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Abstract: Figural matrices tests are common in intelligence research and have been used to draw
conclusions regarding secular changes in intelligence. However, their measurement properties have
seldom been evaluated with large samples that include both sexes. Using data from the Norwegian
Armed Forces, we study the measurement properties of a test used for selection in military recruitment.
Item-level data were available from 113,671 Norwegian adolescents (32% female) tested between the
years 2011 and 2017. Utilizing item response theory (IRT), we characterize the measurement properties
of the test in terms of difficulty, discrimination, precision, and measurement invariance between males
and females. We estimate sex differences in the mean and variance of the latent variable and evaluate the
impact of violations to measurement invariance on the estimated distribution parameters. The results
show that unidimensional IRT models fit well in all groups and years. There is little difference in precision
and test difficulty between males and females, with precision that is generally poor on the upper part
of the scale. In the sample, male latent proficiency is estimated to be slightly higher on average, with
higher variance. Adjusting for measurement invariance generally reduces the sex differences but does not
eliminate them. We conclude that previous studies using the Norwegian GMA data must be interpreted
with more caution but that the test should measure males and females equally fairly.

Keywords: fluid intelligence; figural matrices; measurement precision; sex bias; measurement
invariance; item response theory

1. Introduction

The mass testing of individuals using standardized tests is a common method to map
or screen ability for pedagogical, diagnostic, or selection purposes. One such test battery is
the General Mental Ability (GMA) test of the Norwegian Armed Forces (NAFs), which is
well known in the field of intelligence, and it has been used to make scientific statements
about the Norwegian population (Sundet et al. 2004), as well as intelligence in general
(Flynn 1987; Flynn and Shayer 2018).

The Norwegian GMA tests were, in their time, developed for males, but they have later
been utilized to measure both sexes, though with a lack of validation. This study sought to
address this by investigating the measurement properties of the figural matrices test—the
arguably most important subtest of the battery. A detailed analysis of the measurement
properties of the items in the test using item response theory (IRT) had not been done
before. This is a crucial analysis for understanding both how the instrument obtains
measurements in general, as well as how it works for women. Our research suggests that
this has consequences both for practical use in selection and classification, as well as for the
multitude of research that has been conducted using the Norwegian GMA measures.
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1.1. General Mental Ability Testing

GMA is a psychological construct inferred via a battery of cognitive tests that are
intended to measure a person’s latent mental abilities relative to others in the population
(Jensen 1998). The score from a GMA battery is recognized as a generally valid predictor of
job performance and training proficiency across multiple occupations and cultures (Sackett
et al. 2022). The tests are especially attractive for personnel selection because of an easy
administrative process and a low application cost, making it ideal for screening large
groups of people.

The NAFs have used GMA testing to select personnel since the first test was developed
in 1954 (Hansen 2006), and the battery consists of a numeracy test (U4), a figural matrices
test (U5), and a word similarities test (U6). We will refer to the U5 as the NAF figural
matrices for the remainder of this article. The sum scores from the tests are aggregated
and transformed to a normed, standard 1–9 (stanine) scale. The U4 has undergone some
changes over the years, but the U5 and U6 tests have been used relatively unchanged with
occasional re-norming. The GMA testing of the NAFs is based on the idea that just using
a few different measures is sufficient to extract a general mental ability score, which is
a practice that is supported by, e.g., Gustafsson (1984); Jensen and Weng (1994).

Figural matrices tests are a central part of GMA testing due to their high score correla-
tion with scores of a general ability factor (Snow 1981), correlating especially highly with
measures thought to require analytic reasoning and, to some extent, visuospatial ability
(Gustafsson 1984; Kvist and Gustafsson 2008; Lynn and Irwing 2004; Marshalek et al. 1983).
The construct measured using figural matrices tests is also central to inductive reasoning,
a hallmark indicator of fluid intelligence in the Cattell–Horn–Carroll model (CHC), a main
structural model of intelligence (Flanagan and McDonough 2018; McGrew 2009). The tests
are fully non-verbal measures intended to minimize any undesired influences from reading
ability on the test scores (Cattell 1940; Raven 1941), and they are present in a multitude of
test batteries, including the Wechsler tests, the Stanford–Binet test, and the Cattell Culture
Fair test (Waschl and Burns 2020).

The NAF figural matrices test was directly modeled after Raven’s Progressive Matrices
(Raven 1941), the items of which consist of presenting the test-taker with an incomplete
figure and tasking them with identifying the missing piece from a number of alternatives
(an example item can be found in Figure 1). At present, Raven’s is assumed to function well
in Scandinavia, but there is a lack of evidence of sufficient measurement precision to make
classification decisions in the Norwegian population (Helland-Riise and Martinussen 2017).
This is problematic, especially since the NAF figural matrices is the fallback test whenever
test-takers are unfit to take the numeracy or verbal test due to, for example, language issues
or learning disabilities.

Figure 1. Example item from the NAF figural matrices subtest.

There are multiple studies that use scores from the NAFs’ GMA battery. For example,
several studies have utilized it to investigate intelligence. Flynn (1987) famously used
it (along with other tests) with data from 1954 to 1980 in order to support his theory
on secular changes in intelligence. Sundet et al. (2004) expanded on Flynn’s study to
include up to the 2002 cohort, showing stagnation in figural matrices’ mean scores and
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substantial distributional changes with lower standard deviations, more skew, and heavier
tails, starting in the 1990s. Flynn and Shayer (2018) also used these data when studying the
general stagnation and recession of measured intelligence in the western world. We have
also identified several other studies that use Norwegian GMA data, and a limited review
of these can be found in Appendix B.

Other studies have looked at the relationship between GMA scores and other non-
psychological variables. Galloway and Pudney (2011) did a study on the relationship
between GMA and the likelihood of committing a crime. Bratsberg and Rogeberg (2017)
used data from the 1962–1990 birth cohorts (measured roughly in 1981–2009) to establish
that the relationship between GMA and mortality is not confounded by socioeconomic
status. We will make a general assessment in our discussion of how the studies used
data from the GMA tests and suggest some possible issues. More studies used the GMA
measures from the NAFs than the ones we have listed, but these used older data not
comparable to our sample due to the Flynn effect (like, e.g., Sundet et al. 1988), using the
measures in some peripheral way (e.g., Dahl et al. 2021), or they were not known to us at
the time of writing.

Research done by the NAFs has found weaker correlations between their GMA mea-
sures and job performance than generally expected based on the existing literature for both
conscripts (Køber et al. 2017) and candidates for military leadership training (Isaksen 2014;
Norrøne 2016; Vik 2013). To better understand these results, detailed psychometric analyses
at the item level are required. Recent advances in data collection via electronic testing have
made this possible, and since 2011, data at the item level have become available (Skoglund
et al. 2014).

1.2. Sex Differences in Non-Verbal Fluid Intelligence

Males have been shown to express greater general variability than females in mental
ability tests (Arden and Plomin 2006; Deary et al. 2003). Several studies that have inves-
tigated the presence of sex differences in intelligence have shown mixed results. Some
claim no or negligible differences (Halpern and LaMay 2000; Jensen 1998), while the meta-
analysis of Lynn and Irwing (2004) found a small but consistent score advantage for males
after the age of 15. Feingold (1992) found no noticeable sex differences in the mean or
variance on an abstract non-verbal reasoning measure, while Strand et al. (2006, non-verbal
reasoning) and Keith et al. (2011, figural matrices) found little differences in means, but they
found that male performance has a greater variance. Reynolds et al. (2022), in their review,
suggested that, while differences in the general level may be negligible, there might be
important differences in specific abilities and subtests. They observed that, while there tend
to be noticeable female advantages in processing speed, males typically perform better on
visuo–spatial measures—differences in fluid reasoning, however, are inconsistent.

Reynolds et al. (2022) stated that studies of sex differences in mental ability have
been overly concerned with simple distributional differences. To broaden the perspective,
they suggest, amongst other things, more research on issues of measurement invariance
at the item level. Some studies have already investigated measurement invariance for
figural matrices or related measures with somewhat mixed results. Steinmayr et al. (2010)
conducted a study of German gymnasium students, observing that the sex differences in
fluid intelligence nearly vanished when the non-invariance of test scores was taken into ac-
count. Keith et al. (2008) reported that males in a US standardization sample scored higher
than females on quantitative reasoning and spatial ability, which are measures regarded
as close to figural matrices in the nomological network (see, e.g., Waschl and Burns 2020).
Abad et al. (2004) found an advantage in solving Raven’s advanced progressive matrices
for male Spanish university students, and these did not disappear when differential item
functioning (DIF) was taken into account. For a sample of US children and adolescents,
Lakin and Gambrell (2014) regarded levels of DIF in figural reasoning items as acceptable
and so did not look at the impact of test bias on parameter estimates.
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Some research has related sex differences to differences in cognitive processes involved
in solving items. An excellent summary of this is the systematic review of Waschl and Burns
(2020). They suggested that sex differences in inductive reasoning measurements (the CHC
sub-construct encompassing figural matrices) could be attributed to male advantages in spatial
ability, not in the inductive reasoning ability itself. Spatial ability is regarded as the cognitive
ability with the most consistent gender differences (Hyde 2016; Reynolds et al. 2022). Lim
(1994) argues that females use different problem-solving strategies that do not depend on
spatial ability and that this is the cause of sex differences on figural matrices tests.

While there has long been interest in explaining sex and gender differences in test
performance, it is our appraisal that most studies have concerned themselves with structural
differences within the whole test battery or within substrata of that battery. Measurement
invariance within individual instruments is often assumed (like, e.g., Arden and Plomin
2006; Deary et al. 2003), introducing a strong assumption of identical item performance
between groups that is not necessarily reasonable. Potential patterns of item bias that seem
negligible in themselves might still be a contributing factor to the existence and magnitude
of observed differences if they are theoretically plausible, given existing knowledge of
distributional sex differences in, for example, subtest performance (Reynolds et al. 2022)
and problem-solving style (Lim 1994). This is also something that has been called for in
the field (Reynolds et al. 2022). Our study contributes to the litertaure by publishing new
data on sex differences in the figural matrices subtest of a well-known test battery that has
been frequently used in research, though previously only on males. We also investigated
whether patterns in performance differences change when potential item bias are taken
into account, using modern item response modeling methods.

1.3. The Present Study

Our study had two main research objectives: (1) to investigate the general measure-
ment properties of the instrument in terms of test characteristics and measurement precision
and (2) to investigate item-level measurement invariance in relation to sex differences in
test-level difficulty and discrimination. Both objectives sought to examine the validity
of the scientific statements made using the instrument, and we appraised some of the
relevant studies that have done so. To our knowledge, no previous study had examined
the performance of females on the NAFs tests.

2. Materials and Methods
2.1. Sample

The sample consisted of 113,671 adolescents assessed as part of the muster (NO: sesjon)
of the NAFs. The muster, illustrated in Figure 2, begins by requiring the entire birth cohort
(N ≈ 55,000–60,000 per year, with a response rate of 96–98%) to complete an electronic self-
report survey (part 1). The candidates receive the survey the year they turn 17, and those
found eligible based on the NAFs’ needs (n ≈ 18,000–25,000 per year; see Table 1) are tested
on-site approximately 2 years later (part 2). Selection is based on objective criteria like
geography, sex, skills (people with certain technical certificates, etc.), and self-reported health,
motivation, and physical fitness. There is some variation between years in the needs of the
NAFs, but the selection for the muster is considered to be sufficiently stable. Conscription
into the NAFs has always been mandatory for males, and this was also extended to females
in January 2015 (Endringslov til vernepliktsloven og heimevernloven 2014).

Selection, part 1

Electronic self-
reported survey

Selection, part 2

1 day muster (GMA, phys-
ical, medical, interview)

Mandatory service

1 year military service

48% females 32% females 8–20% females

Figure 2. Selection process of the NAFs.
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Table 1. Sex distribution of the sample cohorts.

Cohort 2011 2012 2013 2014 2015 2016 2017

n 3921 18,238 19,597 17,668 18,649 17,569 14,011
Female 28% 27% 31% 31% 34% 38% 34%
Male 72% 73% 69% 69% 66% 62% 66%
Birth year 1992–1993 1993–1994 1994–1995 1995–1996 1996–1997 1997–1998 1998–1999

Exceptions to the mustering protocol are postponement due to failing to achieve
the standard Norwegian three-year secondary education diploma on time (having to
retake subjects or exams or changing study programs) or attending 4-year technical school
programs. A small number of people are tested at the age of 16 because they apply for
apprenticeships specifically offered through the military (mechanics, electricians, cooks,
etc.), but these were excluded from the study sample.

In the Norwegian population, females have generally higher secondary school grades,
but males are more represented in technical vocational educations and have greater grade
variability (NOU 2019:3 2019). According to statistics acquired from the NAFs, people that
reach Stage 2 of the mustering process (thus become part of our sample) self-report higher
average grades in core secondary school subjects than the general population, with smaller
grade variance (an illustration can be found in Appendix A, Figure A4).

However, these sampling characteristics are not identical between sexes; deviations
from the population characteristics are more pronounced for males than for females in
the mean and the variance. Hence, in generalizations from secondary school grades to
GMA, means and variances for the female group should be expected to be biased downwards.
The reader is advised that any inferences about general sex differences in mental ability
drawn from our study must be made with this potential bias in mind.

Data for the study were obtained by consent from the NAFs, and ethical approval was
granted by the Norwegian Agency for Shared Services in Education and Research (SIKT,
formerly NSD).

2.2. Test Administration Procedure

The session was around 60 min, and the entire battery was administered without
breaks, with a subtest-wise enforced time limit, in the following order: first, the 30-item
numeracy test, U4 (25 min); then, the 36-item figural matrices test, U5 (20 min); and, lastly,
the 54-item word-similarities test, U6 (6 min). The situation was proctored, without inter-
ruptions, in classroom-sized rooms well suited to maintaining focus, and the participants
were typically tested in groups of 20–30. The tests were given on a stationary computer with
an external mouse and keyboard, typically with physical separators between computers
to minimize the opportunity for cheating. Pens and paper were also provided in case
test-takers wanted to take notes. The test-takers were explicitly reminded that cheating or
faking on the test could lead to arrest and that they would not be able to retake the tests if
they ended up wanting to join the armed forces at a later point in life.

2.3. Measures and Data Management

Due to its previously mentioned special importance in the conscript-selection proce-
dure, our study concerns itself only with the figural matrices subtest of the GMA battery.
The test data are item responses from the years 2011–2017 of the birth cohorts of 1992–1993
to 1998–1999 (Table 1). The items are in multiple-choice format, scored binarily, with re-
sponse alternatives numbering between six and eight.

The cohort variable we used in the analysis was based on the year the participants
were tested (the test year and birth year do not correspond). We trimmed each cohort
to only include persons who were 19 (±1) years old at the time of testing by calculating
the difference between the birth year and test year. We also excluded any observation
that did not have item response data, which were about four-fifths of the 2011 cohort (the
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switch to computerized testing occurred during this testing cycle) but a negligible number
in the other cohorts (the 2017 cohort is incomplete due to the data being acquired in the
middle of that testing cycle.) A small number of observations with missing values in other
variables (roughly 20 per cohort) were also excluded. Sex was defined as legal sex (in
most cases, as registered at birth), and it is a binary variable acquired from the Norwegian
national registry.

2.4. Statistical Analysis

We used descriptive statistics and item response theory to evaluate the psychometric
properties of the items on the test. We utilized a unidimensional, two-parameter logistic
model and evaluated the model fit in cohorts and groups, first separately by each cohort and
group and then jointly across groups in each cohort. We estimated the model parameters
with marginal maximum likelihood estimation using numerical quadrature (Bock and
Aitkin 1981) as implemented in the R package mirt (Chalmers 2012). To evaluate model
fit, we utilized the M2 statistic, a recommended method for analyzing the fit of a model to
categorical data (Tay et al. 2015), as well as the root mean square error of approximation
(RMSEA) and the standardized root mean square residual (Maydeu-Olivares 2013, SRMSR).
Absolute model fit with the M2 statistic was established if the hypothesis of equality
between the observed and model-implied univariate and bivariate moments for pairs
of item scores was not rejected at a significance level of 0.05. Adequate model fit was
established if the estimated RMSEA was lower than 0.089 and if the SRMSR was lower than
0.05, with excellent fit established at 0.05 and 0.027, respectively (for binary data, the criteria
for close and excellent fit are equal, so we only used the latter term; Maydeu-Olivares
and Joe 2014). We also computed IRT reliability coefficients (Kim and Feldt 2010) from
configural models using the implementation of Andersson and Xin (2018).

Measurement invariance across groups was evaluated using multiple-group model-
ing, employing likelihood ratio tests between nested models. We evaluated configural
invariance in each of the two groups in each of the cohorts, resulting in 14 models subject
to evaluation. These models were evaluated for absolute and approximate fit, as described
above. In cases where we established at least an approximate fit in the configural models of
each cohort, we evaluated measurement invariance across groups in each of the cohorts.
First, we evaluated full measurement invariance via hypothesis tests of equality between
all item parameters in the groups with a significance level of .05. If this test was rejected, we
conducted a partial measurement-invariance study using the two-step approach defined in
(Stark et al. 2006). Their two-step procedure is summarized as follows.

Step 1:

(a) We estimate the constrained baseline model (all item parameters set equal between
groups, but the mean and variance of the latent variable were freely estimated in
one group).

(b) For each item, we removed the equality restriction for the item parameters between
the groups and estimated the model. If there was a statistically significant difference
to the constrained baseline model, we flagged that item as an item with a potential
violation of measurement invariance.

(c) For the items that did not show statistically significant differences, we ranked the
items from the item with the highest estimated discrimination parameter to the item
with the lowest estimated discrimination parameter, based on the results from the
constrained baseline model. The five items with the highest estimated factor loadings
were selected as anchor items.

Step 2:

(d) We estimated the free baseline model, in which the five items from Step 1 (c) were
constrained to be equal between the groups, while the remaining items were allowed
to vary.
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(e) For each item, we removed the equality restriction for the item parameters between
the groups and estimated the model. If there was a statistically significant difference
to the constrained baseline model, we flagged that item as an item with potential
violation of measurement invariance.

(f) We obtained a model with 5 + j items that were considered invariant, where j is the
number of items identified in Step 2 (e).

With the selected models, we assessed and compared the item and scale properties
in the two groups by computing item characteristic curves, test characteristic curves, item
information functions, and test information functions (de Ayala 2022). The mean and
variance of the latent variable in one group, in contrast to the other group, were also
estimated for each cohort. To assess the impact of violations to measurement invariance,
we compared the mean and variance estimates from the constrained baseline model in
Step 1 (a) to the estimates of the final model in Step 2 (f) (Fischer et al. 2018).

3. Results

The dataset consisted of the 36 binary items of the NAF figural matrices test. Items
1–10 were excluded for having perfect or near-perfect item scores, leaving 26 items for the
analysis. A table with descriptive statistics for the included items, as well as distributions
of sum scores, can be found in Appendix A. The test has a disproportionate number of
easy items and few hard, suggesting a possible ceiling effect. Item-total correlations will
be generally higher for items of middle-high difficulty within the test. The sex variable
is binary, and of the 113,671 participants, 32 % were female, with percentages varying
between 28% in 2011 and 38% in 2016 (Table 1). Most cohorts had between 17,000 and
20,000 participants, with the exception of cohorts 2011 (n = 3921) and 2017 (n = 14,011).

3.1. Item Response Modeling
3.1.1. Configural Invariance

We analyzed configural invariance by fitting a series of unidimensional two-parameter
logistic models separately by cohort, and evaluated the absolute model fit in the two groups.
Our hypothesis was that the unidimensional model fit well in both groups, and from Table 2,
we can see that the 95 percent confidence interval (CI) for the RMSEA was lower than
the rule of thumb of 0.05 (Maydeu-Olivares and Joe 2014), indicating an excellent fitting
model. SRMSR indicated that the model fit both groups at least adequately, though some
of the female cohorts met the criterion for excellent fit (SRMSR ≤ 0.027). The criterion of
acceptable absolute fit in each separate group was met, which justified an analysis of full
and then partial measurement invariance.

Table 2. M2 tests of the configural model for each sex in all cohorts.

Cohort Group M2 df p RMSEA (2.5%, 97.5%) SRMSR

2011 Female 460.999 299 .001> 0.022 (0.017, 0.027) 0.039
Male 719.818 299 .001> 0.022 (0.020, 0.025) 0.035

2012 Female 878.534 299 .001> 0.020 (0.018, 0.022) 0.028
Male 2302.478 299 .001> 0.022 (0.021, 0.024) 0.034

2013 Female 961.704 299 .001> 0.019 (0.017, 0.021) 0.025
Male 2433.951 299 .001> 0.023 (0.022, 0.024) 0.031

2014 Female 982.257 299 .001> 0.020 (0.018, 0.022) 0.026
Male 2188.407 299 .001> 0.022 (0.021, 0.023) 0.030

2015 Female 836.257 299 .001> 0.016 (0.015, 0.018) 0.022
Male 1969.806 299 .001> 0.021 (0.020, 0.022) 0.028

2016 Female 869.110 299 .001> 0.017 (0.015, 0.018) 0.022
Male 1931.236 299 .001> 0.022 (0.021, 0.023) 0.030

2017 Female 818.726 299 .001> 0.019 (0.017, 0.021) 0.026
Male 1656.481 299 .001> 0.021 (0.020, 0.022) 0.031

Notes. RMSEA = root mean square error of approximation, SRMSR = standardized root mean square residual.
2.5% and 97.5% is the 95% confidence interval of the RMSEA.
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IRT reliability coefficients (Kim and Feldt 2010) were computed from configural models.
From Table 3, we can see that the reliability coefficients lie between .69 and .77. Coefficients
are generally higher in the male groups than in the female groups (with all but three
test reliability coefficients, as well as all marginal reliability coefficients, outside the 95%
confidence interval of the opposite group). This is most likely because of the differences
in the distribution of the latent variable and not because of differences in measurement
properties of the test itself.

Table 3. IRT reliability coefficients with confidence intervals.

Cohort
Test Reliability Marginal Reliability

Female Male Female Male

2011 .70 (.58, .83) .77 (.74, .79) .70 (.68, .73) .75 (.73, .76)
2012 .72 (.70, .73) .77 (.72, .81) .72 (.71, .73) .75 (.74, .75)
2013 .70 (.69, .72) .77 (.69, .85) .71 (.70, .72) .75 (.74, .75)
2014 .71 (.69, .73) .76 (.75, .77) .71 (.70, .72) .74 (.73, .75)
2015 .69 (.68, .71) .73 (.72, .75) .70 (.69, .71) .72 (.71, .73)
2016 .69 (.67, .71) .74 (.73, .76) .70 (.69, .71) .73 (.72, .74)
2017 .73 (.71, .76) .77 (.72, .81) .73 (.72, .74) .75 (.74, .75)

Notes. IRT = item response theory. From left to right: IRT test reliability, IRT marginal reliability. The 95%
confidence interval (CI) of the method is in parentheses. The test reliability estimates for 2011 females, and 2013
and 2017 males, had CIs overlapping the point estimate of the other group.

3.1.2. Partial Invariance

The analysis of partial invariance was done in two stages, using the approach of Stark
et al. (2006). In Step 1 of the analysis, we identified potential anchors among invariant
items using the constrained baseline model, and we selected the five with the highest factor
loadings. They were subsequently used in Step 2 as constrained referent items in the free
baseline model to identify items that violated invariance.

From Table 4, we can see that cohorts 2013 and 2014 had by far the most non-invariant
items, with 12 and 13 flagged (roughly half of the items). The 2011 cohort had the fewest
at two (likely due to reduced statistical power from the smaller sample size), and the rest
had between seven and nine flagged items. Generally, non-invariance tended to mostly
manifest in the slope parameters (factor loadings), which were slightly steeper for females
(see Figure A3 in Appendix A).

Table 4. Non-invariant items in each cohort.

Item 2011 2012 2013 2014 2015 2016 2017 DIF

11 o o 2
12 0
13 0
14 0
15 o 1

16 0
17 o o o 3
18 0
19 o o o o o 5
20 0

21 o o o o 4
22 0
23 o o o o o o o 7
24 0
25 o o o o 4
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Table 4. Cont.

Item 2011 2012 2013 2014 2015 2016 2017 DIF

26 o 1
27 0
28 o 1
29 o o o o o o o 7
30 o o 2

31 o o o o o o 6
32 o o o o o o 6
33 o o 2
34 o o o o o o 6
35 0
36 o 1

DIF 2 7 13 12 8 7 9
Notes. DIF = differential item functioning. Circles indicate non-invariant items in the free baseline stage (Step 2)
at a Bonferroni-corrected .05 significance level.

Table 5 shows the model fit measures for the different invariance models in the cohorts.
Measures of absolute model fit indicated that the models fit the data well. The RMSEA
indicates an excellent fit for all models in every cohort. The SRMSR indicates that all the
models fit the female group better than the male (excellent fit vs. adequate fit), with the
exception of the 2011 cohort.

Table 5. Fit statistics for the constrained model, the model with partial constraints, and the
configural model.

Cohort Model AIC BIC RMSEA (2.5%, 97.5%) SRMSR.F SRMSR.M

2011 Constrained 73,262 73,601 0.016 (0.015, 0.018) 0.042 0.036
Partial 73,222 73,586 0.016 (0.014, 0.017) 0.041 0.036
Configural 73,220 73,872 0.016 (0.014, 0.017) 0.039 0.035

2012 Constrained 339,083 339,505 0.016 (0.015, 0.017) 0.029 0.035
Partial 338,807 339,338 0.015 (0.015, 0.016) 0.029 0.034
Configural 338,724 339,536 0.015 (0.015, 0.016) 0.028 0.034

2013 Constrained 375,974 376,401 0.016 (0.016, 0.017) 0.026 0.033
Partial 375,465 376,098 0.015 (0.015, 0.016) 0.026 0.032
Configural 375,426 376,249 0.015 (0.015, 0.016) 0.025 0.031

2014 Constrained 341,680 342,102 0.016 (0.015, 0.017) 0.027 0.031
Partial 341,319 341,929 0.015 (0.014, 0.016) 0.026 0.031
Configural 341,334 342,147 0.015 (0.015, 0.016) 0.026 0.030

2015 Constrained 351,901 352,326 0.015 (0.014, 0.015) 0.023 0.029
Partial 351,566 352,118 0.014 (0.013, 0.014) 0.022 0.028
Configural 351,540 352,360 0.014 (0.013, 0.014) 0.022 0.028

2016 Constrained 331,109 331,530 0.015 (0.014, 0.015) 0.023 0.031
Partial 330,872 331,403 0.014 (0.014, 0.015) 0.022 0.031
Configural 33,0845 331,657 0.014 (0.014, 0.015) 0.022 0.030

2017 Constrained 278,244 278,655 0.015 (0.015, 0.016) 0.026 0.033
Partial 277,944 278,492 0.014 (0.014, 0.015) 0.025 0.032
Configural 277,938 278,730 0.014 (0.014, 0.015) 0.026 0.031

Notes. AIC = Akaike information criterion; BIC = Bayesian information criterion. F = female; M = male. 2.5% and
97.5% represents the 95% confidence interval of the RMSEA. Boldface indicates the model with the lowest AIC or
BIC in each cohort.

Comparing relative fit indices based on the log-likelihood, we observed that the
information criteria preferred different models. The model with partial constraints had
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the best fit, according to the BIC in all cohorts. The AIC preferred the configural model,
with the exception of the 2014 cohort, for which it preferred the partial invariance model.

3.1.3. Information Curves and Expected Score Functions

Figure 3 shows the expected score function and the test information function from
the partial invariance model. The test is most informative for the lower part of the ability
scale, around minus two logits, with a sharp decline moving up the scale (as the ten easiest
items were removed, the decline at the lower extreme is less meaningful). This indicates
that ability estimates are less certain for people with higher mental ability and that the test
discriminates less well between these individuals. There is some variation between the
sexes in terms of overall test information, with the peak of the curve being higher for the
male group in cohorts of 2012–2014 but roughly equal in the 2015–2017 cohorts (this was
also when the NAFs implemented the change in the sampling procedure), females having
a higher peak only in 2011. There was some tendency suggesting that the test was more
informative for higher-ability females relative to males in some of the cohorts (especially
2013 and 2015), and females on the upper part of the ability scale were also expected to
have a slightly but noticeably higher test score than males in the 2013 cohort.
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Figure 3. Expected test scores (a) and item information functions (b) for males and females in each
cohort from the partial invariance model.

The standard error (SE) of the ability estimates for a given point on the ability scale
was defined as SE(θ) = 1√

TI(θ)
, where θ is person’s ability and TI is the test information

(Embretson and Reise 2000). Exact values for different parts of the ability scale can be found
in Table 6. The high point on the test information curve (on the ability scale: −2.2 to −2.4
for females and −2.2 to −2.3 for males) of the NAF figural matrices test varied between
4.27 and 5.37 for females and 4.31 and 5.39 for males across the cohorts. However, this level
of measurement precision only applied to people relatively low on the ability scale. At 0,
the center point on the scale, the test information had been reduced to 2.32–2.81 for females
and 2.18–2.69 for males, and it decreased even more as one went up the scale. These results
indicate that the test does not precisely measure high-ability individuals.

Overall, the curves do not exhibit significant dissimilarity concerning the informa-
tiveness or difficulty between males and females in the test. Additionally, most of the
non-invariance observed in individual items was balanced out at the test level. Conse-
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quently, a thorough examination of the item characteristic curves and item information
functions provides limited additional insights into the overall measurement properties
(these can be found in Appendix A).

Table 6. Test information and standard errors for different levels of latent person ability θ in
each group.

−6 −5 −4 −3 −2 −1 0 1 2 3

TI.F 0.56–0.82 1.33–1.66 2.89–3.05 4.00–4.74 4.18–5.32 3.28–4.19 2.32–2.81 1.53–1.86 0.99–1.14 0.59–0.64
TI.M 0.55–0.81 1.31–1.62 2.81–2.99 3.97–4.71 4.25–5.34 3.32–4.11 2.18–2.69 1.44–1.75 0.93–1.07 0.58–0.61
SE.F 1.11–1.34 0.78–0.87 0.57–0.59 0.46–0.50 0.43–0.49 0.49–0.55 0.60–0.66 0.73–0.81 0.94–1.01 1.25–1.30
SE.M 1.11–1.35 0.79–0.87 0.58–0.60 0.46–0.50 0.43–0.49 0.49–0.55 0.61–0.68 0.76–0.83 0.97–1.04 1.28–1.32

Notes. TI = test information; SE = standard error; M = male; F = female. Ranges are between cohorts.

3.2. Consequences of Invariance

When equality constraints on the non-invariant items are removed, there is little
discernible difference in the expected score functions for males and females in any of the
cohorts (Figure 3a), but differences exist for the distribution-parameter estimates. As seen
in Table 7, males had noticeably higher latent means compared to females, outperforming
them by between 0.24 and 0.33 logits in the constrained baseline model. We can transform
this to IQ equivalents by multiplying the estimates by 15, which shows a male advantage
of about 3.6–5 points on the IQ scale. Males also have noticeably higher variance estimates
than the female group, in the magnitude of between 36 and 63 percent. This means that
males are comparatively more represented at the extremes of the distribution.

Table 7. Means and variances of males relative to females from the constrained baseline and the
partial invariance model.

Cohort
Means Variances

DIF
Constr. (2.5%, 97.5%) Partial (2.5%, 97.5%) Constr. (2.5%, 97.5%) Partial (2.5%, 97.5%)

2011 0.32 (0.22, 0.41) 0.30 (0.20, 0.39) 1.62 (1.39, 1.85) 1.59 (1.36, 1.82) 2
2012 0.33 (0.28, 0.37) 0.25 (0.20, 0.30) 1.52 (1.42, 1.62) 1.51 (1.40, 1.63) 7
2013 0.30 (0.25, 0.34) 0.32 (0.27, 0.37) 1.63 (1.53, 1.73) 1.69 (1.55, 1.82) 13
2014 0.24 (0.20, 0.29) 0.15 (0.10, 0.20) 1.45 (1.36, 1.55) 1.35 (1.23, 1.46) 12
2015 0.27 (0.23, 0.31) 0.24 (0.19, 0.28) 1.36 (1.28, 1.44) 1.38 (1.27, 1.48) 8
2016 0.32 (0.28, 0.36) 0.28 (0.24, 0.33) 1.48 (1.39, 1.57) 1.42 (1.32, 1.52) 7
2017 0.25 (0.21, 0.29) 0.19 (0.14, 0.24) 1.36 (1.27, 1.45) 1.32 (1.21, 1.42) 9

Notes. Constr. = constrained baseline model; partial = partial invariance model. The means and variances for the
female group were fixed to 0 and 1 in the estimation, and the difference between the groups is thus equal to the
mean in the male group. The numbers in parentheses indicate the 95% confidence interval of the method. The DIF
column counts the number of DIF items from the partial invariance modeling (Step 2) in that cohort.

The mean differences primarily reduced when we loosened constraints on non-invariant
items in the partial invariance model (Table 7), suggesting that some of the differences could
be related to invariance issues (although, for the 2013 cohort, the mean for males actually
increased when non-invariance was taken into account). However, about half of the means
were within the 95% confidence interval of the estimates from the other model (with 2012,
2014, and 2017 being the exceptions), so the results are ambiguous. All variance differences
except for the 2013 and 2015 cohorts decreased when the constraints were loosened, al-
though mostly within the confidence intervals of the estimates from the other model (with
the constrained model for the 2014 cohort having the only interval that did not cover the
estimate from the opposing model). There is a contrast between the two cohorts with the
highest number of non-invariant items, with 2013’s negligible increase in group mean and
variance differences and 2014’s (comparatively) substantial decrease in mean difference of
.09 logits (1.4 IQ points) and variance difference of 0.10 (10 percentage points).
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4. Discussion

This study utilized a large sample of Norwegian males and females to assess the
properties of individual items of the commonly used NAF figural matrices test. This test and
similar tests have been used in many previous studies to draw conclusions regarding trends
across time and to assess differences between various groups. Our results show that the
item properties of the NAF figural matrices were not always identical for males and females
in our sample. Some items showed consistent differences across all the cohorts included
in the study, suggesting that the differences were not due to chance. We estimated that the
mean proficiency on the NAF figural matrices in our sample was slightly higher for males
than females and that the variance in proficiency was also higher for males than females.
This result was consistent across all cohorts, and it persisted when potential measurement
bias was accounted for. Our results thus point to the existence of distributional differences
in proficiency on figural matrices between males and females in the sample. At the test level,
the measurement bias that we identified did not substantially change the difficulty or the
measurement precision for males and females. However, accounting for measurement bias
did generally reduce the mean difference estimates very slightly between males and females.
We recommend fitting detailed measurement models when using this test and evaluating
and accounting for potential measurement bias when drawing inferences from test scores.

4.1. General Measurement Properties of the Figural Matrices
4.1.1. Test Reliability

Previous reporting on the measurement properties of the NAF figural matrices has
mostly come from norming studies conducted by the NAFs. Thrane (1977) reported an
initial test–retest reliability coefficient of .80 and a split-half coefficient of .87 for an early
24-item version of the test made in 1949. He stated that, in contrast to the other tests in the
battery, the NAF figural matrices test was deliberately designed to screen at the lower part
of the ability scale, and the norming sample had an observed skew of −0.5 in 1950. As we
have demonstrated in our own study, this is also the general area where it discriminates the
best, though when all 36 items are included, the skew in the sum scores for the 2011–2017
samples lies between −1.3 and −1.5, which is a substantial change.

Sundet et al. (1988) cited a test–retest reliability of .72 for the updated 36-item version
(Notes from the psychological services of the Norwegian Armed Forces, 1956, as cited in
Sundet et al. 1988). Our own observations for males (test reliability: .73–.77; marginal
reliability: .72–.75; Table 3) are in line with the previous observations. In contrast, if we
look at the father of the NAF figural matrices, Raven’s Standard Progressive Matrices,
we find that what is most likely a lower-bound coefficient of .87 has been observed in
a large sample of Swedish 12-year-olds (Gustafsson et al. 1981), but there is a lack of
Norwegian reliability studies (Helland-Riise and Martinussen 2017). This suggests that
the measurement precision of the U5 is below what you should expect for a Raven’s-
like measure, given an appropriate population. We have also shown that reliability is
substantially lower for females than for males. Considering the similar test information
curves for the two groups (Figure 3b), this difference is likely due to the larger variance in
ability of the male group, not differences in the measurement precision of the instrument.
Still, when obtaining ability estimates of individuals or groups with such tests, it would be
prudent to adjust for reliability in the groups separately.

4.1.2. Test Validity and Scaling

The issues we have identified with the figural matrices test impact the predictive value
of the overall composite GMA scores, and we believe this is likely to be a contributing
factor to the lower-than-expected predictive validity observed in other studies (Isaksen
2014; Køber et al. 2017; Norrøne 2016; Vik 2013). Although the GMA composite score would
most likely meet the normality assumption of a multiple-regression model, undesirable
scale properties like a ceiling effect in a measure could still suppress correlations, and this
is not solved using standardization procedures (McDonald 1999). While our study did not
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seek to answer how or whether the undesirable properties of the figural matrices disappear
in the composite GMA variable, it is worth keeping the added uncertainty in mind when
using the GMA scores in research and selection. Using the NAF figural matrices test on its
own for classification outside the lower parts of the scale should be avoided.

A number of studies cited Sundet et al. (1988) or Sundet et al. (2004) as the basis
for their scaling or used similar procedures. These approaches to creating the GMA
composite scores are to standardize and center the raw scores on each subtest, combine
them (unweighted), and transform them into stanine scores, which are used in the analysis.
In the paper of Sundet et al. (2004), they often transformed scores into IQ equivalents,
with a mean of 100 and a standard deviation of 15, based on norms from 1954. This kind
of linear transformation seems to have eventually cemented itself as the ”conventional”
method for treating the measures (Bratsberg and Rogeberg 2018). (Studies using variants
include Bjerkedal et al. 2007; Black et al. 2007, 2009, 2011; Bratsberg and Rogeberg 2017;
Kristensen and Bjerkedal 2007; Sundet et al. 2008; Sundet et al. 2005; Sundet et al. 2010—for
a short review of these, see Appendix B.) Many studies using data spanning a large number
of years, like those investigating generational changes or the Flynn effect, are likely to see
limited comparability because of the measurement issues inherent in the instrument that
we have identified. For example, inferences about relations between the scores of fathers
and sons might be problematic if the sons come from a generation with a more pronounced
ceiling effect, as the decrease in variance will suppress correlations. Researchers need to
account for this in their interpretations. There might be some merit to approaches like, for
example, that of Bratsberg and Rogeberg (2017), who partitioned the sample by the year the
Flynn effect ended (birth cohort 1975), essentially treating them as separate populations.

We would also be careful using strict cut-offs on the NAF GMA scale itself, and
especially the figural matrices subtest. We identified two studies, Galloway and Pudney
(2011) and Flynn and Shayer (2018), that used strict cut-offs to split the scale into high- and
low-scoring persons. Galloway and Pudney (2011) stated a cut-off at the sixth stanine of the
GMA composite, with a main interest in the lower part of the scale. The lower threshold
for the sixth stanine was supposed to be half a standard deviation above the mean—in our
study samples, for the NAF figural matrices, this roughly equaled a sum score of 30, but if
they were scoring according to the norms of 1954 (the ”conventional” method), it would
be lower. Flynn and Shayer (2018) used a sum score of 30 on the NAF figural matrices
as a cut-off (which is also half a standard deviation above the sample means cf. Sundet
et al. 2004), with a main interest in the upper part of the scale. In our study, for the same
level of ability (in logits: males, 0.6–0.9; females, 0.6–0.81), we observed standard errors of
measurement of 0.71–0.82 and 0.69–0.78, respectively—error intervals essentially nearing
the sample means. If generalizable to samples from the 1990s, this is not great precision,
and, as per earlier remarks, the general tenability of categorizing persons around these
levels on the scale should be considered highly uncertain. Hence, results from the use of
this approach must be interpreted with caution.

Studies that fail to take error of measurement into account risk a distortion of mea-
surement at the extremes of the scale (McDonald 1999), and in the case of the NAF figural
matrices, this is at the top. It is difficult to ascertain the exact magnitude of impact of this
on the studies that use composite scores from the NAF GMA battery, especially when
the object of interest is in the entire scale, other than to suggest a possible underestima-
tion of any correlations between the composite scores and other variables (validity- and
reliability-related estimates from similar test batteries might also not be exactly mirrored in
NAF GMA data). What we can say is that researchers wanting to make inferences about
performance on the upper part of the GMA scale should bear in mind the uncertainties, and
for performance on the NAF figural matrices subtest itself, there will be a weak empirical
basis on which to make any conclusions. This would not necessarily be obvious from only
considering classical test-theory statistics (McDonald 1999).
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4.2. Sex Differences on Non-Verbal Fluid Intelligence Measures

Our other purpose of this study was to investigate how the NAF figural matrices
measure males and females. Removing restrictions on the parameters of items that did not
demonstrate invariance improved the model fit. Notably, all the models had a closer fit
in the female group than the male group in almost all cohorts, and all models fit better in
the female group than the male group. The better fit of most of the models in the female
groups (Table 5) could be because the larger male group was somewhat more diverse in
terms of social background and vocation.

When it comes to differences in distribution, our findings suggest that there is noticeably
higher male variance in performance on figural matrices in our sample, by between 36 and 63
percent when assuming measurement invariance and 32 and 69 percent when adjusting for
violations of invariance. As the reduction in variance between models tended to be negligible,
the greater male variability we observed cannot be attributed to invariance issues within the
NAF figural matrices. Differences in average performance were also substantial, with males
outperforming females by between 3.6 and 5 IQ points, and 2.2 and 4.8 IQ points in the
respective models (Table 7). Like Steinmayr et al. (2010), we also observed a tendency for sex
differences in means to become smaller when non-invariance was taken into account. They
suggested that the observed sex differences in figural reasoning could stem from intelligence
being underestimated in the male group at time of selection due to boys maturing later than
girls. We would argue that we do not have this particular weakness in our study, as unlike with
university students, our sampling was less based on criteria like grades. Other authors have
suggested that inconsistencies in observed gender effects on fluid intelligence measurement
have to do with variation in instrument characteristics between studies (Colom and García-
López 2002). In our study, we experienced these kinds of inconsistencies between years.
The go-to explanation for us would be the nature of the sample changing, possibly because of
changes in general motivation to join the armed forces, as well as the changing recruitment
procedure of the NAFs. However, we observed a similar pattern of sex differences both before
and after a major policy change. Explaining the anomaly of the 2013 cohort (in which the
male advantage increased marginally after adjusting for DIF) is not straightforward, but it
could be related to the previously mentioned varying sampling criteria. Inconsistent findings
have previously been suggested to be related to fundamental differences between sample
makeups (Waschl and Burns 2020). However, male–female differences in average grades for
mustered and conscripted individuals have been observed to be relatively consistent between
the 2013–2016 cohorts (Køber 2016). Feng et al. (2007) found that differences in spatial ability
were reduced with exercise in visual monitoring and attention. Comparable environmental
changes could very well be present between years in Norwegian society, and if this is the case,
there is little reason to assume that it would not be reflected in our relatively large samples.

We have not considered the relationship between item content and the non-invariance
observed in some items. However, this does not mean that individual item characteristics
are without interest. Some research has found that males could be expected to do dispro-
portionally better with more geometrically complex figural matrix items suggested to be
medium to high in difficulty (Arendasy and Sommer 2012), and some studies of English sec-
ondary school students (Mackintosh and Bennett 2005; Plaisted et al. 2011) have found that
males had an easier time with items containing addition/subtraction rules and distribution
of two values rules (also medium-high in expected difficulty, following the taxonomy of
Carpenter et al. 1990). In comparison, the items in our study that we identified as having
possible measurement bias in five or more cohorts (Table 4) were items 19, 21, 23, 28, 29,
31, 32, and 34, which would mostly be in the mid-range spectrum of a comparable scale.
Even though the test lacks items measuring the very top of the ability spectrum, the male
advantage persists. One explanation of higher male motivation lessening the impact of
test fatigue could be postulated from the very substantial differences in motivation in the
birth cohorts. However, the differences in motivation might only be minor—data have only
been published for the 2016 and 2017 cohorts, but here, 4% of males and 5% of females
who reached the testing phase (selection part two; Figure 2) self-reported a low motivation
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for military service (Køber 2020). There is a chance that differences in problem-solving
strategies (Lim 1994) could, for example, lead to females spending too much time and effort
on the easy items, thus underperforming on (or not reaching) the latter part of the test.

4.3. Limitations of the Study

Like for previous studies, the problems with measurement that we have pointed out
in this article also affect our own study. The exact impact is hard to quantify, but one would
think that it could have a larger effect on the group assumed to have heavier tails on latent
ability, and test information curves (Figure 3b) indeed show that the NAF figural matrices
test is marginally less able to discriminate between males than females who are above
average on the scale. There could also be more uncertainty around the parameter estimates
of that group.

While our findings might provide some generalizable insights into how males and
females perform on this core measure of mental ability, there are several factors that should
be taken into account when interpreting our results.

Firstly, while the sample sizes were considerable, this was not a proper population
study. The sex distribution was quite skewed, with males over-represented in every cohort
(Table 1). Sex differences in self-reported grades in the sample followed the general patterns
of the population, but magnitudes of sample-population differences deviate somewhat between
sexes (Figure A4). This should be kept in mind when interpreting the observed differences
in performance on the figural matrices test.

Secondly, there is the assumption that some sampling bias exists with regards to who
exactly reaches the assessment phase due to the self-selection effect brought up earlier in
the article. While the difference in the motivation for reaching the selection phase is not
necessarily mirrored in the test samples (as reported by Køber 2020), we cannot strictly
rule out a substantial difference in test motivation in the cohorts for which data have not
been published. However, it does support the internal validity of the study; thus, the sex
differences we observed in measurement characteristics and distributions of estimated
ability are credible within the sample.

Thirdly, the NAFs have a substantially lower demand for personnel than there are
available adolescents; thus, a large number of candidates are a priori excluded from
consideration, and the needs also vary between years along with organizational changes
and the rapid development of military technology and changing threats (although eventual
changes tend to be minor). This might be a threat to the comparability between cohorts.

Lastly, while invariance was mainly established for items using statistical procedures,
not theory, there is some inherent uncertainty as to whether items classified as invariant
in the procedure truly measure equivalently. As shown by Lopez Rivas et al. (2009),
including non-invariant items as referents could drastically reduce the power to detect
small DIF (which should be reasonable to expect for figural matrices), and while the two-
stage approach of Stark et al. (2006) can reduce the risk by identifying referents using the
overly sensitive constrained baseline model, misidentification cannot truly be ruled out so
long as a causal explanation for non-invariance has not been established.

When all of this is said, we believe that, even though the samples deviate to a degree
from the population, these deviations seem to be present in both groups. While generalizing
raw sex differences from sample to population is problematic (as mentioned in Section 2.1),
there is little reason to assume that violations of measurement invariance and its impact on ability
estimates that exist in the population will not be reflected in our relatively large sample.

5. Conclusions

On the test level, we have found that NAF figural matrices function similarly for both
males and females. Measurement precision is low at the upper part of the ability scale,
but this applies to both males and females. In our sample, there are sex differences in
ability, with males scoring higher on average and having a higher variance. This should
be expected, given the sample characteristics, in which females’ average proficiency and
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variability are likely to both be biased downwards. The differences in distributional
characteristics did not go away after adjusting for measurement non-invariance. Because of
the poor overall measurement precision of the test, making decisions about individuals
based on the figural matrices alone is not advisable.

A strength of this study is that we used data that are arguably more diverse than your
average psychology study sample. A way to check the robustness of our results would be to
conduct a study with a larger focus on group comparability either by acquiring reasonable
background variables to use as covariates in a model or by trimming the sample, remov-
ing participants that do not have matching patterns of background variables in the other
group. Future studies should investigate the concrete impact that the measurement issues
we have identified have on the GMA composite scores used in previous intelligence research.
With regards to sex differences, we chose not to deal with the issue of spatial ability, but since
there are few large-scale studies on this in the Norwegian population, it could be a possible
future direction to take. Making the connection between group differences and perceptual
complexity is also a viable way going forward. This can, for instance, be done by applying
models with item or item-group predictors like the linear logistic test model (LLTM, using
the approach of, e.g., Janssen et al. 2004), classifying items according to the Carpenter et al.
(1990) taxonomy of item complexity for figural matrices, with some perceptual facets like,
e.g., those described by Primi (2001) or Arendasy and Sommer (2005).

A wider implication of our findings is that, if measurement precision is a problem in the
Norwegian data because instruments have not been updated along with the Flynn effect, it
might also be a problem in data from comparable countries, and this should be investigated
by relevant researchers. While updating the instruments will naturally have consequences
for comparability between years, the trade-off with measurement quality might not be worth
the easier interpretability. For the sake of science, we would urge test owners who intend to
update their instruments to include referent items from older versions in order to allow for
test equating so that at least some comparability can be preserved.

The concrete takeaway from this study is that previous studies using the Norwegian
GMA data must be interpreted with more caution than has been the case so far in the
field of intelligence. Our view is also that figural matrices tests should measure males and
females equally fairly and that an instrument in poor condition is poor for both sexes.
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Appendix A

Appendix A.1. Invariance Tests

Table A1. Non-invariant items across cohorts from Stage 1: the constrained baseline model (equality
constraints on all parameters).

Item 2011 2012 2013 2014 2015 2016 2017 DIF

11 o o o 3
12 0
13 0
14 0
15 o o 2

16 0
17 o o o o 4
18 0
19 o o o o o o 6
20 0

21 o o o o o 5
22 o 1
23 o o o o o o o 7
24 0
25 o o o o 4

26 o 1
27 o 1
28 o o o o o 5
29 o o o o o o o 7
30 o 1

31 o o o o o o 6
32 o o o o o o 6
33 o o 2
34 o o o o o o 6
35 0
36 o 1

DIF 2 12 14 11 8 10 11
Note. Circles indicate non-invariant items in the constrained baseline stage (Step 1) at a Bonferroni-corrected
.05 significance level.
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In Table A1, we can see that two items were flagged as non-invariant in the 2011 cohort
(the smallest sample). For the rest of the cohorts, between 8 and 14 were identified. Items
23 and 29 were flagged in all cohorts, while items 19, 31, 32, and 34 were flagged in the six
full-size cohorts. Items 21 and 28 were flagged in five cohorts, and items 17 and 25 were
flagged in four.

The anchors can be found in Table A2. These were mostly located around the start-
point and mid-point of the test (no items after item 27 were chosen as anchors). From the
table, we can see that cohorts 2013 and 2014 had by far the most non-invariant items,
with 12 and 13 flagged (roughly half of the items), while the 2011 cohort had the fewest at
2 (likely due to reduced statistical power from the smaller sample size), and the rest had
between 7 and 9 flagged items. Items 11, 21, 25, and 26 were flagged as anchors in some
cohorts but as non-invariant in others—essentially, items with high factor loadings could
also fail invariance tests, emphasizing that invariance could be small in magnitude.

Table A2. Non-invariant items and anchors across cohorts.

Item 2011 2012 2013 2014 2015 2016 2017 DIF Anchors

11 A A o o A 2 3
12 A A A A A A A 0 7
13 A 0 1
14 0 0
15 o 1 0

16 0 0
17 o o o 3 0
18 A A A A A 0 5
19 o o o o o 5 0
20 A A A A 0 4

21 o A o o o 4 1
22 0 0
23 o o o o o o o 7 0
24 A A A 0 3
25 A o o o A A o 4 3

26 o A A 1 2
27 A A A A A A 0 6
28 o 1 0
29 o o o o o o o 7 0
30 o o 2 0

31 o o o o o o 6 0
32 o o o o o o 6 0
33 o o 2 0
34 o o o o o o 6 0
35 0 0
36 o 1 0

DIF 2 7 13 12 8 7 9
Notes. “A" indicates that the item was chosen as an anchor in Step 1. Circles indicate non-invariant items in the
free baseline stage (Step 2) at a Bonferroni-corrected .05 significance level.
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Figure A1. Item information curves for the non-invariant items for men and women in each cohort.
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Figure A2. Item characteristic curves for the non-invariant items for men and women in each cohort.

Figure A3 shows differences in slope (or factor loadings (a) and location (or thresholds
(b) for DIF items between males and females. The slopes of the DIF items tend to be slightly
higher for females, but differences in location parameters have more ambiguous patterns.
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female estimate, thus positive numbers indicate the parameter estimate of an item was higher in the female group.

Figure A3. Item-parameter differences between males and females for DIF items by cohort.

Appendix A.2. Descriptive Statistics, Score Distributions, and Sample Characteristics

Statistics on self-reported secondary school grades in the the sample and population
were kindly provided by the NAFs, and they are presented in Figure A4. Looking at
the distribution of grade point averages (GPAs) reveals that the generally higher female
secondary school grades in the population are also reflected in the sample (Figure A4a,b).
However, the positive difference in GPAs is greater for males than for females (Figure A4c);
thus, it is reasonable to assume that abler males are disproportionally selected. Variation
(in the form of grade point standard deviations; GPSDs) is also lower in the sample than
in the population for both groups, but here, the difference is greater in the female group
(Figure A4d). Hence, estimated GMA means and variances for the female group should
also be expected to be biased downwards.

J. Intell. 2024, 1, 0 23 of 29

38

40

42

44

Female Male

Sex

G
P
A

Decision

Rejected

Selected

Grade point averages (GPA)(a)

7.00

7.25

7.50

7.75

Female Male

Sex

G
P

S
D

Decision

Rejected

Selected

Grade point standard deviations (GPSD)(b)

0

1

2

3

2011 2012 2013 2014 2015 2016 2017

Cohort

G
P
A

d
if
f Sex

Female

Male

Difference in GPA between selected and rejected(c)

0.00

0.25

0.50

0.75

2011 2012 2013 2014 2015 2016 2017

Cohort

G
P

S
D

d
if
f Sex

Female

Male

Difference in GPSD between rejected and selected(d)

Notes. Grades consist of scores on main domains, self−reported on a 1–6 integer scale. These are then averaged and transformed into grade points by 

multiplying with 10. Magnitudes of an approximate GPA Cohen’s d  would mirror the raw differences, ranging between 0.2 (2012 females) and 0.4 (2013 

males). Grades of cohorts 2011 and 2017 are not representative for our study sample, as GMA data for these cohorts are incomplete.

Figure A4. Grade patterns in the sample and population.

Table A3 shows descriptives and item-total correlations for each cohort, Tables A4 and
A5 describe the score distribution of each cohort for males and females, and Figure A5
shows the distributions of raw scores on all three subtests of the NAF GMA battery. From
looking at the statistics, we see most participants managed to answer the early items
correctly, with proportion correct in the 90% area. There is a gradual decrease as you go
later into the test, and from item 30, proportions dip below .50. We can see from the item
descriptives alone that the test has a disproportionate number of easy items, and few hard,
suggesting a possible ceiling effect (this can also be seen in the shape of the raw score
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Table A3 shows descriptives and item-total correlations for each cohort, Tables A4 and A5
describe the score distribution of each cohort for males and females, and Figure A5 shows
the distributions of raw scores for all three subtests of the NAF GMA battery. From looking
at the statistics, we see that most participants managed to answer the early items correctly,
with a proportion correct in the 90% area. There is a gradual decrease as we progress
later into the test, and from item 30, the proportions dip below .50. We can see from the
item descriptives alone that the test has a disproportionate number of easy items and few
hard, suggesting a possible ceiling effect (this can also be seen in the shape of the raw
score distribution; Figure A5b). Item-total correlations vary between a low .09 for item
36 and a medium .54 for item 25, with the highest correlations generally in items with
a lower proportion correct (of middle-high difficulty within the test). Responses on the
very last item were practically uncorrelated with the total score, suggesting that this item is
particularly poor or was rarely reached. Due to the sample-population issues mentioned in
Section 2.1 in reference to Figure A4, making bombastic statements about between-cohort
differences (Tables A4 and A5) without theory for support is questionable, which is why we
have avoided doing so.

Table A3. Descriptive statistics and item-total correlations.

Item M SD Item–Total

11 .97–.97 .16–.18 .27–.34
12 .98–.98 .13–.15 .24–.32
13 .96–.97 .17–.19 .23–.32
14 .93–.95 .22–.26 .31–.35
15 .92–.94 .24–.27 .32–.38
16 .93–.94 .24–.26 .22–.29
17 .93–.94 .23–.25 .22–.32
18 .91–.93 .25–.28 .36–.41
19 .90–.94 .25–.29 .37–.45
20 .94–.95 .22–.24 .30–.38
21 .86–.89 .31–.35 .43–.46
22 .88–.90 .30–.33 .24–.29
23 .89–.91 .28–.31 .31–.36
24 .91–.93 .26–.29 .35–.40
25 .77–.81 .39–.42 .51–.54
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Table A3. Cont.

Item M SD Item–Total

26 .71–.75 .44–.45 .49–.51
27 .91–.93 .25–.29 .42–.49
28 .63–.67 .47–.48 .50–.53
29 .51–.53 .50–.50 .45–.49
30 .47–.52 .50–.50 .35–.37
31 .38–.41 .49–.49 .47–.50
32 .19–.21 .40–.41 .30–.33
33 .26–.30 .44–.46 .43–.46
34 .22–.24 .42–.43 .25–.29
35 .23–.25 .42–.43 .31–.34
36 .06–.07 .24–.25 .09–.13

Notes. M and SD indicate proportion correct and standard deviations. The former is bounded between 0 and 1
and the latter between 0 (no variation) and .7 (half correct and half incorrect). Ranges are between cohorts.
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Compared with the other subtests, there is a substantial skew on the figural matrices test.

Figure A5. Distribution of raw scores for each subtest in all cohorts combined.
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Table A4. Descriptive statistics for the raw score distribution of the figural matrices test—males.

Cohort M SD Skewness Kurtosis Q05 Q95 Min Max n

2011 28.55 3.60 −1.61 8.88 23 33 5 36 2820
2012 28.57 3.63 −1.66 9.04 22 33 0 36 13,251
2013 28.35 3.66 −1.58 8.51 22 33 0 36 13,953
2014 28.45 3.55 −1.54 8.77 22 33 1 36 12,621
2015 28.89 3.25 −1.44 8.80 23 33 0 36 12,854
2016 28.83 3.35 −1.48 8.95 23 33 1 36 11,437
2017 28.42 3.61 −1.62 9.13 22 33 1 36 10,065
All 28.58 3.53 −1.59 9.04 23 33 0 36 77,335

Range 0.54 0.41 0.22 0.62
Note. The table also includes observations that were excluded from the main analysis (as per Section 2.3).

Table A5. Descriptive statistics for the raw score distribution of the figural matrices test—females.

Cohort M SD Skewness Kurtosis Q05 Q95 Min Max n

2011 28.10 3.10 −1.13 7.14 23 32 5 35 1105
2012 28.03 3.23 −1.22 7.66 23 32 2 36 4992
2013 27.94 3.11 −1.05 6.86 23 32 3 36 6101
2014 28.08 3.11 −1.09 7.16 23 33 3 36 5677
2015 28.44 3.01 −1.01 6.48 23 33 5 36 6710
2016 28.27 3.01 −0.97 6.66 23 33 0 35 6757
2017 27.97 3.29 −1.19 7.28 22 33 3 35 4886
All 28.14 3.12 −1.09 7.05 23 33 0 36 36,336

Range 0.50 0.28 0.25 1.18
Note. The table also includes observations that were excluded from the main analysis (as per Section 2.3).

Appendix B. Other Studies Using the GMA Measures of the Norwegian Armed Forces

Some studies use GMA scores to make statements about the relation of intelligence
to family size and birth order. Using the data of Sundet et al. (2004), studies have looked
at differences in GMA scores by family size (Black et al. 2007; Sundet et al. 2008) and
whether age differences exist within sibling groups (Sundet et al. 2010). Data from test
years 1984–2004 were used to make statements on the relationship between intelligence
and siblingship (Bjerkedal et al. 2007; Black et al. 2011). Black et al. (2009) also did a study
on the intergenerational transmission of GMA scores, using data of fathers (measured in
1952–1953) and sons (measured in 1984–2005). Sundet et al. (2005) conducted a study of
a few thousand twins, using parts of the data of Sundet et al. (2004), between 1967 and 1979
(measured in roughly 1986–1998). In a notable study, Bratsberg and Rogeberg (2018) used
data on birth cohorts of 1962–1991 (measured in roughly 1981–2010) to make statements on
the heritability of intelligence.

Note
1 If we multiply by 15 and add 100 to get IQ equivalents, males have estimates of 109–113.5 with standard errors of 10.65–12.30 IQ

points; and females have estimates of 109–112 with standard errors of 10.35–11.70 IQ points.
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