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ABSTRACT 

 

Representing the entire operational range of an ocean-going vessel with 

linear equations is often a formidable task. In this research study, a data-

driven localized model is presented for ship performance prediction as a 

part of the digital twin development. For this purpose, different 

operational conditions of the vessel, i.e., data clusters, are identified 

using the Gaussian Mixture Models (GMM) coupled with the 

Expectation Maximization (EM) algorithm. Subsequently, Singular 

Value Decomposition (SVD) as a part of the Eigensystem Realization 

Algorithm (ERA) is applied to each cluster to establish the relationships 

between different operational and navigational variables and capture the 

system dynamics in localized operational conditions in each cluster.  

 

KEY WORDS:  Vessel Performance Prediction, Control-Oriented 

Model, Data-Driven Model, Digital Twin 

 

INTRODUCTION 

 

In the preceding years, the application of numerical modeling and 

computational simulations has become more prevalent, revolutionizing 

various industries towards more data-driven predictive approaches. This 

paradigm shift, is gaining momentum increasingly in diverse fields of 

research, ranging from engineering (Taghavi et al., 2023; Bhuvela et al., 

2023; Namazi and Taghavipour, 2021; Alvandifar et al., 2021) to 

healthcare (Shoaib and Ramamohan, 2022; Bagherian et al., 2020) and 

environmental sciences (Xiu et al., 2020; Hardesty, 2017; Chen, 2020).  

The maritime industry, with complex operational dynamics in its various 

sectors and its ever-increasing reliance on efficiency and precision, is no 

exception to this trend. Simulations and numerical modeling, when used 

for detailed analysis of the behavior of the various systems of ocean-

going vessels, can play a crucial role in the design and optimization 

phase (Barone et al., 2023), safety and risk analysis (Chang et al., 2021), 

operational efficiency improvement (Barone et al., 2023), predictive 

maintenance scheduling (Liu et al., 2022; Makridis et al., 2020), 

autonomous vessels development (Wang et l., 2022; Hasan et al., 2023), 

and economic analysis.  

Moreover, since shipping is the fundamental mode of international trade, 

lower operational costs in this industry can lead to reduced freight rates 

imposed on the overall supply chain. As a result, reducing the operational 

costs associated with this industry can have a profound effect on the 

global economy. As a result, many research topics have been 

investigating the economic aspect of the shipping industry (Akbar et al., 

2021). Of all the operational costs of shipping, fuel consumption 

accounts for approximately 45-50% (Rodrigue 2020), a reduction of 

which has the potential to yield substantial economic benefits. Hence, 

improving fuel efficiency can be attractive for all ship owners, attracting 

more interest among the researchers. As an example, Taghavifar and 

Perera (2023) assess the lifecycle emissions and costs associated with 

using Liquefied Natural Gas (LNG) as an alternative fuel for ocean-

going diesel-operated ships. A reliable model that simulates a ship’s 

behavior is crucial for enhancing fuel efficiency. Such a model facilitates 

optimization and predictive analysis, enabling the testing of various 

potential scenarios to assess their effectiveness. By identifying key 

factors contributing to fuel consumption using the developed model, fuel 

consumption across diverse operational scenarios can be optimized. 

Furthermore, due to the high rate of energy consumption within the 

maritime sector and its significant contribution to global emissions, the 

International Maritime Organization (IMO) has devised strict 

regulations to substantially reduce pollutants caused by vessels. These 

regulations include the Energy Efficiency Design Index (EEDI), the Ship 

Energy Efficiency Management Plan (SEEMP), the calculation of the 

Energy Efficiency Existing Ship Index (EEXI) for all ships, Carbon 

Intensity Index (CII), and the monitoring of the Energy Efficiency 

Operational Indicator (EEOI) (Bazari, 2020). Complying with these 

regulations necessitates the adoption of advanced technological 

innovations, such as machine learning (ML)-based approaches and 



 

Digital Twin (DT)-type applications (Norwegian Shipowners’ 

Association, 2021). As a result, the development and application of DT 

technology can be regarded as a pivotal element within this industry. 

While it is essential to investigate the trustworthiness characteristics of 

DT applications in the maritime industry, such as explainability, fairness, 

and accountability (Namazi and Perera, 2023), DT can offer a framework 

for predicting vessel behavior (Taghavi and Perera, 2023) and enhancing 

decision-making processes (West et al. 2021). 

The entire operating range of an ocean-going vessel exhibits nonlinear 

behavior, presenting the challenging task of finding a linear model 

capable of capturing the vessel’s dynamics across its entire operating 

range. Conversely, a set of highly nonlinear equations that accounts for 

all aspects of the vessel’s performance may result in an unsatisfactory 

generalization of the resulting model. Furthermore, the resultant 

nonlinear model may not be suitable for optimization and model 

predictive control applications. To address these challenges, the use of 

localized models based on frequent operational conditions can be 

considered a viable solution. This approach enables the approximation 

of the vessel’s nonlinear behaviors while achieving improved 

generalization and reduced required computational resources. The 

simplicity inherent in each localized model can facilitate a more 

straightforward interpretation and analysis of the System of Systems 

(SoS) model’s outcomes.  

In this research study, a localized control-oriented model is presented for 

ship performance prediction using a dataset of a selected vessel. This 

model can simulate the dynamic behavior and operation of a vessel, 

which serves as a part of the development of DT models for the shipping 

industry and that can be utilized to reduce the respective emissions. The 

presented framework is based on the idea that, within frequently 

encountered operating conditions, the selected vessel’s behavior can be 

approximated with linear system dynamics. Analysis of the Singular 

Values (SV) within each operating region, as presented in detail in 

(Taghavi and Perera, 2022), reveals a dominant singular direction in each 

operating region, confirming that a linear equation can effectively 

approximate the relationship between different variables while 

containing most of the information. For this purpose, in the first step, 

operating conditions of the vessel are captured by employing cluster 

analysis. In this framework, each cluster is considered as an operating 

region of the vessel. The Gaussian Mixture Models (GMM) approach is 

implemented for capturing the data clusters, followed by the Expectation 

Maximization (EM) algorithm to calculate the parameters of the clusters, 

namely, the respective mean and covariance values. Utilizing this 

approach, the most frequent operating regions of the vessel and their 

shapes are detected. In this framework the Engine Speed (ES) in RPM 

and Main Engine Power (EP) in kW are considered as the inputs of the 

model and the Fuel Consumption (FC) in tons per day is considered as 

the output. In the next step, the Eigensystem Realization Algorithm 

(ERA) is used coupled with Observer Kalman Filter Identification 

(OKID) for capturing the dynamics of the vessel’s behavior in the main 

operating region. During this phase, a Singular Value Decomposition 

(SVD) analysis is also performed to approximate the linear dynamics 

describing the system. The final output of this framework is a discrete 

linear state-space model tailored to serve as a foundation of DT 

development. Moreover, the proposed reduced-order model can be 

utilized for control purposes, where rapid and reliable predictions are 

paramount. 

 

MATERIALS AND METHODS 
 

In this section methods and steps taken for developing the proposed 

framework is discussed. In 2-1, a summary of the dataset is presented. In 

2-2, the concept of GMM-EMM algorithm is briefly discussed. In 2-3, 

the ERA-OKID algorithm is presented. It’s important to recognize that 

in the clustering step, the main engine-related variables are represented 

as statistical distributions to identify the respective operational modes of 

the main engine. However, in the ERA algorithm variables are 

considered as time series data to capture the dynamical nature and 

behavior of the system. 

 

Dataset Summary 
 

The proposed framework is developed using data from a selected vessel 

for one month. The data sampling time is 1 minute, and the specifications 

of the selected vessel are presented in Table 1. 

 

Table 1. Ship Specifications 

 

Ship Length 135 (m) 

Ship Beam  25 (m) 

Deadweight (at Designed 

Draft) 
 9500(tons) 

Main Engine Type 
Dual Fuel Engine with MCR 4500 

(kW) at 720 (RPM) 

Gearbox Reduction Ratio 7:1 

Propeller Type 

A Controllable Pitch Propeller 

with a 5.5 (m) Diameter and 

4 Blades. 

 

 

GMM-EM Basic Concepts and Ideas 

 

This research is built upon a prior study (Taghavi and Perera, 2022), 

where the clustering step with GMM-EM was thoroughly explained. 

Consequently, in this current study, the discussion on the GMM-EM 

concept is kept concise. 

GMM can be considered as a probabilistic clustering algorithm 

(Theodoridis and Koutroumbas, 1999). In this method, it is assumed that 

the distribution of the data points can be formed by combining J distinct 

multivariate Gaussian distributions, 𝑓 (𝑥𝑞; 𝜃(𝑡)). Consequently, the 

overall distribution of a random variable x in the dataset or Mixture 

Density Model (MDM) denoted as h, can be written as Eq. 1. The general 

parameter vector is represented by Θ, which contains two sets of 

parameters, 𝜃, and 𝑃. 𝜃𝑗  comprises the mean vector and covariance 

matrix of the jth cluster, 𝜇𝑗  and Σ𝑗 , and 𝑃𝑗 represents the posterior 

probability of cluster j. Each data point, denoted as 𝑥𝑞, is assumed to 

belong to the Gaussian distribution with the highest probability, 

representing the cluster to which that data point is assigned. 

 

𝑓(𝑥𝑞; 𝜃(𝑡)|𝑗) =
1

√(2𝜋)𝑛|Σ𝑗|

𝑒𝑥𝑝 (−
1

2
(𝑥𝑞 − 𝜇𝑗)

𝑇
Σ𝑗

−1(𝑥𝑞 − 𝜇𝑗)) 

ℎ (𝑥𝑞; Θ̂(𝑡)) = ∑𝑓(𝑥𝑞; 𝜃(𝑡)|𝑗)𝑃𝑗

𝐽

𝑗=1

 

Θ = (
𝜃
𝑃
) , 𝑃 = (

𝑃1

𝑃2

⋮
𝑃𝐽

)  , 𝜃 = (

𝜃1

𝜃2

⋮
𝜃𝐽

)  , 𝜃𝑗 = (
𝜇𝑗

Σ𝑗
) 

(1) 

 

The next step involves the estimation of model parameters. This 

parameter estimation can be accomplished utilizing the EM algorithm. 

To formulate the EM algorithm, a new set of variables denoted as y is 



 

defined, which comprises an observed part, x, and an unobserved part, j. 

The vector x represents the parameters obtained from the measurements. 

In order to estimate the unknown parameters, the log-likelihood function, 

𝐿(𝜃), is defined as Eq. 2, which will be maximized using the EM 

algorithm. In this equation, M is the total number of data points within 

the data set. 

 

𝐿(𝜃) = ∑[𝑙𝑛𝑓(𝑦𝑞; 𝜃|𝑥𝑞)]

𝑀

𝑞=1

 (2) 

 

The EM algorithm is an iterative process consisting of two main steps. 

In the initial step known as the E-Step, the expectation of the log-

likelihood function is computed. In the second step, referred to as the M-

Step or the maximization step, the derivative of the expectation of the 

log-likelihood function with respect to Σ𝑗 , 𝜇𝑗 , and 𝑃𝑗 are calculated and 

set to zero. Eq. 3 illustrates the iterative nature of the EM algorithm. In 

this process, the values of Σ𝑗 , 𝜇𝑗 , and 𝑃𝑗 in each iteration are calculated 

based on the previous iteration values (Theodoridis and Koutroumbas, 

1999).  

 

𝑃(𝑗; Θ̂(𝑡)|𝑥𝑞) =
𝑓(𝑥𝑞; 𝜃(𝑡)|𝑗)𝑃̂𝑗(𝑡)

∑ 𝑓(𝑥𝑞; 𝜃(𝑡)|𝑖)𝑃̂𝑖(𝑡)
𝐽
𝑖=1

  

 

𝜇̂𝑖(𝑡 + 1) =
∑ 𝑃(𝑖; Θ̂(𝑡)|𝑥𝑞)𝑥𝑞𝑀

𝑞=1

∑ 𝑃(𝑖; Θ̂(𝑡)|𝑥𝑞)𝑀
𝑞=1

 

 

Σ̂𝑖(𝑡 + 1) =
∑ [𝑃(𝑖; Θ̂(𝑡)|𝑥𝑞)(𝑥𝑞 − 𝜇̂𝑖(𝑡 + 1))(𝑥𝑞 − 𝜇̂𝑖(𝑡 + 1))

𝑇
]𝑀

𝑞=1

∑ 𝑃(𝑖; Θ̂(𝑡)|𝑥𝑞)𝑀
𝑞=1

 

 

𝑃̂𝑖(𝑡 + 1) =
1

𝑀
∑𝑃(𝑖; Θ̂(𝑡)|𝑥𝑞)

𝑀

𝑞=1

 

(3) 

 

The initial values for the parameters of this algorithm are randomly 

chosen. This iterative process continues until the GMM parameters 

converge to stable values. In this particular research study, the algorithm 

is considered to be converged when the parameter values exhibit less 

than a 2% change over two consecutive steps. In this research, the cluster 

analysis is performed using the following parameters: 

- Main Engine Power (kW) (EP) 

- Fuel Consumption Rate (Tons per Day) (FC) 

- Engine Speed (RPM) (ES) 

In the following section, steps taken to implement the ERA 

algorithm are presented. 

 

Eigensystem Realization Algorithm (ERA) 

 

ERA is a system identification technique used to determine a low-

dimensional linear state-space representation of a dynamical system 

(Brunton and Kutz, 2022). This algorithm estimates the state-space 

matrices (A, B, C, and D) of a linear time-invariant system from sensor 

measurements of an impulse response experiment, based on the 

“minimal realization” theory of Ho and Kalman (Ho and Kálmán, 1966). 

ERA is based entirely on impulse response measurements and does not 

require prior knowledge of a model.  

In the context of this study, the system dynamics are characterized by the 

discrete linear time-invariant state-space representation, as expressed in 

Eq. 4. Generally, this method can be utilized for a Multi Input Multi 

Output (MIMO) system, and 𝑢𝑘, and output, 𝑦𝑘, can be both vectors. 

 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 

    𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘 
(4) 

 

Where 𝑥𝑘𝜖ℛ𝑛 , 𝑢𝑘𝜖ℛ𝑝 , and 𝑦𝑘𝜖ℛ𝑞 . 

In ERA, the input is assumed to be discrete-time delta function as 

described in Eq. 5. 

 

𝑢𝑘
𝛿 = {

𝐼, 𝑘 = 0               
  
𝑜, 𝑘 = 1, 2, 3,… 

 (5) 

 

As a result, the response 𝑦𝑘 will be a discrete-time impulse response as 

described in Eq. 6. 

 

𝑦𝑘
𝛿 = {

𝐷,           𝑘 = 0               
  

𝐶𝐴𝑘−1𝐵, 𝑘 = 1, 2, 3, … 
 (6) 

In general, it is assumed that q impulse responses are performed, one for 

each of the separate input channels. The output responses are collected 

for each impulsive input, and at a given time-step k, the output vector in 

response to the jth impulsive input will form the jth column of 𝑦𝑘
𝛿 . As a 

result, at each time step k, 𝑦𝑘
𝛿  is a 𝑝 × 𝑞 matrix equal to 𝐶𝐴𝑘−1𝐵  

(Brunton and Kutz, 2022). The next step is to form the Hankel matrix H, 

presented in Eq. 7, by stacking the shifted time-series of impulse-

responses into a single matrix. It is worth mentioning that the matrix H 

is constructed purely from measurements. 

 

𝐻 =

[
 
 
 
 
 
𝑦1

𝛿 𝑦2
𝛿

  
𝑦3

𝛿 …
  

𝑦2
𝛿 𝑦3

𝛿

  
𝑦4

𝛿 …
  

⋮ ⋮
  

⋮ ⋱
  ]

 
 
 
 
 

=

[
 
 
 
 
 

𝐶𝐵 𝐶𝐴𝐵
  

𝐶𝐴2𝐵 …  
  

𝐶𝐴𝐵 𝐶𝐴2𝐵
  

𝐶𝐴3𝐵 …  
  

⋮        ⋮
  

⋮       ⋱
  ]

 
 
 
 
 

= 𝒪𝒞 (7) 

 

Where:  

𝒞 =  [

𝐶
𝐶𝐴
𝐶𝐴2

⋮

] ,         𝒪 = [𝐵 𝐴𝐵 𝐴2𝐵 …] (8) 

 

Taking the SVD of the Hankel matrix, Eq. 9, and computing the singular 

values and singular vectors, yields the dominant temporal patterns in the 

time-series data.  

 

𝐻 = 𝒪𝒞 = 𝑈Σ𝑉∗ = [𝑈̃ 𝑈𝑡] [
Σ̃ 0
0 Σ𝑡

] [
𝑉̃∗

𝑉𝑡
∗] ≈ 𝑈̃Σ̃𝑈̃∗ = (𝑈̃Σ̃

1
2)(Σ̃

1
2𝑉̃∗) (9) 

 

Where * denotes the complex conjugate transpose.  

The singular values are ordered based on their value in Σ from top to 

buttom. The smaller singular values are stored in Σ𝑡. To get a reduced 

order rank r model that captures most of the system dynamics Σ𝑡, 𝑈𝑡 and 



 

𝑉𝑡
∗ are truncated, and the Henkel matrix is approximated by 𝑈̃Σ̃𝑈̃∗. The 

value of r is selected by evaluating the of the amount singular values in 

a way that smaller singular values and their corresponding rows and 

columns in 𝑈 and 𝑉∗ are truncated. This decision can be made by plotting 

and observing the rate of decay of singular values (Brunton and Kutz, 

2022). Based on the Henkel matrix, another matrix, 𝐻′, can be formed 

by shifting each element of the Henkel matrix one time step in the future. 

Based on the definitions in Eq. 8, this matrix can be denoted as 𝒪𝐴𝒞. 

 

𝐻′ =

[
 
 
 
 
 
𝑦2

𝛿 𝑦3
𝛿

  
𝑦4

𝛿 …
  

𝑦3
𝛿 𝑦4

𝛿

  
𝑦5

𝛿 …
  

⋮ ⋮
  

⋮ ⋱
  ]

 
 
 
 
 

=

[
 
 
 
 
 
𝐶𝐴𝐵 𝐶𝐴2𝐵

  
𝐶𝐴3𝐵 …  

  
𝐶𝐴2𝐵 𝐶𝐴3𝐵

  
𝐶𝐴4𝐵 …  

  
⋮        ⋮
  

⋮       ⋱
  ]

 
 
 
 
 

= 𝒪𝐴𝒞 (10) 

 

By comparing the matrices 𝐻 and 𝐻′, the reduced-order model can be 

constructed as presented in Eq. 11. 

 

𝐴̃ = Σ̃−
1
2𝑈̃∗𝐻′𝑉̃Σ̃−

1
2 

 

𝐵̃ = Σ̃−
1
2𝑉̃∗ [

𝐼𝑝 0

0 0
] 

 

𝐶̃ = [
𝐼𝑞 0

0 0
] 𝑈̃Σ̃

1
2 

(11) 

 

Where 𝐼𝑝 is the 𝑝 × 𝑝 identity matrix, which extracts the first p columns 

of 𝑈̃Σ̃
1

2, and 𝐼𝑞 is the 𝑞 × 𝑞 identity matrix, which extracts the first q rows 

of 𝑈̃Σ̃
1

2. Thus, the input–output dynamics can be expressed in terms of a 

reduced system with a low-dimensional state 𝑥̃𝜖ℛ𝑟. 

 

𝑥̃𝑘+1 = 𝐴̃𝑥̃𝑘 + 𝐵̃𝑢𝑘 

    𝑦𝑘 = 𝐶̃𝑥̃𝑘               
(12) 

 

It’s important to recognize that matrices A, B, and C are not known in 

prior, and the goal of this algorithm is to approximate these matrices in 

a way that best describe the model dynamics. This approach is purely 

data driven and there is no information about the system dynamics, the 

number of system states (n is unknown), and the states themselves. As a 

result, there is no measurement of these states in different time steps in 

advance, and the only measurements present are the inputs and outputs 

of the system. Consequently, the final model will be a reduced order 

model of rank r. In the resulted model there will be some latent variables 

that are necessary to describe the input-output dynamics. In order to have 

a physical interpretation of these states, a full-state measurement is 

needed to be performed. 

ERA is fundamentally based on the assumption that it is possible to 

measure an impulse response from the system. However, in practice, 

applying an isolated impulse response is a challenging task for many 

complex systems. Moreover, the effect of measurement noise can 

degrade the measurement results. To address this challenges, Observer 

Kalman Filter Identification (OKID) technique has been developed. 

Utilizing the OKID technique, it becomes feasible to estimate the 

optimal impulse response that is the most consistent with the non-

impulse input and output data originating from an existing system of 

interest. In this case, the input u is not an impulse, and at each discrete 

time step, u has a distinct value, representing the input signal’s dynamic 

nature. Based on this, state and output values at each time step can be 

written as Table 2. Based on the calculated values for each time step, the 

respective impulse response can be calculated as Eq. 13. 

 

Table 2. Input, state, and output values at each time step 

 

Time Step u x 

0 

1 

2 

3 

⋮ 

𝑢0 

𝑢1 

𝑢2 

𝑢3 

⋮ 

0 

𝐵𝑢0 

𝐴𝐵𝑢0 + 𝐵𝑢1 

𝐴2𝐵𝑢0 + 𝐴𝐵𝑢1 + 𝐵𝑢2 

⋮ 
 

[𝑦0 𝑦1 𝑦2 …] = [𝐷 𝐶𝐵 𝐶𝐴𝐵 …] [

𝑢0 𝑢1

0 𝑢0

𝑢2 …
𝑢1 …

0 0
⋮ ⋮

𝑢0 …
⋮ ⋱

] 

                                   = [𝑦0
𝛿 𝑦1

𝛿 𝑦2
𝛿  … ] [

𝑢0 𝑢1

0 𝑢0

𝑢2 …
𝑢1 …

0 0
⋮ ⋮

𝑢0 …
⋮ ⋱

] 

 

𝐼𝑚𝑝𝑢𝑙𝑠𝑒 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = [𝑦0
𝛿 𝑦1

𝛿 𝑦2
𝛿 …]

=  [𝑦0 𝑦1 𝑦2 …]([

𝑢0 𝑢1

0 𝑢0

𝑢2 …
𝑢1 …

0 0
⋮ ⋮

𝑢0 …
⋮ ⋱

])

−1

 

(13) 

 

 

Now that the respective impulse response of the system has been 

determined, ERA algorithm can be employed to estimate the A, B, and C 

matrices that best capture the dynamics of the system. 

A time series of inputs and outputs data should be utilized for the 

implementation of the ERA algorithm.  

For this purpose, a time series consisting of 500 instances from the main 

operating region of the vessel has been selected as the training set. 

Additionally, another time series containing 400 instances, also from the 

same operating region, has been selected as the test set. In this research 

study, the EP has been selected as the measured input, while the FC is 

chosen as the measured output of the system. Under the framework of 

ERA, it is assumed that there is no information regarding other system 

states, and a reduced order model is solely developed based on the 

available input-output data.  

 

DATA ANALYSIS RESULTS AND DISCUSSION 
 

In this section, the results at each phase of the data analysis are discussed. 

In the first section, the results of the preprocessing step and their effect 

on the quality of data is presented. After that, the resulting clusters, 

which represent the distinct operating regions of the vessel, are 

presented. Finally, the outcomes derived from the implementing of the 

ERA-OKID algorithm are comprehensively discussed. 

 

Preprocessing 
 

The preprocessing phase is a crucial step prior to any ML-based data-

driven approach, and the performance of the developed model is highly 

dependent on the quality of the data used. In this section, results for the 

preprocessing step are presented. 

Time series for EP, ES, and FC values for the entire month are plotted in 



 

Fig. 1. This figure clearly shows numerous instances of missing data in 

which the engine was running, but the FC is missing. Additionally, 

certain data sets exhibit irregularities, such as abnormally high FC values 

during normal engine operation. In the current research, all data points 

with missing instances are excluded from the data set in the 

preprocessing phase. However, in the future, the values for FC for these 

data points can be recovered using the proposed framework. For the 

purpose of validating the effectiveness of the proposed framework, this 

research exclusively utilizes data sets cleaned from anomalies and 

missing values.  

 

 
Fig. 1. Time Series Plots for EP (Kw), ES (RPM), and FC (Tons Per 

Day) 

 

Fig. 2 shows the histograms for the main engine power after removing 

the missing data based on the approach explained. The data vitalization 

has improved by removing the missing data and data outliers in this 

figure. It should be mentioned that the regions where the engine is not 

running should be distinguished from the outliers. In line with the 

research objective of identifying the engine’s operating regions, these 

regions where the engine was inactive are removed alongside with the 

outliers. 

 

 
Fig. 2. Histograms For the EP (Kw) After Removing the Missing Data 

 

Clustering Results 
 

The comprehensive implementation and results of the GMM-EM 

algorithm on the dataset from the selected vessel are presented in detail 

in a previous work (Taghavi and Perera, 2022). It’s crucial to note that 

in the clustering algorithm, all data points are normalized. This step 

ensures that the algorithm remains unbiased and does not 

disproportionately favor features with higher values. From these 

findings, four distinct clusters or operational regions were identified for 

the vessel, using the selected operational variables of the marine engine. 

The resulting mean values for each cluster for the selected feature space 

are presented as follows. Within all the mean value vectors, the first row 

corresponds to the mean value of EP, the second row indicates the mean 

value of FC, and the third row represents the mean value of ES. 

 

𝜇1 = [
1760.14

7.65
719.62

],    𝜇2 = [
642.52
3.03

475.01
], 

𝜇3 = [
2702.72
10.73
614.11

],   𝜇4 = [
2993.81
11.87
662.63

] 

 

Fig. 3 displays all data points in a 3D space, with each cluster 

distinguished by a unique color. The percentage of data points 

corresponding to each cluster is calculated and presented in Table 3. This 

table indicates that the dominant cluster or operating region is the third 

one, encompassing approximately 56% of the data points. This implies 

that the vessel was operating for nearly 56% of the observed period in 

this data cluster or operating region.  

 

 
Fig. 3. Final Cluster Configuration (Taghavi and Perera, 2022) 

 

Table 3. Percentages of Data Points Belong to Each Cluster 

 

Number of 

Clusters 
Data point density (%) 

1 6.45 

2 17.03 

3 55.63 

4 20.89 

 

 



 

ERA-OKID Results 
 

In this section, the results of employing the OKID-ERA algorithm are 

presented. In this research study, to implement ERA, as previously 

mentioned, one input, namely the EP, and one output, the FC, has been 

selected. The algorithm is applied to a training set comprising 500 

discrete time steps, resulting in the derivation of reduced-order 

approximations for matrices A, B, and C. The resulted matrices are of 

rank r, which is selected based on the singular values of the Henkel 

matrix. The selected rank represents the number of hidden or latent states 

considered for the model. The ERA algorithm has been executed for 

different values for the rank of the model in order to evaluate its impact 

on the results. 

The outcome of the steps executed in the OKID-ERA algorithm for 

different rank values are illustrated in Fig. 4. and Fig. 5 for train and test 

data respectively. As depicted in this figure, the developed model 

exhibits a better performance in estimating the FC consumption as the 

rank selected for the model increases. Nevertheless, increasing the rank 

of the system to higher values doesn’t seem to enhance the performance 

of the model proportionally. This suggests that a reduced-order model 

with a rank even less than 10 can effectively capture most of the system 

dynamics with an acceptable accuracy. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 4. Measured and Estimated Train FC for a Model of Rank Equal to 

3 (a), 6(b), and 15(c)  

 

 

 
(a) 

 
(c) 

 
(e) 

Fig. 5. Measured and Estimated Test FC for a Model of Rank Equal to 

3 (a), 6(b), and 15(c)  

 

It is worth mentioning that the computational cost of ERA depends on 

several factors, including the size of the Hankel matrix, the SVD 

operation, and state-space model construction. The size of the Hankel 

matrix, and thus the computational cost, grows with the amount of data. 

The cost of SVD is proportional to the dimensions of the Hankel matrix. 

The selection of significant singular values and vectors, which 

corresponds to the rank r, impact the cost. For a fixed data size, 

increasing the rank r -by keeping more singular values and vectors in 

memory- can slightly increase the computation time, but not as 

significantly as the costs associated with the matrix operations of the 

Hankel matrix itself. The rank r is mostly effective in the computational 

cost related to the state-space model construction and further controller 

development. In the state-space model, the computational cost is related 

to the matrix operations involved in constructing the A, B, and C 

matrices of the state space model. This cost scales with the square or 

cube of the rank r, depending on the specifics of the matrix operations. 

The major influence of the rank of the system is on the controller design. 

Control algorithms, especially those relying on online computation, 

become less efficient if the model is unnecessarily complex. A system 



 

with a higher rank r can lead to increased computational demands for the 

controller, both in terms of memory usage and processing power, which 

can be a limiting factor in the implementation of control algorithms in 

online applications. 

The percentage of average errors with respect to the mean value of the 

FC in the test data for different ranks of the system are also presented in 

Table 4. Error values in this table indicate as the rank of the system 

increases, the accuracy of the estimation improves. However, improving 

the rank of the model to much higher values will not improve the 

estimation error proportionally. 

 

Table 4- Percentage of Average Error for Different Ranks of the system 

 

Rank r = 3 r = 6 r = 15 r = 30 

Average Error 

(%) 
9.333 4.351 3.371 2.44 

 

 

CONCLUSIONS 
 

This section presents the conclusions and contributions of the proposed 

framework for data-driven model development of the vessel. Based on 

the results presented in the previous section, the following points can be 

concluded: 

- ERA coupled with OKID algorithm has been employed to 

construct a state-space representation of the main operating 

region of a selected vessel. This predictive model can serve as 

a part of the development of DT models for the shipping 

industry and that can be utilized to reduce the respective 

emissions. 

- In the proposed model, EP is designated as the input, and FC 

as the output of the system.  

- To develop this model, in the initial phase, GMM-EM 

algorithm has been executed to capture the dominant operating 

region of the vessel. Subsequently, a time series of data is 

selected from this main operating region for implementing the 

ERA-OKID algorithm. 

- The state-space representation is developed using three 

different values for the rank of the model, with each rank 

representing the number of hidden or latent states considered 

for the model.  

- It is observed that by increasing the rank, the performance of 

the model improves. However, it is important to note that the 

estimation error improvement is not linearly proportional to 

the rank increase. Thus, increasing the rank value to 

considerably higher values does not result in substantial 

improvements in estimation accuracy.  

- Increasing the rank of the system does not significantly affect 

the computational cost in the state-space model development 

stage. However, in simpler models, i.e., models with smaller 

ranks, the controller will demand less computational 

resources. 

- The rank of the model is selected based on the singular values 

of the Henkel matrix. 

- The proposed model has been developed solely based on the 

recorded data onboard the vessel, without incorporating any 

assumption or knowledge about the physical behavior or 

dynamics of the vessel. 

- The proposed model has only one input and one output. For a 

more comprehensive representation, additional inputs, 

outputs, and states of the system can be introduced to have a 

more holistic model of the vessel performance. 

- In this research, only the main operating region of the engine 

is considered for model development. The same approach can 

be applied to other operating regions of the vessel as the next 

step of this study. Subsequently, the localized models for 

different operating regions can be combined to construct an 

overall localized model for ship performance prediction. 

Despite the overall nonlinearity of the vessel’s operating range, 

linear models can approximate the dynamics of each specific 

operating region. 

- ERA-OKID is proved to be a powerful and effective algorithm 

for development of state-space representation that can capture 

most of the input-output dynamics of complex systems based 

solely on recorded data. This approach can further be 

implemented under DT type frameworks for other 

applications, too.  

- The presented research here is part of a broader study on vessel 

performance quantification. For this purpose, different Key 

Performance Indicators (KPI) have been defined to evaluate 

the vessel performance, with FC being a critical factor. 

However, the FC data contains many missing values and 

anomalies. This paper develops a method to estimate these 

missing and anomalous FC values, thereby enhancing the 

reliability of KPIs for performance quantification. 
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