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ABSTRACT Engineering identical genetic circuits into different species typically results 
in large differences in performance due to the unique cellular environmental context 
of each host, a phenomenon known as the “chassis-effect” or "context-dependency". 
A better understanding of how genomic and physiological contexts underpin the 
chassis-effect will improve biodesign strategies across diverse microorganisms. Here, we 
combined a pangenomic-based gene expression analysis with quantitative measure­
ments of performance from an engineered genetic inverter device to uncover how 
genome structure and function relate to the observed chassis-effect across six closely 
related Stutzerimonas hosts. Our results reveal that genome architecture underpins 
divergent responses between our chosen non-model bacterial hosts to the engineered 
device. Specifically, differential expression of the core genome, gene clusters shared 
between all hosts, was found to be the main source of significant concordance to 
the observed differential genetic device performance, whereas specialty genes from 
respective accessory genomes were not significant. A data-driven investigation revealed 
that genes involved in denitrification and components of trans-membrane transporter 
proteins were among the most differentially expressed gene clusters between hosts in 
response to the genetic device. Our results show that the chassis-effect can be traced 
along differences among the most conserved genome-encoded functions and that these 
differences create a unique biodesign space among closely related species.

IMPORTANCE Contemporary synthetic biology endeavors often default to a handful of 
model organisms to host their engineered systems. Model organisms such as Escherichia 
coli serve as attractive hosts due to their tractability but do not necessarily provide 
the ideal environment to optimize performance. As more novel microbes are domes­
ticated for use as biotechnology platforms, synthetic biologists are urged to explore 
the chassis-design space to optimize their systems and deliver on the promises of 
synthetic biology. The consequences of the chassis-effect will therefore only become 
more relevant as the field of biodesign grows. In our work, we demonstrate that the 
performance of a genetic device is highly dependent on the host environment it 
operates within, promoting the notion that the chassis can be considered a design 
variable to tune circuit function. Importantly, our results unveil that the chassis-effect can 
be traced along similarities in genome architecture, specifically the shared core genome. 
Our study advocates for the exploration of the chassis-design space and is a step forward 
to empowering synthetic biologists with knowledge for more efficient exploration of 
the chassis-design space to enable the next generation of broad-host-range synthetic 
biology.
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A s synthetic biologists continue to explore the design space of engineered genetic 
circuits, we are presented with a complex landscape where functional fidelity 

depends on host physiology, environment, and genetic tractability (1, 2). This has given 
rise to the subdiscipline of broad-host-range synthetic biology, which aims to create 
versatile genetic systems that can operate across diverse organisms and is particularly 
beneficial toward biotechnologies that capitalize on microbial diversity (3, 4). Despite 
the plethora of modular genetic parts available, we are still faced with the challenge 
that identical genetic devices exhibit consequentially different performance depending 
on the host context the device operates in, a process termed the “chassis-effect” (5, 6) 
or “context-dependency” (7, 8). The chassis-effect lowers the predictability of circuit 
function based on part composition alone and can cause any circuit optimization 
typically done in a model organism (e.g., Escherichia coli) to be rendered null once 
introduced into a different host environment (9). This added layer of instability limits 
the current state of microbial biodesign and biases our understanding toward model 
organisms, even though more suitable hosts may exist for a given application (10–12). 
Overall, the chassis-effect constrains the design-build-test cycle by demanding costly 
repetitions of trial-and-error experimentation. There remain major knowledge gaps as to 
which cellular processes underpin species-specific chassis-effects. Closing this knowl­
edge gap undoubtedly enables more efficient engineering of novel hosts and moves 
the current engineering dogma toward the notion that the host itself can be considered 
a part of tuning circuit functions (7, 8), representing a paradigm shift toward a new 
understanding of different microbial species and their unique cellular environment as 
customized hardware for biodesign (13).

Previous efforts to address this knowledge gap have shown that device performances 
between bacterial hosts can be better explained by the differences in the physiology 
of hosts rather than genomic or phylogenetic relatedness (14). In turn, the available 
physiological states for a given host are ultimately shaped by those functions encoded 
in their genomes, and perhaps more importantly, the expression of gene products that 
control cellular physiology. Deeper investigations into the gene expression responses 
toward the activity of heterologous genetic circuits are needed to uncover insight into 
which cellular processes underpin chassis-effects. Designing such a study is difficult, as 
it requires a suit of microbial hosts capable of operating an identical genetic device 
and producing an observable chassis-effect under the same growth conditions while 
also sharing significant enough levels of genomic identity for their interspecies gene 
expression to be comparable. We developed a synthetic biology kit for the Stutzerimonas 
genus to specifically address this challenge. Recent re-examination of the Pseudomonas 
genus invigorated with high-quality genome sequencing data led to the delineation 
of the clade into several novel genera (15, 16), one such genus being Stutzerimonas 
(17, 18). Several members of the Stutzerimonas with sequenced genomes are available 
in culture collections and previous studies have highlighted the natural high transfor­
mation competence of Stutzerimonas spp (19, 20). Furthermore, many Stutzerimonas 
members have innate phenotypes that have garnered attention as potential microbial 
cell factories and/or bioremediation agents (21–24), making them appealing targets for 
domestication and biodesign applications.

In this work, we transformed an inducible genetic inverter device into six Stutzeri­
monas hosts that share a sufficient amount of genomic identity to form a sizeable 
core (i.e., orthologous genes shared between all hosts) and accessory genome (i.e., 
orthologous genes shared only by a subset of hosts or genes unique to host). We 
comparatively quantified an observable chassis-effect in device performance within this 
group of closely related Stutzerimonas hosts and sequenced the global transcriptomes 
during different operation modes of the inverter. This investigative workflow enabled 
us to ask the guiding scientific question of whether the observed chassis-effect is more 
influenced by the expression of conserved core genes that are fundamental to growth 
physiology and cellular housekeeping or by less conserved functions encoded within 
the accessory genome of our experimental platform. We were also able to ask if unique, 
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species-specific gene expression patterns can serve as a concordant predictor of device 
performance. Our results show a significant correlation between the transcriptional 
response of shared core genes and inverter performance, as well as between growth 
physiology and inverter performance, suggesting the mechanism in which core genetic 
elements contribute to the chassis-effect effect is through changes in basic cellular 
physiology related to growth.

RESULTS

A Stutzerimonas tool kit for pangenome-guided synthetic biology

Connecting structures and functions of multiple genomes to a measurable chassis-effect 
requires a standardized, broad-host-range genetic circuit. We implemented a modified 
build from one of our previously described genetic inverters (14) (Fig. 1a). This inverter 
can be directionally induced (toggled) by anhydrotetracycline (aTc) and L-arabinose (Ara) 
and was cloned into plasmid pS5. The circuit features two inducible promoters, PBAD 
and PTet, with each promoter regulating the expression of the other’s cognate transcrip­
tion factor as well as a fluorescent reporter protein in a bicistronic manner. In all, 15 
Stutzerimonas hosts were screened for plasmid transformability and inverter operabil­
ity, of which 10 were successfully transformed via electroporation with a pBBR1-KanR 
backbone vector (BB23). Six of these ten were chosen for further study, which are as 
follows: Stutzerimonas chloritidismutans NCTC10475 (S. chloritidismutans) (25), Stutzeri­
monas perfectomarina CCUG 44592 (S. perfectomarina) (18), Stutzerimonas degradans 
FDAARGOS 876 (S. degradans) (18), Stutzerimonas pgs16 24a13 (S. pgs16) (26), Stutzerimo­
nas pgs17 24a75 (S. pgs17) (26), and Stutzerimonas stutzeri DSM 4166 (S. stutzeri) (27, 
28). Phylogenomic analysis of the six Stutzerimonas species reveals them to be closely 
related (Fig. 1b), but comparing pair-wise average nucleotide identity reveals none to be 
of high similarity to cross the threshold (95%–97%) (29, 30) to be considered of the same 
species (Fig. S1). Gomila et al.’s work (2022) (16, 18) pioneered the clarification of the 
Stutzerimonas clade and also reported that our six hosts can each be considered distinct 
phylogenomic species. The names of our Stutzerimonas hosts follow the proposed names 
assigned by (18).

Comparative pangenomics of the selected Stutzerimonas hosts revealed almost equal 
sizes between the core and accessory genomes, propitiously setting the stage for 
investigating whether the measurable chassis-effect can be attributed to differential 
expression from the core or accessory genomes and which specific functions covary with 
host-specific device performance. Pangenome analysis of Stutzerimonas host genomes 
was performed using Anvi’o (31), leading to a total of 25,344 gene calls functionally 
annotated using the 2020 clusters of orthologous genes (COGs) database (Fig. 1c). These 
gene calls were grouped into 6,469 gene clusters or “pangenomic orthologous groups.” A 
gene cluster is grouped into a “core” or “accessory” frequency group depending on the 
number of genomes the gene cluster occurs in. Core gene clusters were defined as the 
42.5% (2,751) of gene clusters that had hits across all hosts. The “accessory” gene clusters 
made up the remaining 57.5% of gene clusters that had hits in five or fewer genomes. 
Within the accessory genome, we further distinguish gene clusters exclusive to a single 
genome, referred to as “unique” gene clusters, which make up 31.1% (2,013) of total 
gene clusters. The clustering of the six hosts by their presence/absence of the identified 
orthologous gene clusters differs by the phylogenomic clustering of GToTree (Fig. 1d). 
The number of host-specific gene calls ranged from 3,731 in S. degradans to 4,457 in S. 
pgs16, with all hosts sharing on average 67.2% ± 4.4% of genes. 23% of all gene clusters 
were not assigned to any COG category (assigned to the “NA” group) (Fig. 1e), with an 
additional 3.6% and 4.9% assigned to COG category S (Function Unknown) and R 
(General Prediction Only), respectively. Of these three groups of lesser-known gene 
clusters, 81% belong to the accessory genome, with approximately half of these being 
unique gene clusters. This disproportionate number of unassigned gene clusters 
between the core, accessory, and unique groups is consistent with previous bacterial 
pangenome studies (17) and is theorized to be due to the accessory genome tending to 
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FIG 1 The genetic inverter and pangenome of selected Stutzerimonas hosts. (a) Schematic representation of Ara-aTc genetic inverter design. In the presence 

of Ara (Ara+), Ara-bound AraC upregulates its cognate promoter (PBAD), leading to sfGFP and TetR expression and, in turn, creates a distinct measurable 

fluorescent state and leads to the downregulation of the PTet promoter. In the absence of Ara (Ara-), AraC functions as a repressor. The presence of aTc leads 

to mKate and AraC production. The two promoters thereby act antagonistically, where the upregulation of one leads to the downregulation of the other. 

(b) Inferred phylogenomic tree of the six Stutzerimonas hosts. The scale bar is in units of the number of amino acid substitutions per site between two sequences. 

(c) Composition of core, accessory, and unique gene clusters from pangenome analysis (Anvi’o) of our six Stutzerimonas species. Bin 6 means all six hosts 

contribute with at least one gene call to the gene cluster and Bin 5 means any combination of five hosts contribute with at least one gene call and so on. Bin 

5 to Bin 1 are grouped as the accessory genome, with gene clusters belonging to Bin 1 further distinguished as unique. Percentages indicate the portion of 

(Continued on next page)
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house genes that confer a specific advantage to the organism within its niche environ­
ment. These gene clusters might therefore only be expressed under certain conditions, 
making them difficult to study under cultivation conditions that have been standardized 
across multiple species.

The seemingly uneven distribution of COG categories across the three frequency 
groups prompted an investigation of whether certain COG categories are overrepresen­
ted (Fig. 1f). The Fisher exact test (P-value > 0.05, with Bonferroni Correction) revealed 
that within the core genome, COG categories consistently enriched (i.e., significantly 
enriched in ≥3 species) for categories associated with housekeeping functions such as 
category C (Energy Production and Conversion), D (Cell Cycle Control, Cell Division and 
Chromosome Partitioning), E (Amino Acid Transport and Metabolism), and O (Post-Trans­
lational Modification, Protein Turnover and Chaperones). Meanwhile, COG groups G 
(Carbohydrate Transport and Metabolism), P (Inorganic Ion Transport and Metabolism), 
Q (Secondary Metabolites Biosynthesis, Transport, and Catabolism), and K (Transcription) 
are overrepresented in the accessory genome, suggesting the presence of metabolic 
pathways that confer unique nutrient assimilation capabilities. We note that phenotypic 
characterization done by (18) reveals that S. chloritidismutans, S. degradans, and S. 
perfectomarina tested negative in the metabolization of arabinose, with no character­
ization data available for the remaining three. Comparative BLAST search using the 
sequence of E. coli araABCD operon as a query against the genomes of all six Stutzerimo­
nas hosts yielded no significant similarities in sequence as well. Few COG categories were 
found to be consistently overrepresented within the unique genome, likely due to the 
majority of genes being of unknown function, but the few are category X (Mobilome: 
Prophages and Transposons), which hints toward past viral infection events, and V 
(Defense Mechanisms). Other prokaryotic pangenome studies report similar patterns 
of enriched COG categories in their defined shared and accessory genomes (32–34). The 
distinct functional identity of genomic sub-groups gives merit to the hypothesis that the 
expression of genes among the core or accessory groups may uniquely contribute to the 
chassis-effect.

The chassis-effect is observable between closely related Stutzerimonas hosts

Comparing the quantified performance of the engineered genetic inverter operated 
by each host under a standardized environment revealed a clear chassis-effect. The 
performance of the inverter operating within Escherichia coli DH5α (E. coli) was also 
quantified as a reference. Induction response dynamics were characterized by fitting the 
Hill function [(βxn / (Kn + xn)) + C] to normalized induction curves (Fig. 2a through d). 
Parameter C is the baseline output at 0 inducer concentration, β is the max output level 
at saturating input levels, K represents the sensitivity of the system to inducer input 
as well as the input responsive range (activation coefficient), and the Hill coefficient n 
reflects the steepness of the response (varying from step-like or dosage dependent). 
These parameters collectively quantify interactions between inducers (aTc and Ara), their 
respective transcriptional factors (TetR and AraC), and the responsive operons, thereby 
quantitatively describing device performance. We observe markedly different perform­
ance profile from the genetic inverter depending on host context — that is, a strong 
chassis-effect. For instance, the observed KaTc values range from 1.46 to 35.11 nM aTc 
among the Stutzerimonas hosts (Fig. 2a and b), suggesting host-specific factors affecting 

FIG 1 (Continued)

the 6,469 gene clusters assigned to the three frequency groups (core, accessory, and unique). (d) Clustered presence/absence matrix of the 6,469 orthologous 

gene clusters with columns representing gene clusters. The number indicates the number of gene calls for each host. (e) Percentage composition of cluster of 

orthologous genes (COG) categories of core, accessory, and unique group. (f ) Enrichment analysis of COG categories within each frequency group by Fisher exact 

test. “n/6” indicates the number of hosts in which COG category was found significantly (P-value < 0.05, Bonferroni correction) enriched within the group. Only 

COG categories enriched in three or more hosts are shown. Gray points represent outliers. COG category description is provided at the bottom of the figure. 

CHL = Stutzerimonas chloritidismutans NCTC10475; PER = Stutzerimonas perfectomarina CCUG 44592; DEGR = Stutzerimonas degradans FDAARGOS 876; PGS16 = 

Stutzerimonas pgs16 24a13, PGS17 = Stutzerimonas pgs17 24a75; STU = Stutzerimonas stutzeri DSM 4166.
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the intracellular aTc concentration and/or different levels of TetR repressor. E. coli 
exhibited the highest sensitivity to aTc, with a KaTc value of 0.39. The KAra metrics were 
relatively more uniform across hosts, with only an overall 2.8-fold difference between the 
smallest and largest KAra values (Fig. 2c and d). We define an additional metric, DRAra 
and DRaTc (dynamic range) as the ratio of the estimated β and empirical C expressed as 
a fold-change value, representing the largest possible fold-change difference measurable 

FIG 2 The chassis-effect is observed through the measurable performance of the genetic inverter between closely related Stutzerimonas hosts. (a) aTc induction 

curves, the left-most plot shows all induction curves overlaid up to a given inducer concentration. All induction curves to the right show individual curves 

with scaled axes. Hosts are color-coded, error bars indicate standard error of the mean, n = 8. (b) Estimated Hill parameters from aTc induction curves. Color 

scale relative to each column. (c) Ara induction curves and (d) estimated Hill parameters. (e) OD600 normalized fluorescence dynamics of one of three toggle 

assays with induction scheme 0.75 mM Ara and 20 nM aTc. Initial OFF cells were diluted to respective induction states. (f ) Estimated fluorescence metrics from 

fluorescence in (e) across induction state and fluorescence output type. (g) Fluorescence dynamics of toggled cells diluted to respective opposite inducer and 

(h) estimated fluorescence metrics. DR = dynamic range; NI = no induction; Fss = late phase steady-state fluorescence; Rate = max specific rate; DRs = specific 

dynamic range.
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from respective reporter proteins. At saturated inducer concentrations, the highest βAra 
achieved among the Stutzerimonas hosts was S. perfectomarina at 8,190 RFU, which also 
achieves the highest DRAra value of 13,75. Overall, E. coli had the lowest βAra at 750 RFU. 
Meanwhile the range of observed DRaTc values were relatively uniform, ranging from 3.22 
to 4.60 among the Stutzerimonas.

We next performed a toggle assay to demonstrate the invertibility of the device 
and to further quantify the chassis-effect (Fig. 2e through h). Initial OFF cells (grown 
in the absence of inducer) were diluted into media with inducer to prompt Ara-ON or 
aTc-ON states, respectively (Fig. 2e), and performance metrics from normalized sfGFP 
and mKate fluorescence curves were estimated across induction states. These metrics 
(Fig. 2f) include the maximum steady-state fluorescence at the late growth phase (Fss), 
maximum rate of fluorescence (Rate) at the exponential phase, specific dynamic range 
(DRS), and lag time (Lag). Each of these metrics has different biological implications, 
depending on the induction state. For example, the fluorescence output under OFF 
conditions is a measure of the inverter’s unbiased output level—that is, the host-spe­
cific background fluorescence/expression leakage. Meanwhile, fluorescence output from 
cells grown under the presence of an antagonistic inducer (e.g., sfGFP output in the 
presence of aTc) indicates deficient transcriptional control. The range of observed 
fluorescence curves and estimated performance metrics further solidifies the existence 
of the chassis-effect. Inversion between states was controlled by washing cells twice and 
diluting them into media containing respective opposite inducers (Fig. 2g and h). Results 
from the toggle assay showed that upon being toggled from Ara-ON to aTc-ON, multiple 
hosts experienced an attenuated mKate output, to different degrees. For instance, the 
DRS_aTc values of all hosts other than S. stutzeri all drop below 1 when diluted from 
Ara-ON to aTc-ON, meaning their induced mKate output becomes lower than their 
baseline output. This decreased output was not observed when diluted from OFF to 
aTc-ON and can therefore be attributed to a measurable hysteresis effect. Two additional 
toggle assays with induction schemes 0.25 mM–40 nM aTc and 0.375 mM Ara–5 nM aTc 
were performed (Fig. S2), and for S. chloritidismutans, S. degradans, and S. stutzeri, the 
mKate output attenuation was relieved under induction schemes with decreased Ara 
concentration. However, the other three hosts experienced consistent attenuation across 
toggling schemes. As cells were washed twice and diluted, the mechanism in which 
mKate output is attenuated is likely not due to residual extracellular Ara concentrations. 
This result suggests the invertibility (input/output logic) of the inverter is dependent on 
past induction states and that the dynamics of this hysteresis effect varies between hosts 
based on intracellular molecular physiology.

Species-specific physiology responses to the genetic inverter

A consistent growth inhibition was observed when comparing wild-type hosts against 
their engineered genotypic counterparts and across induction states (Fig. 3). Growth of 
hosts operating the genetic inverter was measured simultaneously during the toggle 
assay from which growth physiology was characterized (Fig. 3a through d). The reference 
host E. coli showed the highest growth on LB media compared to all Stutzerimonas 
hosts. The addition of BB23 backbone led to decreased specific growth rates of all strains 
compared to their respective wild-type counterparts, with S. pgs17 exhibiting the most 
reduced growth rate (Fig. 3e and f). The consistent growth reduction is expected due to 
the added burden of maintaining the vector backbone in the presence of kanamycin. 
E. coli and S. chloritidismutans exhibit the greatest growth burden upon the addition of 
the inverter device into the backbone (complete pS5 plasmid) under NI conditions, likely 
due to a larger plasmid payload (35) and leakage expression of the device. However, 
some hosts experience close to zero additional growth burden, and while S. chloritidis­
mutans had a relatively high amount of leakage expression (Fig. 2), E. coli also had the 
lowest leakage expression, suggesting the mechanism in which the backbone vector and 
device impose growth inhibition varies between hosts. Induction of the genetic inverter 
exacerbated the growth inhibition (Fig. 3e and f). For instance, the growth rate of S. pgs17 
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was almost halved when induced with Ara when compared with the NI condition but 
showed little response when treated with aTc. Overall, these results exemplify that the 
genetic inverter’s mode of operation uniquely affects the growth of each host.

The unique intracellular molecular environment within each host is ultimately shaped 
by their respective genomes, and perhaps more importantly, the expression pattern 
of their gene products. We therefore extracted total RNA from cells induced in both 
directions for mRNA sequencing to determine their transcriptome profiles. By augment­
ing our comparative transcriptome analysis with pangenomic insight, we can discern the 
impact that the core and accessory genome have on the observed host-specific inverter 
performance.

Unique transcriptional patterns arise from both the presence and operation 
of an engineered genetic circuit

Global transcriptome analysis revealed marked variability in gene expression profiles 
between hosts operating the engineered genetic inverter. The difference in response was 
observed in terms of magnitude (number of differentially expressed genes or DEGs), the 
functional composition of DEGs, and the direction of regulation of certain gene clusters 
shared among hosts’ core genomes. These unique transcriptomic profiles support our 

FIG 3 The growth dynamics are uniquely affected as a result of the host-specific operation of the genetic inverter. (a) Growth curves of initial OFF cells 

diluted to respective induction states. Hosts are color-coded. (b) Estimated growth metrics for each host from growth curves in (a). The color scale is relative 

to each column, as for all subsequent subpanels. (c) Growth curves of toggled cells diluted to respective opposite inducer to toggle induction state and (d) 

corresponding estimated growth metrics. (e) Boxplots of growth difference between host genotypes and/or induction state captured by the Δµ metric, defined 

as a relative percentage change in growth rate. Whiskers indicate minimum and maximum values. (f ) Table overview of metrics from (e). WT = wild type, BB23 = 

pBBR1, and KanR cloning vector. pS5NI = pS5 plasmid in the absence of an inducer. pS5Ara = pS5 plasmid in the presence of Ara (0.75 mM), pS5aTc = pS5 plasmid 

in the presence of aTc (20 nM). NI = no induction; µ = max specific growth rate; A = carrying capacity; λ = lag time.
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hypothesis that differences in gene expression from core and/or accessory genomes 
uniquely correspond with differences in genetic inverter performances.

Cross-species comparison of DEG profiles was performed by pooling all read counts 
mapped to gene calls within a gene cluster, on the basis that genes within the same 
gene cluster are inferred to be highly similar. Differential expression of mRNA encoded 
from the genetic inverter confirmed its programmed operability (Fig. 4). Cells treated 
with Ara showed a higher proportion of reads (measured by transcripts per million, TPM) 
mapped to tetR and sfGFP compared to araC and mKate, and vice versa for aTc-induced 
cells (Fig. S3). Differential gene expression analysis of Ara against aTc-treated hosts 
reveals significant upregulation of tetR and sfGFP genes and downregulation of araC and 
mKate, in accordance with the design of the inverter. The degree of response differed 
greatly between hosts. Log2 fold-change values of tetR ranged from 4.9 (S. chloritidismu­
tans) to 8.2 (S. degradans) and ranged from 1.1 (S. perfectomarina) to 4.1 (S. pgs17) for 
sfGFP. These results support the observed chassis-effect via mRNA abundances from 
genes encoded within the engineered genetic inverter. The consistent downregulation 
of the kanR gene in Ara-induced cells could be due to high degree of transcriptional 
readthrough in aTc-induced cells when transcribing from the PTet promoter, highlighting 
the importance of context insulation (36). A relatively large difference in TPM values was 
also observed between polycistronic repressor-reporter pairs (Fig. S3).

The mRNA abundance of genes encoded by the genetic inverter intuitively plays 
a major role in influencing the observed chassis-effect, but these heterologous gene 
products are not compartmentalized away from native cellular elements. We were 
therefore prompted to also explore the global transcriptome response of all hosts to 

FIG 4 The chassis-effect is measurable in the differential response of genes designed into the engineered genetic inverter. Log2 fold-change values of the six 

genes encoded in the pS5 plasmid between hosts comparing Ara against aTc-induced cells. An empty position indicates a non-significant differential expression.
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better understand how the expression of genes from the core and accessory genomes 
might be concordant with the chassis-effect. Our results reveal a clear diversity in 
the global differential gene expression responses between hosts when comparing Ara 
against aTc-induced cells, indicating that genome-encoded functions respond differently 
depending on how the engineered genetic inverter is being operated. (Fig. 5). Differen-
tial expression analysis with an adjusted P-value > 0.05 threshold leads to a total of 
4,825 significantly DEGs distributed across hosts, with 3,995 DEGs belonging to the core 
group distributed among 1,672 gene clusters (Fig. 5a and b). We observed that each 
host significantly expressed only a subset of shared core gene clusters, with 63% of 
core gene clusters being expressed by at least three hosts. Among significant DEGs, 
the direction of regulation and the strength of response (captured by log2 fold-change 
value) within a gene cluster differs. The number of DEGs is also unevenly distributed 
between the hosts, varying from 589 (S. chloritidismutans) to 1,106 (S. pgs17) meaning the 
operation of the genetic inverter (i.e., the user-defined induction state) incites a greater 
response in some hosts than others. We note that the differences in DEG response 
between states cannot be entirely attributed to the expression of the inverter alone but 
also from the presence of inducer compounds Ara and aTc. However, the addition of 
induction compounds is inherently coupled to the function of the inverter by design 
and we therefore include responses to inducers as a contributor to the chassis-effect. A 
different clustering pattern is observed upon performing hierarchical clustering of the 
hosts in terms of their differential expression of the core and accessory group (Fig. 5c 
and d) except for S. stutzeri, whose expression response clustered uniquely into its own 
branch from the other five hosts in both core and accessory groups. Overall, this result 
further solidifies the difference in expression response among the hosts.

We next examined the functional profile of the core and accessory DEGs by assessing 
their distribution among the COG categories. The core DEGs of hosts show a uniform 
distribution across the 22 COG categories while a more varied response pattern in the 
accessory genome is observed. Among core DEGs, 45.3% ± 1.5 % of the DEGs can be 
found in categories C, E, J, M, and T alone (Fig. 5e). Meanwhile, in the accessory genome, 
COG categories P, K, T, and NA (unassigned) make up 43.0% ± 2.6 % of DEGs (Fig. 5f), with 
NA gene clusters making up 17.1% ± 2.3 % alone. We observed differences in the 
composition of the upregulated and downregulated genes between hosts within 
functional groups (especially J, T, and M in the core group) suggesting varied responses 
to inverter activity. The less uniform transcriptomic responses from accessory genomes 
are attributed to gene clusters shared by only a subset of species. In the accessory 
genome, larger numbers of DEGs were concentrated in category T (Signal Transduction) 
for all hosts, indicating unique response patterns occurring within each host because of 
inverter activity. A larger variation in the distribution of DEGs was observed within a COG 
category as well. For instance, 31.3% of DEGs in category K occurred in S. perfectomarina 
alone, exemplifying the diversity in gene expression response patterns. We note that the 
majority of DEGs are unassigned (NA), meaning with improved gene annotation, the 
transcriptional profile of the accessory DEGs could change substantially. The accessory 
genome, comprising genes with specialized functions shared by only a subset, can be a 
strong source for genes contributing to an observed chassis-effect. However, differential 
expression of functions encoded within the core genome often belongs to the major 
carbon, nitrogen, and energy metabolism, cell division, and housekeeping genes, which 
can more intuitively underpin the chassis-effect, given that the majority of DEGs stem 
from the core genome.

Differential expression of core genes is concordant with the chassis-effect

Enrichment analysis and Procrustes Superimposition (PS) analysis both indicate that the 
key genome-encoded functions responsible for the chassis-effect originate from 
differences in the expression of the core genes shared among all hosts. PS analysis is a 
statistical test that can be used to determine the strength of correlation between two 
multivariate data sets by comparing the goodness-of-fit between two configurations 
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FIG 5 Global differential gene expression analysis of Ara against aTc-induced cells reveals diverse transcriptional profiles as a result of inverter operation. 

Volcano plots visualizing log2 fold-change distribution of significant DEGs in (a) core genome and (b) accessory genome. Inset bar charts show the number of 

differentially expressed genes for each host. Clustered heatmap of log2 fold-change values of (c) core and (d) accessory gene clusters significantly expressed by 

at least one host (P-value < 0.05, Benjamini and Hochberg adjusted). White bars indicates non-significant expression in the host. For the accessory genome, white 

bars indicates either non-significance or the gene cluster has no hits for that host. The distribution of DEGs across COG categories and hosts is shown for both (e) 

core and (f ) accessory. DEGs are further grouped into upregulated (red bars) and downregulated (blue bar) gene clusters within each COG category. The purple 

line denotes the sum of the number of DEGs.
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consisting of n items (our hosts) on a coordinate plane. When the distances between 
points in the configuration carry information of (dis)similarity, such as points plotted 
along principal components, PS analysis can be used to determine whether the (dis)simi­
larities between two datasets correlate (37, 38). PS analysis outputs the Gower statistic 
(m2), which is the sum of squared vector residuals that remains after optimal fitting and 
can be tested for significance through a permutation method that maintains the internal 
co-variance of each data set.

Fisher’s exact test showed that core gene clusters were significantly enriched 
within the significantly DEGs for all hosts, while accessory and unique gene clusters 
were significantly underrepresented (Fig. 6a through c). The strongest source of gene 
expression response to the inverter device operation thereby stems from core genes, 
suggesting the core genome to be significant in driving the chassis-effect. Building upon 
this result, we conducted PS analysis to answer the question of whether the differential 
inverter device performance between our hosts correlates with the differences between 
them in terms of their gene expression response (i.e., do hosts with more similar gene 
expression response also have more similar performance?).

Principal component analysis (PCA) was first performed to project the captured 
differences among our hosts along the first two principal components for each data set. 
These configurations in ordinate space were then compared by PS. The process of fit 
optimization is illustrated in Fig. 6d. To avoid artificial inflation of distance, the unique 
gene clusters were omitted from the data set of accessory DEGs, as these gene clusters 
inherently have no comparison between hosts. A significant correlation is observed 
when comparing differences in inverter performance and differences in expression 
response for all DEGs (Fig. 6d; P-value = 0.043, m2 = 0.328). Upon splitting the DEGs into 
respective core and accessory groups, we found that it is in fact the core genome that is 
responsible for the significance observed previously (P-value = 0.035, m2 = 0.312) (Fig. 6e 
and f). This result supports the following notions that the observed chassis-effect can be 
explained by the differential gene expression response between hosts and that hosts 
with more similar expression patterns of their shared core genome also have significantly 
more similar performances. Hence, for our given set of species and their shared gene 
clusters, core genes commonly associated with housekeeping functions, central carbon, 
and energy metabolism, are major biological drivers of the chassis-effect. In addition, PS 
analysis applied to the captured growth metrics shows a significant correlation with 
inverter device performance (Fig. S4), corroborating our previous result that observed 
differences in the physiological state of hosts can be used to potentially predict device 
performance (14).

We also interrogated the specific cellular functions that are most concordant with the 
observed chassis-effect by dissecting the differentially expressed core and accessory 
genomes into their functional categories in a second iteration of PS analysis. Ten of the 
23 COG groups were found to be significant (Fig. S5). Category E (Amino acid Transport 
and Metabolism) is especially intuitive because the main carbon and energy source 
provided by LB media are amino acids (not sugars) and different catabolic strategies for 
these will, in turn, cause different growth phenotypes. Categories R (General Function 
Prediction Only) and S (Unknown Function) were also significant, suggesting that genetic 
elements of unknown function are contributing strongly to the observed chassis-effect.

Genes clusters involved in denitrification and efflux pumps are highly 
responsive to genetic inverter activity within Stutzerimonas spp

A data-driven investigation of the top 100 most differentiated gene clusters between 
host cells revealed that gene clusters involved in denitrification, iron acquisition, and 
membrane-bound transport proteins are among the most highly differentially expressed 
gene clusters in response between Ara versus aTc treatment applied to the Stutzerimonas 
hosts (Fig. 7). This was determined by ranking gene clusters by a metric that takes into 
consideration the number of hosts significantly expressing each gene cluster, the sum of 
absolute log2 fold-change values, and the combinatorial sum of absolute differences in 
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FIG 6 Procrustes analysis reveals significant concordance between similarity in inverter performance and similarity in core genome response between hosts. 

(a) Composition of each host’s genome in terms of core, accessory, and unique gene clusters. (b) Composition of significantly differentially expressed gene 

clusters in terms of core, accessory, and unique gene clusters. (c) Enrichment analysis results by Fisher exact test, testing for depletion (underrepresentation) and 

enrichment (overrepresentation) for the three frequency groups for each host. (d) Procrustes superimposition analysis comparing hosts in terms of all significant 

differential gene expression responses against inverter device performance metrics. For the accessory genome, unique gene clusters were omitted to reduce 

artificial inflation of distance. The key steps in PS analysis are schematically illustrated. Performance metric data set and differential gene expression data set 

are first projected onto ordinate space via PCA, then the configurations are compared through PS analysis, which involves centering, scaling, and transforming 

the two projections to minimize the sum of squared vector residuals (the m2 statistic) between each respective point (host). The significance of the obtained 

(Continued on next page)
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log2 fold-change values between species (Table S1). To add confidence in the functional 
annotation of the gene clusters, we supplemented the COG annotation with annotation 
using the KEGG Orthology (KO) database (39) because COG accessions are (in some 
cases) only general descriptions of protein functions or families. For instance, the 
assigned COG accession for the four highly ranked gene clusters GC_00001064, 
GC_00001456, GC_00001627, and GC_00001727 describes all these gene clusters to 
encode for cytochrome c protein (CccA). Meanwhile, the corresponding KO annotations 
for the four CccA-annotated gene clusters are cytochrome c55X (NirC, K19344), dihydro-
heme d1 dehydrogenase (NirN, K24867), nitrite reductase (NirS, K15864), and cyto­
chrome-containing nitric oxide reductase subunit c (NorC, K02305), respectively, which 
are all heme-containing enzymes belonging to the cytochrome c protein family (40, 41). 
Notably, every KO accession has a complementary COG accession entry in the KEGG 
Orthology database (https://www.genome.jp/kegg/ko.html), and the KO and COG 
annotations discussed here all match their respective database records, indicating high 
degree of agreement between the two annotation methods.

Genes involved in denitrification were upregulated in S. chloritidismutans and S. 
stutzeri and downregulated in S. pgs16 and S. pgs17 but showed little change in S. 
perfectomarina and S. degradans when comparing Ara against aTc induction states. This 
result was not anticipated and exemplifies that the operation of engineered genetic 
devices can impact and/or be impacted by fundamental cellular functions seemingly 
unrelated to the heterologous transcription and translation networks. Denitrification is 
canonically described as an anaerobic process, but aerobic denitrification has been 
identified in numerous bacteria, many of whom have been identified as Pseudomonas 
stutzeri species (21, 42, 43). The gene napA encodes for a nitrate reductase which 
catalyzes the important first step in the denitrification pathway. Only one gene cluster, 
GC_00001817, was annotated as napA by KO annotation, but this gene cluster was only 
significantly differentially expressed in S. perfectomarina and ranked low. Genes involved 
in iron acquisition showed the opposite trend, being upregulated in S. pgs16and S. pgs17 
and downregulated to some degree in all other hosts. Denitrification activity requires 
bioavailable iron for heme biosynthesis (44); hence, we expected the differential 
expression of the two pathways to instead positively correlate.

Other highly ranked gene clusters of note from the data-driven investigation are 
GC_00000078, GC_00000115, and GC_00000605. COG annotation inferred these gene 
clusters to encode for components of the AcrAB-TolC efflux pump. Meanwhile, KO infers 
them to be components of the MexEF-OprN efflux pump. Both pumps are broad-
substrate Resistance-Nodulation-Division family transporters known to provide drug 
resistance (45, 46). Another high-ranking gene cluster was GC_00002718, annotated by 
COG as a transcriptional regulator part of the LysR family, but as the MexT protein by KO. 
Incidentally, MexT is a LysR-type transcriptional regulator regulating the MexEF-OprN 
operon, indicating that gene clusters GC_00000078, GC_00000115, and GC_00000605 
indeed encode for a MexEF-OprN efflux pump, as AcrAB-TolC is regulated by the 
transcription factor AcrR, which instead belongs to the TetR family of transcriptional 
regulators (47). Interestingly, hosts that exhibit downregulated or low change in the 
expression of denitrification gene clusters were also the hosts with the highest upregula­
tion of the AcrAB-TolC/MexEF-OprN encoding gene clusters (hosts S. perfectomarina, S. 
pgs16, and S. pgs17). Fetar et al. (46) have also reported that nitrosative stress in the form 
of nitric oxide accumulation is a direct inducer of MexEF-oprN expression (46), suggest­
ing that hosts expressing the efflux pump could be a response to nitric oxide produced 
as part of denitrification activity.

FIG 6 (Continued)

statistic is determined through a permutation method. Colored lines between points have been added to visualize an arbitrary “configuration” formed by each 

data set, which connects each point in the following arbitrary order “-CHL-PER-DEGR-PGS16-PGS17-STU-.” PS analysis comparing inverter performance against 

significantly differentially expressed (e) core and (f ) accessory gene clusters. P = P-value, m2 = Gower statistic.
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DISCUSSION

This study was driven by the overarching question as to whether closely related bacterial 
hosts can exhibit a strong chassis-effect when programmed with an identical engineered 
genetic inverter and how contributions from the core and accessory genomes might 
underpin this phenomenon. This was investigated using dimension-reduction techni­
ques combined with multivariate statistical analysis to determine which portions of the 
differentially expressed genome were concordant with the measured chassis-effect and 
then further trace these differences into specific genome-encoded functions. In addition 
to our main finding, we report the successful engineering of several Stutzerimonas 
species. S. degradans is of interest as a biotechnology host with its known applications in 

FIG 7 Gene clusters containing the most highly differentially expressed genes between hosts. Spider plots showing log2 fold-change data of most highly 

differentially expressed gene clusters between the hosts. Gene names in parentheses are names provided by KO annotation, all other gene names are provided 

by the annotated COG accession. In cases where the gene name provided by COG and KO match, only one gene name is shown.

Research Article mSystems

September 2024  Volume 9  Issue 9 10.1128/msystems.00849-2415

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 0

5 
N

ov
em

be
r 

20
24

 b
y 

19
5.

13
9.

20
1.

47
.

https://doi.org/10.1128/msystems.00849-24


the bioremediation of contaminants (18). S. pgs17 is inferred to possess the nifDKH genes 
according to KEGG pathway mapping (48) and therefore has potential application as a 
biological nitrogen fixation agent to replace agrochemical similar to S. stutzeri, the latter 
having already received much attention for its nitrogen fixation capability (27).

Given the standardized growth conditions on rich LB medium, it is tempting to 
theorize that accessory and host-specific unique genes would be the leading cause 
of phenotypic distinction (and resulting chassis-effects), yet our findings empirically 
showed no such relations between inverter performance and the accessory genome. 
Instead, we observed concordance between the transcriptional response of shared core 
genes and inverter device performance. In other words, hosts with more similar gene 
expression from their core genomes also have more similar performance, suggesting 
that the expression of the core genome, and, in turn, its protein products have a greater 
impact on the cellular state. This holds especially true if the accessory genome consists 
of genes that are not expressed unless conditions call upon their expression, such 
as for unique biosynthetic gene clusters that may uniquely influence how each host 
responds to a change in substrate availability or changing growth conditions (49). The 
core genome of our Stutzerimonas platform is enriched for genes involved in central 
carbon and energy metabolism as well as housekeeping-associated functions. Combined 
with the result that observed differential growth physiology between hosts cultured 
under identical conditions was found significantly correlated with differential perform­
ance, the chassis-effect may manifest through the redistributive flux of cellular resources 
and gene expression machinery unique to each host context because of genetic device 
maintenance and operation. This concurs with previous studies that have demonstrated 
how resource dynamics such as ribosome abundance (50) can affect genetic circuit 
performance and even parameterized resource competition to build predictive models 
(51, 52).

Data-driven analyses showed that denitrification genes were responsive to heterolo­
gous expression of the engineered inverter. This indicates that engineered gene circuits 
can have unforeseeable and unspecific cross-talk with fundamental cellular processes 
and that these events are context-specific to individual hosts. If denitrification is in 
fact occurring, the source of nitrate in the media is unclear and would require a more 
targeted analysis of proteins and metabolic intermediates involved in denitrification 
pathways. A possible explanation is that our hosts can perform nitrification of ammonia 
to produce nitrate, with the source of ammonia being the by-product of amino acid 
catabolization from the oligopeptides in the LB media. But KEGG pathway mapping 
reveals that neither of two the genes involved in the canonical nitrification pathway 
(ammonia monooxygenase, amo, and hydroxylamine reductase, hao) are found in the 
genomes of our hosts (Fig. S6), suggesting a lack of nitrification capability. However, 
there have been numerous reports of other Stutzerimonas (reported in the defunct 
name Pseudomonas stutzeri) capable of converting ammonia to nitrogen gas through 
heterotrophic nitrification and aerobic denitrification (HNAD) despite their genomes 
encoding neither amo nor hao (21, 42, 53, 54). These reported HNAD-capable species 
are thought to perform HNAD through an undocumented pathway, or the enzymes 
catalyzing the reactions performed by amo and hao are significantly different enough 
in amino acid composition to escape current annotation algorithms. The same enig­
matic HNAD process could be occurring for our Stutzerimonas species with increased 
denitrification activity. Denitrification is a pragmatic phenotype due to its bioremedia­
tion potential (55), but bacteria capable of simultaneous HNAD are valuable as the cost 
of maintaining anaerobic conditions is reduced (21).

Given the complex interwoven network structure of cellular metabolism (56), it is 
impractical to postulate that the observable chassis-effect between a given set of hosts 
can be explained by a single or even a set of predictable genome-encoded functions 
without experimental insight. The examples from this study were denitrification and 
efflux pumps but given that it is specific to the host context, device operations in other 
species/strains may influence different cellular functions. Hence, deriving a mechanistic 
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metabolic model detailing how these factors interact to bring about the produced 
output is likely intractable and may not hold true across different sets of hosts. Inci­
dentally, with the advent of dimension reduction using multivariate statistical models 
in supervised machine learning, synthetic biologists can advance data-driven engineer­
ing strategies and bypass dependence on a priori mechanistic insight for biodesign 
applications (57, 58). In contemporary biological research, unveiling a mechanistic model 
that explains an observation is considered the pinnacle goal, but the goals of synthetic 
biologists more often prioritize the practical implementation of designed systems rather 
than knowledge acquisition. Supervised machine learning aligns well with this goal (59).

We have here developed new knowledge of how observable chassis-effects of 
an engineered microbial platform can be explained by genome-encoded functions 
that are largely conserved and represent fundamental cellular processes. In addition, 
we uncovered a context-specific phenomenon that engineered genetic devices have 
unpredictable interference with metabolic functions that regulate cellular physiology. 
The evidence for these conclusions is corroborated by changes in species and even 
strain-specific global transcriptome profiles and growth phenotypes, and the use of 
multivariate statistics to attribute how quantifiable chassis-effects are concordant with 
genome structure and function. This represents a genome-informed advancement 
within the field of broad-host-range biodesign which aims to lessen our reliance on 
model organisms so that we can better understand diverse microbial behaviors and 
use them in the blueprints of biodesign. The number of assimilated microbes available 
for use as industrial biotechnology platforms and biodesign engineering is increasing 
steadily (10, 60, 61), heralding the advancement toward broad-host-range synthetic 
biology where synthetic biologists must explore not only the design space of genetic 
parts but also the design space of host-chassis to optimize their engineered systems. As 
the field of biodesign progresses toward this new era, the constraints imposed by the 
chassis-effect will only become more relevant. It is therefore of high interest to develop 
novel hosts and data-driven predictive frameworks capable of using genomic insight to 
understand how chassis-effects might limit or in some cases expedite design-build-test 
cycles for the future’s biotechnology applications such as bioremediation of soil and 
marine contaminates and production of renewable agrochemicals.

MATERIALS AND METHODS

Species, cultivation, cloning, and transformation

An overview of the species used in this study can be found in Table S2. The six 
Stutzerimonas hosts selected for further study were verified by their rpoD sequence, 
determined through sanger sequencing (62) (Table S3). Cells were cultured in Lysog­
eny-Broth (LB) at 35°C unless specified otherwise. BB23 backbone and pS5-carrying 
strains were cultivated in the presence of 100 µg/mL kanamycin while wild types were 
grown without. Single colonies from streaked LB agar plates were picked to inoculate 
liquid media and incubated overnight with shaking to prepare overnight cultures. 
199 µL of media was inoculated with 1 µL of overnight culture in black clear-bottom 
96-well plates (Thermo Fischer, 165305) and sealed with Breath-Easy film (Sigma-Aldrich, 
Z380059). OD600, sfGFP (Ex 485/Em 515, gain 75), and mKate (Ex 585/Em 615, gain 
125) fluorescence was measured continuously using a Synergy H1 plate reader (Agilent 
Biotek, Serial Number 21031715) with continuous linear shaking (1,096 cpm, 1 mm) 
at 9 mm read height. Working stock solutions of 1 M L-Arabinose (VWR, A11921) and 
1 mM aTc (VWR, CAYM10009542) were prepared by dissolving in MilliQ water and 
70% ethanol, respectively. Cloning was performed using E. coli DH5α, made chemically 
competent, and transformed following the Inoue method (63). Stutzerimonas species 
were transformed via the electroporation method as previously described in Chan et 
al. (2023) (14). Primers used in this study can be found in Table S4. BB23 backbone 
was integrated into the BASIC Assembly format using pSEVA231 as a template with 
primers B_SEVA_F and B_SEVA_R. Plasmid pS5 was assembled in the Biopart Assembly 
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Standard for Idempotent Cloning (BASIC) (64, 65) environment as previously described 
(14). Sequence and accession of pS5 components can be found in Table S5.

Induction assays

Overnight culture grown in the absence of an inducer was used to inoculate the media 
with various concentrations of aTc and Ara in 96-well plates. The normalized steady-state 
fluorescence at the late growth phase (Fss) averaged over a time window of 6–12 hours 
was used as a response variable of induction curves. In R (v4.3.1), Hill coefficient (n), 
activation coefficient (K), and max steady-state fluorescence output (β) were estimated 
by fitting the Hill function (1) using non-linear least-square regression with the “nls” 
function from the base R stats package. For parameter C, representing basal fluorescence 
output at 0 inducer concentration, an empirical value was used.

(1)Fss = βxn/ Kn + xn + C
where x is Ara (mM) or aTc (nM) inducer concentration.

Toggle and growth assay

Overnight culture grown in the absence of inducer was used to inoculate media in 
96-well plates supplemented with Ara, aTc, and no inducer condition. To toggle, cells 
were harvested by centrifugation at 4,000 RPM for 20 minutes at room temperature and 
the supernatant was removed before resuspending in 200 µL LB media, this washing step 
was repeated for a total of two washes. After final resuspension, 1 µL of washed cells was 
inoculated to 199 µL fresh media supplemented with the opposite respective inducer.

The growth difference metric Δµ was calculated using equation 2.

(2)∆ μ = μcondition_1 − μcondition_2/μcondition_1 *100
Where µ is max specific growth rate and “condition_1” and “condition_2” denote two 

different sample conditions describing genotype and induction state. In R, max rates of 
OD600 and normalized fluorescence curves were estimated based on a rolling regression 
method using the “all_easylinear” function from the growthrates (v.0.8.4) R package. Lag 
times and curve plateaus of OD600 and normalized fluorescence curves were determined 
using the “all_growthmodels” function, fitting the Gompertz growth model (66) with an 
additional lag (λ) parameter.

Phylogenomic tree and pangenome

Genomes of Stutzerimonas hosts were downloaded from NCBI. GToTree (67) was 
used to infer phylogenomic relationship using the 174 single-copy gene set (Gam­
maproteobacteria Hidden Markov Model set) under default settings, which infers tree 
through Maximum-Likelihood using FastTree (68). Comparative pangenomic analysis 
was performed in the Anvi’o (v7.1) environment. pS5 plasmid nucleotide sequence 
was manually added to each Stutzerimonas genome file. For complete data on binned 
gene clusters obtained from comparative pangenomic analysis, see Data and Code 
Availability. Unless specified, all Anvi’o commands were run using default settings. Briefly, 
genomes were converted to contigs databases using the “anvi-gen-genomes-storage” 
command, which uses Prodigal (69) to make gene calls. Gene calls were annotated 
with the Clusters of Orthologous Genes 2020 (70) database through Anvi’o and the 
KEGG Orthology (39) database through KofamKOALA. Pangenome analysis was done 
using “anvi-pan-genome” command with the --mcl-inflation parameter set to 10 for high 
cluster granularity and DIAMOND was run with the “-sensitive” flag as recommended 
when comparing genomes from closely related organisms. Gene clusters were binned 
according to their number of occurrences across the six genomes in the interactive 
Anvi’o pangenome display command “anvi-display-pan,” from “Bin 1” to “Bin 6.” We 
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define gene clusters as belonging to the core genome if it has hits in all six genomes (Bin 
6). All other gene clusters were defined as accessories, with gene clusters with only one 
hit (“Bin 1”) further distinguished as unique.

Total RNA extraction and RNA sequencing

Cultures for total RNA harvesting were initiated as described for toggle assay with 
induction scheme 0.75 mM Ara and 20 nM aTc to ensure transcriptome profile represen­
tative of the toggle assay. Cells were harvested at the late exponential growth phase to 
ensure enough cell mass by centrifugation at 10,000 rpm for 1 minute before discarding 
the supernatant and immediately freezing in liquid nitrogen. Total RNA was extracted 
using the Quick-RNA Miniprep Kit (Zymo Research, R1055) following the manufacturer’s 
instructions. The kit includes a cell lysis step and 15-minute on-column DNase I treatment 
at room temperature. RNA samples in biological triplicates for each group were sent to 
Eurofins Genomics (INVIEW Transcriptome Bacteria) for quality control, rRNA depletion 
[NEBNext rRNA Depletion Kit (Bacteria), New England Biolabs], cDNA library preparation, 
and sequencing (Illumina NovaSeq 6000 S4 PE150 XP). Across all samples, an average of 
23.7 ± 3.1 million reads was obtained.

RNA-Seq and differential gene expression analysis

Trimming, mapping, and read counting were done in QIAGEN CLC Genomic Workbench 
(v22) using the “RNA Seq-Analysis” tool run in default settings (length and similarity 
fraction = 0.8) to obtain gene expression table files with mapped counts. Annotated 
reference genomes were made by annotating genome FASTA files using GFF3 files 
retrieved from Anvi’o contigs databases using the “anvi-get-sequences-for-gene-calls” 
command with the “--export-gff3” flag. Trimmed reads were mapped to annotated 
reference genomes. When two reads are equally likely to be mapped to two or more 
positions, the CLC pipeline randomly maps the read to one of the candidate positions 
and labels the mapped read as “non-unique.” An average of 10.7 ± 1.3 million reads 
was mapped per sample, of which 9.9 ± 1.6 million reads (93%) were uniquely mapped. 
In R, pangenome gene cluster metadata were mapped to the gene expression table 
by matching Prodigal gene call IDs (see function “r2_RNA_merge_pan_and_count”). 
Differential gene expression analysis was performed using DESeq2 (v1.40.2) with default 
settings with a P-value threshold of 0.05 and Benjamini and Hochberg adjustment 
(default to DESeq2) to correct for multiple testing. To allow cross-species comparison 
of DEG profiles, counts mapped to gene calls within the same gene cluster were pooled 
for each species.

Data and statistical analysis

Hierarchical clustering was done using the “hclust” function from the base R stats 
package, using Euclidean distance by the “complete” method. Fisher exact test was 
done using the “fisher.test” function from the stats package, testing for both depletion 
and enrichment. Principal component analysis and Procrustes Superimposition analysis 
were done using the Vegan (v.2.6.4) package. The first two principal components for 
each data set were used for downstream analysis. The m2 statistic from PS analysis (scale 
and symmetric set true) was tested for significance by a permutation approach (n = 
719, maximum number of iterations). Briefly, observations in one matrix are randomly 
reordered while maintaining the covariance structure within the matrix and a test 
statistic is calculated and recorded enough times to obtain a sizeable null distribution. A 
P-value for each statistic is then calculated, representing the probability of obtaining a 
statistic with a value equal to or more extreme of the experimental value.
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