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ABSTRACT Sports multimedia is among the most prominent types of content distributed across social
media today, and the retargeting of videos for diverse aspect ratios is essential for a suitable representation
on different social media platforms. In this respect, ice hockey is quite challenging due to its agile movement
pattern and speed, and because the main reference point (puck) is very small. In this paper, we introduce a
novel pipeline for intelligent video cropping tailored for ice hockey. Our main goal is to identify regions
of interest in video frames by detecting and tracking the hockey puck using state-of-the-art AI models.
Our pipeline employs scene detection, object detection, outlier detection, and smoothing as key features.
Our proposed pipeline called SmartCrop-H is not only highly efficient and configurable with respect to
target aspect ratios, but also addresses the automation needs in this domain. Our comprehensive evaluation,
comprising objective and subjective measures, shows the overall efficiency of the entire pipeline, including
assessments of both the individual components and the end-to-end system performance.We also demonstrate
the practical applicability of SmartCrop-H with a user study, which indicates that our framework performs
on par with, or even surpasses, professional tools in terms of output quality.

INDEX TERMS AI, aspect ratio, cropping, ice hockey, social media, video processing

I. INTRODUCTION

IN today’s fast-paced digital landscape, the consumption
of media content is no longer confined to traditional plat-

forms. Ice hockey, with its intense fan base, epitomizes the
type of content fans eagerly consume on a variety of de-
vices, ranging from expansive television screens to handheld
smartphones. Each viewing platform, with its unique aspect
ratio, demands a customized presentation to ensure consistent
content delivery to audiences, regardless of their viewing
device [1].

Curation of multimedia content for various target devices
and platforms is traditionally a tedious manual job, despite
and in conflict with the expectation of fast publishing [2].
Conventionally, video cropping has been undertaken using
tools, such as Adobe Premiere Pro [3] and Final Cut Pro [4],
which require laborious frame-by-frame editing. However,
this manual approach does not meet the needs for real-time
broadcasting and voluminous content. The industry has thus
pivoted towards automated solutions, with emerging deep

learning models promising more efficient video retargeting.
However, the dynamic and unpredictable nature of ice hockey
broadcasts brings forth unique challenges: tracking andmain-
taining the visibility of the smaller and faster focal object
(puck) across varying aspect ratios is more demanding than
in other sports domains, where this is already a demonstrably
hard problem [5].

In this paper, we aim to automate the curation of ice
hockey highlights for direct publication on social media. We
introduce SmartCrop-H, an end-to-end pipeline optimized for
cropping ice hockey videos into various aspect ratios tailored
for different social media platforms. Based on the idea pro-
posed for cropping soccer videos [6], our solution is designed
to ensure that the hockey puck remains in clear view, thus en-
hancing the viewing experience for fans worldwide. However,
as the previous soccer approach does not work on ice hockey
videos due to domain-specific challenges (e.g., small puck,
faster pace, different broadcast settings, etc.), SmartCrop-H
reworks the fundamental ideas for scene detection, object
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FIGURE 1: Cropping from 16:9 to 9:16 aspect ratio using
object detection. Red dot = cropping-center or POI, red trans-
parent square = cropping area or ROI.

detection, and outlier detection, along with adding new logic
for smoothing, to calculate the optimal cropping center for
video frames (Figure 1).

The contributions of this paper are as follows:
• An implementation of an end-to-end automated video

cropping pipeline customized for ice hockey, which pos-
sesses distinct properties compared to other sports such
as soccer.

• A comprehensive objective evaluation of the pipeline,
assessing both individual component performance and
overall system performance.

• A subjective evaluation of the end-to-end pipeline,
where user study participants demonstrated a preference
for SmartCrop-H over alternative cropping methods.

• A detailed competitor analysis conducted through a sep-
arate user study, comparing SmartCrop-Hwith Final Cut
Pro Auto Reframe, Adobe Premiere Pro Auto Reframe,
manual cropping using Adobe Premiere Pro, and static
cropping.

The results from objective and subjective experiments, with
a total of 64 participants in 3 different user studies, suggest
that SmartCrop-H improves end-users’ Quality of Experience
(QoE) and is suitable for real-world deployment. Compared
to other tools, SmartCrop-H shows significant superiority
over basic and less sophisticated methods, marginal superior-
ity over automated techniques, and highlights areas for further
development to reach the standards of manual cropping.

II. BACKGROUND
A. VIDEO ASPECT RATIO ADJUSTMENT
Algorithms for adjusting the video aspect ratio are essential
in maintaining content quality on different viewing devices.
Content-adaptive reshaping (warping) focuses on selectively
altering certain areas of an image while preserving key re-
gions using a grid-based scaling approach [7], [8]. Segment-
based exclusion (cropping) targets a particular image or frame
area, ignoring elements outside the selected boundary [9]–
[12]. Seam extraction identifies and removes non-essential
pixel lines, optimizing the image for different aspect ra-

tios [13], [14]. Hybrid methods combine these foundational
strategies, such as merging cropping with content-adaptive
reshaping [15], or integrating seam extraction with segment-
based exclusion [16]. A landmark method by Apostolidis and
Mezaris [17] uses cropping to retarget videos to different
aspect ratios, with a focus on minimizing semantic distor-
tions. These methods, while adept at general video aspect
ratio transformation, may not be ideal for scenarios like sports
videos where tracking a specific object like a ball or puck is
crucial. This limitation arises because the algorithm focuses
on areas of high visual saliency, which may not always in-
clude the target object. Consequently, this approach might ex-
clude the object of interest during cropping. Additionally, the
method prioritizes minimizing semantic distortions, which
differs from the needs of videoswhere object presence ismore
critical than overall image quality or semantic content.
By enabling flexible and intelligent adaptation of video

content to various screen sizes, these algorithms play a pivotal
role in bridging the gap between diverse digital platforms
and viewing devices, ensuring that every viewer enjoys an
optimal visual experience, a necessity in our increasingly
screen-oriented world.

B. PUCK DETECTION AND TRACKING IN ICE HOCKEY
Advancements in computer vision and computing technolo-
gies have significantly impacted the field of sports analytics,
including the localization and tracking of the puck in ice
hockey. Various methods, including deep network regressors
and hierarchical graph-based methods, have been developed
to address the challenges posed by the puck’s small size,
rapid movement, and occlusions in broadcast ice hockey
games [18]–[23]. These advances have not only enhanced the
accuracy of puck tracking systems, but have also contributed
to a deeper understanding of the game’s dynamics.
A notable contribution in this domain is the implemen-

tation of an automatic system for puck tracking and play
localization [20]. Utilizing the puck as a key indicator of
action, this system employs advanced techniques such as
deep network regressors trained on high-definition video.
The authors demonstrate the effectiveness of their method
by providing a cost-effective solution for dynamic video
capture and retargeting, particularly in amateur-level hockey.
The impact of puck tracking technology extends to profes-
sional sports broadcasting as well, as evidenced by its use in
Fox Sports’ NHL coverage. Despite facing initial challenges,
technology has led to significant advancements, including
patents and improved viewer ratings and engagement [24]. An
advanced system has been developed for determining puck
possession and location, which incorporates two innovative
modules: one for direct puck candidate detection and another
for estimating puck location based on player motion fields.
This system represents a major step forward in automated
hockey video analysis, providing detailed strategies for puck
detection and possession [25]. Research using indoor local-
ization data from the Wisehockey platform has focused on
detecting bodychecks in ice hockey. Employing a random
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forest algorithm, this study achieved high accuracy but also
highlighted the need for further improvements to reduce false
positives. Future enhancements could include the integration
of acceleration data and video analysis for more accurate
detection [26].

While existing methodologies are robust, they often re-
quire high-definition video input and are tailored for profes-
sional broadcast environments, which may not be available or
practical for all applications. The complexity and specificity
of these methods limit their generalizability and scalability,
particularly for amateur settings or when computational re-
sources are constrained. In the context of hockey broadcasts,
the application of object detection models presents unique
challenges, especially concerning the consistent visibility of
the puck, a central element in the sport. Among the pri-
mary difficulties is inconsistent detection. Factors such as
swift changes in lighting, obstruction by players, and varying
camera angles can significantly affect the accurate detection
of the puck, despite using sophisticated models. Moreover,
adapting to different aspect ratios while keeping the puck
visible, undistorted, and centrally located is not straightfor-
ward. Techniques like content-adaptive reshaping or seam
extraction can sometimes reduce visibility if not executed
correctly. Additionally, implementing outlier detection and
smooth-function techniques to rectify detection errors adds
to the complexity. While these methods aim to increase pre-
cision, they may paradoxically introduce inaccuracies due to
the fast-paced and unpredictable nature of hockey.

The You Only Look Once (YOLO) framework, a revolu-
tionary approach to object detection, streamlines the process
by performing detection in a single pass through the neural
network, thus significantly speeding up the process [27], [28].
Its unique design allows for real-time detection, making it
highly efficient and suitable for applications where speed is
crucial. Taking advantage of these strengths, we have inte-
grated YOLO into our SmartCrop-H pipeline. YOLO’s adapt-
ability to different environments and its capability to handle
scenarios like rapid movement and small object sizes, such
as tracking a hockey puck, are particularly beneficial. Fur-
thermore, its widespread use in various domains highlights a
strong support community and ongoing development, which
are essential for the continuous improvement of our puck-
tracking system. YOLO’s balance of high performance, ease
of implementation, and adaptability align with the diverse
requirements of our project, as detailed in Section III.

C. COMMERCIAL APPLICATIONS
In the field of AI-driven sports media solutions, companies
such as Magnifi [29], Pendular [30], Backlight [31], and
WSC Sports [32] are prominent for their contributions in
personalized highlight generation and video aspect ratio ad-
justments, which are key to enhancing viewer engagement
on various platforms. Despite their advancements, these solu-
tions often lack aspects critical for real-life deployments, such
as lightweight operation and live edge processing, essential
in dynamic sports settings. Moreover, popular video editing

software tools such as Adobe Premiere Pro and Final Cut
Pro, despite being feature-rich, are not primarily tailored for
sports applications, facing challenges in handling fast-paced
sequences and intricate color contrasts seen in sports like ice
hockey. This points to a noticeable gap in the market for
specialized technologies that cater specifically to the unique
dynamics and requirements of ice hockey, particularly in
capturing and emphasizing pivotal moments in this swift-
paced sport.

D. SMARTCROP PIPELINE
In previous work [6], we proposed a cropping pipeline tai-
lored for soccer called SmartCrop, which relies on the detec-
tion of the soccer ball for the determination of the point of in-
terest (POI). However, we faced challenges when we ran this
pipeline on video clips from ice hockey game broadcasts. In
this paper, we propose a modified pipeline called SmartCrop-
H specifically designed to address the different properties of
ice hockey, including:

• Game pace: Ice hockey has a faster pace than soccer
leading to quicker camera movements.

• Shot (scene) types: Ice hockey broadcasts have more
close-up and medium shots compared to soccer, which
has more long and full shots.

• Color contrasts: The detection of the hockey puck
against the white ice background is relatively more chal-
lenging, especially considering the game’s swift pace
and the presence of other black markings and lines on
the ice. This contrasts with the visibility of a soccer ball
against the green pitch, which is generallymore apparent
when the ball is on the ground. However, this visibility
can vary when the soccer ball is held by a player during
a throw-in or by the goalkeeper, or when it is in the air
with potentially confusing backgrounds like the players’
heads.

• Regions of interest: Although important events tend to
be around the hockey puck in general, they might also
appear in the absence of the puck (e.g., player huddle),
as opposed to soccer where the main action is almost
always centered around the soccer ball (with the partial
exception of offsides).

• Broadcast video properties: Frame rate for soccer
broadcasts is around 25 fps, whereas it is around 50fps
for hockey; resolution tends to be higher for hockey (e.g.,
1920 for our particular content source, as opposed to the
1280 mentioned in [6]).

Compared to the original SmartCrop pipeline for soccer,
SmartCrop-H updates or replaces most of the pipeline mod-
ules to meet the unique properties of ice hockey. For the
faster pace of ice hockey, we have introduced a smoothing
module. This module smoothly adjusts the POI, preventing
abrupt changes in the cropping window that could disturb
the viewer, while still capturing the essence of the frame.
Regarding shot (scene) types, we have implemented an outlier
detection module. This module recognizes the distribution of
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objects in medium shots, where elements can be more widely
spread in comparison to long shots, where important objects
such as the ball or puck are typically not located at the edges
of the frame. To address the color contrast challenge, we have
fine-tuned a YOLOmodel specifically for puck detection.We
have optimized the scene detection module to better differen-
tiate between the scenarios in ice hockey and soccer, taking
into account the distinct visual elements of each sport. Ad-
ditionally, we present a comprehensive system performance
analysis with a focus on optimized resource usage, so that
our pipeline can support the more demanding broadcast video
properties of ice hockey, which was not available in previous
work. These targeted enhancements ensure that SmartCrop-H
is precisely tailored to the dynamic and visual intricacies of
ice hockey broadcasting.

III. PROPOSED FRAMEWORK

The fundamental principle driving the SmartCrop-H pipeline,
similar to the original SmartCrop pipeline, is for the POI to be
used as the center point of the cropping area (Figure 1). In the
ice hockey scenario, the puck serves as the POI. The selection
of the puck as the POI is based on several key considerations
and methods. Firstly, extensive video analysis of ice hockey
games was conducted by authors to understand the dynamics
and movement patterns of the game. This analysis involved
tracking the puck’s position and evaluating its relevance to the
overall gameplay and viewer focus. Additionally, input from
ice hockey experts, as well as literature reviews, were sought
to confirm the puck’s critical role as the central element in
the sport [19]. Moreover, the determination of POI extends
beyond hockey to various sports contexts. In volleyball [33],
for instance, the ball is typically the POI due to its continuous
movement and centrality in play actions. Similarly, in soccer,
the ball also serves as the primary POI [6], although in some
cases, key players or specific regions of the field could be
considered based on the tactical analysis of the game [34].
These determinations involve a combination of video anal-
ysis, expert consultation, and algorithmic tracking to ensure
that the most relevant and action-centric POI is identified for
effective cropping. Hence, when the puck is visible within a
frame, we use it as the primary focal point for the cropping.
When it is absent, we seek an appropriate alternative focal
point by employing smoothed interpolation or relying on
frame-centered cropping as a fallback.

As depicted in Figure 2, the SmartCrop-H pipeline con-
sists of 7 modules with intermediate logic in between. These
are: (1) Pre-processing module, (2) Scene detection mod-
ule, (3) Object detection module, (4) Outlier detection mod-
ule, (5) Smoothing module, (6) Cropping module, (7) Post-
processing module. The pipeline takes as input an HLS
playlist URL or an mp4 file and outputs an mp4 file.
A demonstration of the SmartCrop-H pipeline is provided
in [35].

A. PRE-PROCESSING MODULE
Our pipeline supports various video formats, with HTTP Live
Streaming (HLS) as the default input format. To optimize
object detection accuracy, the pipeline analyzes theHLSman-
ifest to select the highest quality stream available. Swedish
Hockey League (SHL) [36] broadcasts are offered in two
resolution options: 854×480 and 1920×1080. The choice of
resolution affects the processing speed and detection accu-
racy. Higher resolution frames enhance detection precision
but may increase processing time, while lower resolutions
may lead to false positives or negatives [37]. The stream
undergoes conversion toH.264 encoded videoswithin anmp4
container before being processed by the object and scene
detection modules.

B. SCENE DETECTION MODULE
Understanding the changes in the camera view that occur
during broadcasting requires defining scenes, i.e., a contin-
uous video sequence from the same camera view, and thus,
each such scene denotes a change in camera angle. By distin-
guishing between scenes such as wide shots, which capture
most players and the puck, and close-up shots, which focus
solely on player faces, we establish our cropping logic. Scenes
where the puck occupies a threshold percentage of frames
prompt puck tracking as the POI, while others default to
frame-centered cropping. The latter approach is derived from
the implicit convention in sports video recording, where cam-
eramen typically center the most significant object, usually a
player’s face or group of players, within the center of frames.
SmartCrop-H integrates two methods to establish a robust
scene detection module: TransNetV2 [38] (a machine learn-
ing model) and PySceneDetect [39], [40] (a Python library).
TransNetV2 specializes in identifying individual scenes, a
feature that our pipeline leverages for context-sensitive video
cropping. Initially, we started with TransNetV2, but through
our analysis, we identified some misclassifications in iden-
tifying scene changes. This issue could be attributed to the
specific characteristics of ice hockey video footage, which is
significantly different from the datasets like ClipShots [41]
and RAI used to train TransNetV2. The unique dynamics,
lighting conditions, and rapid movements in hockey videos
present challenges that these pre-trained datasets do not en-
compass. Recognizing the need for an additional level of ca-

FIGURE 2: Pipeline overview.
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1 SSD [43] 34 100 59 50.3
2 Faster R-CNN [44] 42 180 50 53.2
3 MobileNets with SSD [43] 20 90 65 48.9
4 YOLO [45] 50 140 75 52.5

TABLE 1: Comparativemetrics for real-time object detectors.

pability in scene identification, we incorporated PySceneDe-
tect. PySceneDetect utilizes histogram-based methods and
content changes to detect scenes, which can complement
the machine learning approach of TransNetV2. Specifically,
PySceneDetect considers changes in brightness, color his-
tograms, and pixel values, making it particularly effective for
the high-speed, high-contrast environment of hockey games.
The integration of PySceneDetect in SmartCrop-H is crucial
for handling these unique challenges, ensuring more accurate
scene detection and thereby improving the overall perfor-
mance of the video cropping pipeline.

C. OBJECT DETECTION MODULE
As described in the previous section, the identification of the
puck in the rink will be a crucial factor in developing the
cropping logic. The purpose of this module is to detect the ice
hockey puck in each frame. If the number of detected pucks
surpasses the given threshold compared to the total number
of frames in that scene, the puck will serve as the POI.

The selection process for the appropriate object detection
model involved evaluating classical methods and machine
learning-based methods. Classical approaches such as Haar
Cascades [42], while foundational, lack efficiency in complex
scenarios. Machine learning methods like SVMs improve
accuracy but are less efficient than deep learning methods.
Deep learning approaches, especially end-to-end and real-
time object detection models such as RT-DETR-R50, pro-
vide advanced solutions by leveraging neural networks for
automatic feature learning. These End-to-end models offer
high accuracy but are less suitable for real-time applications
due to their processing time. Real-time models, essential for
applications requiring rapid feedback, process video feeds
almost instantaneously. YOLO models, in particular, process
the entire image in a single evaluation, significantly reduc-
ing computation time. In reviewing the metrics for various
real-time object detection models (Table 1), YOLO models
demonstrated a superior blend of speed and precision, making
them ideal for high-speed object detection environments like
ice hockey video.

Given the superior blend of speed and precision (Ta-
ble 1), YOLO was selected for real-time detection. Among
the YOLOv8 versions, YOLOv8-Medium emerged as the
optimal choice due to its balanced profile: 30 million pa-
rameters, 140 GFLOPs, 65 FPS, and high precision (Ta-
ble 2). YOLOv8-Medium balances performance and effi-
ciency, making it ideal for real-time ice hockey video anal-
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1 Nano 5 30 90 40.0 60.0 42.0
2 Small 15 80 75 45.0 65.0 48.0
3 Medium 30 140 65 50.0 68.0 53.0
4 Large 43 165 60 52.9 69.8 57.5
5 X-Large 68 257 50 53.9 71.0 58.7

TABLE 2: Comparative metrics for different versions of
YOLOv8 [46].

ysis. It meets the demands of dynamic environments by pro-
viding both speed and accuracy.

1) Motivation for Hockey-Specific Model
As shown in Figure 3, when we investigated the perfor-
mance of existing object detection models, we observed that
the general checkpoint of YOLOv8 Medium model and the
Y8m_sc11 model (custom YOLOv8 version fine-tuned, for
soccer [6]) had limitations in puck detection. These models,
optimized for broader sports contexts, showed inadequate
sensitivity to the unique characteristics of the ice hockey
puck. In the first column of Figure 3, YOLOv8 Medium is
expected to detect all objects and Y8m_sc11 to detect three
classes (ball, player, logo). The red bounding boxes in the first
and second columns indicate objects that the models failed to
detect.

2) Dataset Curation and Model Training
In our pursuit to improve the SmartCrop-H pipeline, par-
ticularly for accurate puck tracking, we used a dataset of
800 annotated images from the Swedish Hockey League
(SHL) [36]. Leveraging this dataset, we developed the custom
Y8_sc_m model, tailored to meet the specific requirements
of our application. This model underwent a training process
spanning 100 epochs. It features Non-Maximum Suppression
(NMS) thresholding, optimized for image processing at a res-
olution of 1280 pixels. The training protocol involved a batch
size of 16 and a patience setting of 100 epochs, utilizing the
AdamW optimizer to ensure efficient learning. The model’s
learning rate was initially set at 0.001, gradually increasing
to a final value of 0.02, with a dropout rate of 0.5 applied
to prevent overfitting, thereby ensuring a robust and effective
training outcome. The model weights are publicly available
on GitHub [47].
We utilized the Labelbox [48] platform to annotate our

dataset. Our annotation strategy was focused solely on a
single class, i.e., the puck. The dataset encompasses a wide
range of game situations to ensure robust puck detection,
including:

• Fast breaks and counter-attacks: Capturing frames
where the puck is rapidly transitioned from defense to
offense, challenging the model to detect the puck in
high-speed scenarios.

• Close-up scrimmages: Including images where players
are in close proximity around the puck, often leading to
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(a) Sample 1: YOLOv8m (b) Sample 1: Y8_sc11 (c) Sample 1: Y8_sc-m

(d) Sample 2: YOLOv8m (e) Sample 2: Y8_sc11 (f) Sample 2: Y8_sc-m

(g) Sample 3: YOLOv8m (h) Sample 3: Y8_sc11 (i) Sample 3: Y8_sc-m

FIGURE 3: Object detection performance (visual comparison): YOLOv8-Medium vs. custom models for soccer and hockey.

obscured views of the puck.
• Long shots and wide Angles: Frames that show the

gameplay and the puck from a distance, testing the
model’s ability to detect smaller objects.

• Goal scoring moments: High-intensity frames captur-
ing the moments of scoring, where the puck is often in
the net or close to goalkeepers.

• Power plays and penalty kills: Situations where team
formations are different due to penalties, affecting the
puck’s visibility and trajectory.

• Face-offs: Including the start of play scenarios where
the puck is dropped between two players, providing
varied orientations and positions.

• Board plays: Capturing the puck in play along the
boards, where it can be partially obscured or in tight
spaces.

• Puck in flight: Frames where the puck is airborne,
presenting different angles and shadows compared to
when it is on the ice.

The third column of Figure 3 illustrates the Y8_sc_m
model’s remarkable proficiency in puck detection. This high-
lights the importance of specialized model training for sports
applications. While general-purpose models have broad util-
ity, fine-tuning with domain-specific data, as in the example
of the Y8_sc_m model, significantly enhances effectiveness.

D. OUTLIER DETECTION MODULE
Recognizing that the object detection from the previous mod-
ule, which predicts puck positions in each frame, may contain
outliers, this module employs various techniques to identify
and remove anomalous data points. Outliers refer to cases
where the object detection falsely identifies a puckwhen none
is present, known as a false positive. Additionally, outliers
occur when the object detection correctly identifies multiple
pucks, but only one is the main puck of interest (see figure 4).
For instance, a puck may be correctly detected at the center
of the play while others are outside the play area. Moreover,
outliers could occur when a puck is detected in areas where it
is not typically found, such as the corner areas of each frame.
Here, we will discuss methods for addressing these outliers.

1) Outlier Detection Methods
We incorporate three primary outlier detection methods to
enhance the robustness of our system.
Z-score method: Outliers are identified by calculating the

Z-score using Eq. 1, where z is the Z-score, x is the data point,
µ is the mean of the data set, and σ is the standard deviation
of the data set. A data point x is considered an outlier if |z| >
threshold, commonly set to 2 or 3 [49].

z =
x − µ

σ
(1)

Modified Z-score method: An outlier is identified based
on the median and median absolute deviation (MAD) using
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FIGURE 4: An example of a situationwhere 2 pucks correctly
being identified on a ice-hockey rink. Pucks have been shown
with a red box around them.

Eq. 2, Eq. 3, and Eq. 4, where x is the data point, M is
the median of the data set, MAD is the median absolute
deviation, and α is a threshold, often set to 2 or 3. In this
method, x is an outlier if its scaled distance from M exceeds
α×MAD [49]. The choice of threshold values (α) such as 2 or
3 is guided by balancing sensitivity and specificity in outlier
detection. A threshold of 2 is more sensitive and may identify
more outliers, which is useful in datasets where it is critical
to capture most anomalies. Conversely, a threshold of 3 is
more conservative, reducing the risk of false positives, and is
preferable in contexts where outlier misidentification could
lead to significant errors. These thresholds are empirically
derived from statistical properties of the MAD and validated
through simulations and practical applications across various
datasets [50].

M = Median({x1, x2, . . . , xn}) (2)

MAD = Median({|x1 −M |, |x2 −M |, . . . , |xn −M |}) (3)

Outlier if |x −M | > α ·MAD (4)

Interquartile Range (IQR) method: Outliers are identi-
fied using quartiles. IQR is calculated by Eq. 5, where Q1
is the first quartile and Q3 is the third quartile. Outliers are
defined as values outside the range given by Eq. 6, where k
is a scaling factor, often 1.5 for mild outliers or 3 for extreme
outliers [49].

IQR = Q3− Q1 (5)

Outlier if [Q1− k · IQR,Q3 + k · IQR] (6)

2) Outlier Detection for Soccer vs. Hockey
To enhance our understanding of what constitutes an outlier
in hockey videos, we conducted an examination of the puck
position distribution patterns across sample video frames. The

examination allowed us to make a comparison between the
hockey puck and soccer ball behavior. Ground truth on the
spatial positions of the hockey puck and soccer ball was
obtained from approximately 700 sample video frames for
each.
Figure 6 presents the probability distribution of the nor-

malized x-positions and y-positions of pucks and balls, as
estimated by a Kernel Density Estimate (KDE) [51]. It shows
the likelihood of finding the puck or ball at various points
along the x and y axis of the video frame. The density here
refers to the estimated probability density function, which
provides a smooth curve indicatingwhere data points (puck or
ball positions) are concentrated. A high value of the density,
such as 3, indicates a high concentration of positions around
that normalized x or y position, meaning it is a common
location for the object in the data set. It is important to
note that while probability density values can exceed 1, they
are not probabilities themselves but rather indicate relative
concentration.
A key finding, as illustrated in Figure 6, is the disparity in

puck and ball positions along the Y-axis. This variance can
be attributed to the distinct shooting mechanisms employed
in hockey and soccer broadcasts (and the corresponding dif-
ference in the dominant scene types, see Figure 5). Notably, in
hockey, the puck distribution is concentrated within the initial
30% of the Y-axis range. In contrast, the X-axis distribution of
the puck position mirrors that of the soccer ball more closely.

FIGURE 5: Sample frame from an ice hockey broadcast
showing fans in the initial 20% of the y-axis, puck detections
in this region are excluded in the outlier detection module.

Drawing from our analysis of the puck position distribution
in hockey videos, enhancements have beenmade to the outlier
detection algorithm within our pipeline. A notable adaptation
is the introduction of a Y-axis threshold, specifically focusing
on the top 70% of the video frame. This decision comes
from our findings that most puck positions are located pre-
dominantly within this upper 70% segment of the Y-axis, as
illustrated in Figure 6. This pattern is distinctly different from
soccer, where the ball distribution is more uniformly spread
along the Y-axis. Visually, this implies that most critical
hockey actions, such as key puckmovements and interactions,
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(a) Normalized X position

(b) Normalized Y position

FIGURE 6: Comparative visual analysis of soccer ball and
hockey puck X and Y positions.

occur predominantly in the upper part of the frame. Due to
these differences, we need different system configurations for
the two different sports.

E. SMOOTHING MODULE

The smoothing module enhances the detection and tracking
accuracy of the puck in ice hockey videos by reducing noise
and erratic fluctuations in the detected positions. This leads
to more stable and reliable tracking of the puck over time,
which is essential in the fast-paced and dynamic environment
of ice hockey. To streamline the transition between puck posi-
tions (POIs) in the video processing pipeline, an Exponential
Moving Average (EMA) has been integrated. EMA, a method
for smoothing data series, emphasizes recent observations
more than older ones. EMA uses weighted averages with
exponentially decreasing weights, thus assigning more im-
portance to the latest data and less to older observations. The
selection of coefficients (α, 1 − α) for the EMA calculation
allows for a flexible weighting system that prioritizes recent
data points while still considering historical data. EMA is
computed using Eq. 7, where EMAt is the EMA value at time
t , Pt is the actual data point at time t , EMAt−1 is the EMA
value at time t − 1, and α is the smoothing factor which lies
in the range (0, 1).

EMAt = α · Pt + (1− α) · EMAt−1 (7)

The parameter α dictates the degree of weighting reduc-
tion; a higher α means that more emphasis is placed on the
recent data points, rendering the EMA more responsive to
new information. In contrast, a smaller α value extends the
influence of older data points, producing a more stable EMA
over time. In essence, the EMA achieves a balance between
the immediacy of the latest data point and the continuity of
historical data, culminating in a refined output. To determine
the optimal α value, a subjective smoothing study (described
in Section IV-F) was conducted. For this smoothing module,
α parameter was experimentally selected, ensuring that the
chosen α value provides the best balance between respon-
siveness to new data and the stability of the smoothed series.
This approach ensures that the EMA is tailored to the specific
needs of the video processing pipeline, enhancing its perfor-
mance in transitioning between POIs.

F. CROPPING MODULE
Finally, cropping is used to isolate the Region of Interest
(ROI) within each frame in videos. This module crops each
frame-based ROI, which is calculated by POI from the pre-
vious modules and also the Aspect Ratio parameter in the
pipeline configuration to produce the requested output size
(see Figure 1). The calculated POIs are divided into two
categories based on each scene in our pipeline:

1) Frame-centered cropping: The cropping center is
statically selected in the middle of the frame because
there are not enough pucks detected to consider track-
ing and following.

2) Puck-centered cropping: The cropping center is based
on the coordinates of the puck as detected and calcu-
lated by the detection and smoothing modules.

These POIs are coupled with the designated aspect ratio
to delineate the ROIs. For instance, for an aspect ratio of
1:1, the POIs necessitate placement in the middle of the
region, taking into account equal proportions on each side.
In a two-dimensional context, such as cropping an image
or video frame, these sides represent the top, bottom, left,
and right sides, respectively, to ascertain the specific portion
for cropping. This methodology ensures balanced cropping,
maintaining visual symmetry and focus on the ROI. This
approach varies for other aspect ratios, such as 9:16, where
the POIs are situated in the region’s middle but adjusted for a
horizontal aspect ratio of 9 and a vertical aspect ratio of 16 to
determine the ROIs and execute the cropping.

G. POST-PROCESSING MODULE
The cropped frames from the previous section serve as the
input to the Post-Processing module. Its primary function is
to create an mp4 file, returning this file as the output of the
pipeline in the aspect ratio selected in the preceding module.
Additionally, this module can incorporate other visualization
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functionalities, such as overlaying logos, graphics or other
elements onto the output video.

IV. EVALUATION PER MODULE
The goal of the objective evaluation is to investigate the
performance of each module in the SmartCrop-H pipeline,
and determine the best models or methods to be used in each
module in the final version (to be deployed in production).

A. DATASETS FOR EVALUATION
Scene detection module: For the evaluation of the scene
detection module, we annotated five hockey videos. These
videos collectively comprise approximately 30,000 frames.
Each frame was carefully examined to identify and mark
the scene changes with precise ground truth annotations, as
illustrated in Figure 7. Our criteria for a scene change en-
compassed both camera transitions and variations in camera
zoom levels. The videos were intentionally selected based
on their dynamic nature, featuring frequent scene changes to
rigorously test the detection module. In Figure 7, we present
the first frames of four initial scenes from one of these videos.
These frames were annotated as indicators of scene changes,
showcasing the varied scenarios that our module needs to
identify. Notably, each frame represents the commencement
of a new, consecutive scene (see Section IV-C).

Outlier detectionmodule: For the evaluation of the outlier
detection module, we used 700 ice hockey frames, where the
puck’s position being manually annotated frame by frame as
ground truth.

B. EVALUATION METRICS
We use the F1 score to evaluate the performance of the scene
detection module, which provides a balanced measure of
precision and recall (more specifically, the harmonic mean
of precision and recall). To evaluate the performance of the
object detection module, we assess the accuracy of alternative
object detection models in terms of the count of True Positive
(TP) and False Negative (FN) samples. We use Mean Abso-
lute Error (MAE) to evaluate the performance of the outlier
detection module. MAE is given by Eq. 8, where n is the
number of observations, yi represents the actual puck position
in each frame (ground truth), and ŷi is the puck position post-
outlier detection. This method provides a clear evaluation of
how well each outlier detection method performs in accu-
rately tracking the puck’s position.

MAE =
1

n

n∑
i=1

|yi − ŷi| (8)

For all subjective evaluations (user studies #1-#3 related
to the smoothing module, overall pipeline, and competitor
analysis), we use the Mean Opinion Score (MOS), based on
Absolute Category Rating (ACR) for a scale of 1–5, to as-
sess human subjective perception, reflecting how well certain
outputs align with viewer experience.

Model Name Version Puck TP Puck FN
1 Sc-n Nano 66% 34%
2 Sc-s Small 75% 26%
3 Sc-m Medium 77% 23%
4 Sc-l Large 76% 24%
5 Sc-x XLarge 78% 22%

TABLE 3: Object detection performance for YOLO models.

C. SCENE DETECTION PERFORMANCE
An exhaustive grid search was conducted on the PySceneDe-
tect model parameters in prediction mode. This involved
adjusting key parameters like adaptive threshold, minimum
scene length, window width range, and minimum content
value. A scoring function was applied to assess the accuracy
of PySceneDetect’s predictions against the ground truth. This
exhaustive search for the optimal parameters in prediction
mode yielded three sets of parameter combinations. These
combinations achieved the best F1 scores across all five
videos and 30,000 frames. As illustrated in Figure 8, the
minimum F1 score for the best prediction across all videos
was 72%, marking a significant improvement compared to
the default parameters of PySceneDetect which was around
57% for the same videos. This enhancement is attributed to
the adjustment of parameters to suit the visual characteristics
of hockey frames, notably their brightness and color, predom-
inantly featuring a white background.
The optimal combination of hyperparameters that were

identified, which can be seen as a red sphere in Figure 9,
includes:
luma_only = false;
adaptive_threshold = 1.5;
min_scene_len = 140;
min_content_val = 20;
window_width = [15, 20, 25].

D. OBJECT DETECTION PERFORMANCE
Table 3 delineates the object detection performance of differ-
ent YOLO model configurations. It highlights that the Sc-m
model is the most effective in our pipeline, with a true positive
rate of 77% for puck detection with an F1 score of 69%.
This high performance is indicated by its ability to accurately
identify 77 out of 100 pucks, with only 23 instances where
it failed to detect the puck (false negatives), suggesting a
favorable balance in its detection capabilities. The confusion
matrix in Figure 10 visually represents these detection results
for the puck class using the fine-tuned YOLOv8 medium
version named Sc-m model as in Table 3, illustrating the
model’s accuracy and error distribution.
The Mean Average Precision (MAP) at the Intersection

over Union (IoU) threshold of 0.5 for pucks and all classes
is recorded at 0.576. This value indicates a moderate level
of accuracy across the model’s predictions. In its operation,
the model exhibits a trade-off between precision and recall.
Initially, the precision is relatively high, indicating strong
specificity in early stages. However, as the model strives to
capture more true positives, there is a noticeable decline in
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(a) Scene 1 (b) Scene 2 (c) Scene 3 (d) Scene 4

FIGURE 7: The first frames from each scene of a 90-second ice hockey video, highlighting scene changes.

FIGURE 8: Scene detection: discovering optimal hyperpa-
rameter combinations.

FIGURE 9: 3D visualization of parameter space (red circle =
best F1 values).

precision. This reflects the inherent challenge in balancing
precision with recall in object detection tasks, as further
illustrated by the Precision-Recall (PR) curve for the puck
class using the Sc-m model in Figure 11.

E. OUTLIER DETECTION PERFORMANCE
We compare the performance of different outlier detection
methods using our annotated dataset. The MAE is employed
to calculate the average absolute difference between the puck
positions that remain after applying Z-score, modified Z-

FIGURE 10: Confusion matrix for model Sc-m.

FIGURE 11: Precision-Recal curve for model Sc-m.

score, and IQR outlier detection methods, and the ground
truth positions. Table 4 showcases the superior performance
of the IQR outlier detection method compared to the other
two. Additionally, Figure 12 illustrates that the puck detec-
tions remaining after applying the IQR method align more
closely with the accurate pucks.

F. SMOOTHING PERFORMANCE
Figure 13 presents a subjective evaluation of video transition
smoothness using five hockey videos. Focusing on cases
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Method MAE
1 Zscore 125.230
2 Modified Z-Score 125.131
3 IQR 95.796

TABLE 4: Outlier detection performance for different meth-
ods.

FIGURE 12: Comparative analysis of outlier detection tech-
niques.

where the puck moves across the field, we assessed the
smoothness of transitions by modulating the effect with dif-
ferent alternatives: Alternatives 1 and 2 use smooth functions
with alpha values of 0.2 and 0.8, while Alternative 3 serves as
a baseline without a smooth function. User ratings (Poor=1 to
Excellent=5) offer insights into preferred smoothness levels
for video editing.

The results from our user study, which involved feedback
from 11 participants, demonstrate clear user preferences in
video transition smoothness. Smoothing, Alpha=0.8, con-
sistently received favorable ratings, indicating a preference
for stronger smoothing effects. In contrast, Smoothing, Al-
pha=0.2 showed moderate acceptance, with a mix of "Good"
and "Fair" ratings. Notably, Without Smoothing, was least
preferred, often receiving "Bad" and "Poor" ratings. These
findings highlight the importance of smooth transitions in
video editing and underscore the need for effective smoothing
functions to enhance user experience in video editing appli-
cations.

V. OVERALL EVALUATION
In this section, we provide an overview of our evaluation
process. We analyze the effectiveness, efficiency, and overall
impact of the system under review, setting the stage for more
detailed discussions in subsequent sections.

A. SYSTEM PERFORMANCE
In video processing pipelines, the quality of the final output
is paramount, necessitating high-resolution, clear videos. Si-
multaneously, it is essential to balance other non-functional
requirements likeminimal resource consumption and reduced
publication latency, ensuring overall efficiency and effective-
ness.

FIGURE 13: [User study #1] Subjective quality ratings for
different smoothing alternatives.

1) Model Training

The computational framework for the training of theYOLOv8
object detection model was built on a high-performance com-
puting cluster equipped with eight NVIDIA Tesla V100-
SXM3-32GB GPUs. These GPUs, featuring 5,120 CUDA
cores and 640 Tensor cores each, are optimized for deep
learning tasks. Operating at a base clock of 1,245 MHz and a
memory clock of 877 MHz, the GPUs are interconnected via
NVLink for efficient multi-GPU scaling. This robust setup
was utilized to train the YOLOv8 model, specifically the
medium-size variant. The training was carried out with a
batch size tailored to the 32GB memory of the GPUs, bal-
ancing the need to maximize computational resource usage
against the risk of overloading. In the following, we present
some results and insights.
Execution time: The training process was completed in a

total of 36 minutes and 30 seconds, utilizing the advanced
computational resources of the system.
GPUPower Usage:Our analysis of GPU power consump-

tion during model training, as shown in Figure 14a, indicates
that the GPUs are operating near their maximum capabilities.
With power consumption frequently approaching 250W, or
nearly 83% of the V100’s specified Thermal Design Power
(TDP) of 300W, it is evident that our training process de-
mands intensive computational resources. This high level of
GPU utilization, often equated with peak performance in ma-
chine learning tasks, is crucial for achieving high throughput
and rapid processing speeds. It demonstrates our system’s
ability to maintain sustained high-performance states, which
is pivotal for reducing epoch durations in deep neural net-
work training. The correlation between the substantial power
draw and the enhanced training efficacy of our computational
framework is unmistakable. Additionally, the consistent oper-
ation near the TDP limit indicates robust thermalmanagement
within the GPUs, ensuring they avoid throttling and maintain
continuous, uninterrupted performance during the training
phase. This is in line with our objective of maximizing hard-
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(a) GPU power usage

(b) GPU memory usage

(c) GPU utilization

FIGURE 14: Resource consumption for model training (8
GPUs).

ware utility for optimal training efficiency.
GPU memory usage: The memory usage pattern (Fig-

ure 14b) indicates that the YOLOv8 model makes extensive
use of the available 32GB of HBM2 memory on the Tesla
V100s. The variability in memory utilization reflects the data
loading and unloading phases inherent to the training epochs.

GPU utilization: Utilization trends (Figure 14c) under-
score the episodic nature of GPU demand throughout the
training process, with full utilization corresponding to the
forward and backward propagation steps, while the troughs
may correspond to the evaluation or data preparation stages

that are less compute intensive.
General insights and takeaways:The analysis of resource

consumption metrics across the Tesla V100 GPUs reveals a
synchronized pattern of utilization, indicative of a balanced
computational load across the cluster. This synchronization
ensures that no single GPU becomes a bottleneck, contribut-
ing to the overall efficiency of the model training process.
However, periodic declines in GPU utilization were observed,
suggesting the presence of non-computational bottlenecks.
These are likely associatedwith data transfer or preprocessing
stages. Refinements in the data pipeline, such as enhanced
data transfer protocols or more efficient preprocessing algo-
rithms, could lead to more uniform GPU utilization. Such
improvements have the potential to reduce epoch times and
improve the throughput of the training pipeline, thereby
streamlining the overall workflow.

2) End-to-End Pipeline Execution
The local deployment was conducted on a system equipped
with an NVIDIA Tesla T4 GPU, Driver version 545.23.08,
CUDA version 12.3, and a substantial memory size of 16,106
MB. The testing environment included an Intel(R) Xeon(R)
Gold 6130 CPU @ 2.10GHz and an architecture supporting
both 32-bit and 64-bit operations. Video input for the tests
comprised a 20-second duration clip, running at 50 frames per
second (FPS), and a resolution of 1920 × 1080. To evaluate
the impact of the Skip Frame on pipeline execution time, three
distinct active configurations were applied (None, 13, and
25), with the detection confidence threshold maintained at
0.2, the target aspect ratio set to 1:1, and the output format
configured as mp4. The pipeline was executed on the same
30-second video with a frame-skipping strategy of 25 frames,
as depicted in Figure 16b in red to highlight the allocation of
resources for its execution. Below, we present some results
and insights.
Execution time: The execution time for each module in

the pipeline was measured under all three configurations,
with results depicted in Figure 16a.Constant Execution Time:
Modules such as scene detection, outlier detection, smooth-
ing, cropping, and post-processing demonstrated consistent
execution times across all configurations, indicating mini-
mal impact from configuration variations. Variable Execution
Time: Notably, the object detection module showed signifi-
cant variance in execution time between the configurations.
This variance is hypothesized to stem from the Skip Frame
parameter, which was set to 13 and 25 in the second and
third configurations, respectively. Adjustments to Skip Frame
potentially allowed the object detection algorithm to process
fewer frames in these configurations, thereby reducing exe-
cution time compared to the first configuration with no frame
skipping.

CPU utilization: CPU load was monitored at one-second
intervals throughout the pipeline’s execution. The object de-
tection module significantly leveraged the GPU, whereas the
cropping and post-processing modules predominantly uti-
lized the CPU. TheCPUutilization plot, shown in Figure 15a,

12 VOLUME 11, 2023



Houshmand et al.: AI-Based Cropping of Ice Hockey Videos for Different Social Media Representations

(a) CPU

(b) GPU (object detection)

FIGURE 15: Resource utilization for the end-to-end pipeline.

reveals a consistent load with occasional spikes. These spikes
can be attributed to the intensive computational demands
during the cropping and post-processing phases, highlighting
dynamic resource allocation based on task-specific require-
ments.

GPU utilization (object detection module): The object
detectionmodule, as the primaryGPU-utilizing component of
the pipeline, exhibited variable GPU load correlated to each
frame processed. This fluctuation reflects the computational
demands imposed by real-time object detection tasks, varying
with the density and complexity of objects in each frame.
The GPU load plot, as seen in Figure 15b, demonstrates
these dynamic shifts in resource allocation. Notably, the scene
detection module, while utilizing GPU resources, registered
minimal GPU load, often close to 0%. This suggests that the
computational requirements for scene detection in our setup
are minimal or indicate efficient GPU usage for this specific
task. It should be noted that Figure 15b, illustrating the GPU
load for object detection, is a subset of Figure 15a. This subset
specifically commences from the point in time where GPU
load is observed for the object detection module.

Impact of video length on system performance: The
introduction of a 30-second video into our test environment
provided valuable insights into the scalability of our pipeline.
The extended duration, up from the initial 20 seconds, al-

lowed for a more robust assessment of performance stability
over time. Initial findings indicate a linear increase in process-
ing time proportional to the video length. This is consistent
with expectations, as longer videos naturally demand more
computational resources for analysis. However, the efficiency
of processing and memory utilization remained consistent,
suggesting effective resource management by the system (see
Figure 16b).
Comparative analysis of CPU and GPU performance:

A key aspect of our study was comparing the performance of
the system when running solely on the CPU versus the GPU-
enhanced configuration. As anticipated, the GPU-accelerated
environment demonstrated markedly superior performance,
particularly in terms of reduced execution times. This is at-
tributed to the parallel processing capabilities of the NVIDIA
Tesla T4 GPU, which excels in handling the intensive com-
putational demands of video processing tasks. In contrast, the
CPU-only configuration, despite its robust capabilities (In-
tel(R) Xeon(R) Gold 6130 CPU), exhibited longer processing
times, underscoring the GPU’s pivotal role in accelerating
video analysis tasks (see Figure 16c).
Observations on CPU processing power threshold: The

addition of a CPU-only test scenario brought to light the
threshold limits of CPU processing in our pipeline. Notably,
when dealing with high-definition video inputs and complex
detection algorithms, the CPU’s processing time increased
significantly, more so than with the GPU. This observation
is particularly pertinent when considering the handling of
high-frequency data, such as in our 50 FPS video. While
the CPU managed to maintain functional integrity without
system crashes, the efficiency drop was notable. These find-
ings underscore the importance of GPU acceleration in sce-
narios demanding high-speed data processing and complex
computations, such as in advanced video analysis systems.
The variable execution times in the object detection module
were further accentuated in the CPU-only configuration, es-
pecially with the longer 30-second video. This reinforces the
hypothesis that the Skip Frame parameter’s impact is more
pronounced in environments with limited parallel processing
capabilities, such as a CPU-only setup. Future investigations
may explore the scalability of different CPU architectures and
their thresholds to handle video analysis tasks without GPU
support.

B. SUBJECTIVE USER EXPERIENCE
We conducted a user study to assess the user QoE of the
SmartCrop-H pipeline. More specifically, we investigated six
different cropping alternatives (as listed in Table 5, where type
6 corresponds to the SmartCrop-H with full functionality), on
four videos (all with an original aspect ratio of 16:9, where
two of them were cropped to 9:16, and two were cropped to
1:1), to compare viewer experience.

1) Experimental Setup
We used an online survey to retrieve responses from partici-
pants in a remote-study fashion [52], [53]. The survey consists
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(a) 20-Second Video on a GPU (b) 30-Second Video on a GPU (c) 30-Second Video on a CPU

FIGURE 16: Runtime per module in local deployment, with and without Skip Frame for 20 and 30 seconds video (note: different
x-axis).
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1 frame static no padding ✗ ✗
2 frame static w/black padding to 16:9 ✗ ✗
3 puck use last detected puck position ✗ ✗
4 puck w/smoothing ✗ ✔
5 puck w/outlier detection ✔ ✗
6 puck w/outlier detection & smoothing ✔ ✔

TABLE 5: Cropping methods used in subjective study #2.

of six pages: (1) Introduction and pre-questionnaire, (2-5)
One questionnaire page per case, and (6) Post-questionnaire.
In the Introduction, participants were asked to complete the
survey on a mobile phone, as this provides a more realistic
setting for our evaluation [54], and to view the clips in full-
screenmode. Participants first viewed the original video in the
16:9 aspect ratio before evaluating each cropping alternative
using a 5-point Absolute Category Rating (ACR) scale, as
recommended by ITU-T P.910 [55]. Three questions were
posed to assess various aspects: overall QoE ("How was your
overall experience with this video clip?"), the smoothness of
the video ("How was the smoothness of the window transi-
tions in the video clip?"), and the video’s ability to capture
the essence of the original content ("Howwell do you think the
cropped video captures the essence of the original video?").

2) Participant Details
In total, we recruited 26 participants: 5 females, 20 males, no
other, and 1 preferring not to disclose gender. The age of the
participants ranged from 20 to 60, with a mean of 31.8 and
a standard deviation of 8.08. All participants were active on
social media. Regarding daily usage, 62% reported spending
less than 30 minutes, 19% reported 30 minutes to 1 hour, 12%
reported 1-2 hours, and 0.08% reported 2-4 hours. On a scale

of 1 to 5, participants indicated that they have experience in
video editing with an average score of 2.08.

3) Results
Figure 17 presents the results of our second user study.
We have performed ANOVA analysis, where three statistical
measures are essential:

• F-value: Indicates the variance ratio between and within
groups. A higher F-value suggests significant differ-
ences among group means, implying that different crop-
ping styles notably affect participant ratings in our study.

• p-value: Measures the probability of observing the re-
sults under the null hypothesis. A p-value below 0.05
typically indicates statistical significance. Our p-value
less than .001 strongly suggests the observed differences
in ratings are not due to chance.

• Partial η2: Represents effect size, showing the propor-
tion of variance explained by a factor. A higher Partial
η2 indicates that the factor (cropping style) substantially
impacts the observed outcome (QoE).

These measures collectively inform the significance and
magnitude of the effect of cropping styles on the QoE in our
study.

Quality of experience (QoE)
To evaluate the influence of cropping styles on viewer per-
ception of video content, a series of One-Way Repeated Mea-
sures ANOVAs [56] were employed. These analyses focused
on determining the effect of six different cropping methods
(detailed in Table 5) on participant ratings for four different
video scenarios.
As shown in Figure 17a, for Video 1, the analysis revealed

a significant effect of cropping type on participant ratings in
the first row in Table 6. Descriptive statistics indicated that
cropping type 6 received the highest mean rating, suggesting
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(a) Question 1: QoE

(b) Question 2: smoothness

(c) Question 3: content

FIGURE 17: [User study #2] Subjective quality ratings with
95% confidence intervals, for Video 1 (blue) andVideo 2 (red)
with a target aspect ratio of 9:16, Video 3 (green) and Video
4 (orange) with a target aspect ratio of 1:1.

it was the most favorably perceived cropping style among
participants.

In the case of Video 2 in the second row in Table 6,
there was a significant effect of cropping type on participant
ratings. The highest mean rating was observed for cropping
type 6, indicating it as the most preferred cropping style.

For Video 3 in QoE metric in Table 6, the analysis showed
a significant effect of cropping type on participant ratings.
Cropping type 6 emerged as the most preferred type with the

highest mean rating.
Regarding Video 4 in QoE metric in Table 6, a significant

effect of cropping type on the ratings was observed. Cropping
type 6 was rated the highest among all types, suggesting it is
the most favorable cropping style.

Smoothness
A repeated measures ANOVA was performed to investigate
the effects of six varied cropping techniques on perceived
smoothness across four different scenarios. The results from
this analysis revealed a significant influence of the cropping
type on the perceived smoothness in every scenario as shown
in Figure 17b and in Smoothness metric in Table 6.
For Video 1, the analysis revealed a significant effect of

cropping type on video ratings. Cropping type 6 (SmartCrop-
H) was rated highest among all types, indicating a strong
preference for this style. This significant finding highlights
the influence of cropping style on viewer perceptions, with
Cropping type 6 distinctly standing out as the most favored
by participants.
In the case of Video 2, a One-Way Repeated Measures

ANOVAdemonstrated a significant effect of cropping type on
video content ratings. The results showed that Cropping type
6 (SmartCrop-H) was rated the highest mean rating among all
cropping types. This result emphasizes the substantial influ-
ence of cropping style on viewer perceptions, highlighting a
strong preference for Cropping type 6 in this context.
For Video 3, a significant effect of cropping type on

video ratings was identified. Cropping type 6 (SmartCrop-
H) emerged as the most favored cropping style, receiving the
highest mean rating. This finding underscores the significant
influence of cropping type on viewer preferences, with a
pronounced preference for cropping type 6 in the assessed
dataset.
Regarding Video 4, the analysis indicated a significant

effect of cropping type on video content ratings. Among the
six cropping types evaluated, Cropping type 6 (SmartCrop-H)
received the highest mean rating. This outcome highlights the
significant impact of cropping style on viewer perceptions,
with cropping type 6 emerging as the most preferred by
participants.

Capturing the Essence of the Original Video (Content)
To evaluate the effects of six distinct cropping methods on
preserving the essence of the original video content, a one-
way repeated measures ANOVA was carried out across four
scenarios. The outcomes of this analysis are illustrated in
Figure 17c in Content metric in Table 6.
For Video 1, a One-Way Repeated Measures ANOVA re-

vealed a significant effect of cropping type on the ratings of
video content. Among the evaluated cropping types, cropping
type 6 was rated highest mean. This finding emphasizes the
substantial influence of cropping type on viewer preferences,
highlighting a distinct preference for cropping type 6.
In the case of Video 2, the analysis showed a significant

effect of cropping type on video ratings. Cropping type 6
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QoE 1 9:16 4.2692 0.60383 92.899 < .000 .957
QoE 2 9:16 4.4231 0.57779 53.945 < .000 .928
QoE 3 1:1 4.5000 0.64807 46.014 < .000 .916
QoE 4 1:1 4.2308 0.76460 29.516 < .000 .875

Smoothness 1 9:16 4.3846 0.63730 112.051 < .000 .964
Smoothness 2 9:16 4.4231 0.50383 72.028 < .000 .945
Smoothness 3 1:1 4.3846 0.75243 100.258 < .000 .960
Smoothness 4 1:1 4.1538 0.73170 47.933 < .000 .919

Content 1 9:16 4.6538 0.48516 96.253 < .000 .958
Content 2 9:16 4.6538 0.5779 91.917 < .000 .786
Content 3 1:1 4.5769 0.64331 41.102 < .000 .907
Content 4 1:1 4.5769 0.87442 30.677 < .000 .880

TABLE 6: [User study #2] Summary of the ANOVA analysis
for the QoE, smoothness, and content metrics for SmartCrop-
H across four videos.

was rated the highest among all types, indicating a strong
preference for this particular cropping style with a mean
rating. This result underscores the considerable impact of
cropping style on viewer perceptions, with a clear inclination
toward cropping type 6.

For Video 3, a One-Way Repeated Measures ANOVA in-
dicated a significant effect of cropping type on video ratings.
Cropping type 6 emerged as the most preferred type with
the highest mean and standard deviation rating, reflecting a
strong preference for this cropping style among the partici-
pants.

Regarding Video 4, the analysis demonstrated a significant
effect of cropping type on the video content ratings. Cropping
type 6 was rated the highest mean, suggesting it as the most
favored cropping style. This result highlights the significant
impact of cropping style on viewer preferences, with a pro-
nounced inclination towards cropping type 6 in the evaluated
dataset.

4) Post-questionnaire
In the follow-up questionnaire, participants evaluated the sig-
nificance of four key elements in video viewing on a 1 to 5
scale, with 1 denoting "Not at all important" and 5 indicat-
ing "Extremely important." The evaluated elements included
smooth window movement, visibility of relevant players, vis-
ibility of the puck, and overall video quality. The collective
feedback from all 26 participants can be summarized as fol-
lows.

• Smooth window movement: Amean score of 3.42 was
observed, with the most frequently chosen ratings being
3 (Important).

• Always seeing relevant players: This factor achieved a
mean rating of 3.35, with the most common score being
3 (Important).

• Always seeing the puck: This element scored an aver-
age of 3.28, with the predominant rating being 3 (Impor-
tant).

Description Automatic
1 Static cropping (frame-centered) ✔
2 SmartCrop-H ✔
3 Final Cut Pro Auto Reframe ✔
4 Adobe Premiere Pro Auto Reframe ✔
5 Manual cropping with Adobe Premiere Pro ✖

TABLE 7: Cropping methods used in subjective study #3.

• Video quality:Garnered an average rating of 3.54, with
the most frequently selected score being 3 (Important).

The survey results suggest that participants regard all four
aspects - smooth window movement, visibility of relevant
players and the puck, and video quality - as important, albeit
with a slight inclination towards the visibility elements over
technical quality, indicating a preference for content over
video technicalities.

C. COMPETITOR ANALYSIS
In order to undertake a competitor analysis for the cropping
operation, we conducted a user study comparing the cropping
methods presented in Table 7. This study involved examining
two distinct videos, each cropped using the five different
cropping methods. The first alternative involves static frame-
centered cropping. The second represents the output from
our SmartCrop-H pipeline. The third alternative is the Final
Cut Pro Auto Reframe, an automated cropping feature within
Final Cut Pro. The fourth, Adobe Premiere Pro Auto Reframe,
operates similarly but within the Adobe Premiere Pro en-
vironment. Finally, the fifth alternative is manual cropping,
wherein a human video producer manually crops the video
using the Adobe Premiere Pro software. The videos were
evaluated across two aspect ratios, namely 1:1 and 9:16.

1) Experimental Setup
We conducted an online survey, gathering responses from
participants in a collaborative manner. The survey structure
mirrored that of section V-B1, where participants were tasked
with completing it using an iPhone. The choice of using
iPhones was due to a compatibility issue: videos could not be
displayed in their full size when streamed from YouTube on
Google Forms on Android devices. Ensuring that participants
could view the video in full-screen was only feasible on
iPhones, providing a consistent and optimal viewing experi-
ence for all respondents.

2) Participant Details
In total, we recruited 27 participants: 7 females, 20 males.
The ages of the participants ranged from 17 to 40, with a
mean of 31.7 and a standard deviation of 7.74. All participants
were active on social media. Regarding daily usage, 29.6%
reported spending less than 30 minutes, 18.5% reported 30
minutes to 1 hour, 29.6% reported 1-2 hours, 14.8% reported
2-4 hours, and 7.4% reported more than 4 hours. On a scale
of 1 to 5, participants indicated that they have experience in
video editing with an average score of 1.96.
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(a) Question 1: QoE (b) Question 2: smoothness (c) Question 3: content

(d) Question 1: QoE (e) Question 2: smoothness (f) Question 3: content

FIGURE 18: [User study #3] Subjective quality ratings with 95% confidence intervals, for Video 1 (blue) and Video 2 (red) with a target
aspect ratio of 1:1 (a-c) and 9:16 (d-f).

3) Results
To analyze the results, we used the repeated measures
ANOVAwhich compares means across one or more variables
that are based on repeated observations. The one-way re-
peated measures ANOVA results are summarized in Table 8.

Metric V
id
eo

#

A
sp
ec
t R

at
io

M
ea
n

SD F
-v
al
ue

p-
va
lu
e

P
ar
ti
al

η
2

QoE 1 1:1 3.4444 0.75107 29.932 < .001 0.535
QoE 2 1:1 3.5185 0.64273 25.344 < .001 0.494
QoE 1 9:16 3.1852 0.83376 37.951 < .001 0.593
QoE 2 9:16 3.4444 0.75107 29.932 < .001 0.535

Smoothness 1 1:1 3.3704 0.88353 14.779 < .001 0.362
Smoothness 2 1:1 3.4444 0.84732 11.596 < .001 0.308
Smoothness 1 9:16 3.2593 0.85901 19.110 < .001 0.424
Smoothness 2 9:16 3.4815 0.75296 23.061 < .001 0.470

Content 1 1:1 3.1852 0.73574 25.250 < .001 0.493
Content 2 1:1 3.5185 0.75296 19.545 < .001 0.429
Content 1 9:16 3.0370 0.85402 48.494 < .001 0.651
Content 2 9:16 3.3704 0.79169 24.245 < .001 0.483

TABLE 8: [User study #3] Summary of the ANOVA analysis
for the QoE, smoothness, and content metrics for SmartCrop-
H across two videos and two target aspect ratios.

Quality of experience (QoE)
The repeated measures ANOVA assessed the impact of five
cropping methods on QoE across four scenarios (Table 7).
TheMOS values for a 1:1 aspect ratio are shown in Figure 18a
and for a 9:16 aspect ratio in Figure 18d.

For Video 1 with a 1:1 aspect ratio, SmartCrop-H showed
a notable mean performance score of 3.44. This result was
significantly better than the Static Crop method and slightly
superior to the automated reframing techniques of Final Cut

Pro andAdobe Premiere Pro. However, it did not reach the ex-
cellence of a manually edited crop using Adobe Premiere Pro,
which had the highest mean score. This indicates SmartCrop-
H’s effectiveness over traditional and less sophisticated meth-
ods, while also suggesting room for improvement to match
the precision of manual cropping.
In the 9:16 aspect ratio for Video 1, SmartCrop-H demon-

strated robustness with a mean score of 3.1852. Again, it
significantly outperformed the Static Crop and exhibited bet-
ter results compared to the automated methods, but it did
not surpass the Manual Crop. This trend was also observed
in Video 2 across both aspect ratios, where SmartCrop-H
consistently showed improvement over basic and automated
cropping methods but fell short of the high standards set by
manual cropping.

Smoothness
The analysis of video smoothness indicated a significant
impact of cropping type on both videos in each aspect ratio, as
shown in (Figure 18b and Figure 18e). SmartCrop-H demon-
strated effective performance, especially in the 1:1 aspect
ratio for Video 1, with a mean score of 3.3704. It notably
outperformed the Static Crop and showed better results than
the automated methods. However, as expected, it was not on
par with the Manual Crop’s performance. This pattern was
consistent across all scenarios, underscoring SmartCrop-H’s
efficiency in automated editing yet highlighting the superior-
ity of manual techniques.

Content
In capturing the original content, SmartCrop-H’s perfor-
mance in the 9:16 aspect ratio was particularly noteworthy
(Figure 18f). For Video 1, it had a mean performance of
3.2593, significantly better than the Static Crop. Despite sur-
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passing other automated methods, it did not reach the level
of the Manual Crop. This trend was similar for Video 2,
where SmartCrop-H effectively outperformed basic and some
automated methods but did not match the quality of manual
cropping.

Across all scenarios, SmartCrop-H showed significant su-
periority over Static Crop and slight improvements over Final
Cut Pro Auto Reframe (Type 3) and Adobe Premiere Pro
Auto Reframe (Type 4). However, it was consistently out-
performed by Manual Crop (Type 5), which had the highest
mean score (4.4815). These results suggest SmartCrop-H’s
advancement over basic and less sophisticated methods, its
marginal superiority over other automated techniques, and the
potential for further development to reach the standards of
manual cropping, as exemplified by the Manual Crop results.

4) Post-questionnaire
In the subsequent survey, participants rated the importance of
four critical aspects of video watching on a scale from 1 to 5,
where 1 represented "Not at all important" and 5 signified
"Extremely important." These aspects were Smoothness of
window movement, Always seeing relevant players, Always
seeing the puck, and Video quality. Summarized responses
from the 27 participants were as follows:

• Smooth window movement: With an average score
of 2.7 and a mode of 3 ("Important"), it suggests this
feature is considered moderately important, but not a top
priority.

• Always seeing relevant players: This aspect’s high av-
erage score of 4 and amode of 5 ("Extremely important")
clearly indicates it is a crucial element for viewers.

• Always seeing the puck: An average score of 3.37 and
a mode of 3 ("Important") reflect a general consensus on
its importance, but not as vital as seeing relevant players.

• Video quality: The average score of 3.19 and a mode
of 3 ("Important") indicate that while video quality is
important, it is less critical compared to the visibility of
players and the puck.

These results indicate that participants place considerable
importance on all four aspects, with smoothness and video
quality shown to be slightly less critical than the visibility of
players and the puck (indicating prioritization of content over
video quality).

5) Saving Human Resources - Time Spent for Cropping
One of the primary objectives of our project is to streamline
the video editing process, with a specific focus on reducing
the time and human resources required for publishing content
across various platforms. Our experiment also involved a
comparative analysis of manual and AI-assisted video crop-
ping techniques regarding their execution time. Initially, we
manually cropped an 18-second video highlight using Adobe
Premier Pro. This process, including the setting of specific
cropping points for each frame, took us approximately 240
seconds. Notably, this time frame did not include the addi-

tional time required for the final video export, which encom-
passes transcoding and file writing.
In contrast, when we applied our SmartCrop-H to the same

18-second video clip, the results were significantly more
efficient. Our pipeline utilizes AI to analyze scenes, detect
key elements in the footage (such as players and the puck
in our case), track objects in each frame, interpolate, smooth
the transitions between frames, and then calculate the optimal
cropping points. The entire process, from detecting these
elements to producing a cropped video ready for publishing,
took merely 62 seconds.
Similarly, we observed that the Auto Reframe feature in

Adobe Premiere Pro, and a comparable feature in Final Cut,
both of which employAI, significantly expedite the reframing
process. These tools analyze videos for color and saliency to
determine how best to reframe them. While it is difficult to
precisely measure the time taken by these black-box systems,
the process is notably quicker than manual methods. The user
simply drags the auto-raframe effect onto the video, after
which the system analyzes color and saliency. The reframed
views become available shortly afterward. If desired, this can
then be exported, initiating a crop, transcoding, and writing
to file. To utilize these features effectively, users require a
robust platform with adequate hardware. For Adobe Premiere
Pro and Final Cut, they recommend a system with at least
4GB of VRAM, 16GB of RAM, and a multi-core processor
(preferably 6-core or higher). These specifications ensure
smooth operation and quick processing times, enabling these
AI-driven tools to function at their full potential.
Our findings suggest that AI solutions offer a significant

time-saving advantage in adjusting video aspect ratios for
various publishing platforms.

VI. DISCUSSION AND FUTURE WORK
This study introduces a novel framework designed specifi-
cally for adapting hockey videos to various aspect ratios, pri-
marily for social media distribution. It effectively integrates
advanced techniques such as scene analysis, object and outlier
detection, and smoothing algorithms to optimize the QoE
for viewers across different aspect ratios. This framework’s
efficacy has been rigorously validated through objective and
subjective means. Significantly, as highlighted in Section II,
our research emphasizes the importance of domain-specific
insights in designing automated production pipelines, partic-
ularly in sports where unique optimization strategies are vital.
We examined the efficiency and performance of

SmartCrop-H in comparison to manual and automated video
editing methods. Our results show that SmartCrop-H outper-
forms basic methods like Static Crop and exhibits marginal
improvements over other automated tools, such as Final Cut
Pro’s and Adobe Premiere Pro’s Auto Reframe methods.
However, it is slightly less effective than the high-quality
results achieved through manual editing with Manual Crop.
We also examined the time efficiency of SmartCrop-H in

video editing, particularly for sports content. While manually
editing an 18-second ice hockey video in Adobe Premiere Pro
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(a) Ice hockey frame (b) DINO attention visualization (c) Segment Anything visualization

FIGURE 19: Set of images displaying various analysis techniques on a sample ice hockey frame.

(a) Game frame 1 (b) Game frame 2 (c) Game frame 3

(d) Normalized view 1 (e) Normalized view 2 (f) Normalized view 3

FIGURE 20: Comparison of original game frames and their 2D normalized views post-homography.

took about 4 minutes, this timeframe may seem manageable
for a single clip but becomes significantly more challenging
when dealing with multiple, much longer videos. The scal-
ability issue is crucial, especially for media teams in clubs
or leagues that regularly process a large volume of game
footage. The manual approach, while initially seeming quick,
becomes a daunting, time-consuming task when multiplied
across numerous events.

In stark contrast, SmartCrop-H completed the same editing
task in just 62 seconds. This substantial reduction in editing
time is not just amatter of convenience but a critical efficiency
improvement for scenarios involving high content volumes.
Furthermore, SmartCrop-H offers an integrated system that
accelerates various editing processes and enables the fully
automated publishing of videos immediately after a game,
which drastically cuts down on manual work. Additionally,
SmartCrop-H’s features, such as the ability to track multi-
ple objects in a frame, cater to a broader range of viewer

interests. This is a significant advantage over Adobe’s Auto
Reframe feature, which mainly focuses on actions within a
frame. This approach by SmartCrop-H enhances the overall
viewing experience for different types of clips, showcasing its
adaptability and potential in providing tailored video editing
solutions. This time efficiency of SmartCrop-H is crucial in
fast-paced environments like news and sports media, where
quick turnaround is essential. Although it does not match
the precision of manual editing, SmartCrop-H provides a
valuable balance between speed and quality, making it a
useful tool for various applications. These findings suggest
the potential of SmartCrop-H to streamline video editing
processes, although there is still room for improvement to
match the quality of manual editing fully.

The next phase of our research envisages the incorporation
of emerging technologies. Despite the promise these tech-
nologies hold, several technical and logistical challenges have
delayed their implementation. The integration of the Segment
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Anything Model (SAM) [57], an advanced tool for object
segmentation within a frame, is a case in point. Adapting
SAM to our specific requirements is a complex endeavor, and
ensuring its effectiveness and accuracy in the dynamic envi-
ronment of a hockey game demands comprehensive testing
and calibration (Figure 19c).

Similarly, the inclusion of DINO [58] (self-distillation with
no labels) for visual attention modeling introduces its unique
set of challenges. Tailoring DINO’s AI-driven attention mod-
eling to the specifics of our framework requires a nuanced
understanding of its underlying algorithms and the develop-
ment of a custom interface (Figure 19b). The integration of
these technologies, while challenging, is seen as a crucial step
in advancing our framework’s capabilities.

Furthermore, the expansion of the ROI paradigm to en-
compass player positions and key game moments signifies
a critical shift from traditional puck-centric analyses in ice
hockey footage. This shift is essential for optimizing the
viewer experience on devices with varying aspect ratios, ne-
cessitating precise cropping of each frame to maintain the
saliency of the video content. Special attention to game events
such as face-offs, power plays, and breakaways is imperative,
as these moments where player positions and actions become
focal, must be clearly visible, especially on smaller screens.
The challenge involves dynamically adjusting the cropping to
ensure these pivotal moments are captured effectively.

Our initial attempts at automating the extraction of ROI
from ice hockey game footage for social media were based
on a multi-faceted approach that included homography, ob-
ject detection, and the application of ice hockey game rules.
Despite the theoretical promise of this approach, practical
challenges emerged, particularly due to the fast-paced nature
of ice hockey. Homography, aimed at transforming video
frames into a normalized 2D view of the rink, was combined
with object detection techniques to identify game elements
and the application of specific ice hockey rules (Figure 20).
However, the rapid pace, unpredictable movements, and the
small, fast-moving puck presented significant difficulties in
maintaining accuracy and effectiveness in ROI identification.

Despite these challenges, the potential benefits of homog-
raphy in understanding active areas within a frame are ev-
ident. This insight is crucial for developing a more sophis-
ticated approach to video cropping focused on active game
areas. Consequently, our future efforts will be directed toward
refining the use of homography in combination with en-
hanced object detection algorithms and a deeper integration of
ice hockey rules. This multifaceted approach aims to develop
a robust system capable of effectively handling the fast-paced
and dynamic nature of ice hockey, thereby improving the
automated production and adaptation of sports footage for
diverse media platforms.

VII. ETHICAL CONSIDERATIONS AND ENVIRONMENTAL
IMPACT
The development and deployment of AI-driven video edit-
ing tools such as SmartCrop-H raise several ethical consid-

erations that need discussion. Automation of video editing
tasks has the potential to impact employment in the media
industry, potentially leading to job displacement for video
editors specializing in content retargeting for social media.
However, these tools may also create new opportunities for
content creators to focus on higher-level creative tasks.

There are also concerns about content integrity, as auto-
mated cropping decisions can inadvertently alter the intended
message or emotional impact of the original footage. As with
any AI system, there is a potential for bias in the decision-
making process, which could manifest itself as favoring cer-
tain types of play or players, potentially skewing the represen-
tation of the game. The examination of this potential bias can
go hand-in-handwith the technical investigation of alternative
cropping windows that center around a different POI than the
hockey puck (the expansion of the ROI paradigm as discussed
earlier).

The environmental impact of AI systems is another im-
portant consideration that needs to be taken into account.
Although we do not provide specific energy consumption
information, the use of GPU acceleration in our pipeline
suggests potential for improved efficiency compared to CPU-
only processes. Our analysis shows that SmartCrop-H, run-
ning on a system with an NVIDIA Tesla T4 GPU, completes
video processing tasks more quickly than CPU-only config-
urations, which could translate to energy savings in high-
volume scenarios which are typical in sports broadcasting.
Future work can undertake more detailed comparisons of
energy consumption between SmartCrop-H, manual editing
processes, and other automated systems, as well as explore
the use of more energy-efficient algorithms and hardware,
and the potential for edge computing to further reduce the
environmental footprint of AI-driven video processing.

VIII. CONCLUSION

This study introduces the SmartCrop-H pipeline, designed
to enhance the viewing of ice hockey videos in various as-
pect ratios. This system incorporates object detection, scene
detection, and outlier detection to identify POIs effectively.
A smoothing algorithm further refines the video cropping
process. Our object detection model targeting the ice hockey
puck showed superior performance compared to other mod-
els, and our smoothing module was shown to significantly
improve cropping window movement and transition smooth-
ness. Subjective studies have demonstrated the effectiveness
of SmartCrop-H in improving viewer QoE, especially for the
challenging 9:16 aspect ratio. Overall, SmartCrop-H marks
a significant advancement in sports video processing, offer-
ing efficient adaptation of video content for varied aspect
ratios, enhancing the viewing experience of digital sports
media. Future work includes refining the pipeline, integrating
emerging technologies, and a broader subjective evaluation to
understand viewer preferences across different sports.
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