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We present the results of the first gauge-origin independent calculations, carried out at

Hartree–Fock level, of the molecular parameters that describe the electric-field-induced linear

birefringence, also known as Buckingham birefringence. Focus is in particular on the

temperature-independent contribution to the observable. We employ a recently developed

analytical scheme for calculating frequency-dependent molecular properties of arbitrary order for

self-consistent field methods using basis sets that depend explicitly on the frequency and on the

external perturbations. The method is applied to naphthalene, fluorobenzene and furan, three

systems for which the Buckingham birefringence has been studied experimentally. It is

demonstrated that LAOs lead to significant improvements in the basis set convergence of the

temperature-independent contribution to the Buckingham birefringence, and that the results

obtained on the basis of aug-cc-pVDZ quality London atomic orbital calculations are closer to

the basis set limit than the results obtained on the basis of conventional aug-cc-pVQZ quality

calculations. The computed values can be used to correct for the neglect of the temperature-

independent higher-order contribution often implied in the derivation of the effective quadrupole

moments from experimental measurements of the induced birefringence at a single temperature.

I. Introduction

Birefringences are gaining increasing interest, theoretically as

well as experimentally, see for instance ref. 1–3 for recent

accounts. A common element of many kinds of birefringences

is the occurrence of linear and nonlinear polarizabilities

involving mixed electric and magnetic fields. From a theore-

tical point of view, the presence of time-dependent magnetic

fields creates additional computational complications, as the

calculated results will in general be dependent on an artificially

chosen gauge origin for calculations performed in incomplete

basis sets.4–6 Furthermore, origin-independent results can only

be obtained for variational methods.7

A solution to the problem of the origin dependence of

approximate calculations involving magnetic fields is offered

by the use of London atomic orbitals (LAOs).8–12 LAOs move

the global gauge origin to a local gauge origin that is optimal

for each individual basis function, namely the centre to which

it is attached. London orbitals have been successfully applied

to the calculation of a large number of magnetic and mixed

electric and magnetic properties.13–17 However, with a few

exceptions, with optical rotation18 and electronic circular

dichroism19,20 as the prime examples, the magnetic fields have

in most cases been static.

Krykunov and Autschbach derived a formalism for the

calculation of linear response properties using time-periodic

magnetic-field-dependent atomic orbitals based on a quasi-

energy ansatz,21 and applied it to the calculation of optical

rotations22 and frequency-dependent magnetizabilities.23 Since

Krykunov and Autschbach took as a starting point an expres-

sion of the quasienergy itself, the molecular orbitals had to be

used as the basic variables due to the asymmetry of the bra and

ket states with respect to time differentiation. We note that

an alternative formulation for calculating linear response

properties using LAOs for time-dependent electromagnetic

fields has been presented in the literature, introducing a

natural connection between the unperturbed and magnetic-

field perturbed molecular orbitals.24,25 In this way, when using

LAOs the magnetic moment operator behaves exactly as the

exact one-electron operator also for finite basis sets. However,

all these implementations have been restricted to the linear

response case—that is, to the study of frequency-dependent

second-order magnetic properties or second-order mixed

electric and magnetic properties. LAOs have been utilized also

for third-order26–29 and fourth-order30 molecular properties

involving an external magnetic field. However, in these

applications of LAOs to higher-order molecular properties,

the magnetic field has been static.

We recently presented a generalization of the approach of

Krykunov and Autschbach for calculating molecular
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properties of arbitrary order with basis sets that could in

general be both time and perturbation dependent.26 In addition

to being open-ended with respect to the order of the applied

perturbations, the implementation was developed fully in the

atomic orbital basis. It was demonstrated that in order to

develop a theory based on a quasienergy formalism using the

elements of the density matrix in the atomic orbital basis as free

parameters, the basic starting point has to be the quasienergy

gradient and not the quasienergy itself. The formalism has been

implemented in a general manner and has been applied to the

study of properties as diverse as coherent anti-Stokes Raman

scattering,31 pure vibrational contributions to nonlinear optical

properties,32 hypermagnetizabilities30 and Raman optical

activity.33 However, in all these applications, the basis functions

either depended on the time dependence of the applied

perturbations or on the perturbation itself, and never on both

effects simultaneously. The present application to electric field

gradient-induced birefringence (EFGB) is therefore the first

where our methodology is applied to a property in which the

basis functions are simultaneously time and perturbation

dependent, and it can also be considered an extension of the

work of Krykunov and Autschbach21 to nonlinear properties

formulated in the atomic orbital basis.

The systems which are under analysis here, and for which we

study the response to a static external electric-field-gradient at

the Hartree–Fock level of theory, are a relatively large non-

dipolar system (naphthalene) and two smaller dipolar molecules

(fluorobenzene and furan). The relevance of the polarity of the

system will be made evident in the following section. All three

systems studied here have been the subject of experimental

investigations. A combination of Kerr,34,35 Cotton–Mouton36–38

and Buckingham39,40 linear birefringence measurements were

employed in the group of Ritchie to determine the quadrupole

moment of these molecules. Measurements were carried out at

the infinite dilution limit for naphthalene41 (l = 632.8 nm) and

fluorobenzene42 (l = 441.6 and 632.8 nm, respectively)

dissolved in carbon tetrachloride at 298 K. The Buckingham

birefringence of furan, thiophene and selenophene at infinite

dilution was measured in cyclohexane at 298 K and at a

wavelength of 632.8 nm.43 In the case of the two molecules with

a permanent dipole moment, the study was aimed at determining

the so-called effective quadrupole centre (EQC),44,45 the

frequency-dependent location in space which can be considered

as the origin of the molecular quadrupole in dipolar molecules.

The rest of the paper is organized as follows. In section II we

briefly outline the main elements of the theory of Buckingham

birefringence. We then present our formalism for atomic

orbital-based response theory for time- and perturbation-

dependent basis sets in order to calculate the nonlinear

polarizabilities that determine the Buckingham birefringence

in section III. In section IV we summarize the details of the

calculations whose results are presented and discussed in

section V. Finally, in section VI we give some concluding

remarks and an outlook.

II. Buckingham birefringence

The EFGB,39,46 also known as the ‘‘Buckingham effect’’

or ‘‘Buckingham birefringence’’, is the anisotropy of the

refractive index n observed when plane-polarized light passes

through a fluid in a direction perpendicular to an external

electric field gradient. For an (ideal) gas it is given by the

expression (in SI units, constant pressure)

Dn ¼ nX � nY ¼
NArE
15Vme0

s ¼ 3rE
2Vm

mQðo;TÞ; ð1Þ

mQðo;TÞ ¼
2NA

45e0
s; ð2Þ

where NA is Avogradro’s number, Vm is the molar volume,

rE is the field gradient—with rE = rEXX = �rEYY;

rEZZ = 0, e0 is the vacuum permittivity, and eqn (2) defines

the so-called Buckingham constant, a function of the circular

frequency o and of the temperature T. In this expression, the

light is assumed to propagate along the Z direction. The

function s will be defined below. The measurement of EFGB

is one of the standard routes to experimentally determine the

molecular quadrupole moment,47–49 as suggested by Buckingham

in 1959,39 and first realized by Buckingham and Disch in

1963.40

The original theory of the EFGB was formulated for non-

dipolar systems—that is, systems where the quadrupole

moment does not depend on the choice of origin.39,50,51 In

this case the molecular function s, a function of o and T, is

given simply as

s ¼ bðoÞ þ 1

kT
Yabaabð�o;oÞ; ð3Þ

where H and a(�o;o) are the second-rank cartesian tensors

representing the molecular (traceless) quadrupole moment and

frequency-dependent electric dipole polarizability, respectively,

whereas the temperature-independent contribution is

bðoÞ ¼ Bab;abð�o;o; 0Þ �Ba;ab;bð�o;o; 0Þ

� 5

o
eabg J0a;b;gð�o;o; 0Þ: ð4Þ

In this equation, eabg is the Levi–Civita antisymmetric tensor

and implicit summation over repeated indices is implied.

In the expression for b(o) we have introduced the mixed

polarizabilities

Bab,gd(�o;o,0) = Bab,gd(o) = hhm̂a;m̂b,Ŷgdiio,0, (5)

Ba,bg,d(�o;o,0) = Ba,bg,d(o) = hhm̂a;Ŷbg,m̂diio,0, (6)

J0a,b,g(�o;o,0) = J0a,b,g(o) = ihhm̂a;m̂b,m̂giio,0, (7)

involving the electric dipole, electric quadrupole and magnetic

dipole operators

m̂a ¼ �
X
i

r̂i;aO; ð8Þ

Ŷab ¼ �
1

2

X
i

½r̂i;aO r̂i;bO�dab r̂i;gO r̂i;gO�; ð9Þ

m̂a ¼ �
X
i

1

2
l̂i;aO ¼ �

1

2
eabg

X
i

r̂i;bO p̂i;g; ð10Þ

In eqns (8)–(10) the explicit summations run over the electrons

in the molecule, and we have introduced ri,a, pi,a and li,a as the

This journal is �c the Owner Societies 2009 Phys. Chem. Chem. Phys., 2009, 11, 816–825 | 817
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a-components of the operators for electron i, respectively. The

explicit dependence of the operators on an arbitrarily chosen

gauge origin O is also indicated.

In 1968 Buckingham and Longuet-Higgins44 extended the

theory of EFGB to dipolar fluids, where the quadrupole

moment becomes origin dependent. The expression for s,

eqn (3), remains valid, but then only for a specific choice of

(frequency dependent) origin for the quadrupole operator,

namely the EQC, defined as the point in coordinate space

where the expression

Ab;abð�o;oÞ þ 5

o
eabgG

0
b;gð�o;oÞ ð11Þ

vanishes. The term in eqn (11), multiplied by 1/kT and by the

cartesian component of the molecular dipole moment ma,
should otherwise be subtracted from the right-hand side of

eqn (3) for a choice of origin different than the EQC

s ¼ bðoÞ þ 1

kT

�
Yabaabð�o;oÞ

�ma Ab;abð�o;oÞ þ 5

o
eabg G0b;gð�o;oÞ

� ��
;

ð12Þ

In eqn (11), we have also introduced the mixed polarizabilities

Aa,bg(�o;o) = �hhm̂a;Ŷbgiio, (13)

G0ab(�o;o) = �ihhm̂a;m̂biio, (14)

which also enter the theory of optical rotation for oriented

systems.18,50,51 For exact operators, as well as when LAOs are

used, and for planar molecules, as those studied in this

paper—laying in the y,z plane, and with the dipole moment

along the z-axis—the EQC, placed along the z-axis, is defined

by its distance R(EQC)
z from a given reference origin (the one

chosen for the calculation of the molecular properties, most

usually the center of nuclear masses)52

RðEQCÞ
z ¼

5
oðG0x;y�G0y;xÞ þ Ax;zx þ Ay;zy þ Az;zz

2azz � axx � ayy

¼
5
oðG0x;y�G0y;xÞ þ Ax;zx þ Ay;zy þ Az;zz

2Da
; ð15Þ

where we have also introduced the polarizability anisotropy

Da.
The molecular theory for EFGB was a matter of debate for

some years, as two different expressions for the effect were

shown to lead to very different estimates for both the quadru-

pole moment and the location of the EQC.44,53–55 The puzzle

was however resolved in 2003,56,57 and there is now complete

agreement between the existing molecular theories for

Buckingham birefringence.

As other birefringences, the EFGB contains at constant

pressure two contributions—a temperature-dependent and a

temperature-independent one, see eqns (3) and (12). For non-

dipolar species, the former involves the electric-dipole polariz-

ability and the molecular quadrupole moment (eqn (3)),

whereas for dipolar molecules an additional contribution

comes from a term mixing the molecular dipole moment, the

dipole–quadrupole and the dipole–magnetic dipole polariz-

abilities (eqn (12)). The temperature-independent contribution

b(o)—which basically describes the changes in the effective

polarizability induced by the electric field gradient—has the

same form for both types of systems and involves a combina-

tion of three hyperpolarizabilities, namely two dipole–

dipole–quadrupole electric hyperpolarizabilities—where the

frequency argument is either associated with the dipole or

with the quadrupole operator—and an electric dipole–electric

dipole–magnetic dipole term.

Irrespective of whether the system is dipolar or not, the

temperature-independent contribution to the EFGB is a

well-defined property, as it can be obtained from a linear

regression on birefringence values measured at different

temperatures. However, in carrying out the experimental

measurements aimed at finding the quadrupole moment, it is

often assumed that this contribution can be neglected since it is

expected to be much smaller than the temperature-dependent

one.40,48,58 This clearly introduces an additional source of

error in the experimental value.1,59

When temperature-dependent measurements are not feasi-

ble, computational values of the b(o) contribution could in

principle be used to extract a value for the molecular quadru-

pole moment from the experimental value of the birefringence.

For quadrupolar systems, the accuracy of the computed values

will only depend on the accuracy of the method of choice—i.e.

on the limitations in the one- and N-electron representations

(basis set size and wavefunction/potential parametriza-

tions).1,59 For dipolar species, however, an additional source

of error would in general be present, as the hyperpolarizability

contribution becomes origin dependent.

Again for planar molecules, by employing the usual expres-

sions for the effect of a change of origin on the property

tensors,50,51 say from O to O + R(EQC), the exact origin

dependence of the temperature-independent term can be

shown to be given by52,54,59

bO + R
(EQC)

(o) = bO(o) + 5
2R

(EQC)
z b0(o) (16)

where

b0(o)=(bxxz � bMixed
x,x,z ) + (byyz � bMixed

y,y,z )

� (bzxx � bMixed
z,x,x ) � (bzyy � bMixed

z,y,y ), (17)

measures the difference between the first electric dipole hyper-

polarizability b and the mixed hyperpolarizability bMixed—i.e.

the first electric dipole hyperpolarizability in the mixed

length-velocity representation

babg(�o;o,0) = hhm̂a;m̂b,m̂giio,0, (18)

bMixed
a;b;g ð�o;o; 0Þ ¼ � i

o
hhm̂a; m̂

p
b; m̂giio;0; ð19Þ

with m̂pb being the dipole operator in the velocity gauge52,54,59

m̂pa ¼ �
X
i

p̂i;a : ð20Þ

For quadrupolar systems, both quantities in eqns (18) and (19)

are zero due to molecular symmetry, whereas this does not

apply for dipolar molecules. However, if the hyper-virial

condition is satisfied and the basis set is complete, the mixed

and regular hyperpolarizabilities coincide irrespective of

molecular symmetry, and the origin dependence disappears.

For variational approximate methods, the use of LAOs8–12
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D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
T

R
O

M
SO

 o
n 

27
 M

ay
 2

01
1

Pu
bl

is
he

d 
on

 1
0 

D
ec

em
be

r 
20

08
 o

n 
ht

tp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/B
81

57
52

A
View Online

http://dx.doi.org/10.1039/b815752a


ensures that the calculated b(o) is origin independent also

for a finite basis set, since the LAO basis (in the natural

connection24,25) guarantees that the approximate magnetic

dipole operator, defined as the magnetic field derivative of

the Hamiltonian in LAOs, behaves as the exact magnetic

dipole operator for any basis set.60

In the next section we present an atomic orbital-based

response theory, where the time and perturbation dependence

of the LAOs can be properly taken into account, deriving the

necessary expressions for the quadratic response functions

that determine the temperature-independent contribution to

the EFGB, i.e. to b(o).

III. AO density based quasienergy derivative

formulae for the tensors J0(x), B(x) and B(x)

Here the main elements of our formalism for the calculation of

response functions of arbitrary order for time- and perturbation-

dependent basis sets will be briefly summarized. Full details have

been presented elsewhere.26 Therefore we limit the discussion to

those features of the approach that are relevant for the calcula-

tion of the b(o) contribution to the EFGB.

Let’s consider an external field consisting of monochromatic

electromagnetic radiation combined with a static inhomoge-

neous electric field. In the electric quadrupole–magnetic dipole

approximation, the external potential is then given by (atomic

units used throughout unless where specified)

V̂(t) = [f exp(iot) + f* exp(�iot) + e]� (�m̂)
+ [q exp(�iot) + q*exp(iot) + g]� (�Ŷ)

+ [�i(b + a) exp(�iot)
+ i(b* + a*) exp(iot)]� (�m̂), (21)

where f = {fx,fy,fz} is the complex electric field, or Jones

vector, defining the intensity, polarization and phase of the

radiation. q is the complex electric field gradient tensor arising

from the radiation. e and g are the static electric field and field

gradient, respectively. The magnetic field contribution has for

convenience been split into two parts: �ib (b not to be

confused with b(o)) is the complex magnetic field strength

which in addition to entering the external potential has also an

explicit dependence in the time-dependent basis set. �ia
represents the same complex magnetic field strength, but the

time-dependent basis set does not depend on this magnetic

field strength. The factor �i has been given explicitly, in order

to get real-valued derivative integrals, which avoids the use of

imaginary algebra in the implementation. In our formalism,

the complex magnetic field strengths �ib and �ia will there-

fore correspond to using and not using, respectively, the time-

dependent LAOs defined as8,21

xmðxÞ¼exp �
i

2
½ð�ib expð�iotÞþib� expðiotÞÞ�Rm� � r

� �
wnðxÞ;

ð22Þ

where wn represents a conventional Cartesian or spherical

Gaussian basis function. In the limit of a complete one-particle

basis set, �ib and �ia mimic the same external magnetic field.

Their representation will be different in finite basis sets.

From the Maxwell equations, q, b and a are related to f by

b ¼ a ¼ i
ck� f; q ¼ �io

2cðkf
T þ fkTÞ; ð23Þ

where k is a normalized vector directed along the direction of

propagation and perpendicular to f, whereas c is the speed

of light.

Let now w be any of the field strengths appearing in the

Hamiltonian or in the external potential, where it is associated

with the operator corresponding to some observable, and

potentially it is also included in the basis set. The

Hartree–Fock quasienergy derivative d
dwQ is then defined by

the equation26

d

dw
Q ¼ Qw ¼Trt @

@wEðDÞ � SwW; ð24Þ

which by the (time-dependent) Hellmann-Feynman theorem is

also the value of the observable. With the notation ¼Trt here we
indicate the trace of the matrix expressions and the time

average of all terms. We have used superscripts as short-hand

notation for derivatives, thus Sw ¼ d
dwS. In eqn (24) we have

introduced a generalized expression for the Hartree–Fock

energy as a function of the electron density D as

EðDÞ¼Tr hnuc þ vnuc þ ðhþ VðtÞ � i
2TÞDþ 1

2GðDÞD; ð25Þ

where hnuc and vnuc are the nuclear repulsion energy and the

interaction between the external fields and the nuclei, respec-

tively. h and G(D) are the conventional one- and two-electron

matrices in the field-free case, defined in terms of our

LAO basis

hmn ¼ xm �
1

2
r2 �

X
K

ZK

rK

�����
�����xn

* +
; ð26Þ

GðDÞmn ¼
X
sr

Dsrðgmnrs � gmsrnÞ: ð27Þ

The summation over K runs over all the nuclei in the molecule

and it involves the nuclear charges ZK and the positions of the

electrons relative to nucleus K, rK. gmnrs is a two-electron

integral

gmnrs ¼
R R

x�mðx1Þxnðx1Þ 1
r12

x�rðx2Þxsðx2Þdx1dx2: ð28Þ

In the expression for the quasienergy derivative, eqn (24), we

have introduced the derivative of the overlap matrix with

respect to the field strength

Sw
mn ¼ d

dwhxmjxni; ð29Þ

as well as the generalized time-and-energy-weighted density

matrix defined as

W ¼ DFDþ i
2DSD

�
� i

2DSD
�

ð30Þ

where _D indicates the time-differentiated density matrix. In

this last equation, the generalized Fock matrix F appears,

defined as the partial derivative of the energy functional in

eqn (25) with respect to the density matrix transposed

F ¼ @
@DTEðDÞ ¼ hþ VðtÞ � i

2Tþ GðDÞ: ð31Þ
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Both eqns (25) and (31) involve the anti-symmetric time

derivative of the overlap matrix

Tmn ¼ h _xm jxni � hxmj _xni: ð32Þ

The above equations are all formulated using only the density

matrix in the atomic orbital basis, a basis which may be both

time and field dependent. Higher-order response properties

can now be obtained by differentiation of the expression for

the quasienergy derivative eqn (24), taking into account the

implicit dependence of the density matrix on the applied

fields.26

Inserting eqn (25) into eqn (24), choosing w = b, and

differentiating the quasienergy derivative in eqn (24) twice,

once with respect to the electric fields e (associated to the

frequency o) and once with respect to (static) f, respectively,

we obtain a formula for the quadratic response Qbfe
�o,o,0

26,31

Qbfe
�o;o;0 ¼

TrtVbf
�o;oD

e
0 þ Vbe

�o;0D
f
o þ ðhb�o þ Vb

�o � i
2T

b
�oÞD

fe
o;0

þ Gb
�oðDÞD

fe
o;0 þ Gb

�oðDe
0ÞDf

o � Sb
�oW

fe
o;0;

ð33Þ

Q
bbfaeg
�o;o;0 ¼ J0a;b;gðoÞ ¼ hhm̂a; m̂b; m̂giio;0; ð34Þ

where we have used the fact that f only enters vnuc and V, and

only linearly. We have also exploited the fact that when we

take the trace of the resulting matrices

Tr[G(DA)DB] = Tr[G(DB)DA]. (35)

Taking advantage of the fact that the basis set does not depend

on f or e, Wfe
o,0 can be shown to be given by the expression

Wfe
o;0 ¼De

0F
f
oDþDe

0FD
f
o þDFf

oD
f
o � o

2D
e
0SD

f
o

þDFf
oD

e
0 þDf

oFD
e
0 þDf

oF
e
0Dþ o

2D
f
oSD

e
0

þDfe
o;0FDþDFfe

o;0 DþDFDfe
o;0þo

2D
fe
o;0SD�o

2 DSDfe
o;0;

ð36Þ

where we have taken into account that Df
o carries the phase

factor exp(iot), thus i _Df = �oDf
o, which also applies to Dfe

o,0,

while De
0 is static, and therefore _De = 0.We note that although

all matrices in eqn (33) carry time-dependent exponential

phase factors, these cancel each other, thus making the time

average redundant. The integrals appearing in Vbf
�o,o are the

same as those that were introduced when calculating

Cotton–Mouton constants using finite difference techniques

in combination with LAOs17

V
bbfa
mn ¼ QMNhwmjrbrajwni; ð37Þ

where rb refers to the b component of the electron position

operator appearing in the phase of the London orbital,

whereas ra is the a component of the position operator

appearing in the electric dipole moment operator. QMN is an

antisymmetric matrix containing the differences between the

centers of expansion of orbitals wm and wn

QMN ¼
1

2

0 �ZMN YMN

ZMN 0 �XMN

�YMN XMN 0

2
4

3
5 ð38Þ

Replacing b with a in eqn (33), we obtain the corresponding

quadratic response function, Qafe
�o,o,0, for the case when LAOs

are not employed

Qafe
�o;o;0 ¼

Trt Va
�oD

fe
o;0;

Q
abfaeg
�o;o;0 ¼ J0a;b;gðoÞ ¼ hhm̂a; m̂b; m̂giio;0;

ð39Þ

where we have used the fact that the fields only enter V

(and vnuc), and only linearly.

The tensor Bab,gd is obtained from eqn (39) by replacing

a with q

Q
qfe
�o;o;0 ¼

Trt Vq
�oD

fe
o;0;

Q
qbgfaed
�o;o;0 ¼ Ba;bg;dðoÞ ¼ hhm̂a; Ŷbg; m̂diio;0;

ð40Þ

while Bab,gd is obtained by replacing a with g and e with f*,

respectively

Qgff�

0;o;�o ¼
Trt Vg

0D
ff�
o;�o;

Q
ggdfaf

�
b

0;o;�o ¼ Bab;gdðoÞ ¼ hhm̂a; m̂b; Ŷgdiio;0:
ð41Þ

The linear response tensors that determine the temperature-

dependent part are obtained as intermediates in the determi-

nation of the quadratic response functions needed for b(o)

Qf�f
�o;o ¼ Vf�

�oD
f
o; Q

f�afb
�o;o ¼ hhm̂a; m̂biio ð42Þ

Qqf
�o;o ¼ Vq

�oD
f
o; Q

qabfg
�o;o ¼ hhŶab; m̂giio ð43Þ

Qbf
�o;o ¼ Vb

�oD
f
o; Q

bafb
�o;o ¼ �ihhm̂a; m̂biio ð44Þ

We have derived the above formulae using the n + 1

rule—that is, we determine the quasienergy corrections to

order 2 + 1 = 3 (quadratic response) from the perturbed

density matrix up to an order of 2 (Df
o,D

e
0,D

fe
o,0,D

ff*
o,�o). In this

manner, the full temperature-independent contribution to the

EFGB, b(o), can be determined by solving a total of 21

perturbed density matrices. Alternative formulae were derived

in which in many cases the stronger 2n + 1 rule is used to

determine the third-order energy corrections.26 In the case of

the EFGB, this would lead to a total of 24 perturbed densities

to be determined if both the London and no-London results

are of interest in a given calculation (Df
o,D

e
0,D�

b
o,D

a
�o,D

q
o,D

g
0).

This makes the n + 1 rule approach slightly more advanta-

geous in this case.

The calculation of the tensors that determine the tempera-

ture-dependent and temperature-independent contributions to

the Buckingham birefringence thus requires the determination

of first- and second-order perturbed density matrices. These

perturbed density matrices can be determined entirely in the

atomic-orbital basis,26 using for instance the linear-scaling

response equation solver of Coriani et al.61 as done in the

present work. For details about the determination of the

perturbed density matrices, we refer to ref. 26 and 30.
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IV. Computational details

We have calculated all first-order properties (dipole and

quadrupole moments), frequency-dependent polarizabilities

and hyperpolarizabilities entering the molecular expression

of the EFGB for the quadrupolar system naphthalene, and

for the dipolar systems fluorobenzene (C6H5F) and furan

(C4H4O), using both LAOs and conventional basis sets at

the Hartree–Fock level of theory. Results at two different

origins are presented for the dipolar systems, in order to

illustrate the gauge-origin dependence of the temperature-

independent term for conventional basis sets, and the effect

of introducing the LAO basis. In one case the origin was

placed at the center of nuclear masses of the molecule (labelled

CM), in the other case either on the F (fluorobenzene) or the O

(furan) atoms. All molecules were placed in the yz plane, with

the z axis aligned along the C2 symmetry axis. For naphtha-

lene the z axis coincides with the CC bond that fuses the two

benzene rings (see Fig. 1).

The geometries of fluorobenzene and naphthalene were

optimized at the DFT level employing the cc-pVTZ basis

set62 and Becke’s 3-parameter exchange functional63 together

with the Lee–Yang–Parr correlation functional64 (B3LYP).65

This geometry for fluorobenzene was also used in a

recent study of the Cotton-Mouton effect.30 The structure

used for furan is the gas-phase optimized geometry at the

B3LYP/aug-cc-pVTZ level employed in ref. 52.

For the calculations of the properties, we have used the

augmented correlation-consistent basis sets of Woon and

Dunning,66 as diffuse functions are known to be important

to obtain accurate results for all properties of interest for

EFGB. In order to explore the basis set convergence, we have

chosen basis sets of double-, triple-, and quadrupole-zeta

quality. We have employed the wavelength of 632.8 nm, the

one used in the experiment for all three molecules,41–43 in all

calculations. For fluorobenzene, the linear response calcula-

tions needed to determine the position of the EQC were also

performed for l = 441.6 nm, since the experimental study of

ref. 42 was carried out also at this wavelength. Values of the

Buckingham constant, eqn (2), are reported for the tempera-

ture used in the experiments, 298 K. Since our analytical

implementation of the frequency-dependent mixed electric

and magnetic hyperpolarizability using LAOs is currently

restricted to Hartree–Fock wave functions, electron correla-

tion effects will be missing in our results.

The geometry optimizations have been performed using

the distributed version of the Dalton quantum chemistry

program,67 whereas the molecular properties have been

calculated using a local version of Dalton, in which the scheme

described in section 3 has been implemented.26 The code is

interfaced to the linearly-scaling Hartree–Fock energy68 and

response61 code of Jørgensen, Coriani and coworkers. All

calculations have been run in parallel using the parallel

implementation described in ref. 69 at the local HP super-

computer installed at the University of Tromsø.

V. Results

The following discussion will be split into two parts. We will

focus first on the results obtained with and without the use of

LAOs for the hyperpolarizabilities that determine the

temperature-independent contribution to the Buckingham

birefringence. The origin and basis set dependence of the

results will be illustrated. Following this, we will collect

our results for the EQC, quadrupole moment and other

experimentally observable quantities as derived from our

calculations and compare them to available experimental data.

In Table 1 we have collected the results for the different

hyperpolarizability tensors that contribute to the temperature-

independent b(o) term for naphthalene. Since the quadrupole

hyperpolarizabilities do not depend on whether LAOs are used

or not, we only report one set of results for them, whereas both

LAO and conventional basis set (NoLAO) results are reported

for J0(o) and b(o).
We start by considering the J0(o) average, for which we

observe that the LAO results converge very rapidly, being

more or less fully converged already at the aug-cc-pVDZ basis

set level. This fast basis set convergence is somewhat surpris-

ing. Even though LAOs have been shown to give basis-set

limit results already at the aug-cc-pVDZ level for static

magnetic properties involving only the magnetic field as a

perturbation, the magnetizability,70,71 they were shown to be

somewhat less effective when the applied electromagnetic field

is time dependent, as is for instance the case for optical

rotation15,72,73 and electronic circular dichroism.60,73 A similar

Fig. 1 The structures and geometrical arrangement of the three molecules studied here.
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fast basis set convergence of the J0(o) term is also observed for

furan in Table 2 and for fluorobenzene, see Table 3. This

excellent basis set convergence is to a large extent also reflected

in the individual tensor components of J0(o), though addi-

tional improvements arise due to the averaging procedure, the

LAO and NoLAO results being more similar in terms of basis

set convergence for the individual tensor components. LAOs

thus seem to give a more uniform description of the different

components of the J0(o) tensor than if only conventional basis

sets were used. Still, even for the average of J0(o), the basis set
convergence with conventional basis sets is quite good.

As can be seen from Table 1, the basis set convergence for

the B(o) and B(o) terms is much slower than for J0(o). Even
with the aug-cc-pVQZ basis set (1168 basis functions) the

changes in the tensor averages are still substantial, with an

increase of about 1.2% going from the aug-cc-pVTZ to the

aug-cc-pVQZ basis set. However, we also note from eqn (4)

that the two quadrupole hyperpolarizabilities largely cancel

each other (exactly in the infinite wavelength limit) and they

contribute only approximately half of the final value for b(o).
The two tensors have approximately the same basis set con-

vergence, yielding a much smaller basis set dependence when

their difference is taken. As such, the slower basis set conver-

gence of the NoLAO compared to the LAO results for b(o)

arises from the magnification of the basis set convergence of

J0(o) due to the prefactor of 5/o. The improved basis set

convergence obtained with the use of LAOs is particu-

larly evident in the observable, the temperature-independent

contribution b(o).
Turning our attention now to the results reported in

Table 2 for the dipolar molecule furan, we note first of all

that the temperature-independent contribution b(o) is

indeed origin independent when calculated using LAOs. It is

worth noting, however, that the origin dependence of the

calculations using conventional basis sets is rather small,

reflecting the fact that the shift in J0(o) is small, both with

and without LAOs, when shifting the origin. Therefore the

NoLAO calculations yield results that are only moderately

origin dependent.

As for naphthalene, the tensor averages of B(o) and B(o)
are very slowly convergent, but with a parallel basis set

dependence. Therefore the dependence of their difference on

the extension of the basis set does not contribute significantly

to the overall basis set dependence of the temperature-

independent contribution to the Buckingham birefringence.

As such, the aug-cc-pVDZ results obtained with LAOs for

b(o) are within 2–3% of the basis set limit, whereas the

aug-cc-pVDZ results with conventional basis sets are off by

Table 1 Naphthalene. Calculated results for the hyperpolarizability tensor averages and for the temperature independent contribution b(o) to
Buckingham birefringence. A wavelength of 632.8 nm is employed in the calculations. All quantities are given in atomic units. ‘‘LAO’’ and
‘‘NoLAO’’ indicate the use of perturbation dependent London Orbitals or conventional basis sets, respectively

J0 b

Basis B B NoLAO LAO NoLAO LAO

aug-cc-pVDZ �28058.0 �27343.3 124.76 132.63 �1250.33 �1323.13
aug-cc-pVTZ �29565.9 �28803.9 129.54 132.69 �1300.89 �1329.97
aug-cc-pVQZ �29924.4 �29144.5 131.05 132.25 �1317.24 �1328.30

Table 2 Furan. Calculated results for the hyperpolarizability tensor averages and for the temperature independent contribution b(o) to
Buckingham birefringence. A wavelength of 632.8 nm is employed in the calculations. All quantities are given in atomic units. ‘‘LAO’’ and
‘‘NoLAO’’ indicate the use of perturbation dependent London Orbitals or conventional basis sets, respectively

J0 b

Basis Origin B B NoLAO LAO NoLAO LAO

aug-cc-pVDZ CM �9472.5 �9378.1 25.52 31.26 �248.80 �301.97
O �9655.9 �9541.9 24.92 30.98 �245.93 �301.97

aug-cc-pVTZ CM �10188.3 �10059.6 28.95 31.16 �285.20 �305.60
O �10405.5 �10258.5 28.54 30.89 �283.79 �305.60

aug-cc-pVQZ CM �10500.3 �10354.5 30.26 31.17 �299.56 �307.99
O �10726.7 �10563.6 29.93 30.92 �298.86 �307.99

Table 3 Fluorobenzene. Calculated results for the hyperpolarizability tensor averages and for the temperature independent contribution b(o) to
Buckingham birefringence. A wavelength of 632.8 nm is employed in the calculations. All quantities are given in atomic units. ‘‘LAO’’ and
‘‘NoLAO’’ indicate the use of perturbation dependent London Orbitals or conventional basis sets, respectively

J0 b

Basis Origin B B NoLAO LAO NoLAO LAO

aug-cc-pVDZ CM �12322.4 �12075.0 53.79 57.51 �531.00 �565.42
F �13858.7 �13605.8 53.42 57.43 �528.26 �565.42

aug-cc-pVTZ CM �13180.7 �12915.5 55.97 57.56 �553.55 �568.28
F �14797.7 �14525.5 55.73 57.46 �552.27 �568.28

aug-cc-pVQZ CM �13450.3 �13179.2 56.76 57.39 �561.60 �567.45
F �15090.0 �14811.4 56.58 57.28 �560.91 �567.45
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almost 20%. Even with the aug-cc-pVQZ basis set, the

NoLAO results for b(o) are further away from the basis-set

limit than those obtained with LAOs using the aug-cc-pVDZ

basis set.

The results obtained for fluorobenzene are reported in

Table 3. They display the same trends as already observed

for naphthalene and furan. We note, however, the very strong

dependence of the quadrupole operator on the choice of

origin, which is reflected in the strong origin dependence of

the B(o) and B(o) contributions. However, the origin depen-

dence in the two quadrupolar hyperpolarizabilities is very

similar. This, in combination with the very modest origin

dependence of the J0(o) tensor average, leads to a very minor

origin dependence of the temperature-independent b(o) term
for conventional basis sets.

In Table 4, a comparison between our ab initio results and

experiment, in particular with the data obtained in the EFGB

studies by Calvert and Ritchie for naphthalene,41 and by

Dennis et al. for furan43 and fluorobenzene,42 is made. The

table gathers all the results obtained in this study using our

best basis set (aug-cc-pVQZ) at the Hartree–Fock level of

theory and with the use of LAOs for the mixed electric-

magnetic response tensors, J0(o) and G0(o).
Since we are resorting to an approach where electron

correlation effects are neglected, we refrain from going into a

detailed discussion of the comparison of the first-order

(the molecular dipole and quadrupole moments) and of the

linear response properties—a(o), A(o) and G0(o)—with other

computational results or experiment. Ab initio studies of the

electric dipole polarizability74 and quadrupole moment75 of

naphthalene can be found in the literature. The Buckingham

birefringence of furan was the subject of ref. 52, and readers

are referred to that paper for further analysis of the response

of this polar molecule to radiation and to an external electric

field gradient. Fluorobenzene was one of the systems selected

for the recent ab initio study, closely related to the present,

of the hypersusceptibilities rationalizing the temperature-

independent contribution to the Cotton–Mouton effect, where

LAOs were employed.30 For a study of the molecular quadru-

pole moment of fluorobenzene, see ref. 76. The quadrupole

moment of furan is discussed in ref. 77. We only note here that

for both the electric dipole polarizability and the quadrupole

moment (the latter computed and measured at the center of

nuclear masses), our Hartree–Fock values are in satisfactory

agreement with experiment, with the exception of the

axx(�o;o) component of fluorobenzene, which appears to

be somewhat underestimated. It is also apparent that the

independent particle approximation cannot provide estimates

of the electric dipole moments of furan or fluorobenzene of a

quality which can compete with the accuracy achieved in

experiment.

As for the CME or Kerr effects,1–3 the EFGB is dominated

by the Langevin-type, orientational temperature-dependent

part. Therefore neglecting the hyperpolarizability contribution

changes the observable—mQ(o,T = 298 K)—by E1.6% for

naphthalene,E1.8% for furan andE2.3% for fluorobenzene.

At the same time, the smallness of the electronic rearrange-

ment effect, represented by the hyperpolarizability contribution

Table 4 Results for the observable quantities for naphthalene, furan and fluorobenzene as obtained in this work using the aug-cc-pVQZ basis set
and London atomic orbitals at the Hartree–Fock level of theory. l = 632.8 nm, corresponding to o E 0.072 au (except where explicitly given).
Comparison with available experimental data. Atomic units

Naphthalene Furan Fluorobenzene

This work Expt.a This workb Expt.c This workd Expt.e

mz �0.3094 �0.2601 	 0.0024 �0.7014 �0.586 	 0.012
axx(o) 67.965 77.0 35.425 39.00 	 1.80 44.898 52.10 	 1.82
ayy(o) 124.995 134 (147) 57.278 55.13 	 3.28 81.103 77.09 	 2.85
azz(o) 172.410 146 (132) 53.584 53.31 	 1.46 81.517 78.18 	 1.21
aani(o) 75.930 7.233 6.25 	 2.57 18.517 13.60 	 2.37
aave(o) 121.790 48.762 49.15 	 1.34 69.173

Y(CM)
xx

f �10.149 �10.03 	 1.11 �4.726 �4.53 	 0.29 �4.717 �4.68 	 0.22

Y(CM)
yy

f 4.955 5.04 	 1.11 4.569 6.103 5.01 	 0.60

Y(CM)
zz

f 5.194 5.04 	 1.11 0.157 �1.386 �0.33 	 0.65
AðoÞ þ 5

oG
0ðoÞ 60.027 70 	 70 10.218 �15 	 22

R(EQC)
z (o)g 4.150 6 	 6 0.276 �0.57 	 0.83

Y(EQC)
xx (o) �6.010 �6.06 	 1.20 �4.911 �4.35 	 0.45

Y(EQC)
yy (o) 3.285 5.909

Y(EQC)
zz (o) 2.725 �0.999

1
kTYabaab � 10�5 8.743 1.088 1.804

b(o) �9962.3 �2309.9 �4255.9
mQ(o,T) � 10�28 29.07 26.3 	 1.6 4.24 3.88 	 0.40 6.18 4.63 	 0.30

a Ref. 41. The authors obtain the tensor elements of the electric dipole polarizability and quadrupole moment from combined measurements

of Cotton–Mouton and Kerr birefringences and molar refraction. In this process they obtain two sets of results for the polarizability tensor

(second set in parentheses for the xx and yy components), and they assume axial symmetry for the quadrupole. The study is carried out in

CCl4.
b B3LYP/aug-cc-pVTZ results in the gas phase from ref. 52: mz = �0.2626, axx = 35.982, ayy = 60.838, azz = 54.986, Y(CM)

xx = �4.146,
ðAþ 5

oG
0Þ ¼ 38:949, R(EQC)

z = 2.853, Y(EQC)
xx = �4.896, b(o) = �2115.2. c Ref. 43. Electric dipole moment value taken from the literature, see

ref. 43. d Results obtained with a wavelength l=441.6 nm: axx =45.966, ayy=84.517, azz =84.669, ðAþ 5
oG
0Þ ¼ 18:605, R(EQC)

z =0.502. e Ref. 42.

Results measured for a wavelength of l = 441.6 nm: axx = 53.01 	 1.52, ayy = 80.67 	 2.18, azz = 81.39 	 0.85, ðAþ 5
oG
0Þ ¼ �15	 18, R(EQC)

z =

�1.0 	 0.7. f Center of nuclear masses as origin. g Distance in the direction of the dipole moment from the EQC to CM.
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b(o), makes it very hard to extract it from experimental

measurements of the electric field gradient induced linear

birefringence, since to this end the results of these measure-

ments, made at different temperatures, must be extrapolated to

the infinite-temperate limit. These difficulties are reflected in

the very generous error bars generally associated with the

experimental data when available. Also, in view of both the

large error bars of experiment and the good performance of

Hartree–Fock in determining the electric dipole dynamic

polarizability and the quadrupole moment, the computed

values of mQ(o,T = 298 K) of naphthalene and furan

reproduce quite satisfactorily the experimental data. The same

does not happen for fluorobenzene, where we compute

mQ(o,T = 298 K) = 6.18 � 1028 au, whereas Dennis and

co-workers measured (albeit in a carbon tetrachloride

solution) a weaker effect, mQ(o,T = 298 K) = (4.63 	 0.30)

� 1028 = au.42 The reason for this discrepancy appears to

be in the overestimation of the electric dipole polarizability

anisotropy by the Hartree–Fock model, as well as the neglect

of solvent effects.

A final word on the computational estimates of the EQC,

i.e. of R(EQC)
z . This is placed E4.1 au away from the center of

nuclear masses (along the dipole axis, in the direction of the

dipole moment) for furan, and only E0.3 au in the same

direction for fluorobenzene. Both for the combination of

linear response tensors involved in the theoretical expression

of R(EQC)
z and for the resulting displacement itself, agreement

with experiment is once again reasonable, especially considering

the large error bars of the latter.

VI. Summary and outlook

We have presented a scheme for the analytical calculation of

quadratic response functions involving time-dependent electro-

magnetic fields in combination with the use of LAOs

to obtain origin-independent results for the temperature-

independent contribution to the Buckingham birefringence.

This work can thus either be considered an extension of the use

of time-dependent LAOs in connection with a quasienergy

formalism from second-order molecular properties21 to third-

order molecular properties, or alternatively an extension of the

use of LAOs in third-order molecular properties involving a

static magnetic field78 to a frequency-dependent magnetic

field. The formalism has been developed fully in the atomic

orbital basis, making it directly applicable to the use in linearly

scaling SCF schemes.

In contrast to what has been observed both for second-order

properties involving frequency-dependent electromagnetic

fields, such as optical rotation15,72,73 as well as recently also

observed in the case of the second-order static magnetic field

perturbed frequency-dependent polarizability—the hyper-

magnetizability involved in the determination of the Cotton–

Mouton effect30—the LAOs lead to significantly improved

basis set convergence of the temperature-independent contri-

bution to the Buckingham birefringence. Indeed, even with

an aug-cc-pVDZ basis set, the results obtained using LAOs are

closer to the estimated basis-set limits than those yielded

by the aug-cc-pVQZ conventional basis set.

While furan43 was already studied computationally in our

group recently,52 this study is the first one analyzing Buckingham

birefringence of naphthalene and fluorobenzene, two species

for which measurements were performed in the group

of Ritchie in the eighties.41,42 In all cases, the contribu-

tion of the temperature-independent contribution b(o) is

negligible, influencing the value of the overall observable, the

Buckingham constant mQ(o,T), by 2.3% at the most. While

experiment and theory easily agree on the estimate of the effect

measured at 298 K—with the computed mQ(o,T = 298 K)

being always a bit overestimated with respect to the center of

the distribution of experimental data—some disagreement

remains for fluorobenzene, apparently due both to our over-

estimate of the electric dipole dynamic polarizability com-

puted at the Hartree–Fock level and to the neglect of solvent

effects, which should be included for a comparison with an

experiment performed in carbon tetrachloride solution.42

Estimates for the location of the EQC were given for both

furan and fluorobenzene, the two polar molecules investigated

in this work. The shift with respect to the center of nuclear

masses leading to the so-called effective quadrupolar center is

rather large for furan (E4.2 au) and much smaller for

fluorobenzene (E0.28 au) for l = 632.8 nm, and these values

easily fit the large error bars of the indirect experimental

determination.42,43 The same can be said for the combination

of linear response tensor, A(o) + 5/oG0(o), also estimated

from experiment.

The importance of London orbitals in order to achieve

basis-set limit results shows that these may be useful in the

study of other birefringences involving higher-order contribu-

tions from the magnetic field, such as magnetochirality50,79

and Jones or magnetoelectric birefringences.50,80,81 As the

formalism used in this work is open-ended with respect to

the order of the applied perturbations, assuming the necessary

one- and two-electron derivative integrals are available, we

plan to extend our work to these birefringences in the future,

as well as add the possibility to include electron correlation

effects in the form of density functional theory.
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