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Abstract

Bloodstream infections (BSIs) are a severe public health threat due to their rapid progres-

sion into critical conditions like sepsis. This study presents a novel eXplainable Artificial

Intelligence (XAI) framework to predict BSIs using historical electronic health records

(EHRs). Leveraging a dataset from St. Olavs Hospital in Trondheim, Norway, encompass-

ing 35,591 patients, the framework integrates demographic, laboratory, and comprehensive

medical history data to classify patients into high-risk and low-risk BSI groups. By avoiding

reliance on real-time clinical data, our model allows for enhanced scalability across various

healthcare settings, including resource-limited environments. The XAI framework signifi-

cantly outperformed traditional models, particularly with tree-based algorithms, demonstrat-

ing superior specificity and sensitivity in BSI prediction. This approach promises to optimize

resource allocation and potentially reduce healthcare costs while providing interpretability

for clinical decision-making, making it a valuable tool in hospital systems for early interven-

tion and improved patient outcomes.

Author summary

In this research, we have developed a new tool that uses artificial intelligence to better pre-

dict bloodstream infections, which can lead to severe conditions like sepsis if not quickly

identified and treated. It is the first-of-its-kind framework that analyzes past health rec-

ords and helps identify patients at high risk of infection more accurately than existing

tools. Unlike existing tools, our framework can be implemented at any stage of the patient

trajectory and is the only framework to achieve good accuracy without the use of intimate

patient features such as vital signs and real-time data, which may limit clinical applicabil-

ity. This ability could enable doctors to prioritize care more pre-emptively and effectively,
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potentially saving lives and reducing unnecessary medical tests. Our approach is designed

to be easily understood and used by medical professionals and those with little technical

expertise, making it a valuable addition to hospital systems.

1. Introduction

Bloodstream infections (BSIs) are a significant public health challenge, often leading to severe

clinical conditions such as sepsis and septic shock, particularly when unrecognized or

untreated. The rapid progression of these infections, coupled with their association with high

morbidity, mortality, and healthcare costs, renders BSIs a critical challenge in clinical care

[1,2]. The accuracy of available clinical decision tools for BSI and sepsis needs improvement.

Most of them are based on changes in vital signs and abnormal blood test results [3,4].

Improved prediction can lead to more efficient allocation of resources and reduced health

costs. A refined initial stratification would aid in allocating resources to patients with a high

risk of a BSI and reduce needless testing of patients with low risk. Blood culture (BC) may

yield relevant bacteria causing disease and the growth of contaminating microbes. Ambiguous

culture results may be difficult to interpret and lead to clinical uncertainty, often resulting in

more extended hospital stays and unnecessary administration of antibiotics [5,6]. Therefore,

reduced collection of BC in patients with a low risk of BSI can lead to a higher positive predic-

tive value of blood cultures and reduced use of antibiotics. Prompt and early identification of

high-risk versus low-risk patients is thus imperative for adequate and effective initial handling

of suspected BSI, optimized allocation of healthcare resources, and reduced associated costs.

The advent of artificial intelligence (AI) allows innovative methodologies for BSI diagnos-

tics, showcasing the potential to enhance or even surpass human expertise in diagnostic

endeavors [7]. Despite its demonstrated efficacy, the integration of AI into clinical workflows

remains limited [8,9]. Facilitating this integration may involve leveraging AI models to aug-

ment guidelines-based clinical decision support systems (CDSS) rather than striving to

develop fully autonomous AI-based CDSS [10,11]. Furthermore, adopting a stance grounded

in predictive, preventive, and personalized medicine (PPPM) principles could refine the utili-

zation of AI, emphasizing the analysis of historical rather than real-time data variables [12,13].

The primary aim of this study was to develop and validate an eXplainable Artificial Intelligence

(XAI) framework that utilizes historical electronic health records (EHRs) to enhance the pre-

diction of BSIs, thus facilitating precise intervention. By integrating a historical dataset with

advanced machine learning (ML) techniques, we sought to overcome the limitations of current

diagnostic methods. We presents the XAI-based BSI prediction (XBSI) framework for early

prediction of BSI. Our findings confirm that the XBSI framework meets and exceeds tradi-

tional models demonstrating enhanced predictive accuracy and interpretability.

1.1. Literature review

BSI is a critical precursor to sepsis, a severe and potentially life-threatening condition. Early

detection and management of BSI can significantly mitigate the risk of progressing to sepsis.

In this context, leveraging AI models to predict and manage BSI presents a promising avenue.

Our literature review sought to capture the breadth and heterogeneity of recent advances in

ML-based models for BSI prediction. We compiled and analyzed thirty studies published in

the last five years, focusing on various healthcare settings and patient demographics [11,14–

43]. These studies predominantly focused on inpatient settings, constituting 56% (n = 17) of

the research, followed by emergency department (ED) settings at 23% (n = 7) and intensive
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care unit (ICU) settings at 20% (n = 6). Within the inpatient group, the studies varied, with

nine examining general populations [14–22], two targeting inpatients with central venous

catheters (CVC) [23,24], and others focusing on specific patient categories such as hemodialy-

sis (HD) patients [26], cancer patients [27], maternity patients [28], patients with low procalci-

tonin levels (PCT�2.0 ng/ml) [29], and human immunodeficiency viruses (HIV) infected

patients [30]. Bacteremia was the primary condition under study in 24 articles, including var-

ied focuses such as fungemia [14] and candidemia [27,42], while three studies aimed at pre-

dicting central line-associated bloodstream infections (CLABSIs) [32,33,40] and one on

hospital-acquired BSI (HA-BSI) [22]. All articles reported high prediction performance (area

under the receiver operating characteristic curve (AUROC) > 0.7) except for one article [20].

Most studies were single-centered, with three studies sourcing data from two hospitals

[14,16,37] and two studies using data from multiple centers [34,42]. The key characteristics

such as target condition, number of patients or samples, data source, prevalence, ML models,

and top predictors for each study grouped by settings are given in Table 1.

Among studies with study design of inpatient settings, Bhavani et al. (2020) used EHRs

from two academic tertiary medical centers between 2007 and 2018. Data types included

demographic data, International Classification of Diseases (ICD) billing codes, clinician

orders, BC results, vital signs, nursing assessments, and laboratory data [14]. The logistic

regression (LR) and gradient boosting machine (GBM) models were developed. The GBM

model demonstrated superior performance in predicting bacteremia and fungemia with

AUROC scores of 0.78 for bacteremia and 0.88 for fungemia prediction. Lee et al. (2019) inves-

tigated the early detection of bacteremia using an artificial neural network (NN) model, specif-

ically a multi-layer perceptron (MLP). The study utilized data from 13,402 patients at

Gangnam Severance Hospital in South Korea, identifying 1,260 episodes of bacteremia from

blood cultures [15]. Data included 20 clinical variables, such as vital signs and various labora-

tory data. The study highlighted the effectiveness of MLP models, showing remarkable sensi-

tivity in identifying bacteremia episodes based on a well-curated set of clinical variables. Lee

et al. (2022) expanded on earlier research, utilizing an extensive dataset from Gangnam Sever-

ance Hospital, consisting of a larger patient sample size and more recent patient admissions

from 2013 to 2018 [16]. This study employed enhanced NN models alongside other ML tech-

niques like Random Forest (RF) and Support Vector Machines (SVM) to predict bacteremia

from clinical and laboratory data. The study by Mahmoud et al. (2021) developed a predictive

model for bacteremia using data from 7,157 adult patients admitted to King Abdulaziz Medical

City in Riyadh. This retrospective cohort study utilized EHRs from July 2017 to July 2019 to

analyze 36,405 blood culture tests [20]. The dataset included demographics, clinical variables

such as vital signs (e.g., temperature, heart rate, blood pressure), and laboratory data (e.g.,

white blood cell (WBC) count, platelet count, creatinine level, lactic acid level, C-reactive pro-

tein (CRP), and procalcitonin levels). Several ML models were employed to determine the best

predictor of positive blood cultures, including Neural NN, RF, LR, Decision Trees (DT), Naive

Bayes (NB), and SVM with a radial basis function (RBF) kernel. Garnica et al. (2021) utilized a

Hospital Universitario de Fuenlabrada dataset in Madrid, comprising 4,357 patients with 117

features per patient [21]. The features included demographics, medical history, clinical analy-

sis, comorbidities, and the results of blood cultures, differentiated into cases of bacteremia and

no bacteremia. Three supervised ML classifiers were implemented: SVM, RF, and K-Nearest

Neighbors (KNN). Each classifier was employed in two scenarios: using only the features avail-

able during blood extraction and a second scenario with additional features revealed during

the blood culture process.

Among studies in the ED settings, Choi et al. (2022) developed ML models to predict bac-

teremia at Seoul National University Hospital [31]. The study used data from 24,768 adult
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Table 1. The key characteristics of the studies using ML for BSI prediction.

Setting First author,

year

Target

condition

No.

Patients

Data source Prevalence ML models Key predictors

Inpatients Bhavani et al.

(2020) [14]

Bacteremia

and

Fungemia

76688 EHRs, University of Chicago

Hospital (2008–2018) and Loyola

University Medical Center, USA

(2007–2017)

Bacteremia

7.7%,

Fungemia 0.7%

LR, GBM Time from admission to BC,

Temperature, Age, HR, Prior

Bacteremia/Fungemia, WBC,

BUN, Glucose, DBP, SBP, PPI, RR

Lee et al.

(2019) [15]

Bacteremia 13402 EHRs, Gangnam Severance

Hospital, Seoul, Republic of

Korea, (2008–2012)

7.9% MLP, SVM, RF ALP, PLT, Temperature, SBP,

WBC, ICU stay, CRP, CVC, Age,

PT, Hospital days to BC, HR,

Gender, Antibiotics, RR,

Creatinine

Lee et al.

(2022) [16]

Bacteremia 622771

samples

EHRs, Sinchon and Gangnam

Severance Hospitals, Republic of

Korea, (2007–2018)

6.2% MLP, RF, XGB PLT, Monocyte, Neutrophil,

Bilirubin, Albumin, and Hospital

stay, BUN, ALP, RR, PR, DBP, TP,

WBC, PT, Hb, CRP, Creatinine,

ALT, AST, Sodium, Chloride, ESR

Cheng et al.

(2020) [17]

Bacteremia 28043 EHRs, Zhengzhou University

Hospital, China, (2017–2018)

10% LR, NB, SVM,

ADT, CNN,

BiLSTM,

ABiLSTM

+ DAE

Textual chief complaints,

Admission records, and Laboratory

biochemical indicators.

McFadden

et al. (2023)

[18]

Bacteremia 10965

samples

CBC/DC, CPD, Sir Charles

Gairdner Hospital, Western

Australia (2018–2020)

7.58% RF, XGB CBC, DIFF, and CPD

Lien et al.

(2022) [19]

Bacteremia 366586

samples

EHRs, CBC/DC, Linkou Chang

Gung Memorial Hospital

(CGMH) in Taiwan, (2014–2019)

8.2% RF, LR CBC/DC, CRP, and PCT

Mahmoud

et al. (2021)

[20]

Bacteremia 7157 EHRs, King Abdulaziz Medical

City, Riyadh, Saudi Arabia

(2017–2019)

11.4% NN, RF, LR,

DT, NB, SVM

Age, Antibiotics use, Surgery

within 14 days, CVC, length of

hospitalization before BC, RR, SBP,

Temperature, DBP, HR, WBC,

Sodium, PLT, Albumin,

Creatinine, Lactic acid level.

Garnica et al.

(2021) [21]

Bacteremia 4357 EHRs, Microbiological data,

Hospital Universitario de

Fuenlabrada, Madrid, Spain,

(2005–2015)

51.3% SVM, RF,

KNN

The number of days in ICU before

BC extraction, presence of

Catheters, Chronic Respiratory

disease, Fever, Age, CRP, PLT.

Murri et al.

(2024) [22]

HA-BSI 5660

samples

Generator Center at the

Fondazione Policlinico

Universitario A. Gemelli IRCCS

(FPG), Rome, Italy (2016–2019)

33.6% LR Time BSI > 12 days,

Procalcitonin > 1 ng/mL, Presence

of a CVC, PLT, Hypotension,

BUN, Presence of urinary catheter,

Fever, Tachycardia, Altered mental

status, Age, Bilirubin, Creatinine

Inpatients

with SIRS

Ratzinger

et al. (2018)

[23]

Bacteremia 466 EHRs Vienna General Hospital,

Austria, (2011–2012)

28.8% RF, ANN,

ENR

PCT, LBP, Albumin, Bilirubin

Inpatients

with CVC

Rahmani

et al. (2022)

[24]

CLABSIs 27619 EHRs, a proprietary national

longitudinal EHR repository,

Houston, Texas, USA (2015–

2020)

1% XGB, DT, LR Temperature, HGB, comorbidities,

Age, WBC, Race, Neutrophil.

Beeler et al.

(2018) [25]

CLABSIs 70218 EHRs, Indiana University Health

Academic Health Center, USA,

(2013–2016)

0.6% RF, LR Age, Gender, history of CLABSI,

CHG (Chlorhexidine Gluconate)

Bathing Non-compliant Days, Line

days.

HD patients Zhou et al.

(2023) [26]

Bacteremia 391 EHRs, Department of

Nephrology, Affiliated Hospital

of North

Sichuan Medical College,

Sichuan Province, China, (2018–

2022)

18.9% LR, SVM, DT,

RF, XGB

PCT, Temperature, Non-

arteriovenous fistula dialysis

access, NLR, Leukocyte, dialysis

duration, LMR, Albumin,

Neutrophil, PLT, Age, DBP, CRP,

PLR, ALP, SBP, HR, history of BSI,

(Continued)
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Table 1. (Continued)

Setting First author,

year

Target

condition

No.

Patients

Data source Prevalence ML models Key predictors

Cancer

patients

Yoo et al.

(2021) [27]

Candidemia 34574 EHRs, academic single hospital

in Seoul, Republic of Korea,

(2010–2018)

0.6% LR, ANN, RF,

GBM, AML

Variables reflecting the dynamic

status of patients with cancer,

including blood urea nitrogen

level, 7-day variance of RR, Total

bilirubin level, 7-day variance of

SBP, Body weight.

Maternity

patients

Mooney et al.

(2020) [28]

Bacteremia 129 CBC parameters, Rotunda

Hospital, Ireland (2019)

3% CART, LDA,

KNN, SVM,

RF

NLR, CBC parameters.

Patients with

PCT�2.0

ng/ml

Su et al.

(2021) [29]

Bacteremia 931 EHRs, Mindong Hospital

Affiliated to Fujian

Medical University, China,

(2014–2020)

47% ANN, KNN,

LR, RF, SVM,

and NB.

Interleukin-6, PCT, D-dimer,

Lactic acid, Leukocytes,

Neutrophil, and PLT.

HIV patients Wu et al.

(2023) [30]

Bacteremia 498 EHRs, Wenzhou Central

Hospital, China, (2014–2021)

34.3% SVM, ANN,

GBM, GLM,

MDA, PLR,

NB, RF

Low Hb, CD4+T cell, PLT, LDH,

BUN, splenomegaly, absence of

ART treatment, Strip shadow,

Nodular shadow, and Shock.

ED Choi et al.

(2022) [31]

Bacteremia 24768 EHRs, An urban tertiary referral

hospital, Republic of Korea,

(2016–2018)

12% XGB, RF, LR Chief complaint, Age,

Temperature, HR, and DBP at

triage stage. Neutrophils, PLT,

CRP, Chief complaints, and

Creatinine at disposition stage.

Choi et al.

(2023) [11]

Bacteremia 15362 EHRs, Seoul National University

Hospital, Seoul National

University Bundang Hospital,

Republic of Korea, (2016–2018)

10.9% BNN Age, HR, Temperature, DBP,

History of chills, Ambulance use

Boerman

et al. (2022)

[32]

Bacteremia 4885 EHRs, Amsterdam UMC,

location VU University Medical

Center, NL, (2018–2020)

12.2% GBT, LR Bilirubin, Urea, lymphocyte, Pulse

rate, CRP, Neutrophil, age,

Temperature, DBP, Potassium,

Glucose, Thrombocytes,

Creatinine, ALP, SBP, Organ

damage

Chang et al.

(2023) [33]

Bacteremia 20636 EHRs, CPD, CBC/DC, China

Medical University Hospital,

Taiwan, (2021–2022)

10.4% CatBoost,

LGBM, XGB,

RF, LR

Demographics, CPD, CBC/DC

Schinkel

et al. (2022)

[34]

Bacteremia 6421 EHRs, Amsterdam UMC,

(VUMC, AMC, ZMC, and

BIDMC), NL, (2016–2021)

5.4% - 12.3% XGB, LR Temperature, Creatinine, CRP,

Lymphocytes, DBP, Bilirubin,

Thrombocytes, Neutrophils, ALP,

HR, SBP, Leukocytes, Glucose,

Age, Potassium, BUN, Sodium,

monocytes

ED patients

with SIRS

Goh et al.

(2022) [35]

Bacteremia 40395 EHRs, National Cheng Kung

University Hospital, Taiwan,

(2015–2019)

10% LR, SVM, RF Age, Gender, COPD,

Uncomplicated DM, Hemato-

oncology, WBC, Band cell, Platelet,

Temperature, HR, mild liver

disease, Mean arterial pressure, RR,

GSC

ED patients

with fever

Tsai et al.

(2023) [36]

Bacteremia 3669 EHRs, Chi Mei Medical Center,

Taiwan, (2017–2020)

13.8% RF, LR, MLP,

XGB, LGBM

Hypertension, Gender,

Temperature, DM, Age, CRP, PLT,

WBC, Malignancy, Eosinophil,

HR, BMI, Hb, RR, SBP, DBP,

Band, CKD, Liver Cirrhosis,

COPD, GCS

(Continued)
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patients collected between 2016 and 2018. The models utilized demographics, chief com-

plaints, vital signs, and laboratory data collected during ED triage and disposition. Two pri-

mary models were developed: the Triage eXtreme Gradient Boosting (XGB) and Disposition

XGB models. In a subsequent study, Choi et al. (2023) aimed to refine the predictive accuracy

of ED triage-based bacteremia identification using an advanced ensemble of ML techniques.

The study analyzed data from over 30,000 ED visits, employing various clinical inputs, includ-

ing detailed symptom descriptions, vital signs, and initial lab results [11]. The developed

model incorporated a GBM framework that effectively integrated the diverse dataset to predict

bacteremia risk. The study by Schinkel et al. (2022) harnessed data from EHRs of 44,123

unique ED visits across four hospitals: Amsterdam UMC (VUMC), Zaans Medical Center

(ZMC), and Beth Israel Deaconess Medical Center (BIDMC) covering the period from 2011 to

2021 [34]. They employed a hybrid of LR and XGB models, with the latter outperforming in

predictive accuracy. The data included demographics, vital signs, and laboratory data such as

creatinine and CRP. This predictive model was integrated into the VUMC’s EHRs system for

real-time prospective evaluation, affirming its practical utility by potentially reducing unneces-

sary BC analyses by at least 30%. The study by Boerman et al. (2022) utilized a single-center,

Table 1. (Continued)

Setting First author,

year

Target

condition

No.

Patients

Data source Prevalence ML models Key predictors

ICU patients Roimi et al.

(2020) [37]

Bacteremia 3372 EHRs, BIDMC, Boston,

Massachusetts, USA, (2008–

2012), ICU of Rambam

Healthcare Campus (RHCC),

Israel, (2013–2017)

ICU acquired:

6.4% (BIDMC),

15.9% (RHCC)

RF, XGB Time duration (days) between

sampling time and last defecation,

Time duration (hours) between

sampling time and the maximum

BUN (mg/dL) value measured

during the 5 days prior to

sampling, Length of stay (days)

between sampling time and ICU

admission, The minimal weight

(kg) during the 5 days prior to

sampling, The time duration

between sampling time and the

maximum MCHC (g/dL) during

the 5 days prior to sampling

Van

Steenkiste

et al. (2019)

[38]

Bacteremia 2177 EHRs, ICU, Ghent University

Hospital, Belgium, (2013–2015)

10.5% BiLSTM,

ANN, SVM,

KNN, LR

Temperature, Thrombocytes,

Leukocytes, CRP, sepsis-related

organ failure assessment, HR, RR,

PT, and mean systemic arterial

pressure.

Boner et al.

(2022) [39]

Bacteremia 6557 EHRs, ICU, University of

Virginia, USA, (2011–2015)

13.3% FNN, GRU,

CNN, LR

Temperature, BUN, BP, HR,

Albumin, PLT, Chloride,

Creatinine, Chloride, and

Phosphorus.

Pai et al.

(2021) [40]

Bacteremia 4275 EHRs, Taichung Veterans

General Hospital ICU, Taiwan,

(2015–2019)

13.8% LR, SVM,

MLP, RF, XGB

ALP, CVC period, prothrombin

time, PLT, Albumin, Apache II

score, Age, foley

ICU patients

with CVC

Parreco et al.

(2018) [41]

CLABSIs 57786

admissions

MIMIC-III database, USA,

(2001–2012)

1.5% LR, GBT, DL Severity of illness scores (like SAPS

II, APS III, and OASIS) and

comorbidities.

ICU patients

with new-

onset SIRS

Yuan et al.

(2021) [42]

Candidemia 7932 EHRs, Peking Union Medical

College Hospital, The Affiliated

Hospital of Qingdao University,

The First Affiliated Hospital of

Fujian Medical University,

China, (2013–2017)

1% XGB, SVM,

RF, ET, LR

Colonization, Diabetes, AKI, total

number of parenteral nutrition

days, history of fungal infection,

CRRT days, Abdominal surgery,

BDG, days of mechanical

ventilation, Length of hospital and

ICU stay, days of CVC

https://doi.org/10.1371/journal.pdig.0000506.t001
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retrospective observational design, and the study encompassed data from 51,399 ED visits at

the VUMC from September 2018 to June 2020 [32]. Data included demographics, vital signs,

laboratory and radiology data, and medications administered during ED visits. The study

employed two predictive models: an LR model and a gradient boosted tree (GBT) model. Both

demonstrated good predictive performance with an AUROC of 0.77 and 0.78, respectively.

Notably, the GBT model was optimized to predict 69% of BC as negative, with a negative pre-

dictive value exceeding 94%, indicating its utility in potentially reducing unnecessary BCs and

associated healthcare costs. The models harnessed a comprehensive array of features, including

commonly available clinical data such as CRP levels and WBC counts, to predict the likelihood

of bacteremia. These studies illustrate how integrating ML models into ED workflows can

improve the speed and accuracy of BSI detection, potentially reducing unnecessary interven-

tions and optimizing resource allocation. However, all the models focused on current patient

data, and none of the studies utilized the predictors from the complete medical history of their

patients, apart from demographics and information on co-morbidities. In our previous work,

through innovative feature engineering from historical medical records and employing an

array of ML classifiers, we showcased the efficacy of tree-based ML models in predicting

adverse events in hospitals [44,45].

1.1.1. Data challenges and strategies. BSIs may be relatively rare compared to the num-

ber of non-infection cases in a dataset. This imbalance can make models biased towards pre-

dicting the majority class, reducing their effectiveness in identifying true infection cases. Most

studies reported imbalanced datasets with BSI prevalence rates, as in Table 1. To overcome

challenges with data imbalance, the Synthetic Minority Over-sampling Technique (SMOTE)

was widely used to augment the minority class in the dataset by generating synthetic samples

[15,24,42]. Goh et al. (2022) employed oversampling, undersampling, and random oversam-

pling (ROSE) methods for model development [35]. Lien et al. (2022) and Van Steenkiste et al.

(2019) employed the Area Under Precision-Recall Curve (AUPRC) metric for a more accurate

assessment of model performance in imbalanced datasets [19,38]. The study by Garnica et al.

(2021) encountered significant issues with missing data across the patient records used [21].

The types of missing data were classified into three categories: Missing Completely At Random

(MCAR), Missing At Random (MAR), and Missing Not At Random (MNAR). They employed

a separate class method to represent the missing data, ensuring the ML models could handle

these cases without dropping significant data. Using patient data to train ML models can raise

privacy and security concerns. Ensuring patient anonymity and complying with regulations

can limit the accessibility and use of certain data. Boerman et al. (2022) faced difficulty with

the limitation of not being able to use free-text data such as physician and nurse reports due to

privacy concerns [32]. To ensure patient privacy and compliance with data protection regula-

tions, researchers can implement effective deidentification of patient records, involving elimi-

nating or altering direct identifiers, such as names, ages, gender, or location, which could be

combined to identify an individual.

2. Results

2.1. Patient characteristics

The dataset’s mean patient age was 63.6 years, with a near-equal gender distribution (47.4%

female, 52.5% male). To provide a detailed description of the study population, we include

Table 2, summarizing the patients’ demographics and key clinical characteristics included in

the analysis. These characteristics are based on the entire dataset encompassing all care epi-

sodes recorded from 1999 to 2020, thus providing a comprehensive overview of the patient

population and their interactions with the healthcare system. There was a total of 72,495 BC
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episodes in the dataset. Following the exclusion of pediatrics and outpatient BC episodes,

65,975 adult inpatient BC episodes were included in the analysis. Of the BC episodes, 5,288

(8%) were classified as positive. Please see the flow chart provided in Fig 1. The differences in

the mean values for all features across the two classes and the T-statistic and p-value are given

Table 2. Summary of patient and care episode characteristics (1999–2020).

Characteristics Value

Total number of patients 35,591

Age (mean) 63.6

Sex (Male%/Female%) 52.5/47.4

Median Length of Stays (days) 0.41

ICU Admissions (%) 66.2

30-Day Mortality (%) 20.8

30-Day Readmission (%) 10.4

Number of Blood Cultures 72,495

https://doi.org/10.1371/journal.pdig.0000506.t002

Fig 1. Flowchart The flowchart depicts the categorization of the BC episodes.

https://doi.org/10.1371/journal.pdig.0000506.g001
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in (S1 File). The top 25 most significant features, the comparison between their mean values

across the two classes, and the T-statistic and p-value are given in (S1 File). There were signifi-

cant differences between the positive and negative BC groups regarding the occurrence of ICD

codes starting with A, B, and N in the medical records. The ICD Chapter I (A00-B99) describes

certain infectious and parasitic diseases, and ICD Chapter XIV (N00-N99) concerns kidney

and urinary disorders. From laboratory data, bilirubin, creatinine, and CRP showed the most

significant differences between the groups. The positive BC group also had higher mean age,

higher total length of stay (LOS) till the time of BC, shorter time to the most recent medical

episode, and a higher number of previous positive BC test results. The correlation matrix heat-

map visually represents the strength and directionality of correlations between various clinical

features, highlighting the complex interdependencies relevant to BSI prediction, please see (S1

File). The top three most correlated coefficients among significant features and the list of all

the features, their description, and the mean value across the dataset are given in (S1 File).

2.2. Model performance

The comparative performance metrics for the sequential and static models in the main and

case studies are given in Tables 3 and 4, respectively.

2.2.1. Sequential model performance. In the main study, the GRU model achieved the

highest AUROC (0.7830) and F1 score (0.3267) among the sequential models. The GRU’s rela-

tively high recall (0.6400) compared to its precision (0.2193) suggests that it was particularly

sensitive to detecting true positive cases, though at the cost of misclassifying some negative

cases as positive. The LSTM model, with an AUROC of 0.7568, also performed reasonably

well, although it did not reach the same levels of discrimination as the GRU. On the other

hand, the Transformer model, which achieved an AUROC of 0.7643 and an AUPRC of 0.2911,

demonstrated moderate performance with a more balanced trade-off between precision

(0.2339) and recall (0.5420). CNN-LSTM, with an AUROC of 0.7600 and AUPRC of 0.3115,

showed relatively low precision (0.1732) but higher recall (0.6785), indicating a significant ten-

dency to predict positive cases, even at the risk of false positives. This model’s specificity

(0.7105) was the lowest among all sequential models, reflecting a higher rate of false positives.

DKN, as a specialized model designed to incorporate knowledge-aware features, demonstrated

Table 3. Comparative performance metrics of ML models.

Main Study AUROC Accuracy Precision Recall F1 Score AUPRC Specificity

Sequential Models
LSTM 0.7568 0.7812 0.2008 0.5592 0.2955 0.3186 0.8011

GRU 0.7830 0.7835 0.2193 0.6400 0.3267 0.3560 0.7964

CNN-LSTM 0.7600 0.7079 0.1732 0.6785 0.2760 0.3115 0.7105

CNN-GRU 0.6973 0.8612 0.2425 0.3256 0.2779 0.2135 0.9091

Transformer 0.7643 0.8167 0.2339 0.5420 0.3267 0.2911 0.8413

DKN 0.6911 0.9012 0.3412 0.2194 0.2671 0.6000 0.9621

CapMatch 0.5003 0.0824 0.0821 1.0000 0.1517 0.5002 0.0004

Static Models
XGBoost 0.7995 0.8521 0.3191 0.5531 0.4047 0.4336 0.8876

LightGBM 0.8144 0.8046 0.2659 0.6529 0.3779 0.4319 0.8198

CatBoost 0.8181 0.8481 0.3219 0.6061 0.4205 0.4490 0.8750

NN 0.7739 0.9204 0.5241 0.3141 0.3928 0.3944 0.9745

LR 0.7771 0.7497 0.2150 0.6610 0.3244 0.3154 0.7586

RF 0.8407 0.9258 0.8000 0.1276 0.2201 0.4677 0.9971

https://doi.org/10.1371/journal.pdig.0000506.t003
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the highest specificity (0.9621), suggesting its strength in ruling out non-BSI cases with high

confidence. However, its lower recall (0.2194) and precision (0.3412) indicates that while it

effectively identified true negatives, it struggled with true positives, leading to a trade-off that

limits its overall utility in a clinical prediction setting where sensitivity and specificity are cru-

cial. The high recall (1.0000) of CapMatch is deceptive, as it essentially labeled all cases as posi-

tive, which, while capturing all true positives, resulted in an overwhelming number of false

positives, rendering the model impractical for actual use. In summary, the analysis of these

sequential models highlights significant trade-offs between sensitivity/recall and specificity.

Models like GRU and Transformer balanced these trade-offs better than others, making them

more suitable for clinical applications where false positives and negatives can have serious con-

sequences. However, even the best-performing sequential models faced challenges, particularly

in dealing with the inherent class imbalance, which affected their precision and overall

reliability.

2.2.2. Static model performance. The static models generally outperformed the sequen-

tial models across most evaluation metrics, indicating their stronger suitability for the BSI pre-

diction task on this dataset. The RF model stood out with the highest AUROC (0.8407) and an

exceptional specificity (0.9971), underscoring its effectiveness in correctly identifying true neg-

ative cases, those patients not likely to develop BSI. This high specificity suggests that RF is par-

ticularly adept at minimizing false positives, which is crucial in clinical settings where

unnecessary treatments can have serious consequences. However, the RF model’s recall was

notably low (0.1276), indicating a significant trade-off. While the model was extremely reliable

in ruling out non-cases, it failed to identify a substantial portion of actual BSI cases, reflected

in its lower recall. The CatBoost, a tree-based ensemble model, demonstrated robust perfor-

mance across most metrics, with an AUROC of 0.8181, indicating a strong overall discrimina-

tion ability. It achieved a balanced F1 score of 0.4205, suggesting a more moderate trade-off

between precision and recall compared to the RF model. CatBoost’s recall (0.6061) was signifi-

cantly higher than that of RF, indicating that it was more effective in identifying true positives,

albeit with a slightly lower specificity (0.8750). XGBoost, another popular gradient-boosting

model, also performed well with an AUROC of 0.7995, reflecting its capability to differentiate

between positive and negative cases. Its precision (0.3191) and recall (0.5531) were relatively

Table 4. Case Study: Comparative performance metrics of ML models.

Case Study AUROC Accuracy Precision Recall F1 Score AUPRC Specificity

Sequential Models
LSTM 0.5919 0.5700 0.5607 0.6061 0.5825 0.5987 0.5347

GRU 0.5927 0.5550 0.5446 0.6162 0.5782 0.5699 0.4950

CNN-LSTM 0.6416 0.5600 0.5390 0.7677 0.6333 0.6344 0.3564

CNN-GRU 0.6624 0.6300 0.6437 0.5657 0.6022 0.6242 0.6931

Transformer 0.6050 0.5900 0.6545 0.3636 0.4675 0.6294 0.8119

DKN 0.6392 0.6250 0.6277 0.5960 0.6114 0.6295 0.6535

CapMatch 0.5500 0.5450 0.7857 0.1111 0.1947 0.5371 0.9703

Static Models
XGBoost 0.7702 0.6850 0.7045 0.6263 0.6631 0.7816 0.7426

LightGBM 0.7667 0.6700 0.6813 0.6263 0.6526 0.7737 0.7129

CatBoost 0.8200 0.7150 0.7283 0.6768 0.7016 0.8308 0.7525

NN 0.7820 0.7200 0.7312 0.6869 0.7083 0.7604 0.7525

LR 0.7716 0.6800 0.6733 0.6869 0.6800 0.7584 0.6733

RF 0.7561 0.6700 0.6941 0.5960 0.6413 0.7615 0.7426

https://doi.org/10.1371/journal.pdig.0000506.t004
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balanced, leading to a moderate F1 score of 0.4047. This indicates that XGBoost, while slightly

less powerful than CatBoost, provided a good trade-off between precision and recall, making it

a reliable choice for BSI prediction. Its specificity (0.8876) was slightly lower than CatBoost’s,

suggesting that while XGBoost was effective, it might be slightly more prone to false positives

compared to CatBoost. With an AUROC of 0.8144, LightGBM closely followed CatBoost in

overall performance. Its recall (0.6529) was among the highest, indicating its strong sensitivity

to true positives. However, this came with a trade-off in specificity (0.8198), which, while still

high, was lower than that of RF and CatBoost, indicating a slightly higher rate of false positives.

This suggests that LightGBM might be more suitable in scenarios where the cost of missing a

positive case is higher than that of a false positive. The NN model also performed well, with an

AUROC of 0.7739 and the highest precision (0.5241) among all models, reflecting its ability to

minimize false positives. However, its recall (0.3141) was lower, leading to an F1 score of

0.3928. This suggests that the NN model was particularly conservative in its predictions, favor-

ing precision over recall, which could be advantageous in situations where the cost of a false

positive is high. The NN’s high specificity (0.9745) reinforces this interpretation, indicating

that it was very effective at identifying true negatives, making it a reliable choice for tasks

where precision is paramount. LR, the simplest model in the static models set, also showed

competitive performance with an AUROC of 0.7771. However, its precision (0.2150) was the

lowest among the static models. Its recall (0.6610), however, was the highest, indicating that it

was effective in identifying true positives, though this came at the expense of a higher rate of

false positives. The LR model’s F1 score (0.3244) and specificity (0.7586) were also lower, indi-

cating that while it performed adequately, it was outperformed by the more sophisticated

ensemble methods like CatBoost and LightGBM. In summary, the static models generally per-

formed better than the sequential models, with tree-based ensembles like RF, CatBoost, and

XGBoost leading the way. While RF excelled in specificity, models like CatBoost and

LightGBM provided more balanced performance across different metrics, making them versa-

tile tools for clinical prediction tasks.

2.2.3. Case study: Model performance. In the case study conducted to further validate

the models on a balanced subset of the data, there were some notable shifts in performance,

reflecting the variability in model generalization. Among the sequential models, the

CNN-GRU model performed the best, achieving an AUROC of 0.6624 and an AUPRC of

0.6242. The balanced dataset allowed CNN-GRU to maintain a relatively high precision

(0.6437) and F1 score (0.6022), which indicates a good trade-off between precision and recall.

DKN model also showed good performance among the sequential models, with an AUROC of

0.6392 and a balanced AUPRC of 0.6295. The static models once again outperformed the

sequential models, reaffirming their robustness and reliability in the context of BSI prediction,

even when the data distribution is balanced. The CatBoost model stood out, achieving the

highest AUROC (0.8200) and AUPRC (0.8308) across all models. These metrics indicate that

CatBoost maintained its strong discriminative power and excelled in precision-recall perfor-

mance, making it highly effective at distinguishing between true positives and negatives. The

high AUPRC is significant as it reflects the model’s ability to accurately predict the minority

class (BSI-positive cases) even in a balanced setting, where the opportunity to achieve a high

AUPRC is more challenging due to the increased presence of true negatives. The NN model

achieved an AUROC of 0.7820 and an AUPRC of 0.7604. In terms of precision (0.7312) and

recall (0.6869), the NN model demonstrated a well-balanced trade-off, resulting in a solid F1

score of 0.7083. This balance suggests that the NN was particularly effective in identifying true

positives while maintaining a relatively low rate of false positives. This is a critical advantage in

medical prediction tasks, where the consequences of both false negatives and false positives

can be significant. The NN model’s high specificity (0.7525) further highlights its ability to
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identify true negatives correctly. In summary, the case study results, conducted on a balanced

dataset, reinforced the findings from the main study by demonstrating that static models are

more reliable and effective. Among the sequential models, CNN-GRU showed the best perfor-

mance, followed closely by DKN, indicating their potential utility in scenarios where leverag-

ing both temporal dynamics and external knowledge is beneficial.

2.3. Global feature importances

The global feature importance of the models was assessed using SHAP values, providing

insights into the contributions of each feature to the model’s predictions. SHAP values offer a

unified framework to interpret the output of ML models, primarily designed for tree-based

models like the XGB used in our study. The bar plots rank the features by their average impact

on model output magnitude, giving a clear picture of which variables are most significant in

the decision-making process. The dot plots, or beeswarm plots, provide a more nuanced view

by showing how the values of these features (colored by feature value) contribute to the predic-

tion. Positive SHAP values indicate that a feature contributes positively towards the prediction,

while negative SHAP values indicate that a feature contributes negatively.

In the main study (Fig 2), the SHAP summary bar plot indicates that the most influential

features for predicting BSI include the count of diagnostic codes starting with letters A, B, and

N, bilirubin levels (BILIRUBIN_TOTAL), creatinine levels (KREATININ), and leukocyte count

(LEUKOCYTTER). These features are followed by the age of the patient, the number of previ-

ous positive BC results, and the length of stay (LOS) during the current or recent hospital epi-

sode. The SHAP summary dot plot further clarifies the impact of each feature’s value on the

model’s output. For instance, higher bilirubin, creatinine, and leukocyte values (as depicted by

red dots) are associated with a higher probability of a positive BSI prediction, reflecting their

clinical significance as indicators of infection severity. Conversely, lower thrombocyte levels

(TROMBOCYTTER) indicate a higher risk of BSI. The case study (Fig 3) also reveals critical

Fig 2. Main study: SHAP summary plots for XGB model. The bar plot on the left illustrates the global feature importance ranked by the sum of SHAP values

across all samples. On the right is the Beeswarm plot detailing the individual SHAP values for each feature and their impact on the model’s output.

https://doi.org/10.1371/journal.pdig.0000506.g002
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differences in global feature importance compared to the main study. The SHAP summary bar

plot for the case study highlights "time to last" (the time to the most recent episode) as the

most significant predictor, followed by the count of diagnostic codes starting with letters A,

bilirubin levels, and age. This suggests that in the case study, the recency of patient interactions

with the healthcare system is a more prominent predictor of BSI risk. The SHAP summary dot

plot provides further details, showing that shorter times to the most recent episode (indicated

by the higher concentration of red dots on the left) are strongly predictive of positive BSI out-

comes. Additionally, the importance of diagnostic codes starting with letters A and total biliru-

bin levels remains consistent with the main study, emphasizing their relevance across different

contexts.

2.4. Local feature importances

Fig 4. details the waterfall and force plots for the first three prediction tasks. In the first predic-

tion task, the feature ICD_A (infectious and parasitic diseases) has a significantly high positive

SHAP value, indicating that an increase in counts of ICD-10 Chapter I codes in the medical

history strongly sways the model towards predicting BSI. Similarly, creatinine level and

ICD_N (genitourinary diseases) show negative SHAP values, implying that higher levels of cre-

atinine and the presence of genitourinary diseases are linked to a lower probability of BSI in

this instance. For the second prediction, counts of prior positive BC results have the most sub-

stantial positive impact, aligning with clinical reasoning that past positive tests could indicate a

higher risk for infection. ICD_B (infectious and parasitic diseases) and ICD_R (abnormal

symptoms and findings) have a positive effect, and total bilirubin has a positive contribution,

predicting a higher risk of BSI. Similar to the second prediction, counts of prior positive BC

results again show a positive influence in the third prediction. Additionally, ’ICD_C_aggregate’
(aggregate count of cancer-related codes) exerts a negative impact on the prediction outcome,

whereas ’procedure_W_aggregate’ (count of procedures on female reproductive organs in the

Fig 3. Case study: SHAP summary plots for XGB model. The bar plot on the left illustrates the global feature importance ranked by the sum of SHAP values

across all samples. On the right is the Beeswarm plot detailing the individual SHAP values for each feature and their impact on the model’s output.

https://doi.org/10.1371/journal.pdig.0000506.g003
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history) is associated with an increase in the risk of BSI. In our model, the ’anomaly_score’ fea-

ture was observed to have a negative SHAP value for many predictions. This should not be

misconstrued as an indication of low importance. On the contrary, the negative SHAP value

reflects that higher values of ’anomaly_score’ reduce the probability of predicting a BSI. This

behavior is crucial for the model’s performance, as it highlights the features that drive the deci-

sion away from a positive prediction, thereby improving the model’s specificity.

2.5. Results of statistical analysis

The statistical analysis revealed several significant differences between the BSI positive and

negative groups, highlighting critical predictors, also referred to as features throughout this

study. The top 25 most significant features are detailed in (Table A in S2 File), where features

such as ICD_A (infectious diseases), ICD_B (infectious diseases), and ICD_N (kidney disease)

demonstrated the most substantial differences between the groups, with extremely low p-val-

ues (e.g., ICD_A: p< 1e-30), indicating their strong association with BSI outcomes. Specifi-

cally, the mean bilirubin level was significantly higher in the BSI-positive group (14.65 vs. 7.32;

T = -23.83, p< 1e-100), suggesting its potential as a biomarker for BSI prediction. Similarly,

prior positive BC tests showed a notable difference (0.37 vs. 0.18; T = -20.33, p< 1e-90),

underscoring the importance of historical infection data in predicting future BSI episodes.

(Table B in S2 File) expands on these findings by providing a detailed breakdown of the statis-

tical significance of each clinical feature. The analysis also included the construction of a Pear-

son correlation matrix (Fig A in S2 File), which highlighted the complex interdependencies

among the clinical features relevant to BSI prediction. For instance, there was a strong positive

correlation between creatinine levels and kidney-related ICD codes, which further supports

the role of renal function in the risk of BSI. In our analysis, we observed that certain features

exhibit significant correlations, as detailed in (Table C in S2 File). These correlations could

potentially influence the SHAP values by making it challenging to isolate the individual

Fig 4. Waterfall and Force plots for the first three predictions from the test set.

https://doi.org/10.1371/journal.pdig.0000506.g004
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contribution of each feature. In the context of tree-based models like XGBoost, SHAP values

assume feature independence when attributing importance to each feature. However, when

features are highly correlated, SHAP values may reflect shared information between these fea-

tures rather than their distinct contributions, leading to inflated or distorted importance

scores. Therefore, we interpreted SHAP values cautiously, especially when correlated features

might skew the feature ranking.

3. Discussions

In this study, we presented the XBSI framework for early prediction of BSI in hospitals. The

results indicate that the AUROC ranged from 0.5003 to 0.7830 for the sequential models. In

contrast, the static models showed superior AUROC values ranging from 0.7771 to 0.8407.

Additionally, the case study on a balanced subset of the data reinforced these findings, demon-

strating that the CNN-GRU model performed the best among sequential models. In contrast,

the CatBoost model outperformed all models with the highest AUROC of 0.8200. The statisti-

cal analysis and global and local SHAP value interpretations reveal that the count of diagnostic

and procedural ICD codes and laboratory data significantly contribute to the model’s predic-

tions. These findings align with existing literature, underscoring the clinical relevance of labo-

ratory data and medical history for early BSI prediction [14–16,20,21,46]. The demonstrated

efficacy of our XBSI framework highlights the predictive capability of combining medical his-

tory with laboratory data for early BSI prediction at the time of the BC order. The modular

design of our framework reinforces the robustness to all types of medical data and emphasizes

the utility of integrating diagnostic and procedural ICD codes into predictive models. This

approach allows for a nuanced understanding of patient profiles, which is pivotal for effectively

implementing predictive healthcare solutions. Our method demonstrates several distinct

advantages over SOTA models like DKN and CapMatch, primarily due to our unique feature

engineering and model interpretability strategies. While the DKN model integrates domain

knowledge through a knowledge-aware attention mechanism, enabling it to utilize external

information for enhancing predictive performance, it often sacrifices model interpretability.

Moreover, our feature engineering process distinguishes our method by extracting and select-

ing features from the raw EHR data that are particularly relevant to BSI prediction. These fea-

tures, combined with the interpretability provided by SHAP values, ensure that our model is

not only accurate but also comprehensible to clinicians.

3.1. Interpretations of results: Performance of sequential vs. static models

The sequential models were designed to capture temporal dependencies by incorporating

sequence information. In contrast, the static models, did not explicitly account for temporal

sequences but instead relied on feature engineering to encapsulate time-dependent informa-

tion. To ensure that temporal patterns were not entirely overlooked by the static models, we

derived specific temporal features, such as ‘time_to_last’ episode (the time elapsed since the

last episode) and ‘total_los’ (the cumulative hospital LOS up to the BC), which were included

as input features. These engineered features allowed the static models to incorporate some

temporal aspects indirectly. Despite our initial hypothesis that the sequential models would

outperform the static models due to their ability to directly process time-dependent data, the

results demonstrated that static models achieved better overall performance. Several factors

may contribute to this observation:

3.1.1. Data characteristics and temporal dependencies. The temporal patterns within

the dataset may not have been sufficiently strong or consistent to provide a distinct advantage

to the sequential models. Static models, by focusing on optimizing feature importance without
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the complexity of sequence modeling, may have been better suited to the nature of our data.

The static models benefited greatly from the feature engineering process, where temporal

aspects were distilled into features like ‘time_to_last’ episode and ‘total_los’ (cumulative LOS

till the BC).

3.1.2. Model complexity and data volume. Sequential models generally require larger

datasets to effectively capture subtle temporal patterns. Given the size and characteristics of

our dataset, the sequential models might have been limited in their ability to generalize, result-

ing in lower performance compared to the static models. Given the relatively smaller sizes and

irregularities of sequences of medical events, the complexity of these models may have led to

overfitting or underperformance. In contrast, the static models, which rely on simpler assump-

tions about the data, were able to generalize better under these conditions.

3.1.3. Data enchancement. The static models benefited from comprehensive data

enhancement through feature engineering, which distilled critical temporal information into

specific features. This process likely captured much of the necessary temporal dependencies,

allowing the static models to perform effectively. These findings suggest that while sequential

models are theoretically well-suited for tasks involving temporal data, their practical perfor-

mance may be constrained by the dataset size, the strength of the temporal patterns, and the

effectiveness of feature engineering. Further research is needed to explore the specific condi-

tions under which sequential models may outperform static models in this context.

3.1.4. Interpretability and clinical applicability. The static models also provided clearer

and more interpretable results, which is a critical consideration in clinical settings. The SHAP

value analysis conducted on the XGBoost model, for example, offered insights into feature

importance that were straightforward for clinical practitioners to understand and act upon.

This level of interpretability is essential for integrating AI-based models into healthcare deci-

sion-making processes.

3.1.5. Future research directions. While the findings suggest that static models are well-

suited for the current prediction task, it is important to note that this may not universally

apply to all clinical prediction tasks or datasets. Future research could explore conditions

under which sequential models might outperform static ones, particularly in larger datasets or

where temporal patterns are more pronounced. Additionally, hybrid approaches that combine

the strengths of both static and sequential models could offer a balanced solution, leveraging

the interpretability of static models and the temporal awareness of sequential models.

3.2. Comparison with previous works on BSI prediction models

Comparing the recent studies on predicting BSI in hospital settings, Bhavani et al. (2020) uti-

lized LR and GBM models to predict bacteremia and fungemia from EHRs, achieving AUCs

of 0.73 and 0.88, respectively. The key predictors identified in the study were time from admis-

sion to BC, temperature, age, heart rate, prior bacteremia/fungemia, WBC, blood urea nitro-

gen (BUN), glucose, diastolic blood pressure (DBP), and systolic blood pressure (SBP) [14].

Lee et al. (2019) compared multiple ML algorithms, including MLP, SVM, and RF, achieving

their best AUC of 0.732 with the RF model [15]. The key predictors reported by the study

included alkaline phosphate (ALP), platelet, maximum body temperature, SBP, WBC, CRP,

ICU stay, hospital day-to-BC, age, heart rate, prothrombin time, and albumin. In a subsequent

study, Lee et al. (2022) further explored MLP, RF, and XGB, focusing on their application over

a long-term dataset. Their models achieved AUCs of 0.762 for MLP and 0.758 for RF in the

12-hour data group, slightly lower than our CatBoost model’s performance. The key predictors

in this study were monocyte, platelet, hospital stay, neutrophil, total bilirubin, BUN, albumin,

ALP, WBC, CRP, creatinine, pulse rate, and chloride [16]. The study by Mahmoud et al. used
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data from a tertiary care center comprising patient demographics, LOS before BC collection,

presence of central line, vital signs, laboratory data, and SIRS and qSOFA scores [20]. They

employed various models, including NN and LR, with their best models achieving modest per-

formance metrics (highest specificity at 89% but with low sensitivity). This study extensively

used vital signs and other real-time clinical parameters such as temperature and heart rate as

predictors. Despite this, the highest sensitivity achieved was only 31% with LR, and even

though some of their models achieved high specificity, they needed more sensitivity, limiting

their practical utility in clinical settings. Our model’s ability to outperform these studies with-

out needing immediate clinical data or vital signs showcases our approach’s robustness and

efficiency. It suggests a potential for earlier and simpler implementation in clinical workflows.

This is particularly advantageous in healthcare settings where immediate comprehensive data

collection is challenging, offering a powerful tool for early BSI prediction that is less dependent

on the specific timing of clinical data acquisition. Similar to our study, the study by Garnica

et al. (2021) used SVM, RF, and KNN, with a combination of RF and SVM yielding the best

performance metrics [21]. The number of days in ICU before BC extraction, presence of cathe-

ters, age, chronic respiratory disease, fever, and CRP were reported as key predictors. Their

better performance in comparison can also be attributed to the fact that they used a BSI dataset

with a prevalence rate of 51.3%, the highest reported among all the studies reporting ML-based

BSI prediction models.

Our study’s findings also contribute to the evolving landscape of ML applications for BSI

prediction in ED settings. Schinkel et al. employed LR and XGBoost models using vital signs,

laboratory data, and demographics [34]. Their XGBoost model achieved an AUROC of 0.81

(95% CI 0.78–0.83), slightly higher compared to our XGBoost model AUROC of 0.7951 (95%

CI 0.7833–0.8069) and an AUPRC of 0.34 (95% CI 0.29–0.38) slightly lower than our XGBoost

model AUPRC of 0.3942. The key predictors brought out by this study were temperature, cre-

atinine, CRP, lymphocytes, DBP, bilirubin, thrombocytes, neutrophils, APL, heart rate, SBP,

leukocytes, glucose, age, potassium, BUN, sodium, monocytes. Their model effectively reduced

unnecessary BC by approximately 30% during real-time prospective evaluation, which aligns

with our goals of enhancing diagnostic efficiency and reducing healthcare costs. Our study

builds on this foundation by implementing a similar ML approach. Still, it extends its applica-

tion by incorporating a more comprehensive array of clinical variables derived from historical

EHRs and employing a novel algorithmic configuration that may provide improved predictive

performance. Similar to our study, Boerman et al. focused on the ED setting of a large teaching

hospital, developing predictive models specifically for BSI outcomes based on data available at

the end of ED visits, such as demographics, vital signs, administered medications, and labora-

tory data. They reported an AUC of 0.77 for the GBT model and 0.78 for the LR model, indi-

cating good performance in predicting bacteremia in ED [32]. The key predictors in their

study were bilirubin, urea, lymphocytes, pulse rate, CRP, neutrophil, age, temperature, DBP,

potassium, glucose, thrombocytes, creatinine, ALP, SBP, and organ damage. The study

highlighted the ability of their models to significantly reduce unnecessary BC by predicting

negative outcomes with a high degree of accuracy, reflected by a negative predictive value of

over 94%. In parallel, our model confirms these findings and demonstrates improved predic-

tive efficiency in differentiating between positive and negative BSI outcomes, which could fur-

ther optimize the use of resources in ED settings. In another study, Choi et al. (2022)

demonstrated the XGB model’s effectiveness in predicting bacteremia at different stages of

patient care in the ED, achieving an AUROC up to 0.853 [31]. The key predictors in the study

were chief complaint, age, temperature, heart rate, and DBP at the triage stage, as well as neu-

trophils, platelets, CRP, chief complaint, and creatinine at the disposition stage. Their phased

approach using predictions at both triage and disposition stages aligns with our methodology
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of employing dynamic modeling to adapt predictions based on real-time data updates. Our

model’s ability to accommodate historical clinical variables may explain any improvements in

prediction robustness compared to the framework used by Choi et al. (2023) [11]. The key pre-

dictors in this study were age, vital signs, history of chills, and ambulance use. The collective

insights from these comparisons suggest that while our model shares common ground with

existing approaches, it also explores additional layers of complexity, such as patient recent hos-

pital interactions, comorbidities, and previous history of infections, which may influence the

generalizability and effectiveness of the model across diverse healthcare environments, captur-

ing more subtle nuances of BSI risk factors early and could be pivotal in reducing BSI

misdiagnosis.

Our framework’s modular design facilitates the inclusion of additional data types as they

become available, enhancing its adaptability across various clinical settings. This feature is

particularly valuable in healthcare environments where flexibility and comprehensive data

utilization are crucial for advancing diagnostic accuracy. Moreover, the intuitive nature of

the XBSI framework ensures that it can be seamlessly integrated into existing clinical work-

flows, making it a practical tool for clinicians seeking to leverage AI for improved patient

outcomes. The principal clinical value of our approach lies in the ability to identify patients

at low risk of a positive BC at the time of suspicion of BSI without the need for waiting to

capture vital signs at the moment or within a specified time window, which could increase

patient risk and stay [47,48]. Integrating our proposed hospital framework as a pre-emptive

BSI prediction tool can reduce BC ordering and its resulting costs and harms [2]. As

reported in the literature, the use of data not routinely captured in clinical practice is the

main reason why none of the prediction models have been implemented in clinical practice

yet [49]. Moreover, in the context of ICU patient monitoring, the application of AI to real-

time data may seem redundant. Patients in critical care are already under intensive surveil-

lance, and using AI for immediate alert systems could potentially clutter the workflow

rather than enhance it. Instead, a more strategic use of AI lies in its ability to predict a

patient’s worsening condition well before critical thresholds are reached. By analyzing his-

torical EHRs, AI can identify subtle patterns and indicators of decline that precede acute

episodes, thereby enabling preemptive medical interventions. Moreover, as the complexity

of predicting health events increases the earlier the prediction occurs, achieving perfect

accuracy, as often highlighted through metrics like AUROC in ICU settings [37–42], may

not be as critical as maintaining reasonable predictability at the initial stages of patient con-

tact. This approach could shift the focus from crisis response to proactive patient care man-

agement, optimizing outcomes through early and targeted intervention. The only limitation

of this study is its reliance on data from a single center, which may not represent the diverse

patient demographics. Despite these constraints, our model’s ability to integrate a broader

spectrum of data and apply a XAI-based framework supports its potential utility in clinical

settings, promising reductions in unnecessary interventions and improvements in patient

management. Furthermore, using historical patient data and various ML techniques

allowed for a more flexible and scalable prediction framework. This aspect of our model

enhances its applicability and significantly advances BSI prediction using AI.

3.3. Addressing critical research gaps in BSI prediction

In the current landscape of BSI prediction research, several critical gaps have hindered the

development of effective and reliable models. Our study has been designed to address these

challenges, bringing forth significant improvements in data handling, feature engineering, and

model interpretability.
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3.3.1. Data imbalance. One of the predominant issues in existing BSI prediction models

is the challenge posed by imbalanced datasets, where minority class instances (e.g., true posi-

tive BSI cases) are significantly underrepresented. This imbalance often leads to biased models

that perform well on the majority class but fail to accurately identify critical minority class

cases, which are crucial in clinical settings. To address this, our study implemented class

weighting techniques and conducted a focused case study on a balanced dataset. By adjusting

the class weights and balancing the dataset, we significantly enhanced the model’s sensitivity

and its ability to identify minority class instances, thereby improving the overall performance

and clinical applicability of the model.

3.3.2. Feature engineering. Another gap in previous studies is the reliance on predefined

or less comprehensive feature sets, which can limit the predictive power of the models. In con-

trast, our approach emphasizes the extraction of meaningful features directly from historical

EHRs. This process involves deriving features that are specifically predictive of BSI, rather

than relying solely on predefined features. By focusing on comprehensive feature engineering,

we have enhanced the model’s ability to make accurate predictions, thereby setting our

approach apart from existing methodologies.

3.3.3. Model interpretability. A major limitation in many SOTA models is their lack of

transparency, which poses a barrier to their adoption in clinical practice. Models that operate

as "black boxes" are often met with skepticism by healthcare professionals who require clear,

interpretable insights into how predictions are made [50]. To overcome this, we have

employed SHAP values in our model, providing a transparent view of the contribution of each

feature to the model’s predictions. This interpretability is crucial for gaining the trust of clini-

cians and facilitating the integration of AI-based tools into clinical workflows.

3.3.4. Innovative modeling approach. Furthermore, our study is unique in its dual

approach, comparing and combining sequential and static data modeling techniques. This

comparison has revealed that while static models generally outperform sequential ones, each

approach has its own strengths. By integrating these methods, we provide a more comprehen-

sive analysis and understanding of the data.

3.4. Significance and contributions

Our study presents a novel approach to the prediction of BSI by addressing several critical

challenges identified in previous works. One of the key innovations of our research is the effec-

tive handling of data imbalance, which we tackled by incorporating class weights and conduct-

ing a focused case study using a balanced dataset. Additionally, we derived meaningful and

clinically relevant features from raw EHRs that are predictive of BSI, demonstrating the

robustness of our feature engineering approach. Furthermore, we provided comprehensive

comparisons between two types of data modeling techniques—sequential modeling using

sequences of medical events and static modeling using a derived feature set. The use of SHAP

values for interpretability further strengthens the clinical applicability of our models. By not

depending on vital signs requiring real-time monitoring and data capture, our model can be

applied more broadly across various healthcare settings. This includes environments where

continuous monitoring might not be feasible, such as in lower-resource settings or outpatient

care [51]. Using historical data minimizes disruptions to ongoing clinical workflows and does

not necessitate immediate data collection [52]. Healthcare providers can utilize the predictive

insights generated by our model without altering their routine patient assessments. Our frame-

work’s reliance on already available EHR data enhances its scalability. It can be deployed in

numerous healthcare systems without additional infrastructure to capture and process vital

signs, making advanced predictive tools more accessible to a broader range of healthcare
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facilities. Utilizing comprehensive historical data allows for identifying infection risks before

patients exhibit critical symptoms, potentially leading to preemptive treatments and better

patient outcomes. This predictive capacity can transform care strategies from reactive to pro-

active, particularly in managing infections that can escalate rapidly if not addressed timely.

The explainability aspect of the XAI approach increases trust among healthcare professionals

by providing clear insights into the decision-making process of the AI model, which is crucial

when clinical decisions are made [53].

3.5. Future works

In this study, we utilized SHAP values derived from the XGBoost model to explain the contri-

butions of individual features to the model’s predictions. The choice of XGBoost was driven by

its balanced performance across multiple evaluation metrics, making it a robust model for gen-

erating interpretable feature importance scores. However, we acknowledge that SHAP values

are inherently model-specific, meaning that the feature importance derived from XGBoost

may differ from those derived from other models such as LightGBM, RF, or NN. While

model-specific SHAP values provide valuable insights into how each model uses features to

make predictions, there is an emerging interest in developing a more generalized feature

importance measure that is independent of any particular model. One potential approach to

achieve this would be to aggregate SHAP values across multiple models by computing the

mean SHAP value for each feature. This aggregated SHAP value could offer a more holistic

view of feature importance by capturing the consensus across different model architectures.

However, this approach also presents certain challenges. Aggregating SHAP values across

models could dilute the interpretability that SHAP is designed to provide, as different models

may utilize features in fundamentally different ways based on their respective architectures

and training processes. Therefore, while the concept of an aggregate SHAP value is appealing,

it requires careful consideration to ensure that the resulting feature importance remains mean-

ingful and interpretable. We believe that exploring the aggregation of SHAP values across mul-

tiple models could be a valuable direction for future research. Such an approach could

enhance our understanding of feature importance by mitigating the biases associated with any

single model and providing a more generalized perspective on how features contribute to pre-

dictions in complex ML tasks. This line of inquiry could lead to the development of more

robust and interpretable ML models, particularly in critical applications such as clinical deci-

sion-making.

4. Materials and methods

4.1. Source of data

EHRs provide a longitudinal perspective of patients’ interactions with hospital services. In

Norway, which has predominantly public specialist healthcare, patients often have long and

continuous histories within one hospital’s records. This study harnessed EHRs from St. Olavs

University Hospital, Trondheim, Norway, encompassing 35,591 patients with suspected BSI

identified via physician-initiated BC between 2015 and 2020. The EHRs encompassed curated

data from the inception of electronic records in 1999 until 2020, exclusively included hospital

care episodes (excluding primary care and other specialist care episodes), ICU admission

details, microbiology test results, laboratory test results, and patient demographics comprising

of gender, date of birth, and date of death. Diagnoses and Procedures within these records

were classified using the International Classification of Diseases, 10th Revision (ICD-10), facil-

itating standardized disease identification critical for the analytical models. This study adhered
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to the ‘transparent reporting of a multivariable prediction model for individual prognosis or

diagnosis (TRIPOD) [54].

4.2. XBSI framework

The XBSI framework aggregated various data types from the raw EHRs, including demograph-

ics, laboratory tests, microbiology tests, discharge summaries, and ICU admissions, as depicted

in Fig 5. This dataset underwent preprocessing, event log creation for sequential ML models,

and feature engineering for static ML models before being transformed and scaled to facilitate

the respective model development pipelines, following subsections details the various steps in

the XBSI framework.

4.2.1. Data preprocessing and transformation. Initially stored in a Postgres database, the

medical data was converted into CSV files to facilitate easier manipulation and access. Utiliz-

ing Python libraries such as Pandas and NumPy, the CSV files comprising raw EHRs were

loaded as dataframes for processing. The discharge summaries required several data cleaning

steps to ensure the quality and relevance of the data: Relevant patient information such as

Fig 5. Schematic overview of the XBSI framework. The diagram illustrates the XBSI framework applied in the study, starting with the extraction of electronic

health records (EHRs), which include demographics, laboratory tests, discharge summaries, microbiology tests, and ICU stays. The workflow bifurcates into

two parallel processes: Sequence Creation and Feature Engineering, incorporating Anomaly Scores derived from the data. Subsequent steps include Data

Transformation and Scaling, with the data split into training (at 65% and 80%, respectively), validation (at 15%), and testing (at 20%) subsets. The bottom layer

of the workflow depicts the range of ML models, the performance metrics used to assess them, and the model explanations generated to study the feature

importances.

https://doi.org/10.1371/journal.pdig.0000506.g005
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identifiers, admission and discharge times, and diagnostic codes were retained. Instances of

missing identifiers were addressed by replacing empty strings with empty values and removing

these records. Data were organized by patient identifier and admission/discharge times to

maintain coherent episode tracking. Non-standard characters within diagnostic codes, such as

semicolons and commas, were standardized to spaces, and any duplicates were removed. The

timestamps were converted into datetime format, facilitating the calculation of the LOS in

hours for each episode. The duration of each ICU stay was calculated in hours, along with the

total count of each type of hospital admission per patient. The request dates in laboratory and

microbiology test results were standardized to datetime objects and used to create event logs of

tests per patient. Specialized functions were designed to clean the laboratory and microbiology

test table entries. This function performed tasks to remove any non-numeric characters, which

could represent encoding errors or artifacts from data entry. It standardized decimal point

characters by replacing commas with periods, necessary for consistent numerical representa-

tion across different regions that may use varying formats for decimal points. The microbiol-

ogy test table was filtered to identify suspected BSI episodes, emphasizing BC tests. The results

column was processed to standardize and clean the values, categorizing them as ‘positive’,

‘negative’, or ‘contaminant’ based on the results column. Four event logs were created for each

patient ID, including discharge summaries, ICU admissions, laboratory tests, and microbiol-

ogy tests. The following subsection describes the event logs.

4.2.2. Event log description. Discharge Summaries Event Log: Captures patient discharge

information, including admission and discharge times, diagnostic and procedural codes,

urgency, and care level codes.

ICU Admissions Event Log: Records details of each ICU stay, including the duration in

hours, the total count of ICU admissions per patient, and the total length of ICU stays per

patient.

Laboratory Tests Event Log: Includes results of various laboratory tests standardized and

organized chronologically for each patient.

Microbiology Tests Event Log: Consists of microbiology test results, grouped by collection

sample type, and categorizes them based on outcomes such as ‘positive’, ‘negative’, or ‘contam-

inant’. Groups of microbiology tests categorized by collection sample type are given in the

(List A in S2 File).

4.2.3. Sequence creation. The sequence creation process was implemented using the cre-

ate_sequences function, designed to compile a comprehensive view of a patient’s medical his-

tory over their entire recorded history. The create_sequences function systematically

constructs a timeline of medical events for each patient and BC test. The medical events were

merged from the four event logs. The filtered event logs are incorporated into a single data-

frame, ensuring no information is lost. This step involves an outer join on patient ID and date,

maintaining all records from each event log.

4.2.4 Feature engineering. This approach involved creating a dataset with attributes

derived from diagnostic codes, procedure codes, and laboratory and microbiology test results.

Laboratory test results were organized using pivot tables, ensuring a structured format for

analysis. Tests such as ’bilirubin’ (total, conjugated, and unconjugated), CRP, and ’lactate’ (var-

ious measurements) were included, alongside WBC count (leukocytes), platelet count (throm-

bocytes), and blood gas measurements (pH, PO2). Similarly, microbiology test results were

consolidated to reflect various sample types such as blood, urine, and other fluids, employing a

dictionary mapping to streamline similar kinds. The resulting pivot table included columns

for diverse samples, ranging from ’blood culture tests’ to ’urine’, ’feces’, and ’nasal swabs’. A

function was created to determine the aggregated result of BC tests for each patient group,

considering the possibility of concurrent positive and contaminant results. This aggregation
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provided a comprehensive view of the infection history per patient. Moreover, the history of

prior positive, negative, and contaminant results was calculated and added to the dataset, offer-

ing a valuable perspective on the patient’s previous encounters with infections. Comorbidities

were extracted and processed to identify unique diseases from patient records. New columns

were created for each disease, and the counts were updated based on patient history. Finally,

aggregate columns were added for diagnostic and procedure codes to calculate cumulative

sums. This method enabled capturing the cumulative history of medical conditions and proce-

dures for each patient. All the empty values representing the absence of a condition or mea-

surement were filled with zero, and “0” is not interpreted as a value.

4.2.5. Model development. This section outlines the development and evaluation of ML

models. The process bifurcates into the sequence creation and feature engineering pipelines

for the sequential and static ML pipelines respectively. An Isolation Forest model was imple-

mented to detect anomalies within the data. This model was trained exclusively on normal

data (negative BC episodes) and then used to compute anomaly scores for the training, valida-

tion, and test sets. These scores were normalized and appended to the original dataset to serve

as additional features, enhancing the model’s ability to distinguish between normal and abnor-

mal patterns. Given the sequential and tabular nature of the input data for the respective ML

pipelines, the necessary transformation steps were employed to prepare it for the correspond-

ing learning algorithms. The data was reshaped and scaled using the functions from the

sklearn library. This normalization step is crucial for models sensitive to input features’ scale.

After scaling, the data was reshaped to its original form, ensuring compatibility with the mod-

els. Sequential ML models included Long Short-Term Memory (LSTM), Gated Recurrent

Unit (GRU), Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM), Con-

volutional Neural Network-Gated Recurrent Unit (CNN-GRU), Transformer model, and two

additional State-Of-The-Art (SOTA) ML models, Densely Knowledge-aware Network (DKN)

and CapMatch (Semi-Supervised Contrastive Transformer Capsule with Feature-Based

Knowledge Distillation for Human Activity Recognition). These models were trained on

sequences of medical events to capture temporal dependencies within the data. On the other

hand, the static ML models, which treat data points as independent and identically distributed,

comprised of Light Gradient Boosting Machine (LightGBM), eXtreme Gradient Boosting

(XGBoost), Categorical Boosting (CatBoost), Artificial Neural Network (ANN), Random For-

est (RF), and Logistic Regression (LR). Detailed mathematical formulation and computational

complexity for each ML model are given in (Section 1.1 and 1.2 in S1 File).

4.2.6. Model validation. For cross-validation, we chose a 5-fold cross-validation scheme.

This technique involves dividing the entire dataset into ‘k’ equally sized subsets or folds. The

model is then trained on ‘k-1’ folds and tested on the remaining fold. This process is repeated

‘k’ times with a different fold as the validation set. In addition to cross-validation, we also vali-

dated our model on an independent test set, which was separated from the dataset at the outset

and not used during the training phase. The test set comprised the most recent 20% of the BC

episodes, while the earliest 80% of BC episodes were assigned as training cohorts. Further, the

data was divided into training and validation sets, with 15% of the data allocated for validation.

This additional split allowed for tuning hyperparameters and assessing the model’s perfor-

mance during training. Each model was evaluated using a variety of metrics to evaluate model

performance, including accuracy, precision, recall, F1-score, specificity, the Area Under Preci-

sion-Recall (PR) Curve (AUPRC), and the Area Under the Receiver Operating Characteristic

(AUROC). Detailed information and mathematical formulations of each performance metric

are given in (Section 1.3 in S1 File).

4.2.7. Model explanations. We employ global and local explanation methods to interpret

our ML models’ outputs to provide comprehensive insights into feature importances. For
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global explanations, we generate SHAP (SHapley Additive exPlanations) summary plots [55].

These plots aggregate SHAP values to illustrate the average influence of each feature on the

model output, ranked by significance. This method, rooted in game theory, decomposes a pre-

diction into the contribution of each feature, providing a transparent view of the predictive

process. SHAP’s suitability for tree-based models was enhanced by its efficient computation of

exact SHAP values using the TreeExplainer algorithm [56], significantly reducing computa-

tional complexity by exploiting the structural properties of decision trees. For local explana-

tions, we utilize waterfall plots and force plots to detail the contribution of each feature to

specific predictive outcomes. Waterfall plots provide a step-by-step breakdown of how each

feature’s value contributes to the final prediction, starting from the base value (the average

model output across all data points) and adding the effect of each feature sequentially. This

visualization helps understand the decision-making process for individual predictions, which

is crucial for clinical validation and personalized patient insights. Force plots, another local

interpretability tool, display how each feature’s value pushes the model’s prediction higher or

lower, particularly useful for individual patient assessments. These plots highlight each fea-

ture’s positive or negative contribution towards the final prediction, allowing healthcare pro-

viders to grasp the underlying reasons for a model’s decision on a case-by-case basis.

4.3. Participants and outcome

All adults (aged� 18 years) who had at least one BC episode during their hospital stay or visit,

which was identified and ordered by a physician on the grounds of suspicion of a BSI. The pri-

mary outcome was whether a BC episode was positive or negative for bacteremia. A BC epi-

sode was defined as a distinct nonoverlapping 24-hour period in which one or more BC tests

were ordered [43]. If one or more results within a BC episode were positive, then the BC epi-

sode was considered positive. BC results with contaminants were considered negative results

[57]. The list of microbes considered as contaminants is given in (Table F in S2 File).

4.4. Predictors

We used data available till the date of a BC episode for training the ML prediction models. The

predictors included age, sex, results of the recent laboratory test values, previous positive

microbiology tests, count of co-morbidities, diagnostic and procedural codes, and total ICU

stays. The most common laboratory tests were bilirubin, CRP, creatinine, leukocytes, and

thrombocytes. The counts of prior positive results of microbiology tests grouped by their col-

lected sample type were calculated and used as predictors of previous history of infections

(S1 File). From the medical history, the predictors included counts of the occurrences of differ-

ent ICD-10 diagnostic and the Nordic Medico-Statistical Committee (NOMESCO) Classifica-

tion of Surgical Procedures (NCSP), codes and Classification of Medical Procedures (NCMP)

codes, were classified according to the initial character (alphabetic), corresponding to the vari-

ous chapters of the ICD-10. Each patient record was expanded with new columns for the

counts of the ICD codes in the recent and complete history corresponding to each character,

incrementing the count for each instance where a character led the code. For calculation of

diagnostic and procedural code counts in the recent episode, the current episode and any

admissions or visits within one month of the BC test date were merged into the current medi-

cal episode. The LOS feature stored the length of stay of the most recent hospital episode until

BC. The total LOS feature stored the value of the cumulative hospital length of stay per patient.

The description of each predictor and its mean across the dataset is given in Table D in S2 File.

Further stratification was conducted by categorizing diagnostic codes into disease groups per-

tinent to clinical significance, such as ’explicit sepsis’, ’infection’, and ’organ dysfunction’. The
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table depicting the diagnostic codes selected for different disease groups is given in Table E in

S2 File.

4.5. Prediction task modeling

We undertook prediction modeling using two distinct datasets: a static model dataset, X, and a

sequential model dataset, Y. The static dataset, X, encompasses labeled aggregated, patient-spe-

cific information available till the day of the BC episode. Using X, we trained static models

Msta to predict the likelihood of a positive BC episode. The sequential dataset, Y, contains

labeled sequences of medical events per patient compiled from the event logs for each BC test.

The sequential model Mseq is developed using Y to predict the likelihood of a positive BC

episode.

4.6. Case study: Patient selection process and XBSI workflow

4.6.1. Patient selection criteria. The selection criteria included the following steps:

Data Segregation: The original dataset was divided into two groups: positive cases (those

with BSI) and negative cases (those without BSI).

Deduplication: To ensure each patient was only represented once, duplicate entries were

removed based on patient identifiers.

Downsampling: From each group, 500 patients were randomly selected to create a balanced

dataset. This process was carefully managed to avoid any potential bias, ensuring that both

groups were representative of the overall population.

Data Shuffling: The final dataset was shuffled to eliminate any ordering effects, resulting in

a balanced and randomized dataset comprising 1000 patients, equally split between positive

and negative BSI cases.

4.6.2. XBSI workflow. The XBSI framework was employed to generate features from the

historical medical data of the selected patients and subsequently train both static and sequen-

tial ML models. The workflow followed these steps:

Feature extraction/engineering: Relevant features/predictors were extracted from the

patient’s medical history, including demographic data, clinical measurements, and prior diag-

noses. For static models, this involved aggregating features that represented the patients’ state

at the time of the BC test.

Sequence generation: For the sequential models, sequences of medical events leading up to

the BC test were generated. These sequences included time-ordered events such as hospital

and ICU admissions, and laboratory, and microbiology test results, providing a temporal con-

text to the model.

Model development: Static models and sequential models were trained using the generated

features and sequences, respectively. The models were evaluated using standard metrics. The

balanced dataset helped in mitigating the effects of class imbalance, leading to more robust

and reliable model performance.

Interpretation of results: SHAP values were used to interpret the models’ predictions.

4.7. Computational complexity analysis

To comprehensively evaluate the ML models, we conducted an analysis of their computational

complexity. This analysis is essential to understand the trade-offs between model performance

and the resources required for model training and inference, particularly in a clinical setting

where computational efficiency can directly impact real-time decision-making.

4.7.1. Sequential models. LSTM and GRUModels: The computational complexity of

LSTM and GRU models primarily depends on the number of parameters and the sequence
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length. The time complexity for both models is O(n×d×h), where n is the number of time steps

(sequence length), d is the dimensionality of the input, and h is the number of hidden units.

GRU models are slightly more efficient than LSTM models due to their simpler architecture,

as GRUs have fewer gates, reducing the number of operations required per time step.

CNN-LSTM and CNN-GRUModels: These hybrid models combine convolutional opera-

tions with LSTM or GRU layers. The convolutional layers’ complexity is O(f×k×d), where f is

the number of filters, k is the kernel size, and d is the input dimension. This is followed by the

sequential layer complexities mentioned above. Although these models capture both spatial

and temporal features, they are computationally more intensive due to the convolutional

operations.

Transformer Model: The Transformer model’s complexity is O(n2×d) for the multi-head

self-attention mechanism, where n is the sequence length and d is the dimension of the model.

This quadratic dependence on the sequence length makes the Transformer model more com-

putationally expensive compared to RNN-based models like LSTM and GRU, especially for

longer sequences. However, the model’s ability to handle parallelization can offset this during

training, leading to faster convergence times.

DKNModel: The DKN model integrates both sequential and knowledge graph information,

which increases its complexity. The complexity for this model can be represented as (n×d×h
+g×e×h), where n is the sequence length, d is the input dimension, h is the number of hidden

units, g is the number of graph nodes, and e is the embedding dimension of the knowledge

graph. The additional complexity arises from integrating the knowledge graph, which requires

additional computation to align the graph embeddings with the sequence data.

CapMatch Model: The CapMatch model uses a unique method for handling missing and

uncertain data by employing capsule networks and matching networks. The complexity of this

model is determined by both the capsule networks O(c×d×r), where c is the number of cap-

sules, d is the dimension of the capsule output, and r is the routing iterations, and the matching

network O(m×d×s), where m is the memory size, d is the input dimension, and s is the support

set size. This dual architecture, while powerful for handling complex patterns and uncertainty,

is computationally demanding, particularly in terms of memory usage and inference time.

4.7.2. Static models. Tree-based Models: The computational complexity of the RF model

is generally O(t×d×log n), where t is the number of trees, d is the depth of each tree, and n is

the number of samples. This complexity reflects the time required to construct the ensemble of

decision trees and make predictions. RF is known for its robustness and ability to handle large

datasets effectively, but the model’s complexity increases with the number of trees and the

depth of each tree. The other tree-based models (XGBoost, LightGBM, CatBoost) have compu-

tational complexity f similar to RF but with additional optimizations. XGBoost typically

demands more computational resources due to its extensive regularization techniques, while

LightGBM is optimized for speed and memory usage through histogram-based techniques

and leaf-wise growth strategies. CatBoost, on the other hand, efficiently handles categorical

data without requiring extensive preprocessing, reducing overall computation time.

Artificial Neural Network (ANN): The complexity of the ANN used in this study is O
(l×n×d), where l is the number of layers, n is the number of neurons per layer, and d is the

input dimension. The model’s fully connected nature increases the number of parameters,

leading to higher computational demands, especially as the network depth increases.

Logistic Regression (LR): Logistic regression has a linear computational complexity of O
(n×d), where n is the number of samples and d is the number of features.

Summary of Computational Trade-offs: The computational complexity of the models pres-

ents a clear trade-off between performance and resource efficiency. Sequential models like

LSTM, GRU, DKN, and Transformers offer robust performance for time-series data, but their
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higher computational costs necessitate careful consideration in deployment, especially in

resource-constrained environments. The CapMatch model, while highly effective at handling

uncertainty and missing data, also introduces significant computational demands due to its

complex architecture. The RF model, although computationally expensive during training, is

often faster during inference, making it well-suited for real-time applications. Other static

models, particularly the tree-based ensemble models, provide a balanced approach, offering

high accuracy with moderate computational demands. Logistic regression remains the most

efficient in terms of computational resources, though at the expense of predictive

performance.

4.8. Statistical analysis

The mean values for the significant features across the two classes were computed, providing

an understanding of how each feature varies with the BC episode results. Statistical analysis

was performed using independent t-tests to compare the means of each feature between two

independent groups labeled by blood culture test results [58]. A Pearson correlation matrix

was constructed for the significant features to examine the strength and directionality of the

relationships between them [59]. The resulting coefficients were visualized using a heatmap.

The results of the statistical analysis are given in the (S1 File).

4.9. Ethics statement

This study utilizes a de-identified dataset comprising EHRs from the St. Olavs University Hos-

pital, Trondheim, Norway. The data was accessed and analyzed through a secure private cloud

platform. The use of the EHRs in this project has been approved by the Regional Committee

for Medical and Health Research Ethics (REK) in Central Norway by REK no. 2020/26184.

5. Conclusions

In this study, we successfully developed and validated a robust predictive framework for BSI

using historical EHRs. Our approach, which integrated both sequential and static ML models,

demonstrated that static models outperformed sequential models in terms of predictive perfor-

mance. This finding underscores the importance of data enhancement and tree-based ML mod-

els, especially when dealing with complex clinical datasets [60]. We also addressed key

challenges in BSI prediction, such as data imbalance and model interpretability. By applying

class weighting and utilizing SHAP values, we enhanced the model’s ability to identify early pre-

dictors of risk of BSI. The presented XBSI framework is the first to significantly enhance predic-

tive analysis by integrating information stored as diagnostic and procedural ICD-10 codes. This

novel approach diverges considerably from traditional real-time monitoring systems, emphasiz-

ing incorporating comprehensive historical patient data. The key predictors include the count

of ICD-10 codes for infectious diseases, kidney and urinary disorders, bilirubin, creatinine, leu-

kocytes, thrombocytes, age, prior positive BC tests, and the total length of hospital stay until the

BC test. To further enhance the generalizability of our findings and adoption of our framework,

we need to validate our framework on administrative datasets of hospitals outside Norway and

include more diverse data sources, such as, genotypes and phenotypes, in future works.

Supporting information

S1 File. Supplementary methods. Additional materials and methods, including mathematical

formulations for the ML models and performance metrics.

(DOCX)
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S2 File. Supplementary results. Contains additional results on statistical analysis and descrip-

tion of predictors. Fig A: Correlation matrix of clinical predictors Table A. Comparison of the

predictors (Top 25 most influential) between the two classes. Table B. Statistical significance

of clinical Predictors. Table C. Correlation coefficients of most correlated Features. Table D.

List of all the predictors, their description and their average values across the dataset. Table E.

List of ICD-10 codes used to classify selected diseases. Table F. List of microbes identified as

contaminants List A. Groups of various microbiology tests.

(DOCX)
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