𝑝) ⋅ 𝑃𝑤𝑎𝑠ℎ ⋅ 𝑐0 (7)

𝑇𝑜(𝑋2𝑗𝑘𝑝) is the operational time, defined as:

𝑝
𝑜 (𝑋2𝑗𝑘𝑝) =

⎧

⎪

⎨

⎪

(𝑛 ⋅ 𝑇 𝑝
𝑓𝑢𝑙𝑙) + 𝑇𝑋2𝑗𝑘𝑝−(𝑄

𝑝𝑟𝑖𝑛𝑡
𝑗𝑝 ⋅𝑛) if 𝑋2𝑗𝑘𝑝 > 𝑄𝑝𝑟𝑖𝑛𝑡

𝑗𝑝

𝑇𝑋2𝑗𝑘𝑝 if 𝑋2𝑗𝑘𝑝 ≤ 𝑄𝑝𝑟𝑖𝑛𝑡
𝑗𝑝

(8)
⎩
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Table 2
Notations and their explanations.

Sets

𝐼 Set of suppliers indexed by 𝑖
𝐽 Set of manufacturing facilities, indexed by 𝑗
𝐾 Set of customer location, indexed by 𝑘
𝑃 Set of products, indexed by 𝑝
𝑀 Set of materials, indexed by 𝑚

Parameters

𝐹𝑗 Fixed cost for opening a factory 𝑗
𝑉𝑗𝑝 Variable unit cost for producing a product 𝑝 at facility 𝑗
𝑃𝐶𝑖𝑚 Purchase cost for material 𝑚 from supplier 𝑖
𝐶1𝑖𝑗 Inbound transportation cost of one unit from supplier 𝑖 to

facility 𝑗
𝐶2𝑗𝑘 Outbound transportation cost of one unit from facility 𝑗

to customer 𝑘
𝐸1𝑚 Unit carbon emission for material m
𝐸2𝑖𝑗 Carbon emission for transportation one unit material

between link 𝑖 and 𝑗
𝐸3𝑗𝑘 Carbon emission for transportation one unit product

between link 𝑗 and 𝑘
𝐸4𝑝𝑗 Carbon emission for producing product 𝑝 at facility 𝑗
𝐷𝑘 Demand of each customer
𝐶𝑎𝑝𝑗 Capacity of facility 𝑗
𝑟𝑗𝑝, Amount of raw material required to produce one unit of

the product 𝑝 at facility 𝑗
𝑀 Large constants
𝑣𝑚𝑚 Unit volume for material 𝑚
𝑐𝑚𝑚𝑖 Unit cost of material 𝑚 from supplier 𝑖
𝑄print

𝑗𝑝 , 𝑄Wash
𝑗𝑝 , 𝑄Sinter

𝑗𝑝 Maximum number of parts of product 𝑝 that can be
processed simultaneously by printers, wash stations, and
sintering machines, respectively, at facility 𝑗

𝑡𝑏𝑎𝑡𝑐ℎ Worker time for setup and post-batch processing
𝑐𝑙𝑎𝑏𝑜𝑟 Hourly labor cost for batch processing
𝑐𝑐𝑜𝑛𝑠𝑢𝑚 Unit costs for consumables required for each batch
𝑐0 Unit cost for electricity per kWh
𝑐𝑤 Cost per unit of fluid used in washing
𝑐gas Cost per unit of gas consumed during sintering
𝑣𝑤 Unit volume of washing fluid
𝑣gas Unit volume of gas used in sintering
𝑃𝑃𝑗 Printer purchase price at facility 𝑗
𝑀𝐶%𝑗 Machine utilization percentage
𝑃print , 𝑃wash , 𝑃sinter Unit power consumption for printer, wash, and sintering

operation.
𝐸𝑒

𝑚 Extraction emission
𝐸𝑟

𝑚 Refining emission
𝑤𝑚𝑒𝑡𝑎𝑙,𝑚 weight of raw metals in the alloy m
𝐸𝑚𝑚𝑒𝑡𝑎𝑙 Emission factor for the metal
𝐶𝐹𝑖 Carbon footprint coefficient for energy source used at

supplier 𝑖
𝐸𝑛𝑚 Energy consumed during powder atomization for a

material 𝑚

Decision variables

𝑢𝑗 Binary decision variable determining if the manufacturing
facilities 𝑗 are open

𝑦𝑖𝑚 Binary decision variable determining whether supplier 𝑖𝑚
is chosen

𝑋𝐼𝑖𝑗𝑚 Decision variable for materials shipped from supplier i to
facility j

𝑋2𝑗𝑘𝑝 Decision variable for products shipped from facility j to
customer k

Auxiliary variables

𝑇 𝑝
𝑜 (𝑋2𝑗𝑘𝑝), 𝑇𝑤

𝑜 (𝑋2𝑗𝑘𝑝)
𝑇 𝑝
𝑜 (𝑋2𝑗𝑘𝑝) Auxiliary variable for the printing, sintering, or washing

for product 𝑝.

𝑇𝑤
𝑜 (𝑋2𝑗𝑘𝑝) =

⎧

⎪

⎨

⎪

⎩

(𝑛𝑤 ⋅ 𝑇𝑤
𝑓𝑢𝑙𝑙) + 𝑇𝑋2𝑗𝑘𝑝−(𝑄𝑤𝑎𝑠ℎ

𝑗𝑝 ⋅𝑛𝑤) if 𝑋2𝑗𝑘𝑝 > 𝑄𝑤𝑎𝑠ℎ
𝑗𝑝

𝑇𝑋2𝑗𝑘𝑝 if 𝑋2𝑗𝑘𝑝 ≤ 𝑄𝑤𝑎𝑠ℎ
𝑗𝑝

(9)

𝑇 𝑠
𝑜 (𝑋2𝑗𝑘𝑝) =

⎧

⎪

⎨

⎪

(𝑛𝑠 ⋅ 𝑇 𝑠
𝑓𝑢𝑙𝑙) + 𝑇𝑋2𝑗𝑘𝑝−(𝑄𝑠𝑖𝑛𝑡𝑒𝑟

𝑗𝑝 ⋅𝑛𝑠) if 𝑋2𝑗𝑘𝑝 > 𝑄𝑠𝑖𝑛𝑡𝑒𝑟
𝑗𝑝

𝑇𝑋2𝑗𝑘𝑝 if 𝑋2𝑗𝑘𝑝 ≤ 𝑄𝑠𝑖𝑛𝑡𝑒𝑟
𝑗𝑝

(10)
⎩

t
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𝑛𝑝 =

⌊

𝑋2𝑗𝑘𝑝
𝑄𝑝𝑟𝑖𝑛𝑡

𝑗𝑝

⌋

(11)

𝑛𝑤 =

⌊

𝑋2𝑗𝑘𝑝
𝑄𝑤𝑎𝑠ℎ

𝑗𝑝

⌋

(12)

𝑛𝑆 =

⌊

𝑋2𝑗𝑘𝑝
𝑄𝑠𝑖𝑛𝑡𝑒𝑟

𝑗𝑝

⌋

(13)

𝑤 =
∑

𝑘∈𝐾

∑

𝑗∈𝐽

∑

𝑝∈𝑃

⌈

𝑋2𝑗𝑘𝑝
𝑄𝑤𝑎𝑠ℎ

𝑗𝑝

⌉

⋅ (𝑣𝑤 ⋅ 𝑐𝑤) (14)

𝐶𝑠 =
∑

𝑘∈𝐾

∑

𝑗∈𝐽

∑

𝑝∈𝑃

⌈

𝑋2𝑗𝑘𝑝
𝑄𝑠𝑖𝑛𝑡𝑒𝑟

𝑗𝑝

⌉

⋅
(

𝑣gas ⋅ 𝑐gas
)

(15)

𝐶𝑚𝑡 =
∑

𝑘∈𝐾

∑

𝑗∈𝐽

∑

𝑝∈𝑃

𝑃𝑃𝑗 ⋅𝑀𝐶%𝑗

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐻𝑜𝑢𝑟𝑠𝑗
⋅ 𝑇 𝑝

𝑜 (𝑋2𝑗𝑘𝑝) (16)

This gives:
∑

𝑗∈𝐽

∑

𝑝∈𝑃
𝑉𝑗𝑝

∑

𝑘∈𝐾
𝑋2𝑗𝑘𝑝 =

∑

𝑘∈𝐾

∑

𝑗∈𝐽

∑

𝑝∈𝑃
⌈

𝑋2𝑗𝑘𝑝
𝑄𝑝𝑟𝑖𝑛𝑡

𝑗𝑝

⌉ ⋅ 𝑡𝑏𝑎𝑡𝑐ℎ ⋅ 𝑐𝑙𝑎𝑏𝑜𝑟

+
∑

𝑘∈𝐾

∑

𝑗∈𝐽

∑

𝑝∈𝑃
⌈

𝑋2𝑗𝑘𝑝
𝑄𝑝𝑟𝑖𝑛𝑡

𝑗𝑝

⌉ ⋅ 𝑐𝑐𝑜𝑛𝑠𝑢𝑚

+
∑

𝑘∈𝐾

∑

𝑗∈𝐽

∑

𝑝∈𝑃
𝑇 𝑝
𝑜 (𝑋2𝑗𝑘𝑝) ⋅ 𝑃𝑝𝑟𝑖𝑛𝑡 ⋅ 𝑐0

+
∑

𝑘∈𝐾

∑

𝑗∈𝐽

∑

𝑝∈𝑃
𝑇 𝑠
𝑜 (𝑋2𝑗𝑘𝑝) ⋅ 𝑃𝑠𝑖𝑛𝑡𝑒𝑟 ⋅ 𝑐0

+
∑

𝑘∈𝐾

∑

𝑗∈𝐽

∑

𝑝∈𝑃
𝑇𝑤
𝑜 (𝑋2𝑗𝑘𝑝) ⋅ 𝑃𝑤𝑎𝑠ℎ ⋅ 𝑐0

+
∑

𝑘∈𝐾

∑

𝑗∈𝐽

∑

𝑝∈𝑃

⌈

𝑋2𝑗𝑘𝑝
𝑄𝑤𝑎𝑠ℎ

𝑗𝑝

⌉

⋅ (𝑣𝑤 ⋅ 𝑐𝑤)

+
∑

𝑘∈𝐾

∑

𝑗∈𝐽

∑

𝑝∈𝑃

⌈

𝑋2𝑗𝑘𝑝
𝑄𝑠𝑖𝑛𝑡𝑒𝑟

𝑗𝑝

⌉

⋅
(

𝑣gas ⋅ 𝑐gas
)

+
∑

𝑘∈𝐾

∑

𝑗∈𝐽

∑

𝑝∈𝑃

𝑃𝑃𝑗 ⋅𝑀𝐶%𝑗

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐻𝑜𝑢𝑟𝑠𝑗
⋅ 𝑇 𝑝

𝑜 (𝑋2𝑗𝑘𝑝)

(17)

The cost model for the 3D printing operation is designed to account
or variable costs, which are influenced by factors such as part size,
eometry, quantity, and printer space utilization. A key variable in this
odel is 𝑋2𝑗𝑘𝑝, which denotes the number of parts to be shipped from

acility 𝑗 to customer 𝑘, comprising product 𝑝. The model incorporates
ultiple cost components, each reflective of the distinct facets of the
anufacturing process. Among these components, the operational time
𝑇𝑜) is crucial, as detailed in Eqs. (8), (9), and (10) representing the
uration the equipment is in use.

Operational time depends on whether 𝑋2𝑗𝑘𝑝 surpasses the combined
rocessing capacity of the machine, denoted by 𝑄𝑝𝑟𝑖𝑛𝑡

𝑗𝑝 , 𝑄𝑤𝑎𝑠ℎ
𝑗𝑝 , and

𝑠𝑖𝑛𝑡𝑒𝑟
𝑗𝑝 . This cumulative capacity is the total count of parts that all
achines can manage in a single run. For instance, with each printer
aving a capacity for 6 parts and two printers in service, the total
apacity per operation is 12 parts. When 𝑋2𝑗𝑘𝑝 exceeds the capacity
𝑝𝑟𝑖𝑛𝑡
𝑗𝑝 , the operational time is the sum of the full-capacity runs’ time

full batch time times the number of full batches, 𝑛𝑝, 𝑛𝑤, 𝑛𝑠) and the
ime required for any additional parts. The number of full batches
or printing (𝑛𝑝), washing (𝑛𝑤), and sintering (𝑛𝑠) are calculated using
he floor function, ⌊⋅⌋, which rounds down to the nearest integer to
enote complete batches. If 𝑋2𝑗𝑘𝑝 is at or below the printers’ capacity,
perational time is directly proportional to the time needed to produce
hat particular batch. The decision to include both full and partial
atches in the operational time calculation acknowledges the non-linear
ature of the 3D printing process. This means that processing less

han a full batch could take disproportionately more or less time than
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a full batch. The model’s adaptability to handle varying production
volumes within the same batch significantly enhances its practicality
and accuracy.

For other aspects of the model, such as labor and consumables
where both complete and partial batches are relevant, the ceiling
function, ⌈⋅⌉, is used. This function rounds up to the nearest inte-
ger, ensuring that even a single part requires a full batch’s worth of
resources.

3.2.2. Environmental objective
The second objective function, as represented in Eq. (18), is geared

towards minimizing the overall carbon emissions. This function com-
prises three distinct components:

1. Emissions stemming from the acquisition of raw materials at the
supplier end.

2. Emissions related to transportation.
3. Emissions associated with the production process at the factory.

The carbon emissions are quantified in terms of carbon dioxide
equivalents (𝐶𝑂2𝑒)

inimize𝐸 =
∑

𝑚∈𝑀
𝐸1𝑚

∑

𝑖∈𝐼

∑

𝑗∈𝐽
𝑋1𝑖𝑗𝑚

+
∑

𝑖∈𝐼

∑

𝑗∈𝐽
𝐸2𝑖𝑗

∑

𝑚∈𝑀
𝑋1𝑖𝑗𝑚 +

∑

𝑗∈𝐽

∑

𝑘∈𝐾
𝐸3𝑗𝑘

∑

𝑝∈𝑃
𝑋2𝑗𝑘𝑝

+
∑

𝑗∈𝐽

∑

𝑝∈𝑃
𝐸4𝑗𝑝

∑

𝑘∈𝐾
𝑋2𝑗𝑘𝑝

(18)

At the supplier level, two contributors to carbon emissions are
the extraction and refining of raw metals, and the energy demand
for the powder atomization and production of powder for the MAM
process as depicted in Eq. (19). Here, 𝑒1𝑚 is the emission attributed
o the extraction and refining of material 𝑚, and 𝑒2𝑚 is the energy
onsumption for powder production of the same material.

1𝑚 = 𝑒1𝑚 + 𝑒2𝑚 (19)

Eq. (20) details the energy consumption for the powder atomization
rocess. Here, 𝐸𝑛𝑚 stands for the energy consumed during powder
tomization for material 𝑚, while 𝐶𝐹𝑖 is the carbon footprint coefficient
t supplier 𝑖 tied to the specific energy source.

2𝑚 =
∑

𝑖∈𝐼

∑

𝑗∈𝐽
𝑋1𝑖𝑗𝑚 ⋅ 𝐸𝑛𝑚 ⋅ 𝐶𝐹𝑖 (20)

Eq. (21) consolidates the emissions, which together constitute the
upplier’s carbon emissions.
∑

𝑚∈𝑀
𝐸1𝑚

∑

𝑖∈𝐼

∑

𝑗∈𝐽
𝑋1𝑖𝑗𝑚 =

∑

𝑚∈𝑀
(𝑒1𝑚 + 𝐸𝑛𝑚 ⋅ 𝐶𝐹 )

∑

𝑖∈𝐼

∑

𝑗∈𝐽
𝑋1𝑖𝑗𝑚

(21)

The carbon emissions associated with the production phase are
etailed in Eq. (22). This equation incorporates the AM process, the
ebinding process, and the sintering process. An additional factor, CE,
epresents the carbon emission coefficient corresponding to the energy
ource in use.

∑

𝑗∈𝐽

∑

𝑘∈𝐾

∑

𝑝∈𝑃
𝐶𝐸 ⋅

(

𝑇 𝑝
𝑜 (𝑋2𝑗𝑘𝑝) ⋅ 𝑃𝑤𝑎𝑠ℎ

+ 𝑇𝑤
𝑜 (𝑋2𝑗𝑘𝑝) ⋅ 𝑃𝑠𝑖𝑛𝑡𝑒𝑟

+ 𝑇 𝑠
𝑜 (𝑋2𝑗𝑘𝑝) ⋅ 𝑃𝑝𝑟𝑖𝑛𝑡

)

(22)

The final objective function, as showcased in Eq. (23), represents a

ombination of the emissions from the supplier, AM production facility, H
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nd transportation processes.

inimize𝐸 =
∑

𝑚∈𝑀
(𝑒1𝑚 + 𝐸𝑛𝑚 ⋅ 𝐶𝐹 )

∑

𝑖∈𝐼

∑

𝑗∈𝐽
𝑋1𝑖𝑗𝑚

+
∑

𝑖∈𝐼

∑

𝑗∈𝐽
𝐸2𝑖𝑗

∑

𝑚∈𝑀
𝑋1𝑖𝑗𝑚 +

∑

𝑗∈𝐽

∑

𝑘∈𝐾
𝐸3𝑗𝑘

∑

𝑝∈𝑃
𝑋2𝑗𝑘𝑝

+
∑

𝑗∈𝐽

∑

𝑘∈𝐾

∑

𝑝∈𝑃
𝐶𝐸 ⋅ (𝑇 𝑝

𝑜 (𝑋2𝑗𝑘𝑝) ⋅ 𝑃𝑤𝑎𝑠ℎ + 𝑇𝑤
𝑜 (𝑋2𝑗𝑘𝑝) ⋅ 𝑃𝑠𝑖𝑛𝑡𝑒𝑟

+ 𝑇 𝑠
𝑜 (𝑋2𝑗𝑘𝑝) ⋅ 𝑃𝑝𝑟𝑖𝑛𝑡)

(23)

.3. Constraints

The model is subject to several constraints ensuring feasibility and
atisfaction of the demand requirements. These constraints are defined
s follows:

• Demand Satisfaction Constraint: Constraint (24) ensures the
total number of parts sent to a customer meets that customer’s
demand.
∑

𝑗∈𝐽
𝑋2𝑗𝑘𝑝 = 𝐷𝑘, ∀𝑘 ∈ 𝐾, 𝑝 ∈ 𝑃 (24)

• Facility Capacity Constraint: Constraint (25) ensures that the
total amount of parts produced by a facility does not exceed its
capacity,
∑

𝑝∈𝑃

∑

𝑘∈𝐾
𝑋2𝑗𝑘𝑝 ≤ Cap𝑗 ⋅ 𝑢𝑗 , ∀𝑗 ∈ 𝐽 (25)

• Material Availability and Consistency of Shipments: Con-
straint (26) ensures that materials transported to facility j satisfy
the necessary conditions.
∑

𝑖∈𝐼

∑

𝑚∈𝑀
𝑋1𝑖𝑗𝑚 =

∑

𝑘∈𝐾

∑

𝑚∈𝑀
𝑟𝑚𝑝 ⋅𝑋2𝑗𝑘𝑝, ∀𝑗 ∈ 𝐽 , 𝑝 ∈ 𝑃 (26)

• Supplier selection constraint: To determine which suppliers to
engage with, the decision variable 𝑦𝑖𝑚 is introduced. Constraint:
(27) guarantees that if supplier 𝑖 is not chosen (𝑦𝑖𝑚 = 0), no ma-
terials 𝑚 can be procured from supplier 𝑖. Conversely, if supplier
𝑖 is chosen (𝑦𝑖𝑚 = 1), then materials can be procured. M is a large
number representing the maximum possible quantity.

𝑋𝑖𝑗𝑚 ≤ 𝑀 ⋅ 𝑦𝑖𝑚, ∀𝑚 ∈ 𝑀, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (27)

• Non-negativity and Binary Constraints: The decision variables
in the model should satisfy the non-negativity and binary restric-
tions, given by:

𝑢𝑗 , 𝑦𝑖𝑚 ∈ 0, 1, 𝑋1𝑖𝑗𝑚, 𝑋2𝑗𝑘𝑝 ≥ 0, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ,𝐾 ∈ 𝐾, 𝑝 ∈ 𝑃 ,𝑚 ∈ 𝑀

(28)

. Demonstration

Following the development of our mathematical model, we will con-
uct a practical test using a specific use case. This use case, drawn from
previous study [42], focuses on the application of MAM, particularly
EX. The part in question, as illustrated in Fig. 1, was constructed from

tainless steel (17-4 PH). It had printed dimensions of 44 mm × 111 mm
78 mm. The Metal X printer, along with its requisite post-processing

quipment, was employed to realize this component. In the debinding
peration, the trigger was submerged in the Opteon SF-79 washing fluid
nd later sintered using two types of gases, argon gas, and 3,0 mol-%

ydrogen gas.
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Fig. 1. 3D printed 17-4 PH stainless steel part, fabricated through Metal X for our case study.
4.1. Simplifications and assumptions

Our model incorporates several assumptions to simplify the problem
and enhance its manageability:

• Single Material and Product: The model is focused on a single
product and material and support material.

• Demand Estimation: Demand for the products within Northern
Norway was estimated by analyzing industrial activity through
employer statistics provided by Statistisk sentralbyrå (SSB). Rec-
ognizing the correlation between the number of employers and
economic vibrancy, demand was proportionally distributed across
selected cities with a threshold of more than 100 employers
to concentrate on areas with significant economic activity. This
allowed for the creation of demand scenarios.

• Production Limitations: The production capacity of each facility
is defined by the number and capacity of available printers,
denoted as 𝑐𝑎𝑝𝑗 in the model.

• Carbon Emission Estimations: Carbon emissions are approxi-
mated based on existing literature and studies. This estimation en-
compasses the product, from raw material sourcing to production
and delivery.

• Geographical Limitations: The optimization is tailored to the
unique conditions and logistical challenges inherent to Northern
Norway.

• Facility Location: Our model generates random facility locations
with a consideration for existing road infrastructure. We imple-
ment a maximum snapping distance of 50 km to ensure proximity
to the nearest road. However, it is possible for some generated
locations to be impractical (for instance, in the middle of the sea).
To address this issue, we employ a repair function that verifies
the feasibility of each facility location. If a location is deemed
infeasible, the model generates a new random location.

• Material cost: The material cost is derived from known expenses
for supplies obtained from the USA. For materials sourced from
China, where exact cost data is not available, we employ a con-
servative estimate. This estimate assumes a slightly lower cost,
reflecting the general market observation that materials from
China tend to be cheaper compared to those from the USA.

4.2. Supply chain optimization model

The optimization functions are designed based on two criteria: cost
estimation and carbon emission estimation.

4.2.1. Cost estimation
Cost estimation is a pivotal component of our optimization model,

covering a comprehensive analysis of the supply chain and produc-
tion processes. Material costs are determined by the supplier location
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and volume as described in the assumption section. Furthermore, in
line with the methodology of the previous study [42], we recorded
data throughout the printing process. This data, which includes the
same values used previously for production cost estimation, forms
the backbone of our analysis. We supplemented these findings with
external data sources, encompassing energy prices, labor rates, and the
costs associated with machinery. The cost associated with the produc-
tion process includes machine, labor, consumables, maintenance, and
post-processing. These are further adjusted to take into account volume-
dependent variables. (Cost is not linear, and is based on the capacity
of the printers, the product printed, and the volume of the printed
products as described in the cost model chapter).

Initially, we calculated truck transportation costs based on distance
and a standard freight rate. However, to accurately capture the intrica-
cies of transportation costs, we leveraged data from expedited courier
services. Unlike traditional models that assume transportation costs
increase linearly with distance, our approach acknowledges the com-
plexity of real-world logistics by incorporating cost variations across
different zones. We analyzed both inbound (supplier to production)
and outbound (production to customer) logistics, employing air and
truck freight. For domestic truck freight within Norway, we used the
Norwegian postal system’s cost calculations based on postal codes. This
method allows for precise cost determination between any two postal
addresses, significantly enhancing the realism of our shipping cost
estimates. It accounts for variations in costs associated with domestic
courier services, which can fluctuate based on factors such as distance,
parcel size, and weight within specific ‘‘Posten’’ zones. To accurately
apply this system to our logistics model, we conducted reverse geocod-
ing to ascertain the postal code of the factory. This process involved
using a detailed table of all Norwegian postal codes to map the factory’s
physical location to its corresponding postal code. For international
shipping, we opted for air freight and turned to the FedEx air freight
calculator, a tool that estimates transportation costs based on weight,
volume, and distance between airport locations. This tool allowed us
to calculate the costs associated with moving goods from international
suppliers to selected airports in Norway.

4.2.2. Carbon emission estimations
The carbon emissions consist of supplier-related emissions, trans-

portation, and production. For each potential facility location, we
compute the driving distances to all customers and the nearest air-
port to estimate carbon emissions related to transportation. Given the
continuous nature of our optimization problem, these distances need
to be calculated each time a new factory location is proposed. To
address this, we employ OpenRouteService [43], a customizable tool
for calculating driving distances. We host an OpenRouteService server
on our laptop, enabling continuous access to updated driving distances
between customers and the airport.

Furthermore, we estimate the emission at the supplier. The emission
related to the extraction and refining of the stainless steel 17-4 PH
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Table 3
Estimated CO2 emissions of powder fabrication [46,47].

Country GWP per kWh (kg CO2 eq/kWh Emission per kg powder

China 0.534 11.214
USA 0.39 8.19

alloy are estimated based on Global Warming Potential (GWP). Nor-
gate [44], indicate a GWP of 6.8 kg CO2 equivalent per kilogram of
stainless steel. Moreover, for the production of metal powder for 3D
printing, we consider the energy requirements and carbon emissions
associated with its production, taking into account the energy mix of
the producing country. According to Kruzanov [45] they estimated the
energy consumption for the fabrication of stainless steel powder to be
2.1 kWh per kg powder. Furthermore, by taking into account the energy
sources in China and USA respectively, we can calculate the emission
per kg powder as depicted in Table 3.

4.3. A two-phased optimization method

The optimization process focuses on Northern Norway, seeking the
optimal longitude and latitude for the factory. We use a continuous
search approach, factoring in the choice of four airports and two
suppliers.

The multi-objective problem necessitates a two-phased optimiza-
tion approach. The first phase employs heuristic methods, such as
the Non-dominated Sorting Genetic Algorithm II (NSGA-II), to explore
the solution space and identify potential solutions. The second phase
verifies these solutions, applying weights to the optimization problem
to derive a single, optimal solution (see Fig. 2).

4.3.1. Phase I: Optimization
In this paper, NSGA-II, a metaheuristic method is utilized due to the

continuous location problem. This algorithm efficiently manages trade-
offs between conflicting objectives, including cost and carbon emis-
sions. Our mathematical model, covering operational, financial, and
environmental aspects, forms the basis of this optimization. This evalu-
ation focuses on the macro-level optimization of the supply chain. De-
termining the number of printers, facility locations, supplier selection,
and transportation routes.

4.3.2. Phase II: Ranking and evaluation
The second phase involves refining the solutions from NSGA-II.

Here, we prioritize and score each solution to identify the optimal
facility location. This phase ensures the feasibility and optimality of the
solutions, refining the heuristic findings into a definitive outcome. This
outcome is then used in the evaluation of the feasibility of producing
through MAM expanding on the Sæterbos et al. [42] research, by not
only taking into account production cost but also supply chain cost,
while giving vital information about carbon emission.

4.4. Scenario analysis

To evaluate the competitiveness of MAM on different supply chain
network designs, a scenario analysis is performed and critically dis-
cussed. Four scenarios are presented showcasing the impact of varying
demand levels (i.e., production volume). Specifically, we executed four
distinct optimizations, each corresponding to a different demand sce-
nario for the manufactured part: 10, 100, 1000, and 10,000 units. This
range of demand scenarios was selected to provide a broad spectrum
of insights into how volume variations affect the competitive landscape
of MAM. The demand scenarios were chosen to reflect a realistic and
varied market demand spectrum for products manufactured via MAM,
from very low to very high volumes:

• 10 Parts Demand: Simulates a niche, highly customized product
scenario or a preliminary market test phase.
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Fig. 2. Flowchart of the optimization system.

• 100 Parts Demand: Represents a low to moderate demand, typical
for specialized industrial components or limited series production

• 1000 Parts Demand: Corresponds to a growing market accep-
tance and wider application of the parts, indicating a mature but
specialized market segment.

• 10,000 Parts Demand: Reflects mass production scenarios, where
MAM is fully competitive with traditional manufacturing pro-
cesses in terms of both cost and volume.

For each scenario, we detail the overall cost and emissions as-
sociated with the procurement, production, and distribution of raw
materials and finished products. A key aspect of our analysis is the
calculation of unit costs. Our calculation of unit costs takes into account
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Table 4
Ranked solutions for demand of 10 parts based on weighted sum.

Rank Supplier Airport Costs (NOK) CO2 (kg CO2) Coordinates (lat,long)

1 USA Tromsø 67 021.4 22 602.8 (69.6817, 18.9366)
2 USA Evenes 67 181.4 22 551.3 (68.5406, 17.4482)
3 China Tromsø 63 231.4 43 621.3 (69.6839, 18.9366)
4 China Evenes 63 391.4 43 569.4 (68.5406, 17.4482)

Table 5
Ranked solutions for demand of 100 parts based on weighted sum.

Rank Supplier Airport Costs (NOK) CO2 (kg CO2) Coordinates (lat,long)

1 USA Bodø 332 443.17 150 805.23 (67.2158, 15.4780)
2 USA Tromsø 332 442.17 150 876.49 (69.4982, 18.9205)
3 USA Evenes 333 236.17 150 230.60 (68.5493, 17.5552)
4 China Bodø 306 813.17 289 440.50 (67.2602, 15.3387)
5 China Tromsø 306 812.17 289 662.03 (69.6765, 17.5558)

the actual materials used and the specific logistics costs associated
with each part. We estimate material costs based on the proportion
of materials consumed for production, ensuring that our cost analysis
reflects only the resources directly utilized. For inbound logistics, costs
are allocated based on the percentage of material volume used, provid-
ing a precise estimate of transportation expenses on a per-unit basis.
Outbound logistics costs are evenly distributed across the produced
units, simplifying our analysis due to variable customer locations.
Furthermore, We approach production cost estimation from two per-
spectives: the actual cost of producing the demanded quantity and an
optimized cost considering the maximum capacity of our printers. This
dual analysis allows us to understand the cost implications of different
production scales, offering insights into the potential for cost reduction
through increased efficiency.

5. Results

This section presents the results of a comprehensive analysis across
four distinct demand scenarios for MAM, ranging from low-volume,
niche products to mass production scales. Each scenario was evaluated
using the NSGA-II algorithm across 100 iterations, with a population of
100 and offspring of 80. In the second phase, we ranked the solutions
based on a weighted sum of cost (weight = 0.8) and emission (weight
= 0.2). The outcomes highlight the operational configurations, cost
implications, and environmental impacts of MAM under varying market
demands. While the methodology remained consistent across scenarios,
this section focuses on the unique findings and insights derived from
each.

5.1. NSGA-II optimization results

The NSGA-II optimization provides initial supply chain designs
including facility location, transportation flows, and the selection of
suppliers and airports for four demand scenarios: 10, 100, 1000, and
10,000 units. The top-ranking solutions from these optimizations are
presented in Tables 4, 5, 6, and 7. These tables detail the chosen
supplier locations, airports, facility coordinates, and the corresponding
costs and emissions for each scenario. Additionally, Figs. 3, 4, 5,
and 6 demonstrate the geographic placements of the facilities within
Northern Norway’s logistical network, as plotted via the Openrouteser-
vice API. These map illustrations, show the road structures, customer
location as well as facility location for the four demand scenarios.

5.2. Unit cost analysis

Following the optimization phase, a meticulous unit cost analysis
was undertaken to evaluate the economic and environmental efficiency
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Table 6
Ranked solutions for demand of 1000 parts based on weighted sum.

Rank Supplier Airport Costs (NOK) CO2 (kg CO2) Coordinates (lat,long)

1 USA Bodø 3 057 498.19 1 450 589.96 (67.2581, 15.2947)
2 USA Evenes 3 060 776.19 1 447 046.19 (68.5502, 17.5491)
3 China Bodø 2 810 568.19 2 783 673.05 (67.2876, 15.4780)
4 China Evenes 2 813 846.19 2 779 872.16 (68.5502, 17.5462)

Table 7
Ranked solutions for demand of 10,000 parts based on weighted sum.

Rank Supplier Airport Costs (NOK) CO2 (kg CO2) Coordinates (lat,long)

1 USA Bodø 30 425 243 14 451 981 (67.3063, 15.3952)
2 USA Tromsø 30 425 235 14 480 191 (69.5507, 18.8975)
3 USA Evenes 30 454 223 14 412 714 (68.5461, 17.5549)
4 China Bodø 27 965 643 27 724 610 (67.3064, 15.3328)
5 China Tromsø 27 965 635 27 752 804 (69.5072, 18.9076)

Table 8
Unit cost and emissions breakdown across four demand scenarios, detailing cost,
emissions, and supply chain configurations including airport and supplier selection.

Demand 10 100 1000 10 000

Supplier USA USA USA USA
Airport Tromsø Bodø Bodø Bodø
Printers 1 3 25 250
Material spools 4 32 314 3131
Support material spools 1 1 3 26

Total costs (Optimal printer utilization) 3421.5 3115.9 3054.1 3042.4
Production (Optimal printer utilization) 2206.6 2206.6 2198.9 2198.7
Material 409.5 409.5 409.5 409.5
Air freight 422.97 422.97 422.97 422.97
Inbound truck freight 32.63 9.31 3.79 3.65
Outbound truck freight 349.7 67.42 18.747 7.5303

Total emission 2260.26 1508.0 1450.62 1445.18
Supplier emission 8.99 7.19 7.1 7.04
Production emission 2.2 2.41 2.41 2.41
Air emission 2212.5 1460.25 1402.72 1396.97
Truck inbound 0.23 3.298 2.44 3
Truck outbound 36.34 34.85 35.95 35.76

of each product. This analysis considered the actual consumption of ma-
terials and logistics costs–both inbound and outbound transportation–
tailored to each production scale. Presented in Table 8, this detailed
breakdown elucidates the cost and emissions for each component,
offering a comparative perspective on the financial and environmental
costs per unit. Assumptions were made regarding the production facility
operating at full capacity, allowing for the allocation of fixed costs over
an increased production volume, thus enhancing cost efficiency.

5.3. Cost breakdown across demand variations

Table 8 and Fig. 8 collectively illustrate how production, material,
and transportation costs fluctuate across different production scales.
Notably, while the cost of materials remains unchanged across scenar-
ios, reflecting consistent unit consumption, transportation costs exhibit
a decline, benefitting from economies of scale. This trend, however,
does not extend to production costs, which remain relatively constant
across different scales of operation. This constancy underscores a fun-
damental challenge in MAM: the absence of traditional economies of
scale, which significantly impacts the cost-efficiency of production,
especially at higher volumes.

The production costs emerge as a primary bottleneck, preventing
cost reductions that could be achieved through economies of scale
prevalent in conventional manufacturing processes. This bottleneck is
exacerbated by the significant costs associated with air freight, which,
despite being lower than production costs, still constitute a substantial
portion of the overall transportation expenses. Fig. 7 reveals that air
freight accounts for a considerable percentage of transportation costs,
especially at larger production volumes.
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Fig. 3. Map of Northern Norway showing facility and customer locations for the 10-unit demand scenario generated from Openrouteservice.

Fig. 4. Map of Northern Norway showing facility and customer locations for the 100-unit demand scenario generated from Openrouteservice.
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Fig. 5. Map of Northern Norway showing facility and customer locations for the 1000-unit demand scenario generated from Openrouteservice.
Fig. 6. Map of Northern Norway showing facility and customer locations for the 10 000-unit demand scenario generated from Openrouteservice.
Fig. 9 breaks down the costs for production, particularly sintering
costs and machinery depreciation are identified as the predominant
contributors to the overall cost. Sintering costs, driven by gas expen-
ditures, and depreciation, a direct outcome of machinery usage rates,
place a heavy financial burden on the manufacturing process. The slow
production speeds of MAM technologies, even under optimal opera-
tional conditions, significantly inflate production costs. The detailed
process analysis highlights that printing alone can occupy up to 90 h
for a complete batch, with post-processing adding approximately 75 h,
potentially reducible to 45 h with enhanced sintering capacity. This
indicates that to achieve cost reductions at larger scales, a significant
enhancement in printing speed is imperative.
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5.4. MAM competitiveness versus CNC machining

To evaluate the cost-effectiveness of MEX relative to conventional
CNC machining, a detailed comparative analysis was carried out for
demand scenarios of 10, 100, 1000, and 10,000 units. This comparison
utilized the total unit costs derived from each scenario for MEX and
quotations obtained from CNC machining companies online for CNC
machining costs. Fig. 10 illustrates the unit costs for CNC machining
and MEX production across these four demand scenarios. In this figure,
the red line represents the unit cost of MEX where the production
process is optimized for throughput efficiency, accounting only for
the material used and transported on a proportional basis. Conversely,
the blue line depicts scenarios for MEX without process optimization,
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Fig. 7. Comparison of transportation costs across demand levels: top left–10, top right–100, bottom left–1000, bottom right–10,000.
Fig. 8. Visualization of cost trends across demand variations.
where production accounts for the entire cost of material spools re-
quired and the transportation for all these spools, irrespective of the
actual percentage used (e.g., for a demand of 1 unit, the full cost of
the spool is considered rather than just the 20% utilized). Similarly,
it includes full transportation expenses. The green line, meanwhile,
delineates the CNC machining costs for producing and transporting 1,
10, 100, and 1000 parts. While quotations for 10,000 parts were not
obtainable, it is anticipated that the cost would continue to decrease,
aligning with economies of scale, and thus be lower than that for 1000
parts.

6. Discussion

This study examines the competitiveness of MEX within the MAM
landscape, expanding the analysis beyond process-level costs to en-
compass system-level implications, including supply chain logistics and
carbon emissions. This broader perspective is crucial for understanding
MEX’s role in manufacturing practices, a significant contribution given
the current literature’s focus on technological aspects and process
efficiency.
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6.1. Geographical consideration

A key dimension of our study explored the viability of MAM in
remote areas, specifically focusing on Northern Norway, where the
vast distances between potential customers present unique challenges.
Unlike most existing studies for MAM optimization that rely on distance
to estimate transportation costs, our methodology employed a zone-
based system. This system accurately determined costs between postal
addresses across the region, an approach particularly suited to the
geographical nuances of Northern Norway. The significance of this
method lies in its ability to navigate the challenges posed by significant
uninhabited or sparsely populated areas, which might be incorrectly
favored in distance-based models.

The zone-based approach proves effective in remote settings by
prioritizing population centers within the zoning system. This ensures
that potential facility locations are strategically chosen, aligning with
areas of higher population density rather than arbitrary points in
vast, unpopulated regions. Such a methodology not only enhances
the accuracy of cost estimations but also aligns facility placement
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Fig. 9. Breakdown of production costs uniform across all demand scenarios.
Fig. 10. Unit cost comparison of MEX (optimized in red, non-optimized in blue) versus CNC machining (green) across four demand scenarios, highlighting scale-based
cost-effectiveness. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
with logistical practicality, thereby supporting the potential adoption
of MAM in regions like Northern Norway where traditional logistic
models may falter. Our results predominantly feature potential facility
locations near larger cities or key logistical hubs, demonstrating the
effectiveness of this approach. However, it is important to note that
the nature of the zoning system and the extensive search space mean
the solutions suggest general location areas rather than exact points.
For pinpoint precision in facility siting, optimization parameters would
require adjustment, necessitating a larger population and extended run-
time for the analysis. While our model adopts a zone-based system for
accurate cost estimations, it importantly still accounts for distance in
assessing carbon emissions. This approach provides a balanced analysis,
emphasizing both economic efficiency and environmental sustainabil-
ity. By integrating distance-based emission insights with zone-focused
cost calculations, our study offers a comprehensive framework for
evaluating MAM adoption in remote areas, addressing both logistical
and ecological considerations.

6.2. Operational insight

MEX is often regarded as a cost-effective and user-friendly entry
point into the realm of MAM, offering significant advantages for new-
comers by lowering the barriers to entry. Our analysis across four
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production scenarios, 10, 100, 1000, and 10,000 units, sheds light
on MEX’s competitiveness and supports the aforementioned statement.
To a certain degree... Specifically, our findings indicate that MEX
remains cost-effective and operationally efficient for producing up to
10 units as described in Fig. 10. Beyond this point, the comparative
cost advantages over traditional manufacturing methods, such as CNC
machining, start to diminish, corroborating the prevailing view that
MAM, including MEX, is less competitive at higher production volumes.
This efficiency, however, hinges on optimal production operations. A
pivotal insight from our study is the balancing act required to maximize
3D printer utilization: the production volume must be large enough
to prevent equipment from remaining idle, yet diversified enough to
cater to specific manufacturing needs. For example, our operational
model suggests that one printer, coupled with a washer and sintering
furnace, can handle up to 40 parts a month. Nonetheless, producing and
delivering more than 10 parts of the same type becomes economically
unviable when compared to CNC machining, due to diminishing cost
benefits with increased volume.

Further exploration identified critical challenges impacting MEX’s
broader application, particularly the low production throughput that
escalates machine-related costs. Additionally, sintering emerges as a
notable expense in the MEX process. Alternative sintering techniques,
such as transitioning to continuous furnaces for higher volume runs
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instead of the batch furnaces employed in our study, could significantly
reduce these costs. Implementing such changes could enhance MEX’s
feasibility for larger production scales, addressing one of its main
limitations.

From the transportation perspective, our findings indicate that
while truck transportation locally incurs relatively minor expenses,
air freight represents the predominant cost factor. This observation
underscores the critical importance of not only fostering local produc-
tion but also pursuing local sourcing strategies or more cost-effective
alternatives, such as sea freight, as opposed to air freight. However,
it is important to acknowledge that sea freight, while financially more
viable, introduces significant delays. Given the on-demand nature and
potential need for swift production capabilities in MAM, the extended
lead times associated with sea freight may not align with the opera-
tional requirements of businesses relying on MAM technologies. This
aspect of our analysis highlights the complex trade-offs that companies
must navigate when integrating MAM into their production and supply
chain strategies. While local production and sourcing can substantially
reduce transportation costs, the choice of shipping method must be
carefully balanced against the need for timely delivery and responsive-
ness to market demands. This strategic consideration requires detailed
analysis and thoughtful planning by each company seeking to leverage
MAM for competitive advantage.

6.3. Challenges and opportunities for scaling MEX production

Enhancing MEX to compete at larger volumes requires more than
just increasing production speed; significant improvements are needed
across several areas. The prolonged production times of machines rep-
resent a major bottleneck that must be addressed to enhance viability.
Additionally, the gas consumption associated with the sintering process
needs to be significantly reduced, possibly through adopting continuous
operations. Material costs and transportation expenses, particularly
those related to air freight which are a significant cost driver at
larger volumes, must also be lowered. Collectively, these adjustments
could position MEX as a competitive option for larger-scale produc-
tion. However, in its current state, MEX is best suited for low-volume
production. This study has demonstrated MEX’s feasibility within the
Norwegian supply chain, marking it as a viable option for specific uses,
especially in the spare parts supply chain, where the lower population
and industrial activity align with MEX’s capabilities. Nevertheless, a
comprehensive market analysis and efficient use of machinery are
crucial, as inefficient operation can quickly escalate costs and diminish
returns on investment.

Despite these challenges, MEX’s role in the MAM landscape remains
vital, particularly for applications requiring high customization and low
volume. The technology’s capacity for detailed and flexible manufac-
turing processes aligns well with industries seeking to respond quickly
to niche market demands or specialized component needs. However,
the transition to larger-scale production necessitates advancements in
MEX technology and process optimization, including faster production
speeds, more efficient sintering methods, lower material costs, and
sourcing from local suppliers.

7. Conclusion

This study has provided an in-depth exploration of the feasibility
and competitiveness of MEX within the broader MAM landscape, with
a special focus on its integration into the supply chain and implications
on cost and carbon emissions. Our MOO model, which incorporates
real-world data, offers critical insights into the operational and eco-
nomic dimensions of MEX, particularly within the unique geographical
context of Northern Norway. Key findings indicate that while MEX
shows significant potential for cost-effective production at low vol-
umes, its competitiveness diminishes as production scales increase.
This aligns with the current understanding that MAM, including MEX,
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is most advantageous for applications requiring high customization
and low production volumes. Our analysis demonstrates that MEX
remains economically viable for producing up to 10 parts, with cost
advantages decreasing substantially for higher volumes when compared
to traditional manufacturing methods such as CNC machining.

The study highlights several critical challenges that need addressing
to enhance the scalability of MEX. These include the low production
throughput of MEX machines, high sintering costs, and significant air
freight expenses. Addressing these challenges through technological
advancements and process optimizations – such as faster production
speeds, continuous sintering operations, and local sourcing – could
improve the cost-efficiency of MEX at larger production scales. Further-
more, our innovative zone-based logistical model for Northern Norway
offers a practical approach to understanding and mitigating transporta-
tion costs, which are particularly significant in remote areas with sparse
populations. This model ensures that potential facility locations are
aligned with population centers, enhancing logistical feasibility and
cost-effectiveness.

Lastly, MEX requires significant advancements to compete effec-
tively at higher scales. Our findings underscore the importance of
continuous research and development in MEX technology and process
optimization to expand its applicability and efficiency. This study
enhances the broader understanding of MAM’s economic and environ-
mental impacts, offering specific insights and strategies that can be
applied to similar regions facing geographical and logistical challenges.
By addressing these challenges, MEX can become a more viable op-
tion for diverse manufacturing needs, supporting both economic and
sustainable development.

The novelty of our research can be summarized as follows:

• Comprehensive Multi-Objective Optimization Model: Devel-
oped a model that incorporates cost and environmental impacts
for MEX.

• Geographical Focus: Provided insights specifically tailored to the
unique logistical challenges of Northern Norway.

• Zone-Based Logistical Approach: Employed a novel method for
accurately estimating transportation costs based on zones rather
than just distance.

• Scenario Analysis: Evaluated MEX’s competitiveness across vari-
ous production volumes (10, 100, 1000, and 10,000 units), high-
lighting its cost-effectiveness at low volumes.

• Production and Transportation Cost Breakdown: Detailed
analysis of production costs, highlighting the major contributors
and potential areas for cost reduction.

• Environmental Impact Assessment: Quantified carbon emis-
sions across the supply chain, emphasizing the importance of
sustainable practices.

• Strategic Insights for MEX Improvement: Identified key ar-
eas for technological advancements and process optimizations
necessary for scaling MEX production efficiently.

For future research, expanding the scope of products and mate-
rials analyzed would offer deeper insights into the versatility and
adaptability of MEX in various manufacturing scenarios. This could
involve exploring different product geometries and materials to further
validate the model’s applicability across diverse industrial contexts.
Furthermore, comparing the costs and emissions of MME against other
MAM processes, rather than only traditional manufacturing methods
like CNC machining, for various volumes and products, is an interesting
and valuable direction for future research.
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