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The weather was very cloudy. It was snowing. Holy Olaf
the king sent out somebody to look around, but there
was no clear point in the sky. Then he asked Sigurd
to tell him where the Sun was. After Sigurd complied,
he grabbed a sunstone, looked at the sky and saw from
where the light came, from which he guessed the position
of the invisible Sun. It turned out, that Sigurd was right

Ramskou T. 1967 Solstenen. Skalk 2, 1617. Ref.[17]

1 Preface

In life or in a scientific experiment, we do not observe light from a source unchanged.
Light traverses some medium which causes scattering and absorption. Both scatter-
ing and absorption are referred to in the literature as light attenuation processes (e.g.
Ref.[13]) or as extinction processes — which means that a light beam loses part of its
energy via scattering or absorption while going through the medium. The observed light
is thus already modified by its interaction with the medium.

In what follows it will be discussed which characteristics of light can be considered
theoretically and experimentally, how the light affects the medium it traverses, and how
the medium affects the light in return. In an experiment it is possible to measure the char-
acteristics of the light before entering a medium as well as on exiting from the medium,
and from this to deduce some properties of the medium. At the same time, there is a
great demand for materials with desired optical properties, i.e. with some prescribed
effect on the light.

This thesis introduction is organized in the following order:

• How to characterize light: the polarization and the Stokes parameters

• Molecules and atoms in an external electric field — a phenomenological approach

• Effect of the medium on light: forward scattering theory.

• The Kerr effect, as an example of an induced optical property.

• Linear birefringence

• The quantum-theoretical approach to molecules and atoms in external electric and
magnetic fields: response theory.

• Polarizable continuum model.
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2 Light in medium

In this section some very basic details of the theory of light will be presented. The
main objective is to introduce the notation we use. We start with some details on the
macroscopic Maxwell equations in matter. For more details the reader is referred to Refs.
[13, 14, 15, 16].

2.1 The Maxwell equations

The macroscopic Maxwell equations (in SI units) and in vector form in the medium are

∇ ·D(r) = ρf(r) (2.1)

∇×E(r) = −∂B(r)

∂t
(2.2)

∇ ·B(r) = 0 (2.3)

∇×H(r) = J f(r) +
∂D(r)

∂t
(2.4)

In these equations we have introduced a ”free” charge density ρf , a ”free” source current
density J f , the electric and magnetic fields in free space E and B, and the electric and
magnetic fields in the matter, D and H . Also ”bound” densities are accounted for in D
and H (see Ref. [16] for more details).

”Macroscopic” means that there is some procedure of averaging of microscopic proper-
ties of the medium. On a macroscopic scale we are not interested in the ”exact” behavior
of individual particles and fields but rather in some averaged properties of the fields and
the medium (e.g. Refs. [19, 16]). In this averaging procedure, it is customary to divide
charged particles into two groups: ”free”, or conducting, and ”bound”. This division is
not strict, but it has proven to be useful in devising physical models.

The relation between the electric field in matter D, the free space electric field E and
bound charge densities in the simple approximated form looks like:

D = ε0E +P (2.5)

In the same way we have for H :

H =
1

µ0

B −M (2.6)

In these relations P andM are the macroscopic polarization and magnetization of the
matter, respectively (not to be confused with their microscopic counterparts P and M ,
to be introduced later). The electromagnetic constants — ε0 is the electric permittivity
of free space and µ0 is the magnetic permeability of free space.
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Remark:
The rigorous definition of the microscopic polarization will be presented in the section
on response theory.
The reader should be aware that in the subject of nonlinear optics, the word ”polar-
ization” is used in two ways. In the current context of the medium in an external
field we have the (macro- and microscopic) polarization as a response of the medium
to the external electromagnetic fields.
When considering electromagnetic waves, the polarization of the wave defines the
orientation and motion of the electric field vector of the wave.

If polarization, magnetization and currents are assumed to be linear with respect to
the free-space fields, we have:

P = ε0χE (2.7)

D = εE, ε = ε0(1 + χ) (2.8)

B = µH (2.9)

J = σE (2.10)

where we introduced parameters characterizing the case of the linear response of the
medium to external fields: χ is the electric susceptibility, µ is the magnetic permeability
and σ is the conductivity of the matter.

If we consider an infinite homogeneous medium with no ”free” charges and with zero
conductivity, then the Maxwell equations become:

∇ ·D = 0 (2.11)

∇×E = −∂B
∂t

(2.12)

∇ ·B = 0 (2.13)

∇×H =
∂D

∂t
(2.14)

which can be transformed into two wave-like equations for the electric and magnetic fields
separately:

∇2E = µε
∂2E

∂2t
(2.15)

∇2B = µε
∂2B

∂2t
(2.16)

with a wave velocity v = 1√
µε

and a free-space velocity c = 1√
µ0ε0

. The refractive index of

the medium is then:

n =

√
εµ

ε0µ0

= c
√
εµ (2.17)

These wave equations allow for a solution in the form of plane waves. In a complex form,
the solution is:

E = E0 exp(ik · r − iωt) (2.18)

H = H0 exp(ik · r − iωt) (2.19)
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with complex constant vectors E0,H0 and wave vector k. The wave is characterized by

the amplitude and the phase, for an electric field the amplitude is E0e
Im(k)·r and the

phase is Re(k) · r − ωt.
With substitution of this plane-wave solution into the homogeneous Maxwell equations

2.11 can be transformed to the following form:

k ·E0 = 0 (2.20)

k ·H0 = 0 (2.21)

k ×E0 = ωµH0 (2.22)

k ×H0 = −ωεE0 (2.23)

If the constants are real, these relations allow for a simple interpretation — the transver-
sity of the wave. In this case, both electric and magnetic fields are perpendicular to the
wave vector and mutually perpendicular to each other.

In the case when the wave is homogeneous (see Ref.[14]), which is the case when the
imaginary and real parts of the complex wave vectors are parallel to each other, we have:

k · k = ω2εµ, k = kn̂, k = Re(k) + i Im(k) = ω
n

c
(2.24)

where n̂ is a unit vector of propagation (in the plane perpendicular to this vector we have
constant phase and amplitude). Let us write n = nn̂. For the homogeneous plane wave
we have:

E = E0 exp
(
−ω
c

Im(n) · r
)

exp
(
i
ω

c
Re(n) · r − iωt

)
(2.25)

For this wave, the so called Poynting vector [14, 15, 16] can be defined:

S(r) =
1

2
(E ×H∗) (2.26)

This vector characterizes the transfer of energy in space. The time-averaged Poynting
vector for the homogeneous plane wave is

〈S(r)〉 =
1

2
n̂Re

(√
ε

µ

)
|E0|2 exp

(
−2

ω

c
Im(n) n̂ · r

)
(2.27)

so we see that the direction of this vector is the propagation direction, and the absolute
value of it is called the intensity.

We can see that if the imaginary part of the vector n is non-zero, we have an expo-
nential decay of the intensity:

I(r) = I0 exp
(
−2

ω

c
Im(n) n̂ · r

)
(2.28)

In other words, the attenuation of the beam (wave) is related to the imaginary part of
the refractive index.
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2.2 Observable quantities of a light beam: the Stokes parame-
ters

An interesting feature of quantum mechanics is that not all objects entering the equations
of quantum mechanics can be observed directly in experiment. The so-called observables
define quantities which are measured in experiments.

An analogous situation is present in optics — the electric and magnetic fields of the
light beam cannot be measured directly, but certain real-valued linear combinations of
products of the components of the fields can be measured.

The most standard set of parameters which connect theory and experiment is the set
of Stokes parameters. In what follows we will use the notation from Ref.[14].

In homogeneous non-absorbing medium (thus all constants in Eq. (2.20) are real) we
have electric and magnetic fields in a plane perpendicular to the unit vector of propagation
n̂. This vector is specified by two angles (see fig.1): ϑ is a polar coordinate with the range
[0, π] and ϕ is an azimuthal angle with the range [0, 2π).

Figure 1: Spherical coordinates

The plane perpendicular to the unit vector n̂ is also characterized by these two polar
angles. Two vectors are therefore introduced: a unit vector ϑ̂ which lies in the plane
containing the z-axis (the meridional plane) and n̂, and a vector ϕ̂ which is perpendicular
to this meridian plane, and thus n̂ = ϑ̂ × ϕ̂. In this coordinate system it is possible to
define the components of the fields of the light beam by only two components:

E = Eϑ +Eϕ = Eϑϑ̂+ Eϕϕ̂ (2.29)

It is customary (Refs.[14, 13]) to introduce a density or a coherence matrix composed
of products of these two components:

1

2

√
ε

µ

(
EϑE

∗
ϑ EϑE

∗
ϕ

EϕE
∗
ϑ EϕE

∗
ϕ

)
(2.30)

This is already a complete set that characterizes the monochromatic beam, so any ob-
servable can be expressed as a linear combination of these matrix elements. However, it
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is more suitable to use real-valued quantities, the Stokes parameters, which are written
as a column-vector I:

I =


I
Q
U
V

 =
1

2

√
ε

µ


EϑE

∗
ϑ + EϕE

∗
ϕ

EϑE
∗
ϑ − EϕE∗ϕ

−EϑE∗ϕ − EϕE∗ϑ
i(EϕE

∗
ϑ − EϑE∗ϕ)

 =
1

2

√
ε

µ


EϑE

∗
ϑ + EϕE

∗
ϕ

EϑE
∗
ϑ − EϕE∗ϕ

−2Re(EϑE
∗
ϕ)

2Im(EϑE
∗
ϕ)

 (2.31)

The first parameter I is an intensity, introduced previously (Eq.(2.28)), the other three
parameters characterize the polarization state. These four parameters are not independent
because of the quadratic relation:

I2 = Q2 + U2 + V 2 (2.32)

In order to see what information about a light beam that can be deduced from these
parameters — we introduce the ellipsoidal description of the light.

2.3 Polarization of light: ellipsoidal description

Let us write the electromagnetic field in a non-absorbing homogeneous medium as

E = E0 exp
(
i
ω

c
n · r − iωt

)
(2.33)

and write its complex amplitudes as

E0ϑ = aϑ exp(i∆ϑ) (2.34)

E0ϕ = aϕ exp(i∆ϕ) (2.35)

where we have real-valued non-negative amplitudes aϑ and aϕ, and real phases ∆ϑ and

∆ϕ. With the factor 1
2

√
ε
µ

omitted the Stokes parameters then are:

I = a2
ϑ + a2

ϕ (2.36)

Q = a2
ϑ − a2

ϕ (2.37)

U = −2aϑaϕ cos(∆) (2.38)

V = 2aϑaϕ sin(∆) (2.39)

where we have introduced the phase difference

∆ = ∆ϑ −∆ϕ (2.40)

From these equations we see that the wave can be uniquely identified up to the phase
difference, whereas the phases of the components cannot be identified and thus measured.
In an experiment, two waves with the same phase difference (the same Stokes parameters)
but with different phases, are identical.

Now let us express the ϑ̂ and ϕ̂ real-valued components as:

Eϕ(r, t) = aϕ cos
(

∆ϕ +
ω

c
n · r − ωt

)
(2.41)

Eϑ(r, t) = aϕ cos
(

∆ϑ +
ω

c
n · r − ωt

)
(2.42)
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For a fixed space coordinate, these equations are parametric equations in t. In general
the tip of the electric field describes an ellipse, depending on a relative phase difference
of two components (meridian and azimuthal) of the light beam (see Fig.2).

Figure 2: Ellipse drawn by the tip of the electric vector of the wave

If we fix the time coordinate, then we obtain an elliptic helix in space (see Fig.3)

Figure 3: General elliptic polarization of the light beam

The orientation of the ellipse (Fig.2) is characterized by the orientation angle ζ, which
is derived by rotation of the φ-axis clock-wise (with respect to the direction of the prop-
agation) until φ coincides with the major axis of the ellipse. Thus we introduce the
coordinate system (p, q) as in the Fig.2, the axes of which coincide with the minor and
major elliptical axes. This coordinate system is rotated with respect to (ϑ, ϕ) by an angle
ζ.

The ratio of the major and the minor axis, a so-called ellipticity, is expressed as
| tan(β)|, where the range of β is [−π

4
,+π

4
]. The sign of β defines the handedness —
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which specifies whether a point on the parametric curve moving in the clockwise (+) or
counter-clockwise (−) direction with respect to the vector of propagation.

The lengths of the axes are defined as a cos β and a sin β where a is an elliptical
”radius”.

Taking these parameters of the ellipse into account, the components of the electro-
magnetic field in some space coordinate can be written in the form:

Eq(t) = a sin β sin(δ − ωt) (2.43)

Ep(t) = a cos β cos(δ − ωt) (2.44)

these parametric equations represent right- or left-hand rotation along the ellipse (Fig.2)
of the electric vector, and it is customary to say that depending on β we have either
right-hand polarization or left-hand polarization.

2.4 Polarization of light via the Stokes parameters

The orientation of the ellipse and ellipticity can be expressed via the Stokes parame-
ters. For this purpose we transform the components of the field in (p, q) coordinates to
components in the (ϑ, ϕ) coordinates.

Eϑ(r, t) = −Eq(r, t) cos ζ + Ep(r, t) sin ζ (2.45)

Eϕ(r, t) = −Eq(r, t) sin ζ − Ep(r, t) cos ζ (2.46)

After some trigonometric manipulations (Ref.[14]), we get

a2
ϑ = a2(sin2 β cos2 ζ + cos2 β sin2 ζ) (2.47)

a2
ϕ = a2(sin2 β sin2 ζ + cos2 β cos2 ζ) (2.48)

aϑaϕ cos ∆ = −1

2
a2 cos 2β sin 2ζ (2.49)

aϑaϕ sin ∆ = −1

2
a2 sin 2β (2.50)

and taking the Stokes parameters into account, we have:

I = a2 (2.51)

Q = −I cos 2β cos 2ζ (2.52)

U = I cos 2β sin 2ζ (2.53)

V = −I sin 2β (2.54)

Thus the lengths of the major and minor axes are expressed via the intensity and β
as
√
I| cos β| and

√
I| sin β|. The orientation angle ζ is defined by:

tan 2ζ = −U
Q

(2.55)

The ellipticity, the sign of which determines left- or right-hand rotation of the electric
field vector, is:

tan 2β = − V√
Q2 + V 2

(2.56)
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from which we can see that we have the left-handed polarization for V > 0 and the
right-hand polarization for V < 0. (Should be also noticed that the sign of cos 2ζ is the
same as that of −Q.)

2.5 Cases of polarization

• In the case when U = 0, we have orientation angle ζ equal either to 0

Figure 4:

or ζ = π
2

Figure 5:

From these figures we see that if V is non-zero it specifies the rotation (as shown
by arrows in the figures). If V is zero we get linear polarization.

• In the case when Q = 0, we have orientation angle ζ equal either π
4
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Figure 6:

or ζ = 3π
4

Figure 7:

• In the case when both Q and U are zero, it means we have β = ±π
4
. Thus we have

circular polarization, the handedness being defined by the sign of V .

Figure 8:
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3 Propagation of light in the medium: forward scat-

tering theory

In the previous section we saw that the description of light traversing a medium is essen-
tially macroscopic. We considered the macroscopic Maxwell equations, where all terms
are macroscopically averaged (see Ref.[19]). In this subsection we consider the interplay
between microscopic and macroscopic levels. External electromagnetic fields affect the
medium, and the effect should firstly be considered on a single molecule level. To get
from the molecular level to the macroscopic level, some procedure of averaging should be
applied.

3.1 A molecule in the external field

To treat the interaction of the molecule with the electromagnetic field it is common to
employ the so-called semi-classical approach. In this approach the external field is treated
in classical electro-dynamical way, but the molecule subjected to the external electromag-
netic field is treated as the quantum system. In this case it is said that the quantum
system is subject to ”mechanical” external time-dependent or static perturbations. The
external semi-classical perturbation is expressed via components of the classical electro-
magnetic field and the multipole operators of the molecule.

The molecule is characterized by the expectation values of its electric and magnetic
multipole moments, like dipole moment, quadruple moment, magnetic moment and dia-
magnetic susceptibility tensor defined as:

µ = −
∑
i

ri +
∑
n

ZnRn (3.1)

Θαβ = −
∑
i

1

2
(3riαriβ − r2

i δαβ) +

+
∑
n

1

2
Zn(3RnαRnβ −R2

nδαβ) (3.2)

m = −
∑
i

1

2
ri × pi +

∑
n

Zn
2Mn

Rn × P n (3.3)

where the sum
∑

i is over all electrons of the molecule, the sum
∑

n over all nuclei of the
molecule, ri and Rn are the Cartesian coordinates of the ith electron and nth nucleus,
Mn and Zn are the mass and charge of the nth nucleus (mass and charge of electrons are
taken as 1 and −1 respectively). pi and P n are the linear momenta of the ith electron
and nth nucleus, respectively. We also assume Einstein sum convention.

The general multipole interaction dynamic Hamiltonian, which corresponds to the
time-dependent electromagnetic field, in the Barron-Gray [1] gauge, which is the gauge
chosen by Barron and Gray to derive a dynamical interaction Hamiltonian which would
resemble a static one

V (r, t) = −µα(Eα)0(t)− 1

3
Θαβ(Eαβ)0 −mα(Bα)0 −

1

2
χ

(d)
αβ(Bα)0(Bβ)0 + . . . (3.4)
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where subscript 0 comes from the Taylor expansion[1] of the electromagnetic field poten-
tials around the atomic nucleus or the center of mass of a molecule

Eα(r, t) = (Eα)0(t) + rβ(Eβα)0(t) + . . . (3.5)

Bα(r, t) = (Bα)0(t) + rβ(Bβα)0(t) + . . . (3.6)

which correspond to Taylor expansions of classical scalar and vector potentials of the
external electromagnetic field:

φ(r, t) = −rα(Eα)0(t)− 1

2
rαrβ(Eαβ)0 + . . . (3.7)

Aα(r, t) =
1

2
εαβγ(Bβ)0(t)rγ +

1

3
εαγδ(Bβγ)0rδ + . . . (3.8)

If we stop the expansion at the spatially uniform (constant) term, we will get the well-
known dipole-moment approximation, in which the molecule interacts with the external
electric field via the simple perturbation operator:

V (t) = −µ ·E(t) (3.9)

3.2 A case study: microscopic and macroscopic polarizations in
two electric fields

For illustration purposes we consider the case when the medium is considered to be
subjected to a to a weak (probe) light wave field E(t) and a relatively strong static
uniform field E . The induced dipole moment of the molecule (polarization)

P (t,E,E) = 〈Ψ(t, r,E,E) |µ|Ψ(t, r,E,E)〉 (3.10)

for a quantum state Ψ(t, r,E,E) will in general be a complicated function of time and
external perturbation fields.

Perturbation theories for cases where the frequencies of the external fields do not
match internal frequencies of the molecule (so-called non-resonant cases) usually lead to
expressions which are power series in the strengths of the perturbation fields. Such a
rigorous theory will be presented in section 4.

In this section we will assume a very simplified and idealized approach. We assume
that the expectation value of the dipole moment oscillates on the same frequency as the
external field.

The polarization is written (using Buckingham’s notation [15]) as a Taylor expansion
in both external fields:

Pi = P 0
i + αijEj + α0

ijEj +
1

2
βijkEjEk +

1

2
β0
ijkEjEk +

1

6
γijklEjEkEl + . . . (3.11)

where the superscript 0 identifies the terms corresponding to the static contribution, and
where tensors β and γ, introduced by Buckingham and Pople, are so-called hyperpolar-
izabilities. In the theory described in Refs.[15, 16] it is assumed that the light field does
not influence the molecular orientation, which means that the energy of the charges in
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the external field is considered only for the static field. Thus we have standard static
electrical energy as:

W = W 0 − P 0
i Ei −

1

2
α0
ijEiEj −

1

6
β0
ijkEiEjEk − . . . (3.12)

By considering the medium as consisting of molecules of the same kind, we should take
an orientational average of the dipole moments. In the averaging procedure, we use the
energy W depending on the static field E as a Boltzmann weighting factor

P̄i(E ,E) =

∫
dτPi(τ,E ,E) exp(−W (τ,E )

kT
)∫

dτ exp(−W (τ,E )
kT

)
(3.13)

where τ is an orientational parameter. This expression is then expanded as a Taylor series
in powers of the static field. For this expansion we need an expansion of the Boltzmann
factor and expansion of the dipole moment

Pi(E ,E, τ) = Pi(0,E, τ) +

(
∂Pi
∂Ej

)
E=0

Ej +
1

2

(
∂2Pi
∂Ej∂Ek

)
E=0

EjEk + . . . (3.14)

Using Eq.(3.11) and omitting some intermediate calculations (see Refs.[15, 16] for
details) we have for the averaged dipole moment up to second order in the static field:

P̄i(E ,E) = 〈αij〉Ej + Ek[〈α0
ij〉+

1

kT
〈P 0

i P
0
k 〉] +

+
1

2
EjEkEl[

1

3
〈γijkl〉+

1

kT
(〈αijα0

kl〉 − 〈αij〉)〈α0
kl〉+ 〈P 0

l βijk〉] +

+
1

(kT )2
[〈P 0

kP
0
l αij〉 − 〈P 0

kP
0
l 〉〈αij〉] (3.15)

In the following we are interested in the time-dependent (emitting) induced dipole mo-
ment, so we will write it as

P̄i = dijEj (3.16)

where dij can be derived from Eq.(3.15), omitting the purely static part. This is a pivotal
crossroad point — from here we can either consider the macroscopic Maxwell equations
in the medium with no currents (the approach considered in Ref.[16]), or to consider
forward scattering theory (approach considered in Ref.[15]), taking each molecule as a
center of forward scattering.

We will here consider forward scattering theory.
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Remark:

We have everything at hands for the first approach. In one of the Maxwell macroscopic
equations:

∇×H =
∂D

∂t
(3.17)

the time-dependent D should be taken as:

Di = (ε0δij +Ndij)Ej (3.18)

where N is the so-called number density of molecules. The medium polarization is
thus related to the orientational averaged polarization of the individual molecules as

P = NP̄

It is also assumed at this point that medium polarization is linear with respect to the
time-dependent field (see Eq.(2.7)).

3.3 Forward scattering and the Kerr effect

In this subsection we will follow the exposition of the theory of the Kerr effect from
Ref.[16], developed in Ref.[18]. The set up for the microscopic theoretical consideration
of scattering is the following:

Figure 9: From [14]

A thin square (with lengths 2L) lamina of width ∆z is considered, with the center
at the origin and positioned in the xy plane. A harmonic light beam is considered as
propagating in the positive direction along the z. The external static field E is considered
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to be in the x direction, i.e. (E , 0, 0).
In Fig.9, R is a distance from the volume element of the lamina dxdydz to the point f
where the resulting field, consisting of incident and scattered light, will be calculated.

The electric field emitted by dxdydz at the point f (we write the volume dipole
moment as P̄ dxdydz):

Ef
i (R, t) =

1

4πε0c2R3
(RiRj −R2δij)

¨̄P

(
t− R

c

)
dxdy∆z (3.19)

because we consider light as harmonic and we consider the molecule as emitting at the
same frequency, having in mind the relation of P̄ to the light field from Eq.(3.16):

¨̄P

(
t− R

c

)
= −ω2P̄

(
t− R

c

)
= −ω2P̄ 0e

−iω(t−Rc ) (3.20)

The field from all the lamina at the point f with coordinate (0, 0, z) is obtained by
integration (for details see Refs.[16, 15]):

δEf
x = i

Nω

2ε0c
dxxExe

−iω(t− zc )∆z

(
1 +O

(√
λ

z

))
(3.21)

δEf
y = i

Nω

2ε0c
dyyEye

−iω(t− zc )∆z

(
1 +O

(√
λ

z

))
(3.22)

where we have λ = 2πc
ω

as the wave length, Ex and Ey are the amplitudes of the
incident light.

In derivations of these equations it was assumed that z is of the same order as L and
z � λ (the so-called far-field assumption).

The only thing left to us to do is to consider the combined field Esum
x at f as a sum

of the incident light wave and the scattered wave from the lamina. For the x component
we have:

Esum
x (0, 0, z, t) =

(
1 + i

(
Nω

2ε0c
dxx

)
∆z

)
Ex exp

(
−iω

(
t− z

c

))
(3.23)

The second term in the first brackets can be approximated into the exponent and thus
becomes a phase factor:

Esum
x (0, 0, z, t) ≈ Ex exp

(
−iω

(
t− Nω

2ε0c
dxx∆z −

z

c

))
(3.24)

At f , we will therefore have a light beam with the same amplitude but with shifted phase,
and the shift is proportional to the width of the lamina ∆z. This equation implies that
it takes additional time for the x-component of the wave to propagate from (0, 0, 0) to f ,
and this can be considered as a slowing down of the wave in the lamina. Instead of ∆z

c
,

it takes ∆z
c

(
1 + Nω

2ε0c
dxx

)
, from which we have the refraction index:

nx = 1 +
Nω

2ε0
dxx (3.25)
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and the same for y component:

ny = 1 +
Nω

2ε0
dyy (3.26)

Thus we see that x and y components are scattered differently by the lamina to which
the static field is applied. The difference in the refractive indices is

nx − ny =
N

2ε0
(dxx − dyy) (3.27)

We see from Eq.(3.16) that this difference is quadratic in the static field. If no static
field is applied, it is shown in Refs.[16, 15], that dxx = dyy = αii

3
= α, where α is the

mean polarizability. Thus, in the absence of the external static field, the refractive index
is isotropic:

nx = ny = n = 1 +
Nα

2ε0
(3.28)

and x and y components of the light beam are retarded identically.

3.4 Linear birefringence

The formula (3.27) from the previous section shows us, that in the presence of the external
static field E , perpendicular to the propagation of the probe light beam E, there are
different refractive indices for the components of the electric field of the light beam. And
this is the case of so called the linear birefringence.

In the above case study we had the static field in the x direction, and we had the
difference between refractive indices in the x and y directions. For linear birefringences
it is customary to write refraction indices with respect to external field which induces
the effect. Then we have the refractive index n|| written for the direction parallel to the
external field, and the refractive index n⊥ in the direction perpendicular to the static
field and propagation vector.

∆n = n|| − n⊥ (3.29)

This birefringence is called linear because we decompose elliptically (in general) polarized
light into its linear polarized components, parallel and perpendicular to the external field,
as we did in the case study. These linear polarized components are propagating in the
medium with different velocities, they have different retardation in the medium, because
of the static field.

The result of propagation, in the case when there is no absorption in the medium, like
we had in the above case — is the change in the phase difference of the linearly-polarized
components of the probe light. This change is expressed as a gain in the ellipticity β
(Eq.2.56). We see that the change of the phase factor in (Eq.3.24) is proportional to the
increment ∆z along the optical path we can write

∆β ∝ (nx − ny)∆z (3.30)

If there is no external static field (3.28), the ellipticity change would be zero in this case.
The medium is then considered as optically isotropic.
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4 Response theory

There exist several different formulations of response theory. For illustration purposes
the polarization propagator approach will be briefly outlined, following Ref.[3].

4.1 Response theory, propagator approach

In response theory a quantum system is considered as being subjected to some time-
dependent perturbation. It enters the Hamiltonian of a quantum system as an interaction
between the quantum system and the perturbation, and we consider it as adiabatically
switched on (the situation of instantaneous switching on can also be considered [4]):

Vt(r) =

∫ +∞

−∞
dωVω(r)e−iωt+εt (4.1)

where the parameter ε ensures adiabaticity. For Vt to be hermitian V ∗ω = V−ω. As an
example of an external perturbation, we may consider the semi-classical dipole interaction
of an atom or a molecule with an electric field. The perturbation operator entering the
Hamiltonians is in this case:

Vt(r) = −r ·E(t) =

∫ +∞

−∞
dωr ·Eω(r)e−iωt+εt (4.2)

In response theory, we are interested in the evolution of expectation values of an oper-
ators which are related to some observables, when exposed to the external perturbation.
An important step in the development of response theory, which started in the late 50s
(e.g. Ref.[4]) was the change from the wave-function picture to the density matrix pic-
ture, allowing a far more economical approach to the quantum-mechanical many-body
problem. A complete specification of the quantum state is usually intractable, and only
limited knowledge (deduced from observables for example) is available about the state.
The density matrix ”interfaces” the wave function into observable quantities and it is
widely used in quantum physics and quantum statistical physics [7].

For a state wave function which satisfies the time-dependent Schrödinger equation

i
d

dt
|ψ〉 = (H0 + Vt)|ψ〉 (4.3)

for H0〈0| = E0〈0|, the evolution of some operator P is

〈ψ |P |ψ〉 =
∑
ν

〈ψ |P |φν〉 〈φν | ψ〉 =
∑
ν

〈φν |P |ψ〉 〈ψ|φν〉 = Tr(ρP ) (4.4)

In this equation any complete basis of state vectors φν can be used and the density matrix
operator for the state ψ is defined in the standard way (Ref.[7]) as

ρ(t) = |ψ〉〈ψ| (4.5)
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Instead of the Shrödinger equation for the wave function, we have the Liouville equation
[3, 7] for the density matrix ρI in the interaction representation (Ref.[3]):

i
d

dt
eiH0t|ψ〉 = Vte

iH0tψ〉

i
d

dt
ρI = [Vt(t), ρI(t)] (4.6)

ρI(t) = eiH0tρ(t)e−iH0t

Vt′(t) = eiH0tVt′e
−iH0t

Note that the perturbation operator is also used in the interaction picture, in a so-called
dressed form as Vt′(t). In the equation-of-motion, times t and t′ are the same.

The Liouville equation can be integrated using the limit

lim
t→−∞

ρI(t) = ρ0 = |0〉〈0| (4.7)

to yield

ρI(t) = ρ0 − i
∫ t

−∞
[Vt′(t

′), ρI(t
′)]dt′ (4.8)

which is to be solved iteratively via substitution. To get the linear response, one should
substitute in the integral ρI with ρ0, to get the second-order response one should substitute
ρI with the result of the previous iteration for the linear response, and so forth. For the
linear response, we therefore have:

ρI(t) = ρ0 − i
∫ t

−∞
[Vt′(t

′), ρ0(t′)]dt′ (4.9)

The evolution of the density matrix ρ(t):

ρ(t) = ρ0 − i
∫ t

−∞
[Vt′−t(t

′), ρ0(t′)]dt′ (4.10)

Equation (4.10) can now be substituted into Eq.(4.4) and we have:

〈ψ |P |ψ〉 = 〈0 |P | 0〉+

∫ +∞

−∞
〈〈P (t);Vt′(t

′)〉〉rdt′ (4.11)

where we have introduced a key object of response theory — the retarded two-time
Green’s function (see Ref.[4]), or propagator:

〈〈P (t);Q(s)〉〉r = −iΘ(t− s)〈0|[P (t), Q(s)]|0〉 (4.12)

Here both operators are in the interaction representation

A(t) = eiH0tAe−iH0t (4.13)

In the case when there is no external time-dependent perturbation — this is just the
Heisenberg representation of the operators (e.g. Ref.[20]).
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In Eq.(4.12) Θ is the Heaviside step function: Θ(s) = 1 for s > 0 and Θ(s) = 0 for s < 0.
If we insert equation (4.1) into equation (4.11), we get the following expression:

〈ψ |P |ψ〉 = 〈0 |P | 0〉+

∫ +∞

−∞
dω

∫ +∞

−∞
dt′〈〈P (t);Vω(t′)〉〉re(ε−iω)t′ (4.14)

To illustrate this equation we can consider the polarization of a molecule or an atom
by a dipole interaction (e.g. Refs.[3, 4]) with an external time-dependent electric field
(Eq.(4.2)). For the α component of the dipole moment 〈ψ |r|ψ〉 we can write:

µα(t) = 〈ψ |rα|ψ〉 = µα(−∞)−
∫ +∞

−∞
dω
∑
β

∫ +∞

−∞
dt′〈〈rα(t); rβ(t′)〉〉rEωβe(ε−iω)t′ (4.15)

Here the first term µ(−∞) is the static dipole moment and the second term is the induced
dipole moment. The frequency-dependent part of the integral expression for the induced
dipole can be written as:

ααβ(ω) = −
∫ +∞

−∞
dt〈〈rα(0); rβ(t)〉〉re(ε−iω)t (4.16)

for which we have:

µα(t) = µα(−∞)−
∫ +∞

−∞
dωα(ω)αβEωβe

(ε−iω)t (4.17)

where we have introduced the dynamic polarizability tensor α as an example of a so-called
polarization propagator — 〈〈rα(0) : rβ(t)〉〉r. This kind of propagators (or correlators)
appeared in statistical quantum physics in the 50s (see Refs.[21, 4] for details).

4.2 Important features of a propagator or two-time Green’s
functions

In order to derive the above formulas one must use the following property of a propagator:

〈〈P (t);Q(s)〉〉r = 〈〈P (0);Q(s− t)〉〉r (4.18)

From this we can see that a two-time Green function actually depends not on absolute
times, but rather on the difference of times.
To get more insight into the properties of the propagators, one can consider the spectral
representation by making a Fourier transform of the propagator:

〈〈P ;Q〉〉rω = lim
ε→+0

∫ +∞

−∞
〈〈P (0);Q(t)〉〉re−iωt+εt (4.19)

In what follows we will try to deduce some properties of this Fourier-transformed propa-
gator.
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4.2.1 Equation of motion for the propagator and its Fourier trasformation

The equation-of-motion (EOM) for two-times propagator is:

i
d

dt
〈〈P (0);Q(t)〉〉 = −δ(t) 〈0 |[P,Q]| 0〉+ 〈〈P (0); [Q(t), H0]〉〉 (4.20)

where EOM for operator P (t) in the interaction (Heisenberg) picture was used:

i
d

dt
P = [P (t), H0] (4.21)

For the propagator in the frequency domain 〈〈P ;Q〉〉ω, the EOM (see [6, 3]) is:

−E〈〈P ;Q〉〉ω = −〈0 |[P,Q]| 0〉+ 〈〈P ; [Q,H0]〉〉ω (4.22)

4.2.2 Moment expansion

Equation-of-motion Eq.(4.22) can iterated in the following way:

〈〈P ;Q〉〉ω =
〈0 |[P,Q]| 0〉

ω
+
〈0 |[P, [H0, Q]]| 0〉

ω2
+
〈0 |[P, [H0, [H0, Q]]]| 0〉

ω3
+ . . . (4.23)

which is the so-called moment expansion of the energy-dependent propagator, introduced
by Goscinski (Ref.[9])). This expression is usually written down in the so-called super-
operator resolvent formulation, where operators form a super-operator space (e.g. Refs.
[8, 10]), in which a binary product (P |Q) =

〈
0
∣∣[P †, Q]

∣∣ 0〉 is defined, and the super-

operator Hamiltonian Ĥ acts on elements of the super-operator space via the commuta-
tion relation ĤP = [H,P ] and the identity operator is defined as ÎP = P . Within this
formulation, the moment expansion is:

〈〈P ;Q〉〉ω =
(P †|Q)

ω
+

(P †|Ĥ0Q)

ω2
+

(P †|Ĥ2
0Q)

ω3
+ . . . (4.24)

With the super-operator resolvent operator:

(ωÎ − Ĥ0)−1 =
1

ω
[Î +

∞∑
n=1

(
Ĥ0

ω
)n] (4.25)

we arrive at:
〈〈P ;Q〉〉ω = (P †|(ωÎ − Ĥ0)−1|Q) (4.26)

4.2.3 Excitational manifold

Another trick (originating from Ref.[8]) has been extensively used with respect to this
super-operator approach. Instead of using the operator form, the matrix form is intro-
duced via introduction of the complete operator manifold (Ref.[8]) h and usage of the
binary product in the super-operator space:

(ωÎ − Ĥ0)−1 = |h̃)(h|ωÎ − Ĥ0|h̃)−1(h| (4.27)
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here h is arranged as a column vector, and h̃ is its transposed - the row vector. For the
energy-dependent propagator:

〈〈P †;Q〉〉ω = (P |h̃)(h|ωÎ − Ĥ0|h̃)−1(h|Q) (4.28)

The meaning of the complete operator manifold is in the action on the reference state |0〉,
which should generate the basis for evaluation of the propagator in frequency domain.
If the reference state is taken as an SCF state, then we should have an operator manifold
comprised of number-conserving operators (see details in Ref.[3, 28]):

h = h2,h4,h6, . . . (4.29)

where h2 generate so-called single excitations, h4 generate double excitations and so
forth. (More details on this subject will be given in the subsection 4.2.5)

4.2.4 Sum-over-states expression (SOS) for the Fourier transformed propa-
gator in the basis of exact ground and excited states

If we know exact ground and excitation states |n〉 for the Hamiltonian H0

H0|n〉 = En|n〉 (4.30)

we can construct the excitation manifold consisting of excitation and de-excitation oper-
ators

{|n〉〈0|, |0〉〈n|}
. The evaluation of Eq.(4.28) in this basis set of exact excitation operators will lead to
so-called Sum-over-state expression:

〈〈P ;Q〉〉rω = lim
ε→+0

∑
n6=0

{ 〈0 |P |n〉 〈n |Q| 0〉
ω − (En − E0) + iε

− 〈0 |Q|n〉 〈n |P | 0〉
ω − (En − E0) + iε

} (4.31)

where SOS is a common abbreviation for ”sum-over-states”.
From this SOS expression we can see that Fourier transformation of a linear response

function gives us unperturbed excitation energies and transition moments from the ref-
erence state |0〉 to excited states |n〉 — 〈0 |P |n〉 〈n |Q| 0〉 and 〈0 |Q|n〉 〈n |P | 0〉.

Remark:

From Eq.(4.31) we can see that the Green’s function approach is giving us
more physical approach then wave-function picture.
The time-independent Schrödinger equation can be reformulated in a so-called
resolvent operator form, which depends on the absolute energies of the system,
while energy-dependent propagators depend not on the absolute energies of the
quantum system, but on its energy differences.
For a quantum system, we know from experiment what energy it can absorb
or emit, so experiments provide us with information related to differences in
the energy levels, not to its absolute values.
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4.2.5 Eigenvalue problem when exact ground and excited states are not
known.

In case when we don’t have complete set of exact eigenvalue states for the unperturbed
Hamiltonian H0 we need to use some approximations. The most important approximate
functions for us are those which are derived via self-consistent-field (SCF) procedures,
such as HF (Hartree–Fock) and MCSCF (multi-configurational) wave functions. The
HF SCF function is defined as a Slater product. The Slater determinant for a system
consisting of N electrons (fermions) is the anti-symmetric product of N orthonormal
orbitals φ1(r), . . . , φN(r), . In matrix form, the Slater product is just a determinant of
the following matrix:

1√
N !


φ1(r1) φ2(r1) . . . φN(r1)
φ1(r2) φ2(r2) . . . φN(r2)
. . . . . .
. . . . . .
. . . . . .

φ1(rN) φ2(rN) . . . φN(rN)

 (4.32)

This representation of the electronic wave-function ensures the Pauli principle for multi-
fermion system, which postulates that a wavefunction for a system of fermions should
be anti-symmetric. Anti-symmetricity means that the wavefunction changes sign if two
fermions are interchanged:

Ψ(r1, . . . , rk, . . . , rn, . . . , rN) = −Ψ(r1, . . . , rn, . . . , rk, . . . , rN) (4.33)

The permutational properties of the matrix determinant ensures that this condition
is automatically fulfilled. The factor 1√

N !
gives a normalized wave-function.

The determinant closed-shell function |CSF〉 can be represented with the help of fermionic
creation and annihilation operators, acting on a ’vacuum’ state (see Ref.[28]):

|CSF〉 =
∏
i

a†iαa
†
iβ|vac〉 (4.34)

where 〈vac|vac〉 = 1 and operators a† and a satisfy the anticommutation relations:

[a†i , a
†
j]+ = a†ia

†
j + a†ja

†
i = 0 (4.35)

[ai, aj]+ = 0 (4.36)

[a†i , aj]+ = δij (4.37)

and their actions on the vacuum state is specified by:

ai|vac〉 = 0, 〈vac|a†i = 0 (4.38)

The addition subscripts α and β appearing in Eq.(4.34) specify the spin state. Doubly
occupied state i is represented by a†iαa

†
iβ|vac〉.

A wavefunction taken as a Slater determinant can be used as the ansatz to solve the
time-independent Schrödinger equation in the Born-Oppenheimer approximation. An
ansatz can be represented in the parametrized form:

|CSF〉(k) = ek̂|CSF〉 (4.39)
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where the exponent of an anti-Hermitian operator k̂ produces unitary transformations of
the Slater determinant

k̂ =
∑
i<j

kij(Êij − Êji), Êij = a†iαajα + a†iβajβ, (4.40)

The Hartree–Fock (HF) function is a solution of the variational problem, where variations
are performed by means of parameters k (for details see Ref.([28])):

δ 〈CSF(k) |H|CSF(k)〉 = 0 (4.41)

The Hartree–Fock state |HF〉 is thus a stationary state for this variational problem.
There exist more complicated approximations, e.g. MCSCF wave-function approxima-
tion, which is a multi-configuration SCF approach, where instead of one Slater deter-
minant, the linear combination of determinants is considered and taken as an ansatz to
solve the Schrödinger equation (e.g. Ref.[28]).
The approximations are thus based on the choice of the reference state and how big an
operator manifold we consider. If we take the reference state as a Hartree–Fock wave
function and restrict the complete operator manifold to single excitations, we get the
random phase approximation (RPA) Ref.[6, 3, 2].

We need to evaluate Eq.(4.28) in the basis of an operator manifold generated by
number-conserving excitation and de-excitation operators, acting on some ground state.
Let us consider as an example SCF ground-state function and the restricted manifold
consists of the infinite set of single excitation and de-excitation operators.

{q†, q}

Then matrix, raw and column vector in Eq.(4.28) can be written as:

〈〈P †;Q〉〉ω =
[

(P |q̃†) (P |q̃)
]
×

×
[
(q†|ωÎ − Ĥ0|q̃†) (q†|ωÎ − Ĥ0|q̃)

(q|ωÎ − Ĥ0|q̃†) (q|ωÎ − Ĥ0|q̃)

]−1 [
(q†|Q)
(q|Q)

]
(4.42)

which can be written:

〈〈P †;Q〉〉ω =
[
P̃ −P̃

] [ωI −A −B
−B ωI −A

]−1 [
Q
−Q

]
(4.43)

where:

P = {(P |q†ν)}, Q = {(Q|q†ν)}, Aνν′ = {(q†ν |Ĥ|q
†
ν′)}, Bνν′ = {(qν |Ĥ|q

†
ν′)} (4.44)

where subscript ν runs all over operators of the manifold. For more details and notation
see Ref.[3].
The problem of finding the poles Eλ of the propagator reduces to solving the non-
Hermitian eigenvalue problem:[

A B
B A

] [
Z
Y

]
λ

= Eλ

[
1 0
0 −1

] [
Z
Y

]
λ

(4.45)
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we have also: [
A B
B A

] [
Y
Z

]
−λ

= −Eλ
[
1 0
0 −1

] [
Y
Z

]
−λ

(4.46)

These equations give us the poles for the propagator, and the eigenvectors together with
operator vectors give us residues — approximate transition moments.
To get the transition moments we need to get back to SOS kind of expression. For this

we arrange the set of the eigenvectors

[
Z
Y

]
λ

into column vector

[
Z
Y

]
, where each

eigenvector should be normalized (see Ref.[3]) and write:[
A B
B A

] [
Z
Y

Y
Z

]
=

[
1 0
0 −1

] [
Z
Y

Y
Z

] [
E 0
0 −E

]
(4.47)

By adding to the left and right side of this equation the energy-dependent terms we have:[
ω1−A −B
−B ω1−A

] [
Z
Y

Y
Z

]
=

=

[
1 0
0 −1

] [
Z
Y

Y
Z

] [
ω1−E 0

0 ω1 +E

]
(4.48)

From this we can get the inverse of the matrix from Eq.(4.43) (normalization condition
should be used, see Ref.[3])[

ω1−A −B
−B ω1−A

]−1

=

=

[
Z
Y

Y
Z

] [
ω1−E 0

0 ω1 +E

]−1 [
Z̃

−Ỹ
Ỹ

−Z̃

]
(4.49)

This matrix can be substituted in Eq.(4.43), and we get:

〈〈P ;Q〉〉E =
[

(P |q̂†) (P |q̂)
] [Z Y
Y Z

]
×

×
[
ω1−E 0

0 ω1 +E

]−1 [
Ẑ Ŷ

−Ŷ −Ẑ

] [
(q†|Q)
(q|Q)

]
(4.50)

To get the spectral representation this equation should be rewritten by introducing the
excitation state vectors. For a state λ with excitation energy Eλ (as in Ref.[3]):

O+
λ =

[
q̃† q̃

] [ Z
Y

]
λ

(4.51)

Oλ =
[

q̃† q̃
] [ Y

Z

]
λ

(4.52)

so we get the SOS expression:

〈〈P ;Q〉〉ω =
∑
λ

[
(P | O+

λ )(O+
λ | Q)

ω − Eλ
− (P | Oλ)(Oλ | Q)

ω + Eλ

]
(4.53)

where transition moments are expressed in term of the infinite excitational manifold.
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5 The problem of origin dependence in response the-

ory

In physical theories special care should be taken regarding the origin independence of all
observable values derived (see [16, 25, 26] ). When we solve equations approximately it
is desirable that all values we get in these approximations keep the property of origin
independence.

In the previous subsections we considered a perturbation theory, approach in which we
had an expansion in the strength of the perturbing field. Truncation of such an expansion
gave us the linear response theory, the quadratic response theory and so forth. Each level
of truncation should be investigated with respect to origin dependence. Moreover — we
had the following approximations:

1. The approximated state wave-function and the excitation manifold were introduced.

2. Truncated basis sets are applied in practical computer calculations.

Each step should be physically reasonable.
Let us consider as an example the case of optical activity of the chiral medium - the

optical rotation.
Chiral molecules (or a medium which is chiral because of the orientation of the

molecules, which may be induced by applied magnetic or electric fields) scatter left-
and right-circularly polarized light differently (see Fig.8). A linearly polarized light (also
named as plane-polarized light) can be decomposed into a sum of two circularly polar-
ized lights, left and right-circular components. When passing through the chiral medium,
these components develop phase shift. As the result of this phase shift — the vector of
the linear polarized vector becomes rotated, or, in other words, its plane of polarization
is rotated.

The result of measurements of optical rotation is reported as the specific optical
rotation [α], defined as:

[α] =
αV

ml
(5.1)

where α is the rotation of the linearly polarized light, l is the optical path, m is the mass
of the optically active sample and V is its volume.

The specific optical rotation is proportional to the trace of the so-called Rosenfeld
tensor βαβ, which is expressed in terms of the linear response function (see Refs.[24, 23]):

βαβ = −ω−1G′αβ(ω) (5.2)

G′αβ(ω) = −ω Im(〈〈µα;mβ〉〉ω) (5.3)

The behavior of the trace of this tensor with respect to the translation of the origin
should be tested (e.g. [26, 25]).

Let us take the mass and charge of the electron as 1 and −1, respectively (atomic
units). The contribution µ to the dipole moment is then −r, and the magnetic moment
m is −1

2
r×p. We now shift the origin with respect to which the position of the electron

is defined by a vector a. Noting that a shift leaves the momentum operator p = −i∇
unchanged, the trace of G′ changes by [26, 25]:

Tr〈〈r − a; (r − a)× p〉〉ω = Tr〈〈r; r × p〉〉ω − Tr〈〈r;a× p〉〉ω (5.4)
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The last term can be written out component-wise as:

Tr〈〈r;a× p〉〉ω = ax(〈〈rz; py〉〉ω − 〈〈ry; pz〉〉ω) +

ay(〈〈rx; pz〉〉ω − 〈〈rz; px〉〉ω) +

az(〈〈rx; py〉〉ω − 〈〈ry; px〉〉ω) (5.5)

If we take into account the equation-of-motion (4.22) for the dipole moment:

−ω〈〈rα; rβ〉〉ω = −〈0 |[rα, rβ]| 0〉+ 〈〈rα, [rβ, H0]〉〉ω (5.6)

which is satisfied for the approximate wave functions HF, MCSCF and Kohn–Sham DFT,
among others.

The unperturbed electronic Hamiltonian H0 satisfies the standard commutator iden-
tity

[r, H0] = ip

which also holds for the second-quantization representations of these operators for a
complete basis.

Thus for the complete basis we can replace 〈〈rα; pβ〉〉ω in Eq.(5.5) with iω〈〈rα; rβ〉〉ω
and find that the ”origin-dependent” last term of Eq.(5.4) vanishes.

Remark:
With the help of the commutator identities [r, H0] = ip, [rα, (r × p)α] = 0 and the
equation-of-motion (4.22) we can arrive at the equivalence of the so-called length-
and velocity-gauge representations of the response function (e.g. Ref.[26]):

Im(Tr〈〈rα; (r × p)β〉〉ω) =
1

ω
Re(Tr〈〈pα; (r × p)β〉〉ω) (5.7)

This relation does not hold for the truncated basis. In principle, we can choose to
use response functions in the velocity gauge (on the right) which are then origin in-
dependent even for the finite basis. Unfortunately, for a given truncated basis, a
velocity-gauge based implementation does not perform as well as the length gauge,
thus a length-gauge formulation is preferred, which is origin dependent for an incom-
plete basis, as Eq.(5.4) shows.

The approach from Ref. [27] (and references therein), which aims to overcome origin-
dependence problems for finite basis sets, will be schematically reviewed here. The de-
tailed review of this approach would require the introduction of some extra tools, thus
only the outline of their approach will be presented here, without details.

The following steps are made to get response functions being origin independent, even
for the finite basis sets, and with good convergence behavior with increasing of size of
the basis set.

1. The so-called LAO — London atomic orbitals (or GIAO for gauge-including atomic
orbitals) are used (Ref.[29]):

χLAO
µ (Aµ,Rµ, r) = e−iAµ·rχµ(r −Rµ) (5.8)
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where the gauge of the magnetic vector potential is:

Aµ =
1

2
B × (Rµ −O) (5.9)

where subscript µ specifies the basis function, Rµ is the position of the nucleus at
which AO χµ is centered, r is an electronic coordinate, O is the so-called gauge
origin and χµ is an ordinary atomic orbital basis function. This type of atomic
orbitals were originally introduced by F. London [29].

2. The magnetically perturbed (time-independent) Hamiltonian in a gauge shown
above is introduced.

3. The Hamiltonian and other operators can be expressed in the second-quantization
formulation (e.g. [28]) in a basis set derived from LAOs.

4. The crucial point of the approach taken in Ref.[27] is to use instead of the one-
electron (in second-quantization picture) magnetic dipole m = −1

2
r × p — the

”effective” magnetic dipole derived as a minus the first derivative of the magnetic
Hamiltonian in the second quantization picture. This ”LAO” magnetic dipole op-
erator mLAO differs from the standard magnetic dipole, the most drastic feature is
that it is a two-electron operator.

5. The justification of the introduction of such an ’effective’ magnetic moment is that it
was proved (Ref.[27]) that in the limit of a complete basis set — these two operators
coincide.

6. The bonus for the introduction of a such magnetic moment is that the response
functions defined for this operator, in the length gauge, are origin independent
even for a finite basis.
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6 Polarizable continuum model (PCM)

In this section we briefly review the case of a liquid solvent surrounding the molecule (the
solute). This solution is then considered as a system: ”bath” + molecule, and there are
a plethora of different models which aim to describe the interaction of a molecule and
the solvent. Usually the solvent is considered as a dielectric continuous medium with a
dielectric constant ε.

The electric field of the molecule induces polarization on the solution, and the solu-
tion reacts back via a so-called reaction (electromagnetic) field. Thus the solute can be
considered as being subjected to the reaction field produced by the polarized solution
and its properties are modified.

Originally (see [30]), the solution was modeled in the following way: the molecule is
surrounded by a spherical cavity, which excludes the solvent. Currently, in numerical
studies, cavity is considered of a complex shape, which follows the shape of the molecule.
The cavity is divided into the set of spheres, where each sphere is centered on an atom of
the molecule or group of atoms. The radii of a sphere is specified by the atom or group
it is assigned (usually it is of order of Van der Waals radius).

6.1 Electrostatic setup

The classical electrostatic problem is considered in Refs.[32, 31]. The Poisson equation
inside the cavity is:

−∇2V (r) = 4πρM(r) (6.1)

where V (r) is the total electrostatic potential generated by the solute, ρM is the charge
density of the solute. In isotropic dielectric medium, outside the cavity, we have:

−ε∇2V (r) = 0 (6.2)

The boundary conditions are:

Ve − Vi|Σ = 0 (6.3)

(
∂V

∂n
)i − ε(

∂V

∂n
)i|Σ = 0 (6.4)

where Σ specifies the cavity surface, subscripts i and e define interior and exterior regions
with respect to the cavity, ∂

∂n is the directional derivative along the normal (with respect
to the cavity surface) vector n pointing outward. These conditions ensures continuous
behavior of the electrostatic potential and its gradient on Σ.

The solution to the above equations is sought in the integral form (Green function
approach):

V (r) =

∫
C

ρM(r′)

|r − r′|
dr′ +

∫
Σ

σ(s)

|r − s|
ds (6.5)

where integral
∫
C
dr′ specifies the volume integration inside the cavity (C) and integral∫

Σ
ds specifies the surface integration on Σ. The surface charge density σ is due to

polarization of the medium, and it is called the apparent (or screening) surface charge
density. This potential automatically satisfies the Poisson equations, and we are left with
the task of determining a surface charge density that satisfies the boundary conditions.
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In the Ref.[33] it was shown that σ satisfies the following equation in the integral-
operator form:

A · σ = B · V (6.6)

where operator A is defined as:

A = (
I

2
−De)Si + Se(

I

2
+D∗i ) (6.7)

(Si · u)(r) =

∫
Σ

Gi(r, r
′)u(r′)dr′ (6.8)

Gi(r, r
′) =

1

4π|r − r′|
(6.9)

(Di · u)(r) =

∫
Σ

∂Gi(r, r
′)

∂n(r′)
u(r′)dr′ (6.10)

(D∗i · u)(r) =

∫
Σ

∂Gi(r, r
′)

∂n(r)
u(r′)dr′ (6.11)

(Se · u)(r) =

∫
Σ

Ge(r, r
′)u(r′)dr′ (6.12)

Ge(r, r
′) =

1

4πε|r − r′|
(6.13)

(De · u)(r) =

∫
Σ

∂Ge(r, r
′)

∂n(r′)
u(r′)dr′ (6.14)

where r ∈ Σ. The integro-differential operator B is defined by the equation:

(B · V )(r) = ((
I

2
+De) · V )(r) + (Se ·

(
∂V

∂n

)
i

)(r) (6.15)

where
(
∂V
∂n
)
i
is the normal coordinate (with respect to the surface of cavity) of the electric

field in the interior region.
Eq.(6.6) is to be solved numerically, via the so-called boundary element method. In

this method, the cavity surface is partitioned into K tesserae (mosaic pieces), of known
area. On each tessera the charge density is considered to be constant. Equation (6.6)
can be written in the matrix form, for the vector [σ] of size K:

[A] · [σ] = [B · V ] (6.16)

The matrices are to be evaluated using the partition of Σ. The system of linear equations
(6.16) is solved:

[σ] = [A]−1[B · V ] (6.17)

The vector [σ] can be taken as the vector [q] — the vector of charges on each tessera.
The matrix equation (6.17) can be rewritten as:

[q] = [Q][V ] (6.18)
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6.2 Quantum mechanical setup: with no time-dependent exter-
nal perturbations

In the polarizable continuum model (PCM) the quantum-mechanical formulation is in-
troduced by defining a free energy functional G(|ψ〉) which is applied to the solute wave-
function. This functional incorporates interactions between the molecule and the apparent
charges due to the solvent. In general form it is defined as:

G(|ψ〉) =
〈
ψ
∣∣∣Ĝ∣∣∣ψ〉 =

〈
ψ

∣∣∣∣H0 +
1

2
V̂σ

∣∣∣∣ψ〉 (6.19)

The operator V̂σ is defined through electrostatic interaction between charge distribu-
tion of a molecule (electronic and nuclear) and apparent charges on the cavity surface Σ.
For details see Ref.([31]).
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7 The list of papers, included in the thesis, with

short descriptions

I The use of Coulomb-attenuated methods for the calculation of electronic circular
dichroism spectra,
Dmitry Shcherbin and Kenneth Ruud
Chemical Physics, Volume 349, Issues 1-3, 16 June 2008, Pages 234-243

In this paper, a benchmark computational study was performed, where we tested
different parametrizations of the commonly used exchange-correlation functional
Coulomb-attenuated B3LYP (CAM-B3LYP) on a level of the DFT (Density Func-
tional Theory) with respect to the more accurate but at the same time more time-
consuming CC2 and CCSD theories. In additional to benchmarking the excitation
energies, we also explored the rotational strengths that determine the phenomenon
of circular dichroism, which is the differential absorption of right- and left-polarized
light by chiral medium. A set of chiral molecules was considered. As the result of
the study we concluded that if we want to achieve good result for both properties
of interest — excitation energies and rotatory strengths — we cannot find a CAM-
B3LYP parametrization which gives both types of quantities right. The observation
was made that it is possible to consider the lowest excited state as the reference
state, which suggests a uniform shift of all excitational energies. In this case, some
of the CAM-B3LYP functionals work well both for excitational energies and rotatory
strengths.

II Analytic calculations of nonlinear mixed electric and magnetic frequency-dependent
molecular properties using London atomic orbitals: Buckingham birefringence,
Dmitry Shcherbin, Andreas J. Thorvaldsen, Kenneth Ruud, Sonia Coriani and An-
tonio Rizzo
Phys. Chem. Chem. Phys., 2009, 11, 816-825

In Paper I, the property considered can be classified as natural circular dichroism,
which means that we do not need to put the medium in some external field observe
the effect, although the effect is only non-zero for molecules that are optically active,
that is, chiral molecules. In Paper II the property of interest can be classified as
electromagnetically induced. This means that without some specific external field
the effect can not be observed, but once a field is present, all molecules will display
this birefringence. The property we studied is referred to in the literature as Buck-
ingham birefringence or EFGB — electric field gradient-induced birefringence . The
optical activity is induced by the electric field gradient, and different components of
the light field propagate differently in this medium, leading to an anisotropy in the
refractive index.
In the study we also tested our new response code at the Hartree-Fock theory level,
where London atomic orbitals (LAOs) were used in the calculation. In this LAO
implementation — the basis set depends both on the external perturbations and the
frequency. The study shows that the new implementation performs very well, mean-
ing that basis set convergence is very fast in comparison with conventional basis sets.
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In the paper we also reported and compared our results with available experimental
data for the observables. An interesting feature of the EFGB measurements is that
they allow us to calculate the quadruple moment of the molecule.

III Jones and magnetoelectric birefringence of pure substances A computational study,
Antonio Rizzo, Dmitry Shcherbin and Kenneth Ruud
Canadian Journal of Chemistry, Volume 87, Number 10, 1 October 2009 , pp. 1352-
1361(10)

Another induced birefringence is considered in this paper — the Jones birefringence.
The anisotropy of the medium is in this case a result of the application of two external
static fields, electric and magnetic, which are parallel to each other and perpendic-
ular to the direction of light propagation. The anisotropy of the refractive index is
thus bilinear with respect to these fields. In the study we tested the implementation
of the PCM theory in the context of the TD-DFT level of theory. PCM results were
compared with respect to experimental data and with respect to an earlier non-PCM
response implementation.

IV Gauge-origin independent calculations of Jones birefringence,
Dmitry Shcherbin, Andreas J. Thorvaldsen, Dan Jonsson and Kenneth Ruud

In this paper the new response theory implementation is tested. As in the Paper II
LAO orbitals are used to get origin independent results for the Jones birefringence.
One of the advantages of using these basis functions is that we get physically mean-
ingful results even for small basis-sets (i.e. the results are indepenent of the choice of
gauge origin).Another advantage is that we obtain better basis-set convergence for
the LAO basis set in comparison to conventional basis sets.
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[8] P.-O. Löwdin, Phys. Rev. A 139 (1967) 357

[9] O. Goscinski and B. Lukman, Moment-conserving decoupling of green functions via
pade approximants, Chemical Physics Letters Volume 7, Issue 6, 15 December 1970,
Pages 573-576

[10] H. Primas, Generalized Perturbation Theory in Operator Form Rev.Mod. Phys.
vol.35, N2, 710-12, 1963

[11] J. Frenkel, Wave Mechanics, Advanced General Theory (Clarendon, Oxford, 1935)

[12] P. W. Langhoff, S. T. Epstein, and M. Karplus, Aspects of Time-Dependent Pertur-
bation Theory, Rev. Mod. Phys. 44, 602 (1972).

[13] H. C. Van De Hulst , Light Scattering by Small Particles, Dover Publications, 1981

[14] Mishchenko, M. I., L. D. Travis, and A. A. Lacis (2002): Scattering, Absorption,
and Emission of Light by Small Particles, Cambridge University Press, Cambridge.

[15] L. Barron, Molecular Light Scattering and Opitical Activity, Cambridge University
Press, 2004

[16] R. E. Raab and O. L. de Lange, Multipole Theory in Electromagnetism, Oxford
University Press, 2004

[17] Gbor Horvth, Andrs Barta, Istvn Pomozi, Bence Suhai1, Ramn Hegeds, Susanne
kesson, Benno Meyer-Rochow and Rdiger Wehner, On the trail of Vikings with po-
larized skylight: experimental study of the atmospheric optical prerequisites allowing
polarimetric navigation by Viking seafarers, Phil. Trans. R. Soc. B 12 March 2011
vol. 366 no. 1565 772-782

35



[18] A D Buckingham and J A Pople, Theoretical Studies of the Kerr Effect I: Deviations
from a Linear Polarization Law, 1955 Proc. Phys. Soc. A 68 905

[19] G. Russakoff, A derivation of the macroscopic Maxwell equations, Am. J. Phys. 38,
1188 (1970)

[20] Cohen-Tannoudji, Claude; Bernard Diu, Frank Laloe (1977). Quantum Mechanics
(Volume One). Paris: Wiley. pp. 312314.

[21] R. Kubo, Statistical-Mechanical Theory of Irreversible Processes. I. General Theory
and Simple Applications to Magnetic and Conduction Problems, J. Phys. Soc. Jpn.
12 (1957), pp. 570586

[22] O. Christiansen, P. Jørgensen and C. Hättig, Int. J Quant. Chem. 68 (1998), p. 1.

[23] A. Rizzo, S. Coriani ”Birefringences: A challenge for both Theory and Experiment
” Adv. Quant. Chem., 50 143-184 (2005)

[24] M. Pecul, K. Ruud The Ab Initio Calculation of Optical Rotation and Electronic
Circular Dichroism, Adv. Quantum. Chem., 50 185 (2005)

[25] T.D. Crawford, Ab Initio Calculation of Molecular Chiroptical Properties, Theor.
Chem. Acc. 115, 227-245 (2006).

[26] Thomas Bondo Pedersen, Henrik Koch, Linus Boman, Alfredo M. J. Sanchez de
Meras, Origin invariant calculation of optical rotation without recourse to London
orbitals, Chemical Physics Letters, Volume 393, Issues 4-6, 1 August 2004, Pages
319-326

[27] Keld L. Bak, Aage E. Hansen, Kenneth Ruud, Trygve Helgaker, Jeppe Olsen and
Poul Jørgensen, Ab initio calculation of electronic circular dichroism for trans-
cyclooctene using London atomic orbitals, Theoretica Chimica Acta, Volume 90,
Numbers 5-6, 441-458

[28] T. Helgaker, P. Jørgensen, J. Olsen: Molecular electronic-structure theory Wiley,
New York, 2000. 938 pp

[29] F. London, The quantic theory of inter-atomic currents in aromatic combinations,
J. Phys. Radium, 1937, 8, 397.

[30] Onsager, L. J. Am. Chem. Soc. 1936, 58, 1486

[31] Roberto Cammi, Luca Frediani, Benedetta Mennucci, Jacopo Tomasi, Kenneth
Ruud, and Kurt V. Mikkelsen, A second-order, quadratically convergent multicon-
figurational self-consistent field polarizable continuum model for equilibrium and
nonequilibrium solvation, J. Chem. Phys. 117, 13 (2002)

[32] B. Mennucci, E. Cancés and J. Tomasi, Evaluation of Solvent Effects in Isotropic
and Anisotropic Dielectrics and in Ionic Solutions with a Unified Integral Equation
Method: Theoretical Bases, Computational Implementation, and Numerical Appli-
cations, J. Phys. Chem. B, 1997, 101 (49), pp 1050610517

36



[33] E. Cancés and B. Mennucci, New applications of integral equations methods for
solvation continuum models: ionic solutions and liquid crystals, J. Math. Chem. 23,
309 (1998)

37



ISBN xxx-xx-xxxx-xxx-x


