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Abstract

Greenhouse gas (GHG) emissions datasets are often incomplete due to inconsistent

reporting and poor transparency. Filling the gaps in these datasets allows for more

accurate targeting of strategies aiming to accelerate the reduction of GHG emissions.

This study evaluates the potential of machine learning methods to automate the com-

pletion of GHG datasets. We use three datasets of increasing complexity with 18

different gap-fillingmethods and provide a guide towhichmethods are useful in which

circumstances. If few dataset features are available, or the gap consists only of a miss-

ing time step in a record, then simple interpolation is often the most accurate method

and complex models should be avoided. However, if more features are available and

the gap involves non-reporting emitters, then machine learning methods can be more

accurate than simple extrapolation. Furthermore, the secondary output of feature

importance from complex models allows for data collection prioritization to acceler-

ate the improvement of datasets. Graph-based methods are particularly scalable due

to the ease of updating predictions given new data and incorporating multimodal data

sources. This study can serve as a guide to the community upon which to base ever

more integrated frameworks for automated detailed GHG emissions estimations, and

implementation guidance is available at https://hackmd.io/@luke-scot/ML-for-GHG-

database-completion and https://doi.org/10.5281/zenodo.10463104. This article met

the requirements for a gold-gold JIE data openness badge described at http://jie.click/

badges.
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1 INTRODUCTION

Greenhouse gas (GHG) emissions datasets are often incomplete both at an individual facility level, for example, ClimateTRACE (2023), and at a

national level, for example, UNFCCC (2023).Most countries, andmany companies, are accelerating their emissions reduction strategies in linewith

the Paris climate agreement and net-zero objectives (Arnold & Toledano, 2021; Christiansen et al., 2023; Erb et al., 2022; Rogelj et al., 2016), but

incomplete and inaccurate datasets remain a barrier to understanding and, therefore, to effective policy-making (EPA, 2022a; IPCC, 2021;Marlowe

& Clarke, 2022). In regions including the European Union, the United Kingdom, and the United States, large companies are required to use generic

emissions intensity factors to convert their facilities’ activity data to GHG emissions. These emissions factors are either provided by the relevant

government authority such as DEFRA and the EPA (DEFRA, 2009; EPA, 2022b), or obtained from life-cycle assessment (LCA) databases, including

EcoInvent (Ecoinvent, 2022). The facility-level data are then aggregated to a national estimate grouped into source types and reported yearly by

UNFCCCAnnex I parties.

Dataset incompleteness can originate fromeither the facility-level calculation or the national-level aggregation. At a facility level, the threemain

causes of dataset incompleteness are: companies excluded from reporting regulations, where data are simply not calculated; lack of transparency,

sometimes as a result of industrial secrecy; and non-compliant companies (de Souza Leao et al., 2020; Marlowe & Clarke, 2022). Furthermore,

generic emissions factors used in calculations are non-specific to the production methods and supply chain routes used by a facility and can lead

to significant uncertainty in emissions reports (Cullen et al., 2024). For companies, large uncertainties can lead to possibly erroneous net-zero

calculations, wrong conclusions, and missed emissions. At a national-level, only 43 out of 198 countries are considered Annex I, accounting for

approximately 20% of global emissions, while the remaining Non-Annex I countries have inconsistent reporting (UNFCCC, 2023). National reports

are further limitedby the standardizedbreakdown into categories usedby theUNFCCC,which can result in difficulties for sector-specificmitigation

strategies. For national and international governmental organizations, the accumulation of uncertainties in emissions data can lead to significant

misunderstanding of progress towardmitigation targets andmisinformed policy decisions (Cullen et al., 2024).

The most accurate solution to missing data would be to conduct, or require all emitters to conduct, thorough accounting and aggregation of all

emissions for which they are responsible within the scope of the database. For country-level databases such as the UNFCCC, this is supposed to

occur, but in reality, reporting is sparse (UNFCCC, 2023). For facility-level databases covering emissions from scopes 1, 2, and3of theGHGprotocol

(WorldResources Institute, 2004), thiswould require full LCAs for all products fromall emitters,which is not viable due to the expense anddifficulty

in gathering necessary data (Jusselme et al., 2018; Potrč Obrecht et al., 2020). A second option, which we will explore in this study, is to improve

data coverage and quality by “gap-filling” emissions datasets from the data already available.

To improve data coverage, leveraging multiple databases, also known as data fusion, is increasingly popular in industrial ecology with exam-

ples including EXIOBASE, combining multi-regional input–output databases (Stadler et al., 2018), and the IEDC data repository (Pauliuk et al.,

2019). These databases can provide complete coverage in some cases at a country-wide or industry-wide scale but lack the granularity of facil-

ity or company-specific data. High-resolution, company-specific data are available through some publicly accessible databases, including the EPA’s

GHGRP interface (EPA, 2022a), satellite-basedClimateTRACE (ClimateTRACE, 2021), or spatially zonedbut non-company-specificVulcan (Gurney

et al., 2020). These databases can have facility-level granularity but have incomplete coverage of facilities.

Gap-filling can either be mechanistic, by theoretically simulating processes to output predicted environmental impacts, or data-driven, by pre-

dicting impacts through proxy data or relationships between processes (Zargar et al., 2022). Data-drivenmethods aremore scalable and applicable

when guiding decisions at a company-wide or country-wide scale and will be the subject of this paper. In LCA, regression-based methods have

been used to accurately estimate emission intensity factors for non-reporting coal facilities (Steinmann et al., 2014) and to reduce the number of

required parameters for calculating environmental impacts (Pascual-González et al., 2015). More complex methods based on utilizing the similari-

ties between facilities with accurate and inaccurate data have emerged to improve unit process impact assessments (Hou et al., 2018; Zhao et al.,

2021).Machine learning (ML) has been implemented in optimizing specific parts of LCAs, but has so far been unsuccessful in capturing the complex-

ity and types of inputs required for full GHG emissions estimates (Algren et al., 2021; Donati et al., 2022; Ghoroghi et al., 2022). In material flow

analysis (MFA), Bayesian approaches are used to reduce uncertainty by systematically updating model predictions given new data inputs (Dong

et al., 2023; Lupton&Allwood, 2018). This is an effective approach in a known frameworkwith constructed priors but is not directly transferable to

completing GHGemissions databases.Morewidely in industrial ecology,ML has been implemented to improve data collection through datamining

(Arbabi et al., 2022; Vilaysouk et al., 2022) and to facilitate decision-making, even in complex circular economy scenarios (Alavi et al., 2021). Over-

all, ML has enabled more accurate impact evaluations than the “taking the average” approach often used in LCA and MFA (Ebrahimi et al., 2022;

Larrea-Gallegos & Vázquez-Rowe, 2022).

The industrial ecology community and thewider carbon accounting community are calling on researchers to leverage data-driven innovations to

make best possible use of all data available to inform climate change mitigation strategies (Donati et al., 2022; He et al., 2022; Marlowe & Clarke,

2022). For the specific problem of gap-filling GHG emissions datasets which this paper addresses, explicit calculation of emissions through tradi-

tional industrial ecologymethods, including LCA, remains themost accurate solution. However, when real-world constraints render full calculations

infeasible, data-driven techniquesmay help reduce large uncertainties by effectively exploiting the large quantity of data that are available. For the
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638 CULLEN ET AL.

TABLE 1 Levels of gap filling within greenhouse gas (GHG) emissions datasets.

Level Gap composition Set relationship Inference type Typical use case

1 Time step Etest ⊆ Etrain
Ptest ⊆ Ptrain

Supervised learning ⋅ Inconsistent data reporting from

well-regulated facilities.

2 Emitter Etest ⊈ Etrain
Ptest ⊆ Ptrain

1D transfer learning ⋅Non-reporting small facilities.

⋅ Poor transparency.

3 Emitter with unknowns Etest ⊈ Etrain
Ptest ⊈ Ptrain

Multidimensional

transfer learning

⋅UNFCCC gaps, especially

Non-Annex-I countries.

⋅ Poorly mapped products.

E denotes the set of emitters and P denotes the set of properties of those emitters. Inference type refers to the machine learning literature and typical use

cases are not exhaustive.

implementation of such methods, industrial ecologists must be aware of which modelling techniques can be used to tackle which problems. The

rest of this paper seeks to address this gap as follows. Section 2 will introduce the types of gaps in emissions datasets and a series of increasingly

complex models that can be applied to gap-filling problems. Section 3 will assess the performance of each model when applied to gap-filling prob-

lems across 3 GHG emission databases. Finally, section 4 will discuss the implications of the results to inform the community of the correct tools to

explore for the problem at hand. An interactive guide is available at https://hackmd.io/@luke-scot/ML-for-GHG-database-completion. This guide

can serve as a reference for the community and will provide a roadmap for future development of a multi-input consistent framework for inferring

company-specific emissions estimations, inline with urgent needs for companies and governments in approaching net-zero targets.

2 METHODS

Gap filling is based on using a subset of data to infer additional data where they are not available. This is analogous to inferring output data ytest
given a set of input data Xtest , when the model has been trained to infer ytrain from Xtrain. In this section, we begin by defining the types of gaps in

emissions databases, followed by a presentation of the three datasets we will use to quantify gap-filling performance of different methods. Indi-

vidual classification techniques are then discussed, with extra focus given to graph-based models due to their novelty and tangibility for mapping

industrial ecology data. Finally, we consider secondarymodel outputs that may help with future data collection.

2.1 Gap definition

In Table 1, we present three types of gaps addressing increasingly challenging problems in GHG emissions datasets. These gaps are equivalent to

different training and test set splits for classification. Level 1 considers an emitter with some reporting records but with missing time steps, such as

amissing yearly report. Level 2 considers the situation of an emitter with no reports at any time step but with properties that are sharedwith other

emitters in the database that do have available reports. Level 3 considers an emitter with no reports at any time step andwith at least one property

that is not shared with any other emitter in the database, for example, for a facility in a country with no reporting facilities at all.

2.2 Datasets

In this study, the three gap-filling problems presented in Table 1 will be considered across the three datasets presented in Table 2. These datasets

cover a range of typical properties ofGHGemissions databases, including different resolutions and number of features.Where data sources include

facilities withmultiple co-products, allocation between them has already been conducted by the sources cited.

To apply a wide range of classification techniques and standardize the performance evaluation, this study discretizes emissions estimation into

a four-class classification problem. Class boundaries are set according to the quantiles of emissions values in each dataset with labels as stated in

Table 3.

2.3 Classification techniques

To each of the gaps presented in Table 1, considered for each of the datasets presented in Table 2, we will apply a series of classification techniques

and evaluate their performance. The key to understanding the abilities of different techniques on different problems is a set of consistent perfor-

mance metrics. When applying this methodology to new problems, performance on known test data should always be evaluated before applying

 15309290, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jiec.13507 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [01/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://hackmd.io/%40luke-scot%2FML-for-GHG-database-completion
https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1111%2Fjiec.13507&mode=


CULLEN ET AL. 639

TABLE 2 Properties of the three datasets used in this study.

Dataset Spatial resolution Temporal resolution Features Number of features

UNFCCC (UNFCCC,

2023)

Country Yearly Party (Country), Category 2

ClimateTRACE

(ClimateTRACE,

2023)

Facility Monthly Country, Sector, Type, Capacity, Latitude,

Longitude

6

Petrochemical (Cullen

et al., 2024)

Facility Yearly Country, Product, Company, Route,

Technology, Site, Plant#, Complex, Licensor,

Start year, End year, Latitude, Longitude

13

See Supporting Information S1 section 1.1 for full descriptions of dataset features.

TABLE 3 Definition of emissions estimation as a four-class classification problem.

Label Quantile Class

0 0→ 0.25 Low emissions

1 0.25→ 0.5 Medium emissions

2 0.5→ 0.75 High emissions

3 0.75→ 1 Very-high emissions

themodels to fill gaps. For each database, the data are split into a training set, which is used to build themodel and a test set, which themodel does

not see during training and is used to evaluate the model’s performance by comparing the model’s prediction to the real test set data. For the level

1 problem, the timesteps for each facility are randomly allocated to training and test sets. For the level 2 problem, facilities are randomly allocated

between sets, and for the level 3 problem, combinations of properties are randomly allocated between sets. Performance metrics must avoid bias

from over-fitting to a single category, which would imply that the models are simply learning the most likely category overall rather than predict-

ing categories based on individual data points. To this end, we will use average accuracy and F1 score as summary metrics defined in Equations

(1) and (2), where C represents the total number of classes c, four in this study; and TP, FP, and FN represent the number of true positives, false

positives, and false negatives, respectively. Taking into account the F1 score avoids biases from exclusively relying on average accuracy by also con-

sidering the number of false positive predictions. Although less intuitive than average accuracy, it quantifies the ratio between correct predictions

andmisclassification and is applied across all categories at once, known as the “micro” method:

Accuracy =
1
C

C∑

c=0

TPc
TPc + FNc

; (1)

F1 score =
TP

TP + 0.5(FP + FN)
. (2)

The objective of this study is to understand which techniques can be implemented for particular gap-filling problems. To this end, models of

increasing complexity will be applied to each level of problem for each dataset. Themodels used are assembled into five types as follows:

1. Interpolation (Süli &Mayers, 2003)—mean filling, polynomial fit. For level 1 gaps, interpolation is carried out across the time dimension. For level

2 and 3 gaps, themean emissions value of entities withmatching properties is used.

2. Shallow learningmodels (Pedregosa et al., 2011)—logistic regression, stochastic gradient descent (SGD), support vector classifier (SVC), passive

aggressive classifier, naive Bayes, decision tree, k-nearest neighbors, and perceptron. These models take as input all properties of the predicted

entity and the time step for which the prediction is to be made. They learn to classify entities by iteratively updating model weights based on

current performance.

3. Ensemble models (Sagi & Rokach, 2018)—adaboost and random forest. These models amalgamate the learning capabilities of many shallow

learningmodels to improve the performance.

4. Deep learningmodels (Goodfellow et al., 2016)—multilayer perceptron, deep fully connected network (DeepNet), long short-termmemory net-

work (LSTM), and residual network (ResNet). Functioning in the same manner as shallow learning models, these models are able to learn more

complex relationships between input variables and outputs due to a very large number of model weights.
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640 CULLEN ET AL.

F IGURE 1 Belief propagation in graphs. (a) Nodes are embeddedwith input data values to form prior beliefs and linked by edges according to
embedding similarities. (b) Beliefs are then propagated bymessage-passing along edges resulting in posterior beliefs for all nodes, including those
without prior knowledge.

5. Graph representation learning models (Hamilton, 2020)—graph convolutional network (GCN) and graphSAGE network (SAGE). Above simple

deep-learningmodels, thesemodels explicitly assign a structure to thedataby linking entitieswith the samepropertieswith anedgeas explained

in the next subsection. For this study, we use two properties to construct edges to remain consistent across all three datasets: Country and

Category/Sector/Product for UNFCCC, ClimateTRACE, and Petrochemical, respectively.

Model structure details can be found in Supporting Information S1 section 1.2 and implementation information can be found at https://hackmd.

io/@luke-scot/ML-for-GHG-database-completion. Cross-validation is used to optimize hyperparameters and prevent overfitting in all groups

except interpolation; details can be found in Supporting Information S1 section 1.3 and Supporting Information S2 section 1.4. For graph repre-

sentation learning models, input datasets must be manipulated into a graph form. Graph representation can be particularly beneficial to industrial

ecologists due to its flexibility in incorporatingmultiple data types and relationships betweenemitting entities. Therefore,wewill lay out an example

graph linking emitting facilities in somemore detail to provide intuition to the community.

2.4 Graph example

To simplify this example and provide intuition, we will consider a classification problemwith just two categories: low emissions and high emissions.

Figure 1 considers a set of 12 facilities. We know that facilities 5 and 8 are high emitters and facilities 3 and 12 are low emitters. To construct the

a priori graph G, shown in Figure 1a, we consider each facility as an individual node u ∈ V and draw edges e ∈ E between facilities if they produce

identical products or share owners. Equation (3) denotes the formal definition of this graphwith a set of nodes V and edges E:

G = (V, E). (3)

Given the a priori information,wewould like to infer the category of the nodes forwhichwehave no direct information. This can be done through

belief propagation that is basedonmessage-passing betweennodes. Equation (4) fromHamilton (2020) explainsmessage-passingwhere theweight

hu of each node u at time k+1 is calculated according to an update rule applied to the weight hu at time k and an aggregation of the weights hv of all

nodes vwithin the neighborhoodN of node u:

h(k+1)u = UPDATE
(k)
(hu(k),AGGREGATE

(k)
(h(k)v ,∀v ∈ N(u)). (4)
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CULLEN ET AL. 641

Applying one step of this algorithm, using the Dirichlet multinomial distribution-based Netconf framework as update and aggregation rules

(Eswaran et al., 2017) yields a probability of belonging to the high-emitting category for each previously unknown node, as shown in Figure 1b.

Figure 1 demonstrates a simple case of inference through belief propagation, where nodes with no prior data are assigned a probability of

emissions category given their relationship to other nodes. For example, nodes 6 and 7 are more likely to be low emitters than high emitters, and

conversely, nodes 2 and 10 aremore likely to be high emitters than low emitters. The limiting factor of this procedure is the a priori knowledge that

shared product type and ownership positively correlate with shared emissions category. In real-world scenarios, far more links between facilities

exist and can be incorporated into the graph, for example, geographical proximity, production output, suppliers, and age. Also, data can be leveraged

from thousands rather than 12 facilities. This increase in scale allows us to overcome the limitation of needing to impose a priori knowledge, by

employing learning algorithms that will learn how to propagate beliefs through experience. An added benefit of graph representations versus non-

graph neural networks is improved explainability. Explainability not only allows for justification of estimates but also prioritization of future data

gathering to which wewill now turn our attention.

2.5 Prioritizing data collection

Ranking the importance of individual input features in determining a model’s prediction allows us to establish the most valuable features to collect

during future data gathering. Shallow classifier feature importance is determined through the highest weighted factors in logistic regression and

most weighted branches in decision trees. Ensemble importance is an aggregation of feature importance outputs of the simple models composing

them. For deepmodels, explainability remains an active area of research, and in this study, wewill use gradient-based attributionmethods (Nielsen

et al., 2022; Sundararajan et al., 2017) to rank the relative importance of features in determining outputs. Graph models benefit from additional

explainability relative to deepmodels, andwewill use the GNNExplainer method (Ying et al., 2019) in this study.

Beyond feature importance, graph-based models also allow for data collection prioritization based on node importance. Consider a node (e.g.,

facility or country)where data are secret and cannot be acquired, then node importancewill determinewhich other nodes, where datamay bemore

easily acquired, are the most valuable targets for supplementary information leading to an estimate of emissions at the secretive node. This could

be a valuable tool for industrial ecology given the inaccessibility of many data points.

3 RESULTS

This study has tested a range of classificationmethods for gap-fillingGHGemissions databases. In this section, wewill present the output of a range

of models in predicting missing GHG emissions values across the three levels described in Section 2.1: (1) missing time steps, (2) missing emitters,

and (3) missing emitters with a previously unseen property. The competence of models under each scenario will be evaluated first according to

the average accuracy at a fixed train/test set split, second according to accuracy with different training set availability, and finally according to the

range of output statisticsmodels can provide to inform future data collection. Figure 2 displays the average accuracy for eachmodel applied to each

dataset and for each level of gap-filling, given a constant 70%–30% train/test set split.

In a simple level 1 gap-filling problem with missing years in the UNFCCC dataset, interpolation is the best solution with 97% average accuracy

seen in the top left of Figure 2. In datasets withmore input features, shallow learning algorithms based on decision trees and nearest neighbors can

perform as well or better than simple interpolation at level 1. Deep-learning models can achieve up to ∼70% accuracy but are not well suited to

optimally predict values for a single emitter and thereby do not perform as well as some simpler methods.

For level 2 gap-filling with missing emitters, interpolation accuracy drops significantly and is no longer the best option for any dataset. Decision

trees and the ensemble random forest method are viable solutions across all datasets with 60%–70% average accuracy. For the UNFCCC dataset

with only two input features, deep learning is ineffective, but for datasetswithmore input features, deep learning and graph representation learning

methods perform as well as the best shallowmethods.

In themost complex level 3 gap-filling problem, interpolation and shallowmodels have poor accuracy. For the ClimateTRACE and petrochemical

datasets, random forests, deep-learning, and graph-basedmodels all performwell. Once again, a low number of input features is a strongly limiting

factor for UNFCCC dataset prediction where deep learning is ineffective. In the UNFCCC case, random forest and decision tree classifiers obtain

the best performance with 60% and 61% average accuracies.

Deep-learning and graph-based models maintain a steady average accuracy as gap-filling problems become more complex. It should also be

noted that this study used uniform hyperparameter tuning across all models to maintain consistency, but it is likely that performance for individual

neural network-basedmodels could be increasedwith network structure adjustments and further parameter tuning. Considering simple gap-filling

problems and datasets with fewer input features, simple models outperform deep learning in output average accuracy. As gap-filling problems

become more complex and datasets have more input features from which models can learn, more complex deep-learning models output the best

average accuracy scores. Figure 2 assumes the availability of 70% of the data for training (i.e., a gap consisting of 30% of the data), but in real-life

gap-filling problems, data availability is variable. Figure 3 shows the evolution of average accuracy as data availability increases for three of the

best-performingmodels from different groups.
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642 CULLEN ET AL.

F IGURE 2 Average accuracy scores for emissions classification task across each level of gap filling for the three datasets considered. A
train/test split of 70%/30% is used, and trainable models were run for amaximum of 100 epochs. Random guessing in a four-class classification
problemwould result in 0.25 average accuracy. See Supporting Information S1 section 1.2 for model details and section 2 for supplementary
performancemetrics including F1-score.

Figure 3 shows that for level 1 problems, each model reaches within 10% of their optimal accuracy with just 20% of the training data available.

This implies that if inferring ayearly category for anemitter, among the four classes available in this study, usingdatapoints every5years is sufficient

to reachwithin 10% accuracy of using data points every 2 years. The difference in these accuraciesmay increase with finer resolution classification

or regression problems. For level 2 and 3 gap-filling problems with missing emitters, mean-filling performance plateaus with just 10% training data

as it is unsuitable for these problems as noted in Figure 2. The accuracy of learning algorithms for levels 2 and 3, with random forest andmultilayer

perceptron shown here, is within 20% of the optimal accuracy with 20% of training set availability but continues to improve uniformly up to∼ 70%

of training set availability, after which the accuracy does not vary more than 5%. The exception to this is the multilayer perceptron performance on

the UNFCCC dataset, which is poor due to the low number of input features. From a practical perspective, it is unsurprising that a level 1 problem

may achieve higher accuracy with less training data as the variation between emissions at a facility between different years is generally lower than

the variation between different facilities.

Across all levels, classification models are able to be used effectively with just 20% of the training set data available. Further data gathering

beyond 20%of the dataset ismoreworthwhile for level 2 and 3 problemswithmissing emitters than for level 1 problemswithmissing time steps. In

practice, resources are limited and it is worthwhile prioritizing data collection toward the features thatwill bemost effective in improving accuracy.

An explanation of model choices through feature importance analysis quantifies which dataset features are the most important for the model’s

decision-making. Figure 4 shows an example of feature importance, which should then be used to prioritize future data collection.

Figure 4a–c shows that some features, including “Category” for the UNFCCC, “Capacity” for ClimateTRACE, and “Product” for petrochemicals

are more valuable for data collection than other features and should be prioritized. Figure 4d presents that if data for emitter 0 are not accessible,

the best locations to gain data that would improve our knowledge of emitter 0’s emissions are emitters 1, 2, and 4; and information for emitter 5

would bemore valuable than information from emitter 3 despite it being less directly linked. Basing additional data gathering on these outputs will

accelerate the improvement in the accuracy of classifiers and could save time and effort by discounting the collection of features that are not useful

for emissions estimates.

4 DISCUSSION

Gaps in emissions reporting databases are a problem for mitigating climate change. Manual data completion is not scalable and can require numer-

ous assumptions. Are learning-based classifiers able to provide an automated solution to this problem? This study shows that learning-based
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(c)

(b)

(a)

F IGURE 3 Average accuracy of three different models across the three gap-filling levels relative to training set size. Training set size is shown
as a percentage of the total dataset for: (a) UNFCCC, (b) ClimateTRACE, and (c) Petrochemicals. Underlying data for Figure 3 are available in
tabular form in Supporting Information S2 section 2.2.

classifiers can be used to effectively and scalably complete emissions datasets in some cases. However, different models are appropriate for differ-

ent types of gap-filling problem and complex classifiers, including neural networks, are not the best solution inmany cases. Industrial ecologists and

emissions analysts should not rush to use machine learning if their problem is not suitable as an input for learning-based models. Figure 5 presents

a decision tree that can be used as a rule of thumb by researchers when choosing appropriatemodels for emissions database gap-filling problems.

The UNFCCC dataset has only two features for eachmodel to learn from. This is a strongly limiting factor for using complexmodels that are less

accurate on theUNFCCCdataset than theClimateTRACEandpetrochemicals datasetswith 6 and13 features, respectively. TheUNFCCCdatabase

could be associated with additional features supplementing those of “Category” and “Party,” and subsequently input to a classification model that

performs well with higher numbers of features. This presents an opportunity to accelerate the expansion of reliable UNFCCC database coverage

and target the tightening of UNFCCC regulation to those parties and features that are themost informative for the overall dataset. This will be the

subject of future work.

Data collection is the basis of all emissions reporting and complete data collection will continue to bemore accurate than inference from incom-

plete data. However, data collection relies on the cooperation of the parties providing the data and a consistent effort to aggregate data. First,

feature importance outputs from classifiers may allow for a targeted approach that could reduce the burden on organizations such as Climate-

TRACE and other enterprises seeking carbon footprint transparency, as they couldmaintain data completenesswithout explicitly collecting all data

points. Some data are more difficult to acquire than other data, and an evaluation of data accessibility would need to be added to feature impor-

tance outputs to target data collection in practice. Second, the ability to infer reliable data across unobserved facilities or parties may be a useful

filter in detecting possible misreporting. If the predicted value is significantly different to the value reported, this could suggest some verification

is required.
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644 CULLEN ET AL.

F IGURE 4 Model explainability representations. Relative feature importance for the decision tree classifier in the level 2 gap-filling problem is
shown for each dataset: (a) UNFCCC, (b) ClimateTRACE, and (c) petrochemicals. The sum of all importance values equals 1 for each dataset. Plot
(d) shows the output of a node importance analysis in predicting the class of node 0. Relative importance is calculated via the weight attributed to
each node in updating the value of node 0 during the final step of the iterative graph learningmodel. Underlying data for Figure 3 are available in
tabular form in Supporting Information S2 section 2.3.

F IGURE 5 Decision tree for model selection during emissions database gap-filling problems. “Interp.” signifies interpolation, and “Ensemb.”
signifies ensemble. The term "useful features" signifies features that will have significant feature importance during classification. Although
feature importance cannot be determined a priori, some features aremore clearly related to emissions than others. In this study following
Figure 4, the number of useful inputs for each dataset are: 2 for UNFCCC,∼3 for ClimateTRACE, and∼6 for petrochemicals. For further guidance
onmodel selection and implementation, visit https://hackmd.io/@luke-scot/ML-for-GHG-database-completion.
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The ability to predict emissions categories without imposing any physical knowledge of the relationship between input features and output

emissions permits easy incorporation of available data sources and avoids many of the biases involved inmanual emissions estimates. In effect, any

data source can be added to a learning-basedmodel, and if the data source provides new information, the model predictions will improve, but even

if the data are of no value, it will not affect model performance but simply be disregarded during prediction. In industrial ecology, this could open

avenues for the incorporation of data from MFA, LCA, and input–output studies into a single framework for process emissions estimates. Graph-

based frameworks may be particularly helpful for incorporatingMFA and LCA data, which are easily translated to the graphical form. For example,

in an LCA, processes can be allocated to nodes, and edges can represent the input and output ofmaterials for each process forming a graph that can

be coupled with other data or used in the same fashion as Figure 1 to estimate process emissions. Further afield, a multimodal framework could be

a basis for the merging of “top-down” satellite measurements with “bottom-up” emissions reports, as sought out in the remote sensing community

(ESA, 2021).

Poor performance in scenarios with insufficient input features or high levels of complexity shows the limitations of the techniques discussed in

this paper and should be consideredwhen applied to a new problem. Inferencemodels can only infer from data that are previously available; there-

fore, predictions for exceptional cases, such as facilities with new technologies, will be inaccurate. Furthermore, results are based on a four-class

classification, which is too imprecise for many applications, and uncertainty is not quantified. To address these limitations, our future research will

aim to quantify uncertainty across multimodal inputs and output an uncertainty distribution of values instead of a discrete classification. Another

limitation to complex network building is training time. Initial training time for all models in this study was less than 1 h on a standard issue 16GB

RAM computer. However, different models incorporate new data in different ways, and standard neural networks require some level of re-training

for each new data point, which may become impractical and expensive with a regularly updated system. Graph frameworks are able to locally

incorporate new data without the need for re-training applied to a whole network and may therefore be a more viable solution for incrementally

improvingmodels based on incorporating any additional data across largemultimodal networks.

In conclusion, machine learning methods can be used to automate the completion of GHG emissions databases when enough input features are

available. Feature importance outputs can guide the targeting of future data collection and should be considered by those engaged in improving

GHG emissions accountability. Graph-based frameworks could be particularly adept at handling multimodal and incrementally increasing data,

which could be used at the intersection of the remote sensing and industrial ecology communities in future studies.
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