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ABSTRACT
This study addresses the challenge of predicting readmissions in Child and Adolescent
Mental Health Services (CAMHS) by analyzing the predictability of readmissions over
short, medium, and long term periods. Using health records spanning 35 years, which
included 22,643 patients and 30,938 episodes of care, we focused on the episode of care
as a central unit, defined as a referral-discharge cycle that incorporates assessments and
interventions. Data pre-processing involved handling missing values, normalizing, and
transforming data, while resolving issues related to overlapping episodes and correcting
registration errors where possible. Readmission prediction was inferred from electronic
health records (EHR), as this variable was not directly recorded. A binary classifier
distinguished between readmitted and non-readmitted patients, followed by a multi-
class classifier to categorize readmissions based on timeframes: short (within 6months),
medium (6 months - 2 years), and long (more than 2 years). Several predictive models
were evaluated based on metrics like AUC, F1-score, precision, and recall, and the
K-prototype algorithm was employed to explore similarities between episodes through
clustering. The optimal binary classifier (Oversampled Gradient Boosting) achieved an
AUC of 0.7005, while the multi-class classifier (Oversampled Random Forest) reached
an AUC of 0.6368. The K-prototype resulted in three clusters as optimal (SI: 0.256, CI:
4473.64). Despite identifying relationships between care intensity, case complexity, and
readmission risk, generalizing these findings proved difficult, partly because clinicians
often avoid discharging patients likely to be readmitted. Overall, while this dataset
offers insights into patient care and service patterns, predicting readmissions remains
challenging, suggesting a need for improved analytical models that consider patient
development, disease progression, and intervention effects.
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INTRODUCTION
Hospital readmission happens when patients are admitted to a health service within
a specified time interval after being discharged from an episode of care, with the
reason for readmission being related to the initial admission. Readmissions cause stress,
inconvenience, and increased costs for families, patients, and the healthcare system (Da
Silva et al., 2024). According to the report by the Norwegian Ministry of Health and Care
Services (Reggeringen.no, 2015) in Norway, approximately 20% of children and adolescents
have mental health issues, and Child and Adolescent Mental Health Services (CAMHS)
is responsible for providing them with care. Understanding reasons for discharge and
readmissions can help reduce the readmission rate, prevent inappropriate discharges, and
ensure continuity of care. Readmission in our study is inferred from the Electronic Health
Records (EHR), instead of being a directly recorded feature. The EHR provides a rich source
of diverse information. Leveraging EHR data with machine learning (ML) algorithms may
help to detect patients who are likely to be readmitted by analyzing their records and
grouping them based on their similarities and differences. It is important to interpret ML
models to comprehend the complexity, scenarios and outcomes that affect readmission.
The incorporation of Artificial Intelligence (AI) into CAMHS offers exciting opportunities
for enhancing clinical decision support (CDS). However, it also poses concerns about
explainability, trustability, and patient safety related to medical interventions and devices.
Nonetheless, AI and ML have the potential to help medical professionals improve the
standard of care and support clinical decision-making (Haug & Drazen, 2023).

This study aims to investigate the incorporation of AI into CAMHS, focusing on the
predictability of readmission, particularly in terms of clinical utility. To improve the quality
of care, we examine clinical decision-making by providing retrospective solutions designed
to facilitate comprehension and analysis of complex mental health cases.

Data analysis and AI for patient readmission: a scoping review
In this scoping review, we present recent studies applying data analytics and AI for patient
readmission prediction. We focus on the methods, performance, and risk factors of the
models. Table 1 compares some studies that used EHR data to predict readmissions for
different conditions and time intervals.

This study is a part of the Individualized Digital DEcision Assist System (IDDEAS)
project, which aims to develop CDS for child and adolescent mental health services. The
CDS will focus on preventive care, early diagnostics, intervention, treatment, and case
management of psychiatric disorders (Røst et al., 2020). Given the relevance and use of ML
and data mining techniques for readmission prediction highlighted in the literature, this
paper focuses specifically on CAMHS patients. Our aim is not only to identify and classify
possible cases of readmission, but also to challenge the predictability and functionality of
readmission prediction in CAMHS.
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Table 1 Literature comparison.

Study Method Pros Cons Results

Pakbin et al. (2018) EHR data for ICU read-
missions

High AUROC values,
specific time intervals

Limited to ICU readmis-
sions, may not general-
ize

AUROC: 0.76 (72 h),
0.84 (24 h bounceback)

Matheny et al. (2021) Comparison of 5 ML
models for 30-day read-
mission

Emphasized calibration,
feasibility of using EHR
data

Similar AUROC values,
varying calibration levels

0.686 - 0.695 for para-
metric & 0.686 - 0.704
for nonparametric

Yu et al. (2015) Feasibility study for
Institution-specific read-
mission prediction

Flexible, adaptable to
context

Requires customization
for each institution

Framework with
context-aware
adaptation

Golas et al. (2018) Deep Unified Networks
(DUN)

Better prediction than
traditional methods

Computationally inten-
sive

Improved 30-day read-
mission prediction with
AUC of DUNs: 0.705±
0.015

Xue et al. (2018) Logistic regression,
functional independence
measures

High validation concor-
dance

Specific to rehabilitation
inpatients

Validation concordance:
0.85

Park et al. (2024) Patient-reported out-
come measures for 90-
day TJA readmissions

Considered patient-
reported outcomes

Focused on 90-day (total
joint arthroplasty)TJA
readmissions

Readmission rate: 5.8%,
AUC, recall, precision
>0.5

De Hond et al. (2023) MLmodel retraining
and recalibration

Improved AUC with iso-
tonic regression

Focused on short-term
(7 days) post-ICU dis-
charge

AUC improved from
0.72 to 0.79

Da Silva et al. (2024) Comparison of ML algo-
rithms for 30-day pedi-
atric readmissions

Found best algorithm
(XGBoost), high AUC

Pediatric-specific, avoid-
able readmissions only

AUC: 0.814, Readmis-
sion rate: 9.5%

Zeinalnezhad & Shishehchi (2024) Data mining, genetic al-
gorithms, SVM

Improved accuracy with
genetic algorithms

Diabetic readmissions
specific

Accuracy: 73.52%,
Readmission rate: 11.4%

Betts, Kisely & Alati (2020) Boosted trees model for
postpartum psychiatric
admissions

Good discrimination
and calibration

Specific to postpartum
psychiatric admissions

Gradient boosted trees
gave AUC = 0.80

Morel et al. (2020) XGBoost for mental/-
substance use disorders

Large dataset, better per-
formance than other
models

Specific to mental or
substance use disorders
and based on claims
data

AUC: 0.73

DATA AND MATERIALS
The data used in this study consists of aggregated EHR data over 35 years of care provided
by the CAMHS clinic at St. OlavsUniversityHospital, inNorway (Koochakpour et al., 2022),
recorded in a domain-specific EHR system, also called BUPdata (Oslo, 2024). The dataset
includes structured patient information such as demographics, episodes of care, diagnoses,
and treatment (i.e., medication prescriptions). It covers a cohort of 22,643 patients with
30,938 episodes of care, 41,411 referrals (both accepted and rejected), 1,840,045 contacts, 57
units, 22,596 medications, 36,087 regulations, 39,713 prescriptions, and 222,165 diagnoses.
Compliance with ethical standards was ensured by anonymizing patient data and obtaining
necessary approvals. The age and gender composition of the data includes male and female
children and adolescents aged 0 to 18 years, with 52% male, 47% female, and 0.28%
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Figure 1 The Entity Relationship Diagram (ERD) showing entities and relationships derived from pa-
tient information.

Full-size DOI: 10.7717/peerjcs.2367/fig-1

‘gender_0’ (others). Age distribution within the cohort is: 59.2% teenagers, 36.7% middle
childhood, and 4% preschoolers. Figure 1 illustrates the relationships between the data
components.

Data pre-processing and feature engineering
Data pre-processing and feature engineering involved several steps to ensure the quality
and selection of data were suitable for analysis. We have outlined these details in the
following subsections.

Episodes of care
An episode of care starts when a patient referral to CAMHS is accepted and ends when
the patient case is completed (see Fig. 2). All clinical appointments related to assessment,
diagnosis, and treatment, from the point of the referral acceptance to the patient case
closure and follow-up, are considered part of the same episode of care (Solheim, 2023).
The length of episodes varies, ranging from a few days to several years. An individual
patient record may have several episodes of care and each episode has at least one contact
(see Fig. 3). The occurrence of the episodes, the duration of each episode, the time passed
between consecutive episodes, and the overall sequence of the episodes for each patient are
important factors in this study.

Episodes of care exclusion criteria. Episodes of care with assessment as ‘‘rejection due to
capacity’’ or ‘‘rejection due to professional reasons’’ or with closing code ‘‘rejected’’ or
‘‘did not get started’’ were not included.
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Figure 2 Episode of care in CAMHS (Koochakpour et al., 2024a;Koochakpour et al., 2024b).
Full-size DOI: 10.7717/peerjcs.2367/fig-2

Figure 3 Patient with multiple episodes of care and contacts.
Full-size DOI: 10.7717/peerjcs.2367/fig-3

Feature engineering based on episodes of care. The feature ‘‘Tillnextepisode’’ (Count of days
until the occurrence of the next episode) is the target variable for readmission classification.
It calculates the readmission period based on the number of days between the end of the
current episode and the start of the next future episode for each patient. Episodes of care
were characterized by counting associated activities, including outpatient visits, day and
24-hour inpatient stays, administrative and research tasks, therapy, examinations, advisory
sessions, and treatment planning contacts.

For the care complexity and level of intensity in each episode, specific features were
engineered. The ‘‘Length_of_Episode’’ feature represents the time duration between the
start and end of an episode. The ‘‘Count_visit’’ feature is the total number of contacts in
one episode. The ‘‘Care_intensity’’ feature is the average number of contacts per day. For
measuring intensity per month, the ‘‘SD_CareEvent_PerMonth’’ feature is the standard
deviation of the number of contacts per calendar month. The ‘‘Num_diagnoses’’ feature
is the number of unique diagnoses per episode. Most episodes (i.e., 9,693) contain only
one diagnosis. A total of 56 episodes of care contained six diagnoses and only one with
10 diagnoses. The ‘‘Num_medications’’ feature is the number of unique medications
per episode. As with the number of diagnoses, most episodes (i.e., 2,607) had only one
prescribed medication. At most, there were seven medications per prescription.

The selection of features has some weaknesses. We chose to use ‘‘Length_of_Episode’’
despite knowing that it is not a representation of severity or complexity of care. While it
does not provide insights about the number of contacts or variations between periods (i.e.,
subintervals), for those with no contacts and with numerous contacts, it is an important
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feature. ‘‘Count_visit’’, on the other hand, only reflects the total number of contacts and
does not provide information about the timeframe in which the contacts occurred or the
distribution of these contacts. Additionally, ‘‘Care_intensity’’ gives us an imprecise average
value and different episodes can have the same average. Lastly, ‘‘SD_CareEvent_PerMonth’’
is a measure that represents the variability of care for each episode.

Diagnoses
CAMHS in Norway uses the ICD-10-based multiaxial classification of child and adolescent
psychiatric disorders (Directorate for e-health, 2022). The system was originally developed
by the World Health Organization (WHO) and has since been adopted for use in CAMHS
in Norway (Malt & Braut, 2024). The multiaxial classification has six distinct axes. This
research focused on diagnoses coded in axis (1): Clinical psychiatric syndromes, axis (2):
Specific disorders of psychological development, axis (3):Mental developmental disabilities,
and axis 4: Somatic conditions (see Fig. S1). Axis 5 encodes psychosocial situations, and axis
6 is Children’s Global Assessment Scale (CGAS), neither presenting information about the
disorders, so they are excluded from this study. We excluded these axes from the analysis
because recording was incomplete and variable during each episode. For instance, only
a small percentage of patients had their CGAS scores recorded consistently. Axis 5, the
psychosocial situation, was known as a strong predictor among collaborating clinicians,
and therefore they wished to give priority to other factors. The distribution of provided
diagnoses shows that approximately 73.4% are on axis 1, 8.1% are on axis 2, 1.4% are on
axis 3, and 17.2% are on axis 4. For the patients that have been referred to CAMHS for
further assessment, any somatic diagnoses provided in other clinics are recorded within the
CAMHS system and considered when treating the patient. In our diagnostic codes, we had
R-codes (temporary, symptom-based) and Z-codes (used to identify reasons for contact,
not otherwise covered within ICD litra A-Y) (Directorate for e-health, 2022). Both were
removed as they do not specify disorders. On axis 3, codes 1 - 4, relating to intelligence level,
were excluded. Internally used codes like ‘‘x-000’’ (no condition detected) and ‘‘x-999’’
(insufficient information) were also excluded (Directorate for e-health, 2022). ICD-10 codes
were mapped to phenotypes using the Phecode system for simpler data analysis. Phecode
Map 1.2 (beta) was used, including 9,165 unique ICD-10 codes. Of these, 1,365 were
used for diagnoses, and 136 without corresponding Phecodes were assigned manually.
The impact of this is studied in later sections. The most frequent diagnosis identified was
‘‘F900’’ (disturbances of activity and attention). In addition, ‘‘F321’’ (moderate depressive
episode), ‘‘F952’’ (combined vocal and multiple motortics, Tourette’s syndrome), ‘‘F431’’
(post-traumatic stress disorder), and ‘‘F901’’ (hyperkinetic conduct disorder) are also
prevalent in our data set (see Fig. S2).

Prescriptions
The dataset includes CAMHS prescriptions, represented by Anatomical Therapeutic
Chemical (ATC) codes, which classify medications into a five-level hierarchy (Norwegian
Instituteof Public Health, 2022). In our dataset, the prescription data includes the trade
name, ATC code, and ATC name. The number of unique ATC codes varies across levels,
with fewer prefixes at higher levels, resulting in less generalization. For example, in our data,
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level 3 (three-character prefix) has 56 unique codes (e.g., N06B), while level 5 (five-character
prefix) has 123 (e.g., N06BA04). In this study, we analyzed only the ATC code, using ATC
name and trade name only when ATC codes were unavailable. The ATC code was chosen
as it groups medications by use and limits duplicates. Each ATC code is counted once per
care episode. The dataset predominantly contains medications from the nervous system
(N) group of the ATC code system. We initially removed 11,482 prescriptions without an
episode identifier and 4,026 prescriptions without ATC codes linked to four medications
brands (Melatonin, Concerta, Metamina, Dexidrine) and five energy drinks. We assigned
ATC codes to the medications brands but removed the energy drinks (see Fig. S3).

Other data pre-processing details
As described in a previous study (Koochakpour et al., 2024a), missing or incorrect data are
replaced with plausible values or excluded to maintain data quality. This section discusses
further data pre-processing.

Episodes
Determining the start and end of the episode was one of the challenges. Referral or entry
dates were often inconsistent due to lags, varying paths of referral (e.g., internal from other
departments) or errors in recording. To ensure consistency, we used the first and last dates
of contact. Contacts with inconsistent date or age information, such as dates before the
patient’s birth, were removed (this includes cases with pregnant mothers, and the child
enrolled as a patient in a parent episode).

Age
Patient age is calculated at the first contact of each episode. We found 178 episodes with
ages above 18, mostly single episodes involving 151 women and 25 men aged 19 to 40.
11 episodes involved individuals over 40, possibly related to expectant parents who were
under examination and observation to prevent developmental disorders in their future
child. Episodes with negative or zero ages could be due to impending births or recording
errors. As we lack complete information for these cases, they were removed. Episodes
involving patients with childhood history in CAMHS but aged over 18 are related to the
situation that CAMHS clinicians occasionally continue seeing patients they knew from
before, even after they turn 18. However, as these cases are exceptions, we removed them
from our datasets. Patients aged 18 to 19 were retained.

The patient ages were grouped into intervals based on the children’s developmental
stages and the Norwegian school system. To ensure that the defined age groups were
clinically meaningful, CAMHS clinicians were consulted. Patients with age intervals of
0–5, 6–11, 12–18 years were designated as ‘preschooler’, ‘middle childhood’, ‘teenager’,
respectively.

Gender
The patient’s gender was designated as either female (F) or male (M). This is due to the
limitations of the EHR system, which only allows the selection of male or female as gender
options. The missing gender values were coded as ‘gender_0’ (others). This ‘gender_0’
category indicates a missing value and does not indicate non-binary/neutral gender.
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Figure 4 Types of episodes of care.
Full-size DOI: 10.7717/peerjcs.2367/fig-4

Codings
Even within the same CAMHS clinic with presumed similar coding practices are assessment
and diagnostic practice changes over time as a result of changing guidelines and new
coding recommendations (Koochakpour et al., 2024b). Similar patient situations may be
described or coded differently over time and needs mapping before analysis. Fortunately,
in some cases, consultations with the local CAMHS made the mapping possible; however,
some features with coding that had different mapping prior to and post the new code
system would have to be excluded. Due to the change of diagnostics guidelines over time
(Directorate for e-health, 2022) misuse of codes is possible, such as using the procedure
code ‘‘Z032’’ (Observation for suspected mental and behavioral disorders), as an axis 1
diagnostic code. Although ‘‘Z032’’ contributed as one of the most frequently recorded
diagnoses on axis 1, it was excluded to avoid inconsistencies. Elsewhere, old internal codes
were mapped to clinically equivalent ICD10-codes. The category of a patient contact as
‘‘inpatient’’, ‘‘outpatient’’, ‘‘inpatient_day’’ or ‘‘inpatient_24hours’’ was inferred from
department type and other indicators (see Fig. S4).

Merging episodes
When analyzing the values in ‘‘Tillnextepisode’’, some negative and zero values were found.
This reflects the existence of three distinct types of episodes: (1) episodes that do not
overlap and are not contiguous, (2) adjacent episodes, and (3) episodes that overlap (see
Fig. 4).

As type 2 and type 3 episodes may be unlikely or should not occur, these episodes
were merged into a single episode to retain the identity of the first episode. Subsequently,
all associated features defining the episode, such as the length of the episode have been
recalculated. Merging the episodes resulted in 22,857 episodes of care.

Data cutoff
In Norway, the BUPdata EHR system had been in use for CAMHS for almost 35 years
(Koochakpour et al., 2022). Different health regions phased the system out after 2012. In
2018, the Central Norway Regional Health Authority made the decision that St. Olav
CAMHS should switch from BUPdata EHR to the general specialist Doculive EHR system.
New referrals were documented in Doculive from January 5, 2018 (last new patient date),
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Figure 5 Distribution of length of patient episodes of care.
Full-size DOI: 10.7717/peerjcs.2367/fig-5

new consultations of all patients were documented in Doculive from March 5, 2018 (last
write date), and by July 3, 2019, all patients had been transferred (last read date). Data
shows an unusually large number of discharges in the last six months before January 5,
2018 (see Fig. S5). This date was chosen as a cutoff date for our data.

Episodes with unacceptable length
The longest possible duration of an episode for a patient is 6,934 days, equating to nearly 19
years (see Fig. 5). Three episodes were longer than 6,934 days and were removed from the
dataset. Except for those episodes, the rest of the episodes had the following distributions
as shown in Fig. 6. The majority of episodes (41%) have a duration of up to one year.
Around 29% of the episodes were from 1 to 2.5 years, while the remaining 30% have an
episode duration >2.5 years, with the maximum duration of 6,759 days.

Re-admission period distribution
The median duration before readmission is 452 days and 75% of the patients were
readmitted in less than or equal to 914 days (i.e., 2.5 years). The wide range of values in the
last quartile (914–5,109 days) indicates a significant spread of values within this portion
of the dataset (see Fig. 7). Patient readmission distribution is shown in Fig. 8. To identify
any extreme values that might need to be removed, we used a condition (<= (19 * 365
- 1) - (Patient_age * 365 + Length_of_episode)) to ensure that the episode duration did
not exceed the maximum allowable time based on the patient’s age and the length of the
episode. This helped us determine if any episodes were unusually long and required further
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Figure 6 Distribution of episode length ranges in categories.
Full-size DOI: 10.7717/peerjcs.2367/fig-6

investigation. A readmission period was considered valid as long as it did not start or
extend after the patient turned 19 years. All episodes satisfied this condition, so they were
all kept.

Establishing readmission classes and addressing class imbalance issues
Clinicians expressed interest in knowing if a patient will be readmitted and if so, a
readmission range rather than the exact number of days. Therefore, our research focuses
on identifying whether a patient will be readmitted or not (i.e., binary classification). For
those readmitted, determine the range of readmission (i.e., multi-class classification) as
short (approximately 0 - 6 months), medium (approximately 6 months–2 years), and long
(approximately over 2 years). 15,1% of admissions were readmissions , while episodes
without readmission make up 84.9% of the data. This can cause an imbalance issue in
binary classification, so it was necessary to establish readmission status classes (see Table 2).
For selecting readmission multi-classes (short, medium, long), two factors were taken into
account: 1. the significance of clinically relevant readmission periods, and 2. not having
very imbalanced data. Finally, after pre-processing, the dataset contained 22,676 episodes
of care labeled as in Table 2 below.

METHODOLOGY
The IDDEAS project, of which this study is a part, was assessed by the Regional Committee
for Medical and Health Research Ethics (REK) under reference number 15600, South East.
REK concluded that ‘‘the project falls outside the scope of the Health Research Act, cf.
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Figure 7 Distribution of patient readmission periods.
Full-size DOI: 10.7717/peerjcs.2367/fig-7

Figure 8 Distribution of patient readmission ranges in categories.
Full-size DOI: 10.7717/peerjcs.2367/fig-8
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Table 2 Distribution of readmission status in classes.

Classifier type Readmission class Count of episodes
of care within
the class (a)

Count of
episodes of
care out of
the class (b)

Total Class imbalance
ratio (ratio of
each class
size in comparison to
the total
of the rest)
i.e.,= (a /total) * 100

Not-readmitted 19,250 3,426 22,676 84.9%Binary
Readmitted 3,426 19,250 22,676 15.1%
Readmitted in short period (0–6 months) 1,001 2,425 3,426 29.2%
Readmitted in medium period (6 months - 2 years) 1,316 2,110 3,426 38.4%Multi-class

Readmitted in long period (over 2 years) 1,108 2,318 3,426 32.3%

‘Data and Materials’, and can therefore be implemented without REK approval’’ (reference
number: 2018/2186, 09/10/2019). Following REK’s recommendation, the IDDEAS research
team submitted a risk analysis to the Central Norway Regional Health Authority and a Data
Protection Impact Assessment (DPIA) to the local data protection officer, and approval
was received.

Figure 9 outlines our study methodology. We describe the methods we applied for
dimensionality reduction in data preparation, and how we utilized both classification
(supervised) and clustering (unsupervised) methods for our analysis.

Dimensionality reduction and feature selection
Before classification and clustering, we applied dimensionality reduction and feature
selection to remove highly correlated features and assess their correlation with the
‘‘Tillnextepisode’’ target variable. We used principal component analysis (PCA) to identify
the components that explained most of the variance in the data. We also used correlation
analysis to assess the relationships between the features and the target variable, ensuring
that the relevant features were retained for further analysis. These methods may be useful
in enhancing the model’s performance by reducing the number of features in the dataset.

Classification
The initial approach was to classify the entire dataset into five classes, one of which
represented not-readmitted cases, and the remaining four represented various readmission
periods. Despite the high F1-score of the classification model, it had difficulty predicting
classes other than the not-readmitted class. This is a data imbalance issue (Lemaître,
Nogueira & Aridas, 2017). To address this, we changed the approach and simplified the
classification task by cascading it into binary (predicting readmitted or not) andmulti-class
(predicting readmission period if readmitted). This approach enabled us to manage the
imbalance issue more effectively and select the most appropriate classifier for each type.

It appeared that the dataset for the binary classifier could suffer from significant class
imbalance (not readmitted: 19,250, readmitted: 3,426). Meanwhile, the dataset for the
multi-class classifier could potentially face more severe problems due to its small size
(just 3,426 readmitted episodes), rather than class imbalance. To address these issues,
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Figure 9 Illustration of the overall methodology.
Full-size DOI: 10.7717/peerjcs.2367/fig-9

we implemented class weighting and naive random oversampling (Lemaître, Nogueira &
Aridas, 2017). Furthermore, we reduced the number of classes representing readmission
periods from four to three.

We relied on prior insights (Koochakpour et al., 2024b) to select logistic regression due
to its simplicity and clear interpretability. Decision tree and random forest were utilized
for their abilities to handle non-linear relationships and high-dimensional datasets,
respectively. Gradient boosting and XGBoost were included for their high performance
and scalability, with XGBoost excelling in managing imbalanced data, especially for our
binary classification needs. Multilayer perceptron was tested for its deep learning capability
to detect complex patterns. We tried to harmonize the need for interpretability with
performance, which is important for understanding predictive factors.

We used cross-validation to assess the performance of ourmodels across different subsets
of the data, which helped to prevent overfitting and ensured that the model generalized
to unseen data. Specifically, we utilized a 5-fold cross-validation technique using 80% of
the dataset for the initial training. For the final model evaluation, we reserved 20% of
the entire dataset as an independent testing set. To address data imbalance and small-size
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dataset issues, we applied and compared class weighting and oversampling techniques.
Class weighting adjusts the weight of each class inversely proportional to its frequency, and
oversampling involves duplicating samples from the minority class to balance the dataset.
These techniques were important in enhancing the model’s ability to predict the minority
class. Therefore, we applied this solution in three scenarios: (1). Without class weight or
oversampling, (2). With custom/balance class weight, (3). With oversampling. Finally, we
evaluated the performance of classifiers to select the best-performing models.

Clustering
Clustering was chosen as one of our methods to explore and understand intra- and inter
-cluster distance among episodes of care. Clustering utilized all features and labels from
the classifiers. The clusters are compared to the readmission classifiers ‘T illnextepisode’
label. We identified the optimal cluster number and discussed its relation to the classifier
classes. We also examined data patterns and distributions in other features and their
connection to ‘T illnextepisode’ within these clusters. Having mixed data types (categorical
and numerical) in the dataset, the K-prototype algorithm was chosen for clustering
(Huang, 1998). The k-modes library (De Vos Nelis, 2015-2021) was used to implement
the K-prototype algorithm. We analyzed how different combinations of data affected the
clustering outcomes.We used datasets with and without diagnoses andmedications. Out of
the 1,427 unique diagnoses and medications that were added as one-hot encoded columns
in the dataset, 1,305 columns corresponded to ICD diagnosis codes and 123 columns
corresponded to ATC codes. Additionally, we evaluated the 20, 50, and 100 most frequent
codes under the assumption that they might cover most of the diagnoses and medications
in use. For each dataset combination, we computed the optimal number and evaluated the
quality of clusters.

Evaluation
The performance of these classifiers was evaluated on the independent test (reserved
20%) set across both binary and multi-class tasks using metrics AUC, F1-score, precision,
recall, and accuracy. These metrics were chosen based on their relevance and suitability
for addressing the specific challenges and objectives of our research: Precision and recall
are important in evaluating the performance of our imbalanced models. The F1-score
combines precision and recall into a single measure, providing a balanced evaluation of the
model’s performance. Recall, precision and F1 are particularly useful when the cost of false
positives and false negatives is high, as is the case in healthcare readmission prediction. We
evaluated the model’s sensitivity (true positive rate) and false positive rate using the ROC
curve, and AUC for comparing the overall performance of models. The higher the AUC
score, the better the model performs across all classes. Finally, the best-performing models
were selected as the main result of the paper. Classification outcomes were visualized using
3D scatter plots to compare predictions against actual target variables.

The number and the quality of clusters were analyzed using elbow plot, and Silhouette
(SI) and Calinski-Harabasz (CI) scores respectively. SI score analyzes the similarity of data
points within a cluster to data points in various other clusters, with a range of −1 (poor
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clustering) to +1 (perfect clustering). CI score measures the compactness and isolation
of clusters, with higher values indicating better clusters. We analyzed the clusters using
minima, maxima, and box-plots. To evaluate the process and confirm the clinical relevance
of all results, we presented them to a group of clinicians for interpretation and assessment.
To ensure rigour in methodology, we followed the medical informatics ML checklists by
Cabitza & Campagner (2021) and Cerdá-Alberich et al. (2023) guiding the data and ML
analytic, selection of metrics, evaluation and validation processes, and ensuring adherence
to ethical and technical standards in healthcare predictive modelling.

RESULTS
Dimensionality reduction and feature selection results
Principal component analysis for dimensionality reduction
PCA reduces the dimensionality while retaining as much information as possible. The PCA
is implemented using ‘‘sklearn.decomposition’’ module identified that 12 out of 16 initial
features are required to cover 95% of the data variance (see Fig. S6).

Correlation analysis for feature selection
Correlation analysis was used to determine the correlation of features to the target variable
and to select the predictors most correlated to the outcome/target label. Scatter plots
revealed no significant linear relationships or normality between certain features and
‘‘Tillnextepisode’’ (see Fig. S7). Therefore, among Pearson, Spearman, or Kendall, the
Kendall correlation was used to construct the correlation matrix, as it better handles
non-linear relationships.

The initial analysis of the correlation matrix showed that some features were either
derived, redundant, or complementary (see Fig. S6). As a result, several changes were
made to the feature set. From the pairs ‘‘outpatient_ratio’’—‘‘inpatient_ratio’’, and
‘‘inpatient_daynight_ratio’’—‘‘inpatient_day_ratio’’, only one feature was retained in
each pair. The feature ‘‘Care_intensity’’ was removed due to its high correlation with
both ‘‘Count_visit’’ and ‘‘Length_of_Episode’’. ‘‘Examination_ratio’’ was also removed
because it showed a correlation with ‘‘Therapy_ratio’’ and not a strong correlation with
‘‘Tillnextepisode’’. It is worth noting that the correlation between ‘‘Tillnextepisode’’
and ‘‘label’’ (readmission class) in the correlation matrix reveals that categorizing
‘‘Tillnextepisode’’ into classes could lead to a loss of information of about 11%. After
these adjustments, a new correlation matrix of the final 12 features was generated (see
Fig. 10).

Figure 10 shows ‘‘Age_group’’ and ‘‘Inpatient_day_ratio’’ have the strongest
correlation with ‘‘Tillnextepisode’’. Conversely, the activity ratios (‘‘Therapy_Ratio’’,
‘‘TreatmentPlanning_Ratio’’, and ‘‘Counseling_Ratio’’) have the lowest correlation. In
addition to the literature in Table 1 andKoochakpour et al. (2024b), we used domain-experts
for the causality analysis.
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Figure 10 Correlation matrix showing the correlation between features and target variable ‘‘Tillnex-
tepisode’’.

Full-size DOI: 10.7717/peerjcs.2367/fig-10

Features and target variables
Tables 3 and 4 present the final features and target variable for the readmission classification
and clustering tasks. The dataset contains numeric, categorical, and string (or object) data
types. One-hot encoding was implemented on the ‘‘Gender’’, ‘‘Age_group’’, ‘‘Diagnoses’’
and ‘‘Medication’’ features. We indirectly managed missing values by excluding them
from our dataset. Specifically, patients without recorded age or any contact (visit) were
omitted. Missing gender values were categorized as ‘gender_0’ (a separate category). All
other features were either calculated or provided, resulting in no additional missing data.

The ‘‘Tillnextepisode’’ target variable was transformed into classes and bin labels. For
classification purposes, it is transformed to the readmission classes: ‘‘not-readmitted’’ and
‘‘readmitted’’ for binary classifiers and ‘‘short’’, ‘‘medium’’, and ‘‘long’’ for multi-class
classifiers. For clustering purpose and for further comparison of results with actual data, we
binned this variable into bin labels (‘‘Tillnextepisode_bins’’): ‘‘not-readmitted’’, ‘‘readmitted
in 0–182 days’’, ‘‘readmitted in 182–730 days’’, and ‘‘readmitted in more than 730 days’’.
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Table 3 Final features.

Feature name Description of feature Data type Range

Age_group One-hot encoded feature for values: 0–5 (Preschooler), 6–11
(MiddleChildhood) and 12–18 years (Teenager)

Categorical 0,1

Gender One-hot encoded feature for values: F (female), M (male)
and gender_0 (others)

Categorical 0,1

Length_of_Episode Length of episodes (days) Numerical 1–6,759
Count_visit Count of patient’s visits (contacts) Numerical 0–4,159
SD_CareEvent_PerMonth Standard deviation of the number of patient’s visits per

month during the episode
Numerical 0–3.3

Outpatient_ratio Ratio of outpatient visits out of total visits (inpatient and
outpatient)

Numerical 0–1

Inpatient_day_ratio Ratio of inpatient (day) visits out of total inpatient visits
(both day and 24 h)

Numerical 0–1

Therapy_ratio Ratio of patient’s visits with the activity type of therapy Numerical 0–1
TreatmentPlanning_ratio Ratio of patient’s visits with the activity type of treatment

planning
Numerical 0–1

Advisory_ratio Ratio of patient’s visits with the activity type of advisory Numerical 0–1
Num_diagnoses Number of diagnoses Numerical 1–10
Num_medications Number of medications Numerical 0–7
Diagnoses ICD diagnosis codes, transformed into one-hot encoding

for each unique diagnosis
Object (String) 0,1

Medications ATC medication codes, transformed into one-hot encoding
for each unique medication

Object (String) 0,1

Table 4 Target variable.

Name Description Data type Range

Tillnextepisode Count of days until the occurrence of the next episode Numerical 1–5,109

Classification
As mentioned in Methodology, we decided to have two separate classifiers: one for binary
and one for multi-class. We compared six different algorithms: random forest, decision
tree, gradient boosting, XGBoost, logistic regression, and multi-layer perceptron. We
compared the classifications results with different numbers of diagnoses and medications
(the most frequent 20/50/100 and all the diagnoses and medication). The results were
largely similar. To validate, we performed McNemar test (Raschka, 2018), which showed
significant differences (p< 0.05) between some classifiers, the McNemar test results alone
do not guide model selection they serve as an additional check for robustness, especially
in multi-class cases. However, because we wanted a representative range of diagnoses and
medication data, we decided to keep the most 100 frequent diagnoses and medications
along with other features. We substituted the ICD-10 diagnostic codes with Phecodes and
the results did not differ significantly. When we used a more general ATC code prefix for
medications (ATC level 3 instead of ATC level 5), the results deteriorated in some cases,
while in others, there was no change (see Excel S1).
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Table 5 Result of optimal binary classifier.

Binary classifier model Gradient Boosting with oversampeling

AUC 0.7005
F1-Score (Test set) 0.59
Accuracy (Test set) 0.64
Classes F1-Score Recall Precision Support
Not-readmitted (Class 0) 0.64 0.49 0.93 3,841
Readmitted (Class 1) 0.34 0.79 0.22 695

As mentioned before, given our imbalanced data set (specifically for binary
classification), we evaluated the algorithms in three scenarios: (1) without change, (2)
custom/balance class weight (3) oversampling. We compared the evaluation metrics (AUC,
F1-score, recall, precision, accuracy with AUC score prioritized) to select the bestmodels for
both binary and multi-class classifiers. In conjunction with handling imbalanced data, we
implemented data normalization where appropriate, to accelerate algorithm convergence
and reduce bias towards larger values. To avoid potential time-related patterns in the data,
we incorporated shuffling in the dataset that was split in 80% (5-fold cross-validation
for training) and 20% reserved for the independent test set. Collectively, these strategies
significantly enhanced our classification outcomes.

Binary classifier
Binary classifier models trained using different algorithms were compared based on
evaluation metrics (see Excel S2). Although some algorithms like random forest and
decision tree had higher F1-scores, they did not perform well across all classes and had
lower AUC scores. Among all, gradient boosting binary classifier without applying class
weight or oversampling, and with class weight gave the highest AUC score (0.7093),
but it was biased towards the minority class (did not perform well on both classes) (see
Excel S2 for recall, F1-score, and confusion matrix). However, gradient boosting with
oversampling (n_estimators=100; see Document S1) achieved the next highest AUC score
and performed best overall across all classes on multiple evaluation metrics, so we chose
that as our optimal model (see Table 5 below and Fig. S8).

Multi-class classifier
According to the comparison of multi-class classifiers, the following models achieved
the higher AUC scores: random forest with oversampling (0.6368), random forest with
class weight (0.6321), gradient boosting without any balancing and weighting technique
(0.6319), and gradient boosting with oversampling (0.6306) (see Excel S3). However,
random forest with oversampling had the highest AUC score and performed best across all
classes on multiple evaluation metrics so it was selected as final multi-class classifier (see
Table 6 below and Fig. S9).

The dataset used in the final binary and multi-class classifiers contained 12 chosen
features (see Table 3) and 200 columns of diagnoses and medications. These columns
are the 100 most frequent diagnoses and medications, each represented using ICD-10
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Table 6 Result of optimal multi-class classifier.

Multi-class classifier Random Forest with oversampling

AUC 0.6368
F1-Score (Test set) 0.46
Accuracy (Test set) 0.46
Classes F1-Score Recall Precision Support
Short: within 6-months (Class 0) 0.46 0.46 0.46 198
Medium: 6 months–2 years (Class 1) 0.40 0.38 0.43 264
Long: greater than 2-years (Class 2) 0.51 0.55 0.48 224

codes and level 5 ATC codes respectively. The final trained binary classifier (gradient
boosting with oversampling) correctly identified 488 cases re-admitted and 2,348 cases not
re-admitted. However, it incorrectly identified 1,493 cases as re-admitted and 207 cases as
not-readmitted. On the other hand, the final trained multi-class classifier (random forest
with oversampling) correctly identified 91 cases as having a short readmission period, 100
cases as having a medium readmission period, and 123 cases as having a long readmission
period. However, it incorrectly identified 64 cases as medium, 43 cases as long when they
were short; 73 cases as short, 91 cases as long when they were medium; and 33 cases as
short and 68 cases as medium when they were long (see Confusion Matrix in Excel S2 and
Excel S3).

Interpretation of classification results
This section provides an insight into how the classification models predicted the
readmission classes of episodes.

The binary predictive model and the actual data both indicated that the majority of
data points (12,777 and 19,250, respectively) were labeled as ‘‘not-readmitted’’ However,
the model incorrectly predicted a higher number of ‘‘readmitted’’ labels (9,899) compared
to the actual number (3,426) (see Excel S4). This discrepancy suggests that the predictive
model was not very accurate in identifying the ‘‘readmitted’’ class (see Fig. 11).

The multi-class classifier predicted 981 episodes labeled as ‘‘0–6 months’’, 1,308 labeled
as ‘‘6 months–2 years’’, and 1,137 labeled as ‘‘over 2 years’’. In comparison, the actual
distribution was 1,001 episodes labeled as ‘‘0–6 months’’, 1,316 labeled as ‘‘6 months–2
years’’, and 1,109 labeled as ‘‘over 2 years’’ (see Excel S4). When the number of diagnoses
and medications is low, the model often overestimates the readmission time, predicting
more than 2 years instead of the actual 6months–2 years. Conversely, for patients withmore
diagnoses or more medications, the model is more likely to predict shorter readmission
times (see Fig. 12). Also based on the model, for males more diagnoses increase the
chance of readmission in ‘‘6 months–2 years’’, while more medications increase the
chance of readmission in less than 6 months. For females, both more diagnoses and more
medications lead to a higher probability of readmission in 6 months. The model is more
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Figure 11 Predicted binary class label vs actual binary bin label across ‘‘num_diagnoses’’,
‘‘num_medication’’ and ‘‘gender’’.

Full-size DOI: 10.7717/peerjcs.2367/fig-11

Figure 12 Predicted multi-class label vs actual multi bin label across ‘‘num_diagnoses’’,
‘‘num_medication’’, and ‘‘gender’’.

Full-size DOI: 10.7717/peerjcs.2367/fig-12

accurate when the patients have more diagnoses and medications, as it follows the same
patterns as the actual data.

Across different age groups, the predicted and actual readmission rates seem more
similar. However, the model still makes errors, such as for preschoolers with few diagnoses,
as it predicts a longer readmission period than the actual data (see Fig. 13).

Additional insights can also be obtained (see Fig. S10). Teenagers typically have shorter
episodes of care than other age groups but spend more time as inpatients. According to
the model, the readmission time varies by age group. Preschoolers and middle childhood
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Figure 13 Predicted multi-class vs actual multi bin label across ‘‘num_diagnoses’’, ‘‘num_medication’’
and ‘‘age_group’’.

Full-size DOI: 10.7717/peerjcs.2367/fig-13

tend to be readmitted after 2 years, whereas teenagers have a higher likelihood of being
readmitted within 2 years either within 0-6 months or 6 months to 2 years.

Clustering
Episodes of the patients were grouped together using clustering to determine the optimal
number of clusters and evaluate their distinctiveness. K-prototype can effectively handle
mixed data types, including numeric, categorical, and string/object types. All features in
Table 3 and the target variable in Table 4 are used to compute the cluster labels. The Huang
parameter, which is calculated using the occurrence frequency of the categorical attributes,
was used to initialize the K-prototype clusters. A heuristic approach was used to find the
optimal number of clusters. The elbow plot in Fig. 14 shows the elbow at five numbers of
clusters, as there is a noticeable decrease in the cost function with respect to others.

CI and SI scores are used to analyze the quality of clusters. Exclusively for numerical
columns without diagnoses and medications data, Euclidean distance was used. For the
rest, which required handling mixed data, we used the Gower distance (Gower, 1971).
Gower measures the dissimilarity between two datasets with mixed data types. As Fig. 15
below shows, when using the dataset containing diagnoses and medications, an increase
in the number of clusters leads to a decrease in both CI and SI scores. It indicates that
the clustering algorithm struggles to find meaningful and well-separated groups with
higher data dimensionality. The SI score in the dataset without diagnoses and medications
shows an increase and decrease trend. In contrast, the CI score increases as the number
of clusters in the dataset without diagnoses and medications increases, indicating that the
clusters become more compact and well-separated. Choosing models with 20, 50, 100, or
all diagnoses and medications may not be optimal. Better results might be achieved from
a different set of diagnoses and medications.

As Fig. 15 above shows, without diagnoses and medications performed well overall,
but it was not representative. The model that includes all diagnoses and medications has
a good SI (well-matched own and poorly to nearby clusters) but a poor CI score (not
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Figure 14 Elbow plot with cost function (WCSS) vs number of clusters.
Full-size DOI: 10.7717/peerjcs.2367/fig-14

dense and poorly separated). Based on the elbow’s cost function, we selected three (the
immediate cluster after two) and five clusters (the elbow) for analysis and comparison
(Fig. 14). Among the most frequent 20, 50, and 100 diagnoses and medications, the 20
was selected because it has comparatively higher average CI and SI scores. Comparing the
most frequent 20 diagnoses and medications at three and five clusters, it shows that both
SI and CI scores are higher in three clusters (SI: 0.256, CI: 4,473.64) than in five (SI: 0.118,
CI: 2,997.435) indicating better-quality clusters. Below is a visual comparative analysis of
the models with three and five clusters on the 20 most frequent diagnoses and medications
(see CI and SI scores of all clustering models in Excel S5).

Cluster analysis
In the three cluster model with labels 0, 1, and 2, cluster 0 contained 16,818 episodes,
cluster 1 had 4,522, and cluster 2 had 1,336. For the readmitted episodes (‘‘Tillnextepisode’’
>0), Fig. 16 shows cluster 2 with the lowest range of ‘‘Tillnextepisode’’ had the highest
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Figure 15 SI and CI Score in different dataset at different number of clusters for the model selection.
Full-size DOI: 10.7717/peerjcs.2367/fig-15

Figure 16 Model with three clusters for readmitted episodes—Minima, maxima.
Full-size DOI: 10.7717/peerjcs.2367/fig-16

range of ‘‘Length_of_Episode’’, ‘‘Count_visit’’, ‘‘Num_diagnoses’’, and ‘‘Num_medications’’.
Conversely, Cluster 0 and 1 with the highest ‘‘Tillnextepisode’’ had comparatively lower
‘‘Length_of_Episode’’, ‘‘Count_visit’’, ‘‘Num_diagnoses’’, and ‘‘Num_medications’’, with
varying ranges in other features. Figure 17 conveys similar information through a box plot.

In the five cluster model, the episode distribution was: cluster 0 had 8,841 episodes,
cluster 3 had 8,764, cluster 1 contained 3,711, cluster 2 had 1,223, and cluster 4
had the fewest with 137 episodes. For the readmitted episodes (‘‘Tillnextepisode’’
>0), Fig. S11 shows that cluster 1, which has high values for ‘‘Length_of_Episode’’,
‘‘Count_visit’’, ‘‘Num_diagnoses’’, and ‘‘Num_medications’’, exhibits a low range for
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Figure 17 Model with three clusters for readmitted episodes—Box plot.
Full-size DOI: 10.7717/peerjcs.2367/fig-17

‘‘Tillnextepisode’’. Cluster 4 displays low values for ‘‘Length_of_Episode’’, ‘‘Count_visit’’,
‘‘Num_diagnoses’’, ‘‘Num_medications’’, and ‘‘TreatmentPlanning_ratio’’, but a high
range for ‘‘Tillnextepisode’’. Cluster 3 shows a similar pattern to cluster 4 but with high
‘‘Therapy_ratio’’, ‘‘TreatmentPlanning_ratio’’, and ‘‘Advisory_ratio’’. Clusters 0 and 2 have
a moderate range for ‘‘Tillnextepisode’’ and varying ranges for the other features. Figure
S12 also conveys similar information through a box plot. However, a long interquartile
range (IQR) suggests that the middle 50% of values are widely dispersed. In contrast, a
short IQR indicates values are closely packed together, showing low variability in the data.
The dots with a circle show features where all values in the middle 50% are exactly the
same, indicating no variation.

In both cluster five and cluster three models for readmitted episodes, the actual age
(not age group) had almost similar maximum and minimum ranges, with slight variation
(see Fig. 16 and Fig. S11). Also more males than females were observed, and no gender_0
episodes (see Figs. S17 and S18).

For readmitted and not-readmitted episodes, in both three and five cluster models, no
discernible relationship between ‘‘Tillnextepisode_bins’’ and other features was observed
(see Figs. S13–S16). Finally, analyzing the overall results of three and five clusters using CI,
SI, minima, maxima, and box plots, we conclude that the three-cluster model is better.

DISCUSSION AND FUTURE WORK
To improve healthcare resource allocation, effective planning, and ensure the timely delivery
of high-quality care within CAMHS, this study utilized machine learning techniques. The
analysis of 35 years of clinical data captures the evolution of CAMHS organization and
practices, offering insights for future improvements. However, several challenges posed
significant difficulties in pre-processing and identifying relevant features for readmission
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prediction. These challenges included numerous inconsistencies and errors in the data,
complexities in coding clinical states, and difficulties in understanding the process. Inputs
from the clinicians and the reviewed literature guided the data pre-processing and feature
selection, with specific guidance on the methodology provided by Matheny et al. (2021),
Golas et al. (2018), Zeinalnezhad & Shishehchi (2024), and Betts, Kisely & Alati (2020).
Despite extensive pre-processing and a readmission rate of 15.1%, the initial classifiers
trained on the dataset struggled to predict certain classes due to significant imbalances.
Specifically, the proportion of episodes without readmissions was 5.6 times higher than
those with readmissions. In contrast to previous studies that primarily used single-method
approaches, we cascaded the classification (binary and multi-class). The binary classifier
acted as a filter, and the multi-class classifier provided a more detailed classification for the
filtered subset.

We apply techniques such as weighting and oversampling to improve model predictions
for readmission classes. Nonetheless, we were cautious in extensively using these techniques
to avoid potentially distorting the quality of our data. For binary classification, the
oversampled gradient boosting model, with an AUC of 0.7005 and an F1-score of 0.59, was
the best performer overall. For multi-class classification, the oversampled random forest
model achieved a slightly higher AUC of 0.6368 and an F1-score of 0.46, performing well
in classifying readmissions across short, medium, and long classes. These results emphasize
the challenge of predicting readmissions in CAMHS. However, our findings revealed
certain connections between clinical features. For instance, we found that the number
of diagnoses, medications, and visit patterns indicates that patients with more complex
conditions and higher care intensity are more likely to be readmitted. This underscores the
significance of considering case complexity and care intensity in clinical decision-making.
Overall models showed a low predictability of readmission, this may possibly be due to
several factors:

• Policy changes: in interviews with clinicians, we found that the policy was always not to
discharge patients with severe problems, but sometimes, patients would be discharged
and potentially readmitted elsewhere outside our cohort when clinicians changed jobs
or workplaces. Such examples of patients being transferred among institutions can
potentially distort the prediction of readmission.
• Finance and resource changes: Finances and resources at Norway’s CAMHS improved
over time, and patient treatment at BUP St. Olavs Hospital rose from 420 in 1993 to
5,000 in 2018. This improvement and increase might have potentially influenced the
results.
• Different municipalities, different resources, different discharge patterns: There are
large differences in resources among the municipalities served by each CAMHS.
• Complexity in the nature of patient episodes of care: The complex nature of patient
episodes in CAMHS, might lead to this unpredictability.
• Patients developing from children to adults: The conflict between discharging and
retaining patients is particularly acute in CAMHS, as these patients are rapidly evolving,
under development, and in a crucial phase of life.
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• CAMHS effectively avoids inappropriate discharges: There is evidence that episodes
involving patients with complex clinical concerns tend to be prolonged, often without
a discernible discharge. The readmission pattern indicates that CAMHS effectively
prevents inappropriate discharges that could lead to readmission, which is indirectly
related to longer episodes. It may be that we should interpret some long episodes, with
dips in activity, as equivalent to readmissions.
• Limited capacity for considering features:Many factors affect admission and readmission
to CAMHS, we just had a small, limited view. Many aspects of data and processes were
not included in this study. As an example, we excluded diagnoses on axis 4, 5, and 6
which encode changing psychosocial conditions, family situations, and CGAS, as these
may influence the likelihood of the need for readmission. Further study is needed to
evaluate if including this information about psychosocial situations, function, and family
characteristics may improve the prediction of readmission.

These changes suggest that predicting readmissions in CAMHS is difficult and not
easily learned by models. Despite this, we discovered cascading two classifiers useful, and
observed some relationships between a few features, such as the number of diagnoses,
number of medications, count of visits, standard deviation of monthly patient visits, and
length of episodes, all of which would be indicators of care intensity and case complexity.
Our findings demonstrate evidence of an association between intensity and complexity
indicators and readmission. We hypothesize that patients with more complex conditions
and intensity of care are more likely to return for later services.

Now that we know these complexities in readmission prediction, the challenging
question is whether readmission is a problem. If it is, it is important to identify the groups
for whom it is a significant problem. Knowing those patients is critical for improving
healthcare services. Another question is whether there is a need to prevent readmissions.
Is it bad or good? Hospitals may see it as bad because it uses resources. But what about
physicians, patients, and families? Could they see it differently? Another question is how to
prevent it. A simple solution to prevent readmissions would be to stop discharging patients.
However, this strategy is impractical because it would saturate services and leave no room
for new patients. So it seems it is important to identify the patients who should continue to
receive services as they are likely to be the patients who cannot manage their lives without
specialist services. This group usually includes the sickest patients and those with limited
family support. And the next question is what the data suggest and conclude. Our findings
showed challenges in predictability, but further research is necessary to explore different
methods for understanding what our data can teach us. We need to interpret more of the
available textual narrative to understand progress, disposition, potential, and treatment
options. A better understanding of clinical practice outcomes and data analysis results in
CAMHS is essential for taking action to improve care.

CONTRIBUTION
Through this comprehensive analysis of CAMHS data, we identified key characteristics
related to readmission prediction. Although predicting readmissions using selected features
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from EHR data proved challenging, the approach of cascading binary and multi-class
classifiers demonstrated utility in improving prediction performance. Our most optimal
models (oversampled Gradient Boosting and Random Forest) ensure good performance
across all classes, particularly emphasizing the minority class. For clustering, three was the
optimal number of clusters, revealing some patterns between features such as length of
episode, number of diagnoses, and medication with readmission. Our research employs
predictive models that focus on care intensity and case complexity. This approach, distinct
from other studies, deepens the understanding of readmission risks specific to CAMHS. By
emphasizing care intensity and case complexity in predictions, our findings can contribute
to improving patient management and reducing readmission rates.

LIMITATIONS
A potential limitation of our approach is that we treat readmission as a stationary
phenomenon across the CAMH service over many years, and randomly selected shuffled
training and test data from the entire time span of our dataset. An alternative approach
would be to select the training set from a range of earlier years, ensuring that test data
comes from the later time period, under the assumption that prior readmission practice
developed into and informed later practice. However, all these results could have been
explored in more detail, but according to CAMHS management, readmission practice has
been stable for the patient group in question, thus our results may be optimistic, but not
invalid.

Also, ML methods can find predictors correlated with outcomes, they do not inherently
uncover causal relationships. To get better scientific understanding, we need predictors
causally related with outcome. Lastly we focused on structured data, a more comprehensive
analysis incorporating unstructured clinical notes could yield deeper insights into
readmission factors, potentially improving model performance and understanding.

FUTURE WORK
The generalizability of our findings depends on the specifics of CAMHS care services. We
believe our results are applicable to Norway and other Nordic countries.We plan to validate
this further with additional features, through multi-cohort and multi-hospital studies.
However, differences in healthcare system organization, such as varying referral periods
and continuity of responsibility, may limit their applicability to other regions. Despite
this, our findings could still offer potential benefits within distinct service organizations.
To improve readmission predictions, future studies should include psychosocial factors,
family dynamics, social context, patient development, disease progression, and intervention
effects for a holistic view of patient care. Further research should explore various machine
learning methods, including causal inference techniques, hyper-parameter optimization,
and diverse classifiers. Additionally, using different internal validationmetrics for clustering
is recommended.
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