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Abstract
Weprovide anewapproach to the optimizationof trigonometric polynomialswith crys-
tallographic symmetry. This approach widens the bridge between trigonometric and
polynomial optimization. The trigonometric polynomials considered are supported
on weight lattices associated to crystallographic root systems and are assumed invari-
ant under the associated reflection group. On one hand the invariance allows us to
rewrite the objective function in terms of generalized Chebyshev polynomials of the
generalized cosines; On the other hand the generalized cosines parameterize a com-
pact basic semi algebraic set, this latter being given by an explicit polynomial matrix
inequality. The initial problem thus boils down to a polynomial optimization problem
that is straightforwardly written in terms of generalized Chebyshev polynomials. The
minimum is to be computed by a converging sequence of lower bounds as given by a
hierarchy of relaxations based on the Hol–Scherer Positivstellensatz and indexed by
the weighted degree associated to the root system. This new method for trigonometric
optimization was motivated by its application to estimate the spectral bound on the
chromatic number of set avoiding graphs.We examine cases of the literature where the
avoided set affords crystallographic symmetry. In some cases we obtain new analytic
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proofs for sharp bounds on the chromatic number while in others we compute new
lower bounds numerically.
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1 Introduction

Given an n-dimensional lattice � ⊆ R
n , a trigonometric polynomial is a function

f : Rn → R, u �→ f (u) :=
∑

μ∈�
cμ exp(−2π i 〈μ, u〉),

where 〈·, ·〉 denotes the Euclidean scalar product and the finitely many nonzero coef-
ficients cμ ∈ C satisfy c−μ = cμ. Such functions are good L2-aproximations for
real-valued �-periodic functions, where � is the dual lattice, and assume their global
maximum and minimum on the periodicity domain. This article offers a new approach
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to optimizing such a trigometric function overRn , when it is invariant under a crystallo-
graphic reflection group.We show how the problem can then be reduced to polynomial
optimization on a semi-algebraic set and handled with a variation on the Lasserre hier-
archy. The resulting algorithm is applied to the exploration of the spectral bound on
the chromatic numbers of set avoiding graphs.

The global minimmum of a trigonometric polynomial can be approximated numer-
ically with a hierarchy of Hermitian sums of squares reinforcements [12, 24].
Alternatively, one can apply Lasserre’s hierarchy with complex variables [36], where
one has to restrict to the compact torus. A symmetry reduction scheme can be intro-
duced at each step of the hierarchy, as exploited for a special case in [39] and further
explored in [49]. In this article we factor out the symmetry from the original problem,
boiling it down to theminimization of a polynomial on a compact basic semi-algebraic
set.

In this article, � is the weight lattice of a crystallographic root system in R
n . Root

and weight lattices provide optimal configurations for a variety of problems in geom-
etry and information theory, with incidence in physics and chemistry. The A2 lattice
(the hexagonal lattice) is classically known to be optimal for sampling, packing, cov-
ering, and quantization in the plane [17, 37], but also proved, or conjectured, to be
optimal for energy minimization problems [6, 55]. More recently, the E8 lattice was
proven to give an optimal solution for the sphere packing problem and a large class
of energy minimization problems in dimension 8 [15, 58]. From an approximation
point of view, weight lattices of root systems describe Gaussian cubatures [46, 50],
a rare occurence on multidimensional domains. In a different direction, the triangu-
lations associated with infinite families of root systems are relevant in graphics and
computational geometry, see for instance [16] and references therein.

The distinguishing feature of the lattices associated to crystallographic root systems
is their intrinsic symmetry. This latter is given by the so called Weyl group W , a
finite group generated by orthogonal reflections w.r.t. 〈·, ·〉. It is this feature that we
emphasize and offer to exploit in an optimization context. We present a new approach
to numerically solve the trigonometric optimization problem

f ∗ := min
u∈Rn

f (u) (1.1)

under the assumption of crystallographic symmetry, that is, for s ∈ W , we have
f (s(u)) = f (u), or equivalently cs(μ) = cμ. The first step of our approach, in Sect. 2,
is a symmetry reduction that translates the trigonometric optimization above to the
problem of optimizing a polynomial over a semi-algebraic set, a subject that ripened in
the last 2 decades [10, 19, 28, 40, 42, 43, 51, 52, 54]. The second step of our approach,
in Sect. 3, is thus an adaptation of Lasserre’s hierarchy of moment relaxations and
sums of squares reinforcements. We indeed modify the hierarchy introduced in [32,
33, 41] to work directly in the basis of generalized Chebyshev polynomials. These are
not homogeneous but naturally filtered by a weighted degree, different from the usual
degree.

The simplest case of this symmetry reduction scheme, the univariate case, is obvious
but maybe worth reviewing to get the initial idea. The lattice is � = Z ⊂ R and
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hence the periodicity domain is the interval [−1, 1]. The associated Weyl group is
W = {1,−1} so that the fundamental domain is the interval [0, 1] and the invariance
condition is f (−u) = f (u), for all u ∈ R. That implies that one can write

f (u) =
∑

k∈N

ck
2

(exp(2π i ku)+ exp(−2π i ku))

=
∑

k∈N
ck cos(2π ku) =

∑

k∈N
ck Tk(cos(2π u)),

where {Tk}k∈N are the Chebyshev polynomials of the first kind. We thus have

f ∗ := min
u∈R f (u) = min

z2≤1
∑

k∈N
ckTk(z)

the right hand side being a polynomial optimization problem with semi-algebraic
constraints.

We look at all the lattices associated to crystallographic root systems, offering awide
range of domains of periodicity (hexagon, rhombic dodecahedron, icositetrachoron,
hypercube, …) and simplices of any dimension, or cartesian products of these, as
fundamental domains. In higher dimension we thus go beyond the cartesian product
symmetry W = {1,−1}n with a hyperrectangle as periodicity domain. The key to
the symmetry reduction then is the existence and properties of generalized Chebyshev
polynomials. They allow to rewrite any invariant trigonometric polynomials as poly-
nomials of the fundamental generalized cosines. In the caseW = {1,−1}n mentioned
earlier, the generalized Chebyshev polynomials are simply the product of univariate
Chebyshev polynomials in each variable. The zoo of generalized Chebyshev is yet
conspicuously larger.

The generalized Chebyshev polynomials arose in different contexts, in particular
in the search of multivariate orthogonal polynomials [5, 21, 25, 35, 47]. A more recent
development is the description of their domain of orthogonality, the image of the
generalized cosines, as a compact semi-algebraic set given by a unified and explicit
polynomial matrix inequality [30, 48]. Such a description is necessary to proceed
algorithmically with the obtained polynomial optimization problem.

In the algorithmic approach, we solve a primal/dual semi-definite program (SDP)
that models a moment-relaxation/sums of squares reinforcement in terms of gen-
eralized Chebyshev polynomials. The Maple package GeneralizedChebyshev
provides the necessary tools. It is available here:

https://github.com/TobiasMetzlaff/GeneralizedChebyshev

The package allows to produce the data for the SDP, specifically the matrices that
impose the semi-definite constraints. The user can then solve the problem with a SDP
solver of their personal preference. Beyond that, the package offers a large variety of
functionalities, including the matrices from [30], an implementation of the irreducible
root systems and computational aspects ofmultiplicative invariants1.We can thus com-
pare our method with the one in [24] in practice. Under the symmetry hypothesis, we

1 See https://tobiasmetzlaff.com/html_guides/GeneralizedChebyshevHelp.html for a documentation.
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observe in several examples throughout Sect. 3.4 that the quality of the approximation
is improved, while the computational complexity is reduced.

As a second set of contributions, in Sect. 4, we apply our method to the computation
of spectral bounds for chromatic numbers of set avoiding graphs. The first such graph
considered was the Euclidean distance graph [4, 11, 18, 57], where the vertices are
the points of R

n and the set to be avoided is the sphere. As set of vertices we consider
either R

n , or a lattice thereof. As for the set to be avoided we mostly consider the
boundary of a polytopewith crystallographic symmetry. Choosing appropriate discrete
measures on the boundary of the polytope, the spectral bound from [4] made specific
to the chromatic number can be expressed as the solution of a max–min optimization
problem on a trigonometric polynomial. Our symmetry reduction technique of Sect. 2
then allows us to retrieve, with simple proofs, the chromatic number of the An−1 lattice
(Theorem 4.6), of the graph avoiding the crosspolytope of radius 2 in Z

n (Theorem
4.11), and of the graph avoiding the cube in R

n (Proposition 4.17). In other cases,
we apply the algorithm in Sect. 3 to compute lower bounds numerically. We improve
the previous lower bound from [27] on the chromatic number of Z

4 avoiding the
crosspolytope from 9 to 11 (Table 4). We also give further bounds for the rhombic
dodecahedron (Table 6) as well as the icositetrachoron (Table 7). Our results are
summarized and commented in more details in Sect. 4.5.

2 Crystallographic symmetries

In order to rewrite the trigonometric optimization problem in Eq. (1.1) to a polynomial
optimization problem, we require the lattice� to be full-dimensional and stable under
some finite reflection groupW , that is,W � = �. ThenW must be theWeyl group of
some crystallographic root system [38, Ch. 9] and � is the associated weight lattice.
We need several facts from the theory of Lie algebras, root systems and lattices, which
come from [7, 17, 34]. In particular, we need Theorem 2.5, which states that any
trigonometric polynomial with crystallographic symmetry can be written uniquely
as a polynomial in fundamental invariants, also known as the generalized cosines.
Subsequently, the feasible region of the so obtained polynomial optimization problem
is the image of the generalized cosines, a compact basic semi-algebraic set whose
equations were given explicitely in [30, 48].

The computations for the examples in this section are documented here:

https://tobiasmetzlaff.com/html_guides/crystallographic_symmetries.html

2.1 Root systems andWeyl groups

The nonnegative integers are denoted by N = {0, 1, 2, . . .}. Let 1 ≤ n ∈ N and 〈·, ·〉
be the Euclidean scalar product on R

n . A subset R ⊆ R
n is called a root system in

R
n , if the following conditions hold.

R1 R is finite, spans R
n and does not contain 0.

R2 If ρ, ρ̃ ∈ R, then 〈ρ̃, ρ∨〉 ∈ Z, where ρ∨ := 2 ρ
〈ρ,ρ〉 .
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R3 If ρ, ρ̃ ∈ R, then sρ(ρ̃) ∈ R, where sρ is the reflection defined by sρ(u) =
u − 〈u, ρ∨〉ρ for u ∈ R

n .

The elements of R are called roots and the ρ∨ are called the coroots. Furthermore, R
is called reduced, if additionally the following condition holds.

R4 For ρ ∈ R and c ∈ R, we have cρ ∈ R if and only if c = ±1.
We assume that the “reduced” property R4 always holds when we speak of a “root

system”. Sometimes the “crystallographic” property R2 is emphasized as a seperate
condition [38]. For visualizations, see Example 2.4.

2.1.1 Weyl group and weights

The Weyl group W of R is the group generated by the reflections sρ for ρ ∈ R. This
is a finite subgroup of the orthogonal group on R

n with respect to the inner product
〈·, ·〉. The Weyl groups are the groups we consider in this article and now we define
the lattices of interest.

A subset B = {ρ1, . . . , ρn} ⊆ R is called a base, if the following conditions hold.

B1 B is a basis of R
n .

B2 Every root ρ ∈ R can be written as ρ = α1 ρ1 + . . . + αn ρn or ρ = −α1 ρ1 −
. . .− αn ρn for some α ∈ N

n .

Every root system contains a base [7, Ch. VI, § 1, Thm. 3].
A weight of R is an elementμ ∈ R

n , such that, for all ρ ∈ R, we have 〈μ, ρ∨〉 ∈ Z.
The set of weights forms a lattice �, called the weight lattice. By the condition R2,
every root is a weight. For a base B = {ρ1, . . . , ρn}, the fundamental weights are
the elements {ω1, . . . , ωn}, such that, for 1 ≤ i, j ≤ n, 〈ωi , ρ

∨
j 〉 = δi, j . The weight

lattice is left invariant under the Weyl group, that is, W� = �.
The fundamental Weyl chamber of W relative to B is

�� := {u ∈ R
n | ∀ 1 ≤ i ≤ n : 〈u, ρi 〉 > 0}.

The closure �� is a fundamental domain of W [7, Ch. V, §3, Thm. 2]. Hence, ��

contains exactly one element perW-orbit and the weights in�� are called dominant.
We denote �+ := � ∩��.

Proposition 2.1 For μ ∈ �+, there exists a unique μ̂ ∈ �+ with −μ ∈ Wμ̂. Fur-
thermore, there exists a permutation σ ∈ Sn of order at most 2, such that, for all
1 ≤ i ≤ n, we have ω̂i = ωσ(i).

Proof Fix a base {ρ1, . . . , ρn} and recall that W is generated by the reflection sρi [7,
Ch.VI, § 1, Thm. 2]. There is a unique element s0 ∈W , which hasmaximal lengthwith
respect to the sρi and it is an involution that takes {ρ1, . . . , ρn} to {−ρ1, . . . ,−ρn}
[7, Ch. VI, § 1, Prop. 17, Coro. 3]. Hence, there is a permutation σ ∈ Sn with
s0(ρi ) = −ρσ(i). Since s20 = Idn and the inner product is W-invariant, σ has order 1
or 2 and

−s0(ωi ) =
n∑

j=1
〈−s0(ωi ), ρ

∨
j 〉ω j =

n∑

j=1
〈ωi ,−s0(ρ∨j )〉ω j =

n∑

j=1
〈ωi , ρ

∨
σ( j)〉ω j = ωσ(i)
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is also a fundamental weight. In particular, μ̂ := −s0(μ) ∈ �+ is unique. ��

2.1.2 The Voronoï cell

The set of all coroots ρ∨ spans a lattice� inR
n , called the coroot lattice. This Abelian

group acts on R
n by translation and is the dual lattice of the weight lattice, that is,

� = �∗ = {λ ∈ R
n | ∀μ ∈ � : 〈μ, λ〉 ∈ Z}.

Denote by ‖·‖ the Euclidean norm. The Voronoï cell of � is

Vor(�) := {u ∈ R
n | ∀ λ ∈ � : ‖u‖ ≤ ‖u − λ‖}

and tiles R
n by �-translation, that is,

R
n =

⋃

λ∈�
(Vor(�)+ λ), (2.1)

where “+” denotes the Minkowski sum. The interiors of the cells Vor(�) + λ are
disjoint and the intersection of two adjacent cells is an entire face of both of them [17,
Ch. 2, § 1.2]. Faces of codimension 1 are called facets.

The affine Weyl group is the infinite group generated by the reflections sρ,�(u) :=
sρ(u)+ � ρ∨ for ρ ∈ R. It can also be seen as the semi-direct productW � � [7, Ch.
VI, §2, Prop. 1]. We are interested in the chambers of this infinite reflection group,
which are called alcoves to avoid confusion. In particular, the closure of any alcove
is a fundamental domain for W � �.

Proposition 2.2 [7, Ch. VI, §2, Prop. 4] and [17, Ch. 21, § 3, Thm. 5] There is a unique
alcove of W � � in ��, which contains 0 in its closure �. We have Vor(�) =W �.

The rest of this subsection is devoted to describe the closure� of the unique alcove
in Proposition 2.2. Assume that R

n = V (1) ⊕ . . . ⊕ V (k) is the direct sum of proper
orthogonal subspaces and that, for each 1 ≤ i ≤ k, R(i) is a root system in V (i). Then
R := R(1) ∪ . . . ∪ R(k) is a root system in R

n and called the direct sum of the R(i).
If a root system is not the direct sum of at least two root systems, then it is called
irreducible.

The Weyl group W is the product of the Weyl groups corresponding to the irre-
ducible components, see the discussion before [7, Ch. VI, §1, Prop. 5]. Furthermore,
any alcove of the affine Weyl group is the product of alcoves corresponding to the
irreducible components, see the discussion after [7, Ch. VI, §2, Prop. 2]. We are thus
left to determine � for irreducible root systems. If R is irreducible and B is a fixed
base, then there exists a unique positive root ρ0 ∈ R+, so that, for all ρ ∈ R, there is
some α ∈ N

n with ρ0 − ρ = α1 ρ1 + . . . + αn ρn [7, Ch. VI, §1, Prop. 25]. We call
ρ0 the highest root.

Proposition 2.3 [7, Ch. VI, §2, Prop. 5, Coro.] Let R be an irreducible root system
and B = {ρ1, . . . , ρn} be a base, so that ρ0 = α1 ρ∨1 + . . .+ αn ρ∨n is the highest root
of R for some α ∈ R

n. Then

� = {u ∈ R
n | ∀ 1 ≤ i ≤ n : 〈u, ρi 〉 ≥ 0 and 〈u, ρ0〉 ≤ 1}
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Fig. 1 The root system A2 in
R
3/〈[1, 1, 1]t 〉

Fig. 2 The root system B2 in R
2

Fig. 3 The root system G2 in
R
3/〈[1, 1, 1]t 〉

is a fundamental domain for W � �. Furthermore, for 1 ≤ i ≤ n, we have αi > 0
and

� = ConvHull

(
0,

ω1

α1
, . . . ,

ωn

αn

)
.

In particular, if R is irreducible, then any closed alcove of the affine Weyl group is
a simplex.

Every root system can be uniquely decomposed into irreducible components [7,
Ch. VI, §1, Prop. 6] and there are only finitely many cases [7, Ch. VI, § 4, Thm. 3]
denoted by An−1, Bn , Cn (n ≥ 2), Dn (n ≥ 4), E6, E7, E8, F4 and G2. Throughout this
article, we shall focus on the four infinite families An−1, Bn , Cn , Dn and the special
case G2. For those root systems, the base, fundamental weights and Weyl group are
given in Appendix A (Figs. 1, 2, 3, 4).

Example 2.4 We consider the following irreducible root systems in dimension 2. (Col-
umn vectors are denoted by square brackets [·], transpose by ·t .)

Here, the roots are depicted in green, the base in red and the fundamental weights
in blue. The Voronoï cell of the coroot lattice � is the gray shaded region: there are
two squares (C2 and B2) and two hexagons (A2 and G2). The fundamental domain of
the affine Weyl group is the blue shaded simplex.
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Fig. 4 The root system C2 in R
2

2.2 Trigonometric polynomials withWeyl group symmerty

From now on, R is a root system in R
n with Weyl group W , weight lattice � =

Z ω1 ⊕ . . .⊕ Z ωn and coroot lattice � = �∗. For μ ∈ �, we define the function

eμ : R
n → C,

u �→ exp(−2π i 〈μ, u〉).

A C-linear combination of these functions is a trigonometric polynomial. The set of
all trigonometric polynomials forms an algebra that we denote by C[�].

The set {eμ |μ ∈ �} is closed under multiplication eμ eμ̃ = eμ+μ̃ and thus a group
with neutral element e0 and inverse (eμ)−1 = e−μ. Since � is the free Z-module
generated by the ωi , C[�] is generated by {e±ω1 , . . . , e±ωn }.

Since the coroot lattice � is the dual lattice of �, any element f ∈ C[�] is �-
periodic, that is, for all u ∈ R

n and λ ∈ �, we have f (u + λ) = f (u).

2.2.1 Generalized cosines and Chebyshev polynomials

The Weyl group W acts linearly on C[�] by the action described on its basis as

· : W × C[�] → C[�],
(s, eμ) �→ es(μ).

A trigonometric polynomial f ∈ C[�] is called W-invariant, if, for all s ∈ W ,
we have s · f = f . The generalized cosine function associated to μ ∈ � is the
W-invariant trigonometric polynomial

cμ : R
n → C,

u �→ 1

|W|
∑
s∈W

es(μ)(u).

(2.2)

Theorem 2.5 [7, Ch. VI, §3, Thm. 1] The following statements hold.

1. The cω1 , . . . , cωn are C-algebraically independent.
2. The set ofW-invariants is the polynomialC-algebra generated by the cω1 , . . . , cωn ,

that is,
C[�]W = C[cω1 , . . . , cωn ].
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The above Theorem 2.5 states that, for every f ∈ C[�]W , there exists a unique
polynomial g ∈ C[z] := C[z1, . . . , zn] with the property f (u) = g(c(u)), where c is
the function

c : R
n → C

n,

u �→ (
cω1(u), . . . , cωn (u)

)
.

This property is exclusive for Weyl groups [26].

Definition 2.6 The generalized Chebyshev polynomial of the first kind associated
to μ ∈ � is the unique Tμ ∈ C[z] satisfying Tμ(c(u)) = cμ(u).

The coefficients of the Tμ are rational.We have T0 = 1, Tωi = zi and, forμ, ν ∈ �,

|W| Tμ Tν =
∑

s∈W
Ts(μ)+ν . (2.3)

Moreover, if μ̂ ∈ �+ is the unique dominant weight with μ ∈ Wμ̂, then Tμ = Tμ̂.
The set {Tμ |μ ∈ �+} forms a vector space basis of C[z] [44, Eq. (3.4)].

This definition is a generalization of the univariate Chebyshev polynomials of the
first kind T�(cos(u)) = cos(� u) with � ∈ Z, which correspond to the root system A1.

2.2.2 Real cosines and Chebyshev polynomials

For our approach in Sect. 3, we need the generalized Chebyshev polynomials to be
defined on a real domain. For u ∈ R

n and 1 ≤ i ≤ n, we observe

ci (u) = ci (−u) = (−Idn · ci )(u) = cσ(i)(u), (2.4)

where Idn is the identity on R
n and σ ∈ Sn is the permutation from Proposition 2.1.

Hence, if−Idn /∈W , or equivalently, if σ is not trivial, then the image of the map c is
not contained in R

n . The irreducible root systems, for which this is the case, are both
An−1 and D2n−1 whenever n ≥ 3 as well as E6.

We fix this circumstance in a straightforward manner: When j = σ( j), we set
c j,R := c j,R ∈ C[�]W . When j < σ( j), we replace the j-th, respectively σ( j)-
th, coordinate of c by c j,R := (c j + cσ( j))/2 ∈ C[�]W , respectively cσ( j),R :=
(c j − cσ( j))/(2i) ∈ C[�]W . For u ∈ R

n , we have c j,R(u) = �(c j,R(u)) ∈ R and
cσ( j),R(u) = �(c j (u)) ∈ R. Thus, the image of the map

cR : R
n → R

n,

u �→ (
c1,R(u), . . . , cn,R(u)

) (2.5)

is contained in the cube [−1, 1]n ⊆ R
n .

Proposition 2.7 Letμ, μ̂ ∈ �with−μ ∈Wμ̂. Then there exist unique T̂μ, T̂μ̂ ∈ R[z],
such that

Tμ(c(u)) = T̂μ(cR(u))+ i T̂μ̂(cR(u)) and Tμ̂(c(u)) = T̂μ(cR(u))− i T̂μ̂(cR(u)).
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Proof Assume that Tμ = ∑ν cν zν for some cν ∈ Q and ν ∈ N
n . For u ∈ R

n , we
observe that

Tμ(c(u)) =
∑

ν

cν

n∏

j=1

(�(c j (u))+ i�(c j (u))
)ν j and

Tμ̂(c(u)) =
∑

ν

cν

n∏

j=1

(�(cσ( j)(u))+ i�(cσ( j)(u))
)ν j

are complex conjugates.
Furthermore, if j = σ( j), then �(c j (u)) = c j,R(u) and �(c j (u)) = 0. Otherwise,

our definition of c j,R implies

�(c j (u)) =
{
c j,R(u), if j < σ( j)

cσ( j),R(u), if j > σ( j)
and �(c j (u)) =

{
cσ( j),R(u), if j < σ( j)

−c j,R(u), if j > σ( j)
.

Altogether, we obtain

Tμ(ϑ(u))+ Tμ̂(c(u))

2
=
∑

ν

cν
2

∏

j=σ( j)

c j ,R(u)
ν j

⎛

⎝
∏

j<σ( j)
(
c j ,R(u)+ i cσ( j),R(u)

)ν j (c j ,R(u)− i cσ( j),R(u)
)νσ( j)

+
∏

j<σ( j)

(
c j ,R(u)− i cσ( j),R(u)

)ν j (c j,R(u)+ i cσ( j),R(u)
)νσ( j)

⎞

⎠ .

The right hand side is a unique polynomial in cR(u) = (c1,R(u), . . . , cn,R(u)), denoted
by T̂μ. Since the left hand side is real for every u ∈ R

n , the coefficient of T̂μ in front
of i must be 0. Hence, we have T̂μ ∈ C[z]. Similarly, by computing (Tμ − Tμ̂)/(2i),
we obtain T̂μ̂ ∈ C[z]. ��
Convention 2.8 From now on, wewill write Tμ and c for T̂μ and cR, even if−Idn /∈W .
As we have shown above, the reformulation follows from a permutation σ and a
substitution zi �→ zi ± i zσ(i). For computations, it is important to remember this
caveat, but for the article itself, we shall simplify the notation.

2.3 The image of the generalized cosines as a basic semi-algebraic set

We call T := c(Rn) the image of the generalized cosines. If � is a fundamental
domain for the affine Weyl group W � �, then T = c(�) due to the W-invariance
and �-periodicity. In particular, T is compact. With Convention 2.8, T is a real set
and contained in the cube [−1, 1]n .

For the purpose of optimization, we need a polynomial description of T as a basic
semi-algebraic set. Recently, a closed formula was given via a polynomial matrix
inequality. This formula is available in the standard monomial basis z and in the basis
of generalized Chebyshev polynomials Tμ [30, 48].
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Fig. 5 The image of the generalized cosines for the irreducible root systems of rank 2 and 3

Theorem 2.9 [30, Thm. 10.1] Let R be a root system of type An−1, Bn, Cn, Dn or G2.
A point z ∈ R

n is contained in T if and only if P(z) is positive semi-definite, where
P ∈ R[z]n×n has entries2

P(z)i j =− T(i+ j) ω1(z)+
�(i+ j)/2�−1∑

�=1

(
4

(
i + j − 2

�− 1

)
−
(
i + j

�

))
T(i+ j−2 �) ω1(z)

+ 1

2

{
4
( i+ j−2
(i+ j)/2−1

)− ( i+ j
(i+ j)/2

)
, if i + j is even

0, if i + j is odd
.

In other words, T is the positivity locus of P ∈ R[z]n×n in R
n . From now on we

write P(z) � 0 to denote positive semi-definiteness. The matrix P follows the Hankel
pattern (Fig. 5)

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

T0 − T2ω1 Tω1 − T3ω1 T0 − T4ω1 2 Tω1−T3ω1−T5ω1 · · ·
Tω1 − T3ω1 T0 − T4ω1 2 Tω1 − T3ω1 − T5ω1 2 T0+T2ω1−2 T4ω1−T6ω1 · · ·
T0 − T4ω1 2 Tω1 − T3ω1 − T5ω1 2 T0 + T2ω1 − 2 T4ω1 − T6ω1 5 Tω1−T3ω1−3 T5ω1−T7ω1 · · ·

2 Tω1 − T3ω1 − T5ω1 2 T0 + T2ω1 − 2 T4ω1 − T6ω1 5 Tω1 − T3ω1 − 3 T5ω1 − T7ω1 5 T0+4 T2ω1−4 T4ω1−4 T6ω1−T8ω1 · · ·
.
.
.

.

.

.

.

.

.

.

.

.

.
.
.

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Remark 2.10

1. If we are in one of the special cases E6, E7, E8 or F4, then such a polynomial
description of T can also be obtained with [53, § 4]. In this case, one obtains a

2 If R is of type An−1 and n ≥ 3, then z ∈ R
n−1, but P is n × n (similar for G2).
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Gram matrix of differentials and has to rewrite the entries in the coordinates z of
T .

2. The root system may not be irreducible, that is, R = R(1) ∪ . . . ∪ R(k) for some
k ∈ N and irreducible R(i). Then we write the fundamental domain of the affine
Weyl group as� = �(1)× . . .×�(k) and obtain T = c(�) as the positivity locus
of a block-diagonal matrix polynomial

P(z(1), . . . , z(k)) = diag(P(1)(z(1)), . . . , P(k)(z(k))),

where P(i) is a matrix polynomial in indeterminates z(i)1 , z(i)2 , . . . corresponding to
R(i).
As an example, take k orthogonal copies of A1. Then T = [−1, 1]k is the positivity
locus of the matrix polynomial P = diag(1− (z(1)1 )2, . . . , 1− (z(k)1 )2).

2.4 Optimizing trigonometric polynomials with crystallographic symmetry

We now address the trigonometric optimization problem from Equation (1.1). With
the theory that was presented in the previous subsections, we can rewrite the objective
function uniquely in terms of generalized Chebyshev polynomials using Theorem 2.5.
Indeed,with the generalized cosines fromEquation (2.2)we canwrite any f ∈ C[�]W
uniquely as

f =
∑

μ∈S
cμ cμ

for somefinite set S ⊆ �+ of dominantweights. If cμ = cμ̂ ∈ Rwhenever−μ ∈Wμ̂,
then f takes only real values and

f ∗ := min
u∈Rn

f (u) = min
z∈T

∑

μ∈S
cμ Tμ(z) (2.6)

is the global minimum of f onR
n . This transforms the region of optimization fromR

n

into the image T of the generalized cosines. Thanks to Theorem 2.9, we can describe
the latter explicitly as a compact basic semi-algebraic set with the Chebyshev basis.
This makes it possible to solve the problem numerically with techniques from classical
polynomial optimization, which is subject to Sect. 3 (Fig. 6).

Example 2.11 The symmetric groupS3 acts onR
3/〈[1, 1, 1]t 〉 by permutation of coor-

dinates and leaves the lattice � := Z ω1 + Z ω2 := Z [0,−1,−1]t + Z [−1,−1, 2]t
invariant. This is the weight lattice of the root system G2 with Weyl group W :=
S3 × {±1}. We consider the W-invariant trigonometric polynomial
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Fig. 6 The support of f as a trigonometric polynomial on the left consists of theW-orbits of 2ω1 and ω2.
The graph of thisW-invariant �-periodic function is depicted in the middle. The image of the generalized
cosines T on the right is the new feasible region of the polynomial optimization problem (color figure
online)

f (u) := c2ω1(u)+ 2 cω2(u)

= (cos(2π〈2ω1, u〉)+ cos(2π〈2ω1 − 2ω2, u〉)+ cos(2π〈4ω1 − 2ω2, u〉)
+ 2 cos(2π〈ω2, u〉)+ 2 cos(2π〈3ω1 − ω2, u〉)
+ 2 cos(2π〈3ω1 − 2ω2, u〉))/3

with u = (u1, u2,−u1 − u2) ∈ R
3/〈[1, 1, 1]t 〉. In the coordinates z = c(u) =

(cω1(u), cω2(u)) ∈ T , we have

f (z) = T2ω1(z)+ 2 Tω2(z) = (6 z21 − 2 z1 − 2 z2 − 1)+ 2 (z2) = 6 z21 − 2 z1 − 1.

Hence, the minimum of f is

f ∗ = min
u1,u2∈R

f (u1, u2,−u1 − u2) = min
z∈T

6 z21 − 2 z1 − 1 = −7

6

(We compute the minimum later in Eq. (4.6)).

3 Optimization in terms of generalized Chebyshev polynomials

In the previous section, we have shown that the trigonometric optimization problem
with crystallographic symmetry from Eq. (1.1) is equivalent to optimizing a classical
polynomial in the Chebyshev basis

f (z) =
∑

μ∈S
cμ Tμ(z) ∈ R[z] (3.1)

over T , where S ⊆ �+ finite and cμ ∈ R. Here, T is the image of the generalized
cosines, a compact basic semi-algebraic set that can be represented as

T = {c(u) | u ∈ R
n} = {z ∈ R

n |P(z) � 0},
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where P ∈ R[z]n×n is a symmetric matrix polynomial, for example given by Theorem
2.9. In the present section, we show how to solve this new polynomial optimization
problem

f ∗ = min
z∈T

f (z) = min f (z)
s.t. z ∈ R

n, P(z) � 0
(3.2)

numerically. We do this by adapting Lasserre’s hierarchy. The novelty lies in exploit-
ing the representation of the objective function in terms of generalized Chebyshev
polynomials, which leads to an adapted notion of the hierarchy order.

The computations for the examples in this section are documented here:

https://tobiasmetzlaff.com/html_guides/polynomial_optimization.html

3.1 Matrix version of Putinar’s theorem

In [40], Lasserre proposes a hierarchy of dual moment relaxations and sums of squares
(SOS) reinforcements based on Putinar’s Positivstellensatz [56] to approximate the
minimum, when the polynomial matrix inequality P(z) � 0 (PMI) is replaced by
finitely many scalar constraints. In principle, our problem falls in this setting. Indeed,
the PMI can be rewritten to scalar inequalities by taking the coefficients of the char-
acteristic polynomial and using Descartes’ rule of signs [8, Theorem 2.33]. We would
prefer to avoid such an approach, since the degrees of the so obtained scalar constraints
are generically much larger than the entries of the matrix polynomial P.

To overcome this degree problem, Henrion and Lasserre [29] suggest using another
Positivstellensatz due to Hol and Scherer, see Theorem 3.1, and propose a hierarchy
of dual moment relaxations and matrix SOS reinforcements, that benefits from the
matrix structure.

3.1.1 Matrix SOS reinforcement

Amatrix polynomial Q ∈ R[z]n×n is said to be a sum of squares, if there exist k ∈ N

and Q1, . . . , Qk ∈ R[z]n , such that

Q(z) =
k∑

i=1
Qi (z) Qi (z)

t .

We write Q ∈ SOS(R[z]n) and denote by

QM(P) := {q + Trace(P Q) | q ∈ SOS(R[z]), Q ∈ SOS(R[z]n)}

the quadratic module of P. Then every element of QM(P) is nonnegative on T and
enforcing this constraint gives a lower bound

f ∗ = max λ

s.t. λ ∈ R, ∀ z ∈ T : f (z)− λ ≥ 0
≥ fsos := sup λ

s.t. λ ∈ R, f − λ ∈ QM(P).

(3.3)
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3.1.2 Moment relaxation

A linear functional L ∈ R[z]∗ is said to have a representing probability measure
on T , if there exists a probability measure η on R

n with support in T , such that, for
all p ∈ R[z], ∫T p(z) dη(z) = L (p). For example, since T is compact, there exists
a minimizer z∗ ∈ T with f ∗ = f (z∗). Then the evaluationL (p) := p(z∗) is a linear
functional and represented by a normalized Dirac measure. On the other hand, for any
L with representing probability measure η, we have

L ( f ) =
∫

T
f (z) dη(z) ≥

∫

T
f ∗ dη(z) = f ∗

∫

T
1 dη(z)

︸ ︷︷ ︸
=1

= f ∗

and, if p = q + Trace(P Q) ∈ QM(P), then

L (p) =
∫

T
q(z)+ Trace(P(z) Q(z)) dη(z) =

k∑

i=1

∫

T
qi (z)

2
︸ ︷︷ ︸
≥0

dη(z)

+
�∑

j=1

∫

T
Q j (z)

t P(z) Q j (z))︸ ︷︷ ︸
≥0

dη(z) ≥ 0.

Altogether, we obtain another lower bound

f ∗ = min L ( f )
s.t. L ∈ R[z]∗ has a representing

probability measure on T

≥ fmom := inf L ( f )
s.t. L ∈ R[z]∗, L (1) = 1,
∀p ∈ QM(P) : L (p) ≥ 0.

(3.4)
We have fsos ≤ fmom. Indeed, if L is feasible for fmom and λ is feasible for fsos,

then
L ( f )− λ = L ( f − λ︸ ︷︷ ︸

∈QM(P)

) ≥ 0. (3.5)

We say that QM(P) is Archimedean, if there exists p ∈ QM(P), such that {z ∈
R
n | p(z) ≥ 0} is compact.

Theorem 3.1 [32, 33] If QM(P) is Archimedean, then the following statements hold.

1. Let p ∈ R[z]. If p > 0 on T , then p ∈ QM(P).
2. Let L ∈ R[z]∗. If L ≥ 0 on QM(P), then L has a representing probability

measure on T .
3. Equality holds in both Eqs. (3.3) and (3.4).

Remark 3.2 In practice, the Archimedean property is enforced by adding a ball con-
straint: For z ∈ T ⊆ [−1, 1]n , we have n ≥ ‖z‖2, and thus T = {z ∈ R

n | P̂(z) � 0},
where P̂ := diag(P, n − ‖z‖2) ∈ R[z](n+1)×(n+1). With Q = diag(0, . . . , 0, 1) ∈

123



Optimization of trigonometric polynomials with…

SOS(R[z]n+1), we have n − ‖z‖2 = Trace(̂P Q) ∈ QM(̂P) and the set {z ∈
R
n | n − ‖z‖2 ≥ 0} is compact. In particular, QM(̂P) is Archimedean.

3.2 Lasserre hierarchy with Chebyshev polynomials

The conditions f − λ ∈ QM(P) from Eq. (3.3) andL ≥ 0 on QM(P) from Eq. (3.4)
can be parametrized through positive semi-definite constraints, but for computations
we need to restrict to finite dimensional subspaces of R[z]. We shall now introduce
these constraints in the basis of generalized Chebyshev polynomials and then adapt
Lasserre’s hierarchy [40] to approximate the optimal value f ∗ with semi-definite
programs [13]. In particular, we present these positive semi-definite conditions in the
way they are implemented in the Maple package.

3.2.1 Chebyshev filtration

For L ∈ R[z]∗, we define the infinite symmetric matrix HL := L (T Tt ), where T
is the vector of basis elements Tμ with μ ∈ �+ and L applies entry-wise.

Then we can also define the P-localized matrix HP∗L := L (P⊗ (T Tt )). Here,⊗
denotes the Kronecker product. The entries of this infinite matrix, indexed by μ, ν ∈
�+, are symmetric n × n blocks.

As in [29], we observe that L ≥ 0 on QM(P) is equivalent to HL � 0 and
HP∗L � 0. By Eq. (2.3), for μ, ν ∈ �+, the entries of HL are

HL
μν = L (Tμ Tν) = 1

|W|
∑

s∈W
L (Ts(μ)+ν) ∈ R. (3.6)

Furthermore, let us assume that the matrix P in Eq. (3.2) is represented in the Cheby-
shev basis as

P(z) =
∑

γ∈�+
Pγ Tγ (z) ∈ R[z]n×n

with Pγ ∈ R
n×n . The entries of HP∗L are the blocks

HP∗L
μν =

∑

γ∈�+
Pγ L (Tμ Tν Tγ ) = 1

|W|2
∑

γ∈�+
Pγ

∑

s,r∈W
L (Ts(μ)+r(ν)+γ ) ∈ R

n×n .

(3.7)
RestrictingL to a finite dimensional subspace of R[z] in Eq. (3.4) means to truncate
the matrices HL and HP∗L to the corresponding rows and columns. However, since
we have chosen the Chebyshev polynomials as a basis, we need to ensure that these
matrices are well-defined: For an index of the form s(μ) + ν in Eq. (3.6), there is a
unique dominant weight in the same W-orbit, say μ̃ ∈ �+, and L must be defined
on Tμ̃, so that we can compute the matrix entries of HL (and similarly for HP∗L ).
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Proposition 3.3 Let R be an irreducible root system with highest root ρ0. For d ∈ N,
we define the finite dimensional R-vector subspace

Fd := 〈{Tμ |μ ∈ �+, 〈μ, ρ∨0 〉 ≤ d}〉R

of R[z]. Then (Fd)d∈N is a filtration of R[z] as an R-algebra, that is,

1. R[z] =⋃d∈N Fd and
2. Fd1 Fd2 ⊆ Fd1+d2 whenever d1, d2 ∈ N.

Proof 1. Take an arbitrary polynomial p =∑μ c̃μ Tμ ∈ R[z] and choose d ∈ N with
d ≥ 〈μ, ρ∨0 〉 whenever c̃μ �= 0. Then we have p ∈ Fd .

2. Let Tμ ∈ Fd1 and Tν ∈ Fd2 . Then |W| Tμ Tν =∑s∈W Ts(μ)+ν . For all s ∈W ,
there exists r ∈W , such that r(s(μ)+ν) ∈ �+. By [7, Ch. VI, § 1, Prop. 18],μ−r(μ)

and ν − r(s(ν)) are sums of positive roots. Hence, there exists α ∈ N
n , such that

〈r(s(μ)+ ν), ρ∨0 〉 = 〈μ+ ν, ρ∨0 〉 −
n∑

i=1
αi 〈ρi , ρ∨0 〉.

By [7, Ch. VI, §1, Prop. 25], we have ρ∨0 ∈ �� and thus 〈ρi , ρ∨0 〉 ≥ 0. We obtain

〈r(s(μ)+ ν), ρ∨0 〉 ≤ 〈μ+ ν, ρ∨0 〉 ≤ d1 + d2.

Therefore, Tμ Tν ∈ Fd1+d2 . ��
Remark 3.4 For irreducible root systems, the filtration from Proposition 3.3 induces a
weighted degree on R[z]. Otherwise, we can always construct a filtration by choosing
an order on the irreducible components. From now on, we may therefore assume all
root systems to be irreducible.

3.2.2 Modified Lasserre hierarchy

When L is only defined on F2d , that is, L ∈ F∗2d , then the matrix HL is by Propo-
sition 3.3 well-defined for all rows and columns up to weighted degree d. We denote
this truncated matrix of size dim(Fd) by HL

d . Analogously, for

d ≥ D := min{��/2� | � ∈ N, P ∈ (F�)
n×n},

the truncated P-localized matrix HP∗L
d−D is well-defined and of size n dim(Fd−D).

On the other hand, if Q1, . . . , Qk ∈ Fn
d are polynomial vectors with entries of

weighted degree at most d, then the polynomial matrix Q = ∑i Qi Qt
i ∈ Fn×n

2d is a
sum of squares. We write Q ∈ SOS(Fn

d ) and see that the truncated quadratic module

QM(P)d := {q + Trace(P Q) | q ∈ SOS(Fd), Q ∈ SOS(Fn
d−D)}
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is contained in F2d . We fix a hierarchy order d ∈ N, that has to satisfy

d ≥ max{min{��/2� | � ∈ N, f ∈ F�}, D}, (3.8)

where f is the objective function from Eq. (3.2). The Chebyshev moment and SOS
hierarchy of order d is

f dmom := inf L ( f )
s.t. L ∈ F∗2d , L (1) = 1,

HL
d , Hp∗L

d−D � 0,

and f dsos := sup λ

s.t. λ ∈ R,

f − λ ∈ QM(P)d .

(3.9)

Theorem 3.5 The following statements hold.

1. The sequences ( f dsos)d∈N and ( f dmom)d∈N are monotonously non-decreasing.
2. For d ∈ N, we have f dsos ≤ f dmom.
3. If QM(P) is Archimedean, then limd→∞ f dsos = limd→∞ f dmom = f ∗.

Proof 1. follows from the chain of inclusions F1 ⊆ F2 ⊆ . . .

2. is analogous to Eq.3.5.
3. By Theorem 3.1, for any ε > 0, there exist sums of squares q and Q, such that

f − f ∗ + ε = q + Trace(P Q).

Since ε is arbitrary and
⋃

d∈N Fd = R[z], we obtain limd→∞ f dsos = f ∗. With 2., the
same holds for f dmom. ��

3.2.3 SDP formulation

We translate Eq. (3.9) to a semi-definite program (SDP). For d ∈ N and a linear
functional L ∈ F∗2d , we write

(
HL

d 0
0 HP∗L

d−D

)
=
∑

μ∈�+
L (Tμ) Aμ, (3.10)

where Aμ is the symmetric matrix coefficient ofL (Tμ). For d ≥ D,L (Tμ) is well-
defined whenever Aμ �= 0. We write Sym(d) := Symdim(Fd ) × Symn dim(Fd−D) for
the space of symmetric matrices with two blocks. The positive semi-definite elements
are denoted by Sym(d)

�0 and we define the dual problems

(Pd) inf
∑
μ∈S

cμ yμ

s.t. y ∈ R
dim(F2d ), y0 = 1,

Z = ∑
μ∈�+

yμ Aμ ∈ Sym(d)
�0 ,

and (Dd) sup c0 − Trace(A0 X)

s.t. X ∈ Sym(d)
�0 , ∀μ ∈ S \ {0} :

Trace(Aμ X) = cμ.

(3.11)
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Proposition 3.6 The optimal value of (Pd) is f dmom and the optimal value of (Dd) is
f dsos.

Proof The statement for (Pd) follows immediately with yμ = L (Tμ) and Z =
diag(HL

d , HP∗L
d−D ). Let L ∈ F∗2d and λ ∈ R be feasible for Eq. (3.9). Then there

exist q ∈ SOS(Fd) and Q ∈ SOS(Fn
d−D) with

L ( f )− λ = L ( f − λ) = L (q)+L (Trace(P Q)).

We construct a feasible matrix X = diag(X1, X2) for (Dd) as follows. Since Q is a
sum of squares, we can write Q = Q1 Qt

1 + . . . + Qk Qt
k and denote by Td−D the

vector of generalized Chebyshev polynomials Tμ ∈ Fd−D . For 1 ≤ i ≤ k, we have
Qi = mat(Qi ) Td−D , where mat(Qi ) is the coordinate matrix of the polynomial
vector Qi in the Chebyshev basis with n rows and dim(Fd−D) columns. Then

Trace(P Q) =
k∑

i=1
Trace(P mat(Qi ) Td−D Tt

d−D mat(Qi )
t )

= Trace((P⊗ Td−D Tt
d−D)

k∑

i=1
vec(mat(Qi )) vec(mat(Qi ))

t

︸ ︷︷ ︸
=:X2

),

where vec(mat(Qi )) := ((mat(Qi )·1)t , . . . , (mat(Qi )·Nd−D )t )t are the stacked
columns of mat(Qi ). The matrix X2 is symmetric positive semi-definite of size
n dim(Fd−D). By definition of the truncated localized moment matrix, we have
L (Trace(P Q)) = Trace(HP∗L

d−D X2). Analogously, there exists a symmetric posi-

tive semi-definite X1 of size dim(Fd) with L (q) = Trace(HL
d X1). When we fix

X := diag(X1, X2) ∈ Sym(d)
�0 and Aμ as in Eq. (3.10), comparing coefficients yields

λ = c0 L (1)−L (q(0))−L (Trace(P(0) Q(0))) = c0 − Trace(A0 X)

and, for μ �= 0, we have cμ = Trace(Aμ X).
Conversely, we can always construct sums of squares q and Q from a matrix X =

diag(X1, X2) by writing X1 and X2 as sums of rank 1 matrices. ��
If (X, y, Z) are optimal for (Pd) and (Dd), then the duality gap of the Chebyshev

moment and SOS hierarchy in Eq. (3.9) is f dmom − f dsos = Trace(X Z) ≥ 0.

Remark 3.7 The coefficients cμ are known from the original problem in Eq. (3.2). The
key in setting up Eq. (3.11) is the computation of the matrices Aμ. For fixed order d,
we define

• the matrix size N := dim(Fd)+ n dim(Fd−D) and
• the number of constraints m := dim(F2d)− 1.

Note that m is the number of matrices Aμ with μ �= 0 and N is their size. The primal

and dual in Eq. (3.11) are conic optimization problems over QM(P)d ∼= Sym(d)
�0 .
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Computing the matrices Aμ of the SDP involves the recurrence formula from Eq.
(2.3). If we used the standard monomial basis {1, z1, z2, . . . , z21, z1z2, . . .}, this com-
putation would be trivial, but the matrices would be larger when truncating at the usual
degree instead of the weighted degree. Hence, our technique is more efficient, if the
numerical effort to solve a larger SDP in the standard monomial basis is bigger than
the combined effort to numerically solve a smaller SDP in the Chebyshev basis plus
matrix computation (Table 1).

A limiting factor in solving an SDP is the matrix size N . For the computations in
this article we used a conventional laptop (Intel(R) Core(TM) i5-10600 CPU @ 3.30
GHz, 16.0 GB RAM).

How to obtain the matrices with the Maple package is explained here:

https://tobiasmetzlaff.com/html_guides/generating_SDP_data.html

3.3 Optimizing on coefficients

For a finite set S ⊆ �+ \ {0} of dominant weights, we shall be confronted in Sect. 4
with a bilevel optimization problem, where we have to minimize not only the objective
function f from Eq. (3.1) with respect to z ∈ T , but also maximize with respect to the
coefficients cμ under some compact affine constraints. The problem can be represented
as

F(S) := max
c

min
z

∑
μ∈S

cμ Tμ(z)

s.t. z ∈ T , c ∈ R
S, bt c = 1,

�μ ≤ cμ ≤ uμ for μ ∈ S,

where 0 �= b ∈ R
S defines a hyperplane and �μ ≤ uμ ∈ R are lower and upper

bounds. For scalar polynomial constraints defining the basic semi-algebraic set T , a
hierarchy of SDPs to approximate F(S)was introduced in [42, Chapter 13]. In our case
with a polynomial matrix constraint, the theory is similar: For d ∈ N large enough,
that is, for Tμ ∈ F2d whenever μ ∈ S, we define

F(S, d) := sup −Trace(A0 X)

s.t. X ∈ Sym(d)
�0 ,

∑
μ∈S

bμ Trace(Aμ X) = 1,

�μ ≤ Trace(Aμ X) ≤ uμ for μ ∈ S,

Trace(Aν X) = 0 for ν /∈ S ∪ {0},

where the A0, Aμ, Aν ∈ Sym(d) are the dim(F2d) many matrices defined via Eq.
(3.10).

Theorem 3.8 The sequence (F(S, d))d∈N is monotonously non-decreasing. IfQM(P)

is Archimedean, then lim
d→∞ F(S, d) = F(S).

Proof The proof is analogous to the one of [42, Theorem 13.1], but uses the Posi-
tivstellensatz of Hol and Scherer instead of Putinar’s. Let X be optimal for F(S, d)
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and set cμ := Trace(Aμ X) for μ ∈ S. Then F(S, d) ≤ ( fc)∗ ≤ F(S), where ( fc)∗
denotes the minimum of fc := ∑

μ∈S
cμ Tμ ∈ R[z] on T .

On the other hand, T = {z ∈ R
n |P(z) � 0} is compact and the Tμ are continuous.

Hence, themap g : c �→ ( fc)∗ is continuous on a compact set and there exists a feasible
c∗ ∈ R

S , such that F(S) = g(c∗). For any ε > 0, the polynomial
∑

μ∈S c∗μ Tμ −
F(S)+ ε is strictly positive on T . Thus, by Theorem 3.1, there exist sums of squares
q ∈ SOS(R[z]) and Q ∈ SOS(R[z]n), such that

∑

μ∈S
c∗μ Tμ − (F(S)− ε) = q + Trace(P Q).

For d ∈ N sufficiently large, we can follow our proof of Proposition 3.6 to construct
a matrix X ∈ Sym(d)

�0 with −Trace(A0 X) = F(S)− ε, Trace(Aμ X) = c∗μ for μ ∈ S
and Trace(Aν X) = 0 for ν /∈ S ∪ {0}. Then X is feasible for F(S, d), and so we have
F(S, d) ≥ F(S)− ε. Since ε > 0 is arbitrary, the statement follows. ��

3.4 A case study

Weapply theChebyshevmoment andSOShierarchy to solve a trigonometric optimiza-
tion problem with crystallographic symmetry and compare with another technique:
One alternative approach to ours is to reinforce from positivity constraints to SOHS
constraints (sums of Hermititan squares), which goes back to the generalized Riesz–
Fejér theorem [24, Theorem 4.11]. Specifically, one can approximate the minimum of
a trigonometric polynomial f ∈ R[�] by solving a semi-definite program

f ∗ ≥ f Srf := sup λ

s.t. f − λ ∈ SOHS(S),

(3.12)

where S ⊆ � is a finite set containing the support of f up to central symmetry (rf as
in Riesz–Fejér). The SDP standard form is given in [24, Equation (3.71)].

Example 3.9 We search the global minima f ∗, g∗, h∗ and k∗ of the following W-
invariant trigonometric polynomials with graphs depicted in Fig. 7.

1. Let R = G2,W = S3 � {±1},� = Z ω1⊕Z ω2 = Z[0,−1, 1]t ⊕Z[−1,−1, 2]t
and

f (u) := c2ω1(u)+ 2 cω2 (u)

= (cos(2π〈2ω1, u〉)+ cos(2π〈2ω1 − 2ω2, u〉)+ cos(2π〈4ω1 − 2ω2, u〉)
+ 2 cos(2π〈ω2, u〉)+ 2 cos(2π〈3ω1 − ω2, u〉)
+ 2 cos(2π〈3ω1 − 2ω2, u〉))/3.

In the coordinates z = c(u), we have f (z) = 6 z21 − 2 z1 − 1 (see Example 2.11).
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Fig. 7 The graphs of the objective functions for u ∈ R
3/[1, 1, 1]t ∼= R

2

2. Let R = G2,W = S3 � {±1},� = Z ω1⊕Z ω2 = Z[0,−1, 1]t ⊕Z[−1,−1, 2]t
and

g(u) := 2 cω1(u)+ cω2(u)+ cω1+ω2(u)+ 4 c3ω1(u)

= (2 cos(2π〈ω1, u〉)+ 2 cos(2π〈ω1 − ω2, u〉)+ 2 cos(2π〈2ω1 − ω2, u〉)
+ cos(2π〈ω2, u〉)+ cos(2π〈3ω1 − 2ω2, u〉)+ cos(2π〈3ω1 − ω2, u〉)
+ 4 cos(2π〈3ω1, u〉)+ 4 cos(2π〈3ω1 − 3ω2, u〉)
+ 4 cos(2π〈6ω1 − 3ω2, u〉))/3
+ (cos(2π〈ω1, u〉 + 〈ω2, u〉)+ cos(2π〈ω1 − 2ω2, u〉)
+ cos(2π〈4ω1 − ω2, u〉)
+ cos(2π〈4ω1 − 3ω2, u〉)+ cos(2π〈5ω1 − 2ω2, u〉)
+ cos(2π〈5ω1 − 3ω2, u〉))/6.

In the coordinates z = c(u), we have g(z) = 144 z31 − 6 z21 − 69 z1 z2 − 33 z1 −
21 z2 − 7.

3. Let R = C2, W = S2 � {±1}2, � = Z ω1 ⊕ Z ω2 = Z[1, 0]t ⊕ Z[1, 1]t and

h(u) := 2 cω1(u)+ cω2(u)− c2ω2(u)− 3 cω1+ω2(u)

= cos(2π〈ω1, u〉)+ cos(2π〈ω1 − ω2, u〉)
+ (cos(2π〈ω2, u〉)+ cos(2π〈2ω1 − ω2, u〉)− cos(2π〈2ω2, u〉)
− cos(2π〈4ω1 − 2ω2, u〉))/2
− 3/4 (cos(2π〈ω1 − 2ω2, u〉)+ cos(2π〈ω1 + ω2, u〉)
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Table 2 We compare the two techniques in terms of approximation and SDP parameters

d 3 4 5 6 7

f drf −1.18824 −1.180240 −1.17058 −1.16970 −1.16719
N ,m 49, 33 81, 58 121, 90 169, 129 225, 175

f dsos −1.16667 −1.16667 −1.16667 −1.16667 −1.16667
N ,m 9, 15 15, 24 24, 35 34, 48 47, 63

gdrf −3.50118 −3.40372 −3.31195 −3.25383 −3.22049
N ,m 49, 33 81, 58 121, 90 169, 129 225, 175

gdsos −3.20499 −3.10220 −2.98718 −2.98718 −2.98718
N ,m 9, 15 15, 24 24, 35 34, 48 47, 63

hdrf −2.12159 −2.10672 −2.1012 −2.09959 −2.09073
N ,m 25, 24 49, 54 81, 96 121, 150 169, 217

hdsos −2.27496 −2.06250 −2.06250 −2.06250 −2.06250
N ,m 16, 27 27, 44 41, 65 58, 90 78, 119

kdrf −1.00000 −1.00000 −1.00000 −1.00000 −1.00000
N ,m 25, 84 41, 144 61, 220 85, 312 113, 420

kdsos −1.00000 −1.00000 −1.00000 −1.00000 −1.00000
N ,m 16, 27 27, 44 41, 65 58, 90 78, 119

The columns are indexed by the order of the relaxation d. The matrix size is denoted by N , the number of
constraints by m

+ cos(2π〈3ω1 − 2ω2, u〉)+ cos(2π〈3ω1 − ω2, u〉)).

In the coordinates z = c(u), we have h(z) = 8 z21−6 z1 z2−4 z22+5 z1−3 z2−1.
4. Let R = C2, W = S2 � {±1}2, � = Z ω1 ⊕ Z ω2 = Z[1, 0]t ⊕ Z[1, 1]t and

k(u) := 2 c2ω1(u)+ c2ω2(u)

= cos(2π〈2ω1, u〉)+ cos(2π〈2ω1 − 2ω2, u〉)+ cos(2π〈2ω2, u〉)/2
+ cos(2π〈4ω1 − 2ω2, u〉)/2

In the coordinates z = c(u), we have k(z) = 4 z22 − 1.

For 3 ≤ d ≤ 7, we choose S̃ to be the set of all dominant weights μ ∈ �+ with
degW (Tμ) ≤ d. In Eq. (3.12), S = (S̃− S̃)∩ (H\{0}) is an admissible choice for any
halfspace H , since S contains all exponents of the objective functions up to central
symmetry. In this case, we denote the optimal value by f drf . On the other hand, we
apply the Chebyshev SOS reinforcement f dsos from Eq. (3.9), where we only need to
take exponents up to Weyl group symmetry, that is, S̃ itself.

With the two techniques, we obtain the results in Table 2. Since we compare lower
bounds, it suffices to check which bound is larger and therefore closer to the actual
minimum.

Remark 3.10 In Table 2, we observe f ∗ ≥ f dsos ≥ f drf for d ≥ 4. Hence, our approx-
imation of f ∗ appears to be better in those cases, while the parameters N ,m that
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indicate the size of the SDP are smaller (analogous for g, h, k). Differences in the
quality of the approximation might depend on the stability of the SDP [14].

4 Spectral bounds for set avoiding graphs

In this last section, we apply our method for trigonometric optimization problems with
crystallographic symmetry to the computation of spectral bounds for chromatic num-
bers. The chromatic number of a graph gives the minimal number of colors needed to
paint the vertices, so that no edge connects two vertices of the same color. When deal-
ing with set avoiding graphs, [4] provides a lower bound, which involves minimizing
the Fourier transformation of a measure.

While this bound has been used and strengthened for the graph R
n avoiding

Euclidean distance 1 [4, 11, 18, 57], it has not been widely used as a tool for polytopes.
Crystallographic symmetry in the trigonometric optimization problem arises when the
polytope has Weyl group symmetry. Then we can rewrite the spectral bound in terms
of generalized Chebyshev polynomials and use the results of Sects. 2 and 3.

An advantage of our approach is that rewriting the optimization problem in terms
of polynomials allows in several cases to compute bounds with simple proofs and to
recover many results. In other cases, we compute numerical bounds with the modified
Lasserre hierarchy fromSect. 3.Our approach allows to study the quality of the spectral
bound and to speculate on the optimal involved measure, see Fig. 11.

4.1 Computing spectral bounds with Chebyshev polynomials

Let V ⊆ R
n be an Abelian group and S ⊆ V be bounded, centrally-symmetric with

0 /∈ S. We consider the set avoiding graph G(V , S), where V is the set of vertices
and two vertices u, v ∈ V are connected by an edge if and only if u − v ∈ S. In this
context, we call S the avoided set.

A set of vertices I ⊆ V is called independent for G(V , S), if no pair of vertices in
I are connected by an edge, that is, for all u, v ∈ I , we have u−v /∈ S. A measurable
coloring X of G(V , S) is a partition of V in independent Lebesgue-measurable sets.
The measurable chromatic number of G(V , S) is

χm(V , S) := inf{|X | | X is a measurable coloring of G(V , S)}.

4.1.1 The spectral bound

In [4], Bachoc, Decorte, de Oliveira Filho and Vallentin generalized bounds for chro-
matic numbers byHoffman [31] andLovász [45] fromfinite graphs to the caseV = R

n ,
using the framework of bounded self-adjoint operators. Showing that the result holds
for any set avoiding graph G(V , S) is a straightforward adaptation of [23, § 5.1] and
so we state it here without a proof.
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Theorem 4.1 [4, §3.1] Let B be a finite Borel measure supported on S with Fourier
transformation

B̂(u) =
∫

S
exp(−2π i 〈u, v〉) dB(v).

Then the measurable chromatic number of G(V , S) satisfies

χm(V , S) ≥ 1−
sup
u∈Rn

B̂(u)

inf
u∈Rn

B̂(u)
.

The problem of computing the measurable chromatic number of G(V , S) gained
fame after Hadwiger and Nelson formulated it in 1950 for the case V = R

2 and
S = S

1, the Euclidean unit sphere, which remains unsolved. Current bounds and the
history of the problem can be found in [57] and [18].

More generally, for V = R
n and S = S

n−1, the bounds obtained from Theorem 4.1
for χm(Rn, S

n−1) have been studied, see for example [11]. In this case, the optimal
measure is the surface measure on S

n−1. Beyond the spectral bound, the computation
of χm(Rn, S

n−1) itself was treated in [1, 2, 9].

4.1.2 Reformulation in terms of Chebyshev polynomials

For a root system R in R
n with Weyl group W and weight lattice �, we consider

those avoided sets S ⊆ V , which have Weyl group symmetry, that is, W S = S. We
will see that the W-invariant trigonometric polynomials R[�]W with support in S
are the Fourier transformations of atomic W-invariant Borel measures supported on
� ∩ S. We treat the optimization problem in Theorem 4.1 for this class of measures
with the theory developed in Sect. 3. In fact, by an averaging argument on all orbits,
we see that an optimal measure for Theorem 4.1 is obtained from such aW-invariant
trigonometric polynomial. Recall from Theorem 2.9 that the image of the generalized
cosines is a basic semi-algebraic set

T = {c(u) | u ∈ R
n} = {z ∈ R

n |P(z) � 0}
and define

F(S) := max
c

min
z

∑
μ∈S∩�+

cμ Tμ(z)

s.t. z ∈ T , c ∈ R
S∩�+≥0 ,

∑
μ∈S∩�+

cμ = 1.

(4.1)

Theorem 4.2 Let W S = S and S ∩ � �= ∅. The measurable chromatic number of
G(V , S) satisfies

χm(V , S) ≥ 1− 1

F(S)
.

Proof Since S is bounded, the nonempty set S ∩ � is finite. We consider the atomic
Borel measure

B =
∑

μ∈S∩�

cμ

|Wμ| δμ
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with δμ Dirac and 0 ≤ cμ = c−μ ∈ R, so that, for all s ∈ W , cs(μ) = cμ. Then the
Fourier transformation is

B̂(u) =
∫

S
exp(−2π i 〈u, v〉) dB(v) =

∑

μ∈S∩�

cμ

|Wμ| exp(−2π i 〈μ, u〉)

=
∑

μ∈S∩�+
cμ cμ(u)

=
∑

μ∈S∩�+
cμ Tμ(c(u)).

In particular, we have

B̂(u) ≤
∑

μ∈S∩�

cμ

|Wμ| =
∑

μ∈S∩�+
cμ

and equality holds for u = 0. Optimizing over the coefficients c under the condition∑
μ cμ = 1 and using Eq. (2.6) with Theorem 4.1 gives the lower bound 1− 1/F(S)

for χm(V , S). ��
In practice, the problem of computing F(S) analytically is not always possible.

Instead we can use the theory of Sect. 3 to obtain a numerical lower bound. For d ∈ N

sufficiently large, we consider the SDP

F(S, d) := sup −Trace(A0 X)

s.t. X ∈ Sym(d)
�0 ,

∑
μ∈S∩�+

Trace(Aμ X) = 1,

Trace(Aμ X) ≥ 0 for μ ∈ S ∩�+,

Trace(Aν X) = 0 for ν ∈ �+ \ (S ∪ {0}),

(4.2)

where the semi-definite cone Sym(d)
�0 and the finitely many matrices A0, Aμ, Aν ∈

Sym(d) are defined as in Eq. (3.10).

Corollary 4.3 [of Theorems 3.8 and 4.2] LetW S = S and S ∩� �= ∅. The sequence
(F(S, d))d∈N is monotonously non-decreasing and we have

χm(V , S) ≥ 1− 1

F(S, d)
.

Furthermore, if QM(P) is Archimedean, then lim
d→∞ F(S, d) = F(S).

Remark 4.4 For 1 ≤ � ∈ N and S ∩� �= ∅, we have � (S ∩�) ⊆ (� S) ∩� �= ∅ and
F(S) ≤ F(� S). On the other hand, F(S, d) ≤ F(� S, d) is only certain for d →∞.
It may (and does) happen that F(S, d) � F(� S, d) when d is fixed, see for example
Tables 3, 4, 6 and 7.
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4.2 The chromatic number of a coroot lattice

For an n-dimensional lattice V = � in R
n , we call λ ∈ � \ {0} a strict Voronoï

vector if the intersection (λ+ Vor(�)) ∩ Vor(�) is a facet of Vor(�), that is, a face
of dimension n − 1 of the Voronoï cell. In this case, a natural choice for the avoided
set S is the set of all strict Voronoï vectors of �. The chromatic number χ(�) of the
lattice � is defined as the chromatic number of the graph G(�) := G(�, S).

The chromatic number of several instances of these graphs was computed in [23],
some of them through the spectral bound from Theorem 4.1. In this subsection, we
give new, simple proofs for these bounds for the case, where � is the coroot lattice of
an irreducible root system.

Proposition 4.5 Assume that � is the coroot lattice of an irreducible root system R
with highest root ρ0. Then the set of strict Voronoï vectors of � is the orbit S =Wρ∨0 .

Proof By [7, Ch. VI, §1, Prop. 11 & 12], there are at most two distinct root lengths and
two roots have the same length if and only if they are in the same W-orbit. If ρ ∈ R,
then 〈ρ0, ρ0〉 ≥ 〈ρ, ρ〉 and so

〈ρ∨0 , ρ∨0 〉 =
4

〈ρ0, ρ0〉 ≤
4

〈ρ, ρ〉 = 〈ρ
∨, ρ∨〉.

Thus, ρ∨0 is a short root of the coroot system R∨. The lattice generated by R∨ is �

and, by the discussion before [17, Chapter 21, Theorem 8], the short rootsW(R∨)ρ∨0
are the strict Voronoï vectors. As W(R) =W(R∨), the statement follows. ��

If ρ∨0 ∈ �, then we obtain

χ(�) ≥ 1− 1

min
z∈T

Tρ∨0 (z)
. (4.3)

Indeed, since the strict Voronoï vectors form a singleW-orbit, there is no freedom for
the coefficients in Theorem 4.2 and we are left with minimizing with respect to z ∈ T .

If ρ∨0 /∈ �, we can replace Tρ∨0 by Tμ with μ = �ρ∨0 ∈ � for some � > 0,
because R

n is invariant under scaling. For example, this is the case for G2, where
ρ∨0 = ρ0/3 = ω2/3 (and this is the only exception for the irreducible root systems).
However, since the coroot lattice of G2 is the hexagonal one from Fig. 8, this case is
covered by A2.

We now reprove the bounds from [23].

Theorem 4.6 The following statements hold.

1. The spectral bound is sharp for χ(�(Cn)) = 2.
2. The spectral bound is sharp for χ(�(An−1)) = n.
3. We have χ(�(Bn)) = χ(�(Dn)) ≥ n.

Proof 1. We have �(Cn) = Z
n . When we partition Z

n in elements with even and
odd �1-norm, then this gives an admissible coloring with χ(�(Cn)) ≤ 2. To see that
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the spectral bound is sharp, note that ρ∨0 = ρ0/2 = ω1 and consider the Chebyshev
polynomial Tρ∨0 = Tω1 = z1. With Eq. (4.3), we obtain

χ(�(Cn)) ≥ 1− 1

min
z∈T

Tρ∨0 (z)
= 1− 1

min
z∈T

z1
≥ 1− 1

min
z∈[−1,1]n z1

= 1− 1

−1 = 2.

2.We have χ(�(An−1)) = n [23] and ρ∨0 = ρ0 = ω1+ωn−1 with−ω1 ∈Wωn−1.
Using the recurrence formula from Eq. (2.3), the to be minimized polynomial in Eq.
(4.3) is

Tρ∨0 = Tω1+ωn−1 = |W ω1| Tω1 Tωn−1 −
∑

μ∈W ω1
μ�=ω1

Tμ+ωn−1

= n z1 zn−1 − (T0 + (n − 2) Tω1+ωn−1).

The last equation follows from the fact that, if μ = −ωn−1, then μ+ ωn−1 = 0, and,
if μ �= −ωn−1, then μ+ωn−1 ∈W(ω1 +ωn−1), see Eq. (A). Since −ω1 ∈Wωn−1,
we also have z1 zn−1 = z1 z1 = |z1|2 for z ∈ T (in the case of An−1, T is complex
and can be embedded in R

n−1 with Eq. (2.5)). Altogether, we obtain

χ(�(An−1)) ≥ 1− 1

min
z∈T

Tρ∨0 (z)
= 1− n − 1

min
z∈T

n z1 zn−1 − 1

= 1− n − 1

min
z∈T

n |z1|2 − 1
≥ 1− n − 1

−1 = n.

3. For R = B2, we are in the situation of 1.with χ(�(B2)) = 2 (the square lattice).
For R = B3, we are in the situation of 2. with χ(�(B3)) = 3 (the rhombic lattice, see
Fig. 16). The root systemDn is not defined forn ≤ 3.Thus, letn ≥ 4 andR ∈ {Bn,Dn}.
For 1 ≤ i ≤ n − 1, we have ρ∨i (Bn) = ρ∨i (Dn) and ρ∨n (Bn) = ρ∨n (Dn)− ρ∨n−1(Dn)

as well as ρ∨n (Dn) = ρ∨n (Bn) + ρ∨n−1(Bn). Hence, we have �(Bn) = �(Dn) with
ρ∨0 = ρ0 = ω2. We consider Tρ0 = Tω2(z) = z2 and minimize on T . By Theorem
2.9, we have T = {z ∈ R

n |P(z) � 0} and the first entry of P is P11 = T0− T2ω1 with

T2ω1 = |W ω1| T 2
ω1
−

∑

μ∈W ω1
μ�=ω1

Tμ+ω1 = 2 n z21 − (1+ 2 (n − 1) z2).

The last equation follows from the fact that, if μ = −ω1, then μ + ω1 = 0, and, if
μ �= −ω1, then μ+ ω1 ∈W(ω2), see Eqs. (B) and (D). Thus, for z ∈ T , we have

0 ≤ P11(z) = T0(z)− T2ω1(z)

= 1− (2 n z21 − 1− 2 (n − 1) z2) ⇔ z2 ≥ n z21 − 1

n − 1
≥ −1

n − 1
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and obtain

χ(�(R)) ≥ 1− 1

min
z∈T

Tρ∨0 (z)
= 1− 1

min
z∈T

Tω2(z)
= 1− 1

min
z∈T

z2
≥ 1− n − 1

−1 = n.

��

Remark 4.7 Since, up to rescaling, two adjacent vertices in G(�) are also adjacent
in the graph G(�,� ∩ ∂Vor(�)), the value of χ(�) also gives a lower bound on
χm(Rn, ∂Vor(�)), even if the two numbers can be far from each other. For instance,
we have χ(�(An)) = n + 1, but χ(Rn, ∂Vor(�(An))) = 2n [3].

A Maple worksheet dedicated to this subsection is available here:

https://tobiasmetzlaff.com/html_guides/chromatic_coroot_lattice.html

4.3 The chromatic number ofZ
n for the crosspolytope

We consider the integer lattice V = Z
n and, for r ∈ N, the avoided set

B
1
r := {u ∈ Z

n | ‖u‖1 = |u1| + . . .+ |un| = r}.

The convex hull ofB1
r is the ball of radius r for the �1-norm, known as the crosspolytope

in Fig. 9.
Two vertices in the graph G(Zn, B

1
r ) are adjacent whenever the absolute values

of the differences between their coordinates sum up to r . Several bounds for the
chromatic number χ(Zn, B

1
r ) were given in [27] without using spectral bounds, but

through combinatorial arguments.
If � is the weight lattice of some root system in R

n with B
1
r ⊆ �, then we can

compare by computing

χ(Zn, B
1
r ) ≥ 1− 1

F(r)
, (4.4)

where F(r) := F(B1
r ) is defined before Theorem 4.2.

Lemma 4.8 Let 0 < r ∈ N. If R is a root system of type Bn, Cn or Dn, then B
1
r ⊆ �

and the dominant weights are B
1
r ∩�+ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{α1 ω1 + . . .+ αn ωn |α ∈ N
n ,

n∑
i=1

i αi = r}, if R = Cn

{α1 ω1 + . . .+ αn−1 ωn−1 + 2 αn ωn |α ∈ N
n ,

n∑
i=1

i αi = r}, if R = Bn

{α1 ω1 + . . .+ αn−2 ωn−2 + 2(αn−1 ωn−1 + αn ωn) |α ∈ N
n ,

n∑
i=1

iαi + αn−1 = r}, if R = Dn

.

Proof This follows from Eqs. (C) to (D) in the appendix. ��
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Remark 4.9 Denote by P the crosspolytope from Fig. 9 for r = 1, that is, P =
ConvHull(B1

1). Then G(Zn, B
1
r ) is a discrete subgraph of G(Rn, ∂(rP)) and, since

R
n is scaling invariant, we have

χm(Rn, ∂P) = χm(Rn, ∂(rP)) ≥ χ(Zn, B
1
r ).

Hence, computing the spectral bound for the chromatic number of Z
n always yields a

lower bound for the chromatic number of R
n .

4.3.1 Analytical bounds

We compute the spectral bound for χ(Zn, B
1
r ) first for the cases, where our rewriting

technique allows for an analytical proof.

Proposition 4.10 Let r ∈ N be odd. The spectral bound is sharp for χ(Zn, B
1
r ) = 2.

Proof Since r is odd, partitioning the vertices ofG(Zn, B
1
r ) in thosewith even and those

with odd �1-norm yields two independent sets. Hence, χ(Zn, B
1
r ) = χ(Zn, B

1
1) = 2.

To see that the spectral bound is sharp, let R be a root system of type Cn . By Lemma
4.8, we have B

1
1 =Wω1 and so

χ(Zn, B
1
1) ≥ 1− 1

F(1)
≥ 1− 1

min
z∈T

z1
≥ 1− 1

−1 = 2.

��
The chromatic number of Z

n for �1-distance r = 2 is 2 n. This was proven in [27,
Theorem 1] with a purely combinatorial argument by fixing a coloring and showing
that it is admissible and minimal.

Theorem 4.11 The spectral bound is sharp for χ(Zn, B
1
2) = 2 n.

Proof Let R be a root system of type Cn . Thanks to Lemma 4.8, we have B
1
2 =

W(2ω1) ∪Wω2. We choose c = 1/(2 n − 1) ∈ [0, 1] and consider

c T2ω1 + (1− c) Tω2 =
2 n z21 − 2(n − 1)z2 − 1

2 n − 1
+ 2(n − 1)z2

2 n − 1
= 2 n z21 − 1

2 n − 1
,

where the expression for T2ω1 is obtained as in the proof of Theorem 4.6 (3.). We have

χ(Zn, B
1
2) ≥ 1− 1

F(2)
≥ 1− 1

min
z∈T

c T2ω1(z)+ (1− c) Tω2(z)

≥ 1− 1

(2 n z21 − 1)/(2 n − 1)

≥ 1− 2 n − 1

−1 = 2 n,

where we applied Eq. (4.4). ��
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Table 3 The lower bound χ(Z3, B
1
r ) ≥ 1− 1/F(r , d) for dimension n = 3

R d\r 2 4 6 8 10 12 14

B3 3 6.00000 6.28148 6.01551 − − − −
4 6.00000 6.28148 6.07717 6.28148 − − −
5 6.00000 6.28148 6.29004 6.28183 6.12543 − −
6 6.00000 6.28148 6.30244 6.29799 6.27850 6.28234 −
7 6.00000 6.28148 6.30269 6.30435 6.30031 6.29708 6.27830

8 6.00000 6.28148 6.30269 6.30463 6.30053 6.30088 6.29604

9 6.00000 6.28148 6.30269 6.30501 6.30502 6.30227 6.301858

C3 3 6.00000 6.28148 6.02310 − − − −
4 6.00000 6.28148 6.29021 6.28198 − − −
5 6.00000 6.28148 6.30182 6.29951 6.29810 − −
6 6.00000 6.28148 6.30269 6.30455 6.30048 6.30069 −
7 6.00000 6.28148 6.30269 6.30494 6.30057 6.30229 6.30156

The first column indicates the root system R, that is, the crystallographic symmetry we exploited. Then the
rows are indexed by the relaxation order d and the columns by the radius r of the crosspolytope

Fig. 8 The chromatic number of
the A2 coroot lattice is
χ(�(A2)) = 3

Corollary 4.12 Let 0 < r ∈ N be even. The spectral bound is sharp forχ(Z2, B
1
r ) = 4.

Proof For r = 2, this is a special case of Theorem 4.11. In particular, for r even,
the spectral bound gives at least 4 for χ(Z2, B

1
r ). Let P = ConvHull(B1

1) be the
crosspolytope in R

2, that is, a square. We have

4 = χm(R2, ∂P) = χm(R2, ∂(rP)) ≥ χ(Z2, B
1
r ) ≥ χ(Z2, B

1
2) ≥ 4,

where we used [3] and Remark 4.9. ��

4.3.2 Numerical bounds

Now,we compute spectral bounds forχ(Zn, B
1
r ) numerically for the dimensions n = 3

and n = 4. In order to do so, we approximate F(r) from Eq. (4.4) by computing
F(r , d) := F(B1

r , d) in Corollary 4.3 for d ∈ N sufficiently large.
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Fig. 9 The crosspolytope is the ball of radius r with respect to the �1-norm. The boundary points with
integer coordinates form the avoided set B

1
r

Fig. 10 The crosspolytope with radius r = 4 and the obtained optimal coefficients. Boundary points
μ = α1 ω1 + α2 ω2 + α3 ω3 ∈ Z

3, which lie in the same Weyl group orbit, have the same coefficients cα ,
denoted by red, blue, green and purple dots

Dimension n = 3

The theoretical value χ(Z3, B
1
2) = 6 from Theorem 4.11 is obtained immediately

with F(2, 1). The highest value in the table is given by F(9, 10) for B3. We display
the obtained optimal coefficients, which coincide for B3 and C3 in Figs. 10 and 11 and
Table 10.

Remark 4.13 By [27, Prop. 9], we have χ(Z3, B
1
4) ≥ 7. Our computation yields the

same bound.

Dimension n = 4

The value χ(Z4, B
1
2) = 8 is obtained immediately with F(2, 1). The highest value

is F(4, 7) for B4. The computed bounds F(r , d) are strictly increasing along the
columns, that is, when we increase d.

Remark 4.14 By [27, Prop. 9], we have χ(Z4, B
1
4) ≥ 9. Our computation strengthens

the bound to 11.
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Fig. 11 The coefficients cα for F(r , 9) in the case of R = B3, encoded by the intensity of the color red as
RGB(1, εα, εα), where εα := 1 − (cα − cmin)/(cmax − cmin) ∈ [0, 1]. In particular, cmax is red, cmin is
white

123



E. Hubert et al.

Table 4 The lower bound χ(Z4, B
1
r ) ≥ 1− 1/F(r , d) for dimension n = 4

R d\r 2 4 6 8 10 12 14

B4 4 8.00000 10.33968 9.09234 10.33968 − − −
5 8.00000 10.33969 9.72339 10.33969 9.17503 − −
6 8.00000 10.83655 10.18050 10.33969 9.90514 10.33968 −
7 8.00000 10.86019 10.51696 10.51282 10.16103 10.33968 10.03938

C4 4 8.00000 10.33993 9.72014 10.33968 − − −
5 8.00000 10.83902 10.07664 10.33968 9.94864 − −

D4 4 8.00000 10.34750 9.08887 10.33969 − − −
5 8.00000 10.39184 9.72430 10.34011 9.52887 − −
6 8.00000 10.83844 10.34886 10.35578 9.97888 10.33971 −

The first column indicates the root system R, that is, the crystallographic symmetry we exploited. Then the
rows are indexed by the relaxation order d and the columns by the radius r of the crosspolytope

Fig. 12 The chromatic number
of R

2 for the hexagon is 22 = 4
[3]

The computations for the examples in this subsection are documented here:

https://tobiasmetzlaff.com/html_guides/chromatic_Zn_crosspolytope.html

4.4 The chromatic number ofR
n for Voronoï cells

Finally we consider the case of the Euclidean space V = R
n as a set of vertices,

where the avoided set S = ∂P is the boundary of a convex centrally-symmetric
polytope P . This setting was studied in [3], giving bounds on χm(Rn, ∂P) without
using spectral bounds. There it was proven that χm(Rn, ∂P) ≤ 2n whenever P tiles
R
n and equality is conjectured. We now investigate the strength of the spectral bound

for certain instances of this graph (Fig. 12).
Given a Weyl groupW associated to a root systems in R

n , the Voronoï cell Vor(�)

of the coroot lattice is a convex centrally-symmetric polytope, invariant underW and
tiles R

n by �-translation, see Eq. (2.1). If the root system is irreducible with highest
root ρ0, then we have Vor(�) =W �, where

� = {u ∈ R
n | ∀ 1 ≤ i ≤ n : 〈u, ρi 〉 ≥ 0 and 〈u, ρ0〉 ≤ 1}
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is a fundamental domain of the affine Weyl group W � �, see Proposition 2.3. In
particular, the part of the boundary ∂Vor(�) ∩ ��, which is also contained in the
fundamental Weyl chamber, lies on a hyperplane parallel to 〈·, ρ∨0 〉 = 0. Rescaling
the polytope Vor(�) by a factor r̃ > 0 does not affect the chromatic number, that is,
χm(Rn, ∂Vor(�)) = χm(Rn, ∂(r̃ Vor(�))). If we choose r̃ = r 〈ρ0, ρ0〉/2 for some
0 �= r ∈ N, then ∂(r̃ Vor(�)) ∩� �= ∅ and we obtain a hierarchy of lower bounds

χm(Rn, ∂Vor(�)) ≥ . . . ≥ 1− 1

F(4r)
≥ 1− 1

F(2r)
≥ 1− 1

F(r)
≥ 1− 1

F(1)
, (4.5)

where F(r) := F(Sr ) is as in Theorem 4.2 with Sr :=W{u ∈ �� | 〈u, ρ∨0 〉 = r}.

Remark 4.15 The quantity 1− 1/F(r) is a lower bound for χm(Rn, ∂Vor(�)). More
precisely, we have

χm(Rn, ∂Vor(�)) ≥ χ(�, Sr ) ≥ 1− 1

F(r)

and F(r) is theminimum of the Fourier transformation of the optimal measureB (with
mass 1) in Theorem 4.1 for the graph G(�, Sr ).

To compute F(r) numerically, we use Corollary 4.3 andwrite F(r , d) := F(Sr , d).
Recall from Remark 4.4 that F(r , d) ≥ F(� r , d) is only certain when d →∞.

4.4.1 The hexagon inR
2

The hexagon in R
2 ∼= R

3/〈[1, 1, 1]t 〉, as it has appeared several times now in the
article, is the Voronoï cell of the coroot lattice � for A2 and G2. It has 6 vertices and
6 edges. For A2, the vertices of the hexagon are the orbits of the fundamental weights
ω1 and ω2. The centers of the edges are the orbit of (ω1 + ω2)/2. We fix a hierarchy
order d ≥ 3 and consider F(r , d) for 1 ≤ r ≤ 2d. For G2, the vertices are the orbit
of ω1/3. The centers of edges are the orbit of ω2/6. If r ∈ N is not a multiple of 3,
then Sr = ∅. Thus we consider F(3r , d) for 1 ≤ r ≤ 2d, but still write F(r , d) for
simplicity (Table 5).

For r = 1, there is no choice for the coefficients cμ, as S1 only contains one element
in both cases A2 and G2. The value F(1) is −1/2. This gives spectral bound 3 and is
obtained from F(r , d) for d ≥ 4, respectively d ≥ 5. Furthermore, this fits with the
bound from Theorem 4.6, where χ(�) ≥ n for An−1.

For r ≥ 2, the best possible bound we obtained is already assumed at r = 2 and
d = 3. We display the optimal coefficients for the corresponding measure below. This
bound is assumed in all F(r , d) with r even at lowest possible order. For r odd, the
value converges but does not stabilize.

Although we recover that the chromatic number of R
2 for the hexagon is 4, see

Fig. 13, our computations indicate that the spectral bound is not sharp and never will
be with r , d →∞.
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Fig. 13 Rescaling the hexagon
increases the number of weights
Sr ∩� on the boundary

Fig. 14 The scaled Voronoï cell and the optimal coefficients for F(2, 8). Boundary points μ = α1 ω1 +
α2 ω2, which lie in the same Weyl group orbit, and their diametrically opposites μ̂ = α̂2 ω1 + α̂1 ω2 have
the same coefficients cα = cα̂ , denoted by either red or blue dots

From Fig. 14, we guess that the coefficients 1/3 for the vertices and 2/3 for the
centers of faces are optimal. Then, for r ∈ N, we have

F(2r) =

⎧
⎪⎨

⎪⎩

min
z∈T

2
3 Tr r (z)+ 1

6 (T2r 0(z)+ T0 2r (z)) = min
z∈T

2
3 T1 1(z)++ 1

6 (T2 0(z)+ T0 2(z)), if R = A2

min
z∈T

2
3 T0 r (z)+ 1

3 T2r 0(z) = min
z∈T

2
3 T0 1(z)+ 1

3 T2 0(z), if R = G2

= min
z∈T 2 z21 − 2/3 z1 − 1/3 = −7/18

(4.6)

(for A2, we have to substitute zi = z1 ± i z2, so that T ⊆ R
2). In both cases,

1 − 1/F(2r) = 25/7 ≈ 3.57143. Note that F(2) corresponds to the trigonomet-
ric polynomial in Example 2.11 up to a factor 1/3 (Fig. 15).

4.4.2 The rhombic dodecahedron inR
3

The rhombic dodecahedron in R
3 (Fig. 16) is the Voronoï cell of the coroot lattice �

for A3 and B3. It has 14 vertices, 24 edges and 12 faces. For A3, the vertices are the
orbits of ω1, ω2 and ω3. The centers of the edges are the orbits of (ωi + ω2)/2 for
i = 1, 2, and the centers of the facets are the orbit of (ω1+ω3)/2. For B3, the vertices
are the orbits of ω1 and ω3. The centers of the edges are the orbit of (ω1+ω3)/2, and
the centers of the facets are the orbit of ω2/2.

For r = 1, the numerically computed bound seems to converge to 4 in Table 6. For
r ≥ 2, the best possible bound we obtain is already assumed at r = 2 and d = 3,
respectively d = 4.We display the optimal coefficients for the corresponding measure
in Fig. 17. This bound is approximately assumed in all F(r , d) with r even at lowest
possible order d. For r odd, the value does not stabilize with r or d growing. The root
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Fig. 15 Theminimizers z (lines, above) for F(2r) in the image T of the generalized cosines with preimages
u (ovals, below). In the coordinates u, we can observe the �-periodicity and W-invariance, yielding the
crystallographic symmetry on the alcove � ofW � � (simplex) (color figure online)

Fig. 16 The rhombic dodecahedron is the Voronoï cell of the coroot lattice for A3 and B3
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Fig. 17 The scaled Voronoï cell and the obtained optimal coefficients. Supporting points μ = α1 ω1 +
α2 ω2 + α3 ω3 in the same Weyl group orbit and their additive inverse μ̂ have the same coefficients
cα = cα̂ , denoted by red, blue, green and purple dots

Fig. 18 In the case of A3, there are two minimizers zmin ≈ (0.22209, 0.05915,±0.23708) for
F(2, 8) on the boundary of T , the image of the gernalized cosines, with two preimages umin ≈
(0.40432,±0.15713, 0.17550) on the boundary of �, the fundamental domain of W � � (color figure
online)

systems A3 and B3 give the same coefficients for the same supporting points. As in the
case of the hexagon, the gap between the spectral bound for such discrete measures
and the actual chromatic number of R

3 for the rhombic dodecahedron (known to be 8
by [3]) seems quite large (Fig. 18).

As we can observe from Fig. 17, themost amount of weight is on the center of faces,
then on the centers of edges and only a small weight lies on the vertices.We investigate
the minimizers of the associated sum of generalized Chebyshev polynomials. Similar
to Eq. (4.6), one finds the following.

1. For R = B3, the minimizers for F(2, 8) are zmin ≈ (0.05927, z2, 0.22212) with
z2 ∈ R so that zmin ∈ T .

2. For R = A3, the minimizers for F(2, 8) are zmin ≈ (0.22209, 0.05915, z3) with
z3 ∈ R so that zmin ∈ T .

4.4.3 The icositetrachoron inR
4

The icositetrachoron in R
4 is the Voronoï cell of the coroot lattice � for B4 and D4.

It has 24 vertices, 96 edges, 96 faces and 24 facets. The facets are octahedral cells.
For B4, the vertices are the orbits of ω1 and ω4. The centers of edges are the orbits of
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(ω1+ω4)/2 and ω3/2. The centers of faces are the orbit of (ω1+ω3)/3. The centers
of facets are the orbit of ω2/2. For D4, the vertices are the orbits of ω1, ω3 and ω4.
The centers of edges are the orbits of (ω1 + ω3)/2, (ω1 + ω4)/2 and (ω3 + ω4)/2.
The centers of faces are the orbit of (ω1 + ω3 + ω4)/3. The centers of facets are the
orbit of ω2/2 (Table 7).

For r = 1, the numerically computed bound seems to converge to 4. For r ≥ 2,
the best possible bound we obtained is assumed at r = 2 and d = 7, respectively
d = 6. For r odd, the value is always smaller than for r even. For B4, we observe
that F(2, 7) � F(4, 7), see Remark 4.4. In the D4 case, the same happens with
F(2, 6) � F(4, 6). We display the optimal coefficients for the corresponding measure
in Table 8.

Recall fromEqs. (B) and (D) that the fundamental weights satisfyωi (B4) = ωi (D4)

for i = 1, 2, 4 and ω3(B4) = ω3(D4)+ω4(D4). For r = 2, we observe in Table 8 that

1. the centers of facets are weighted with 0.40062 ≈ 0.40188,
2. the centers of faces are not weighted,
3. the centers of edges are weighted with 0.35491 ≈ 0.17692 + 0.17692 and

0.17769 ≈ 0.17726 and
4. the vertices are weighted with 0.02234 ≈ 0.02245 and 0.04444 ≈ 0.02228 +

0.02228.

Remark 4.16 The chromatic number ofR
4 for the icositetrachoron is at least 15, which

is proven analytically in [3, Theorem 5] by constructing a discrete subgraph and
computing its clique density.

4.4.4 The hypercube inR
n

The hypercube [−1/2, 1/2]n is the Voronoï cell of the coroot lattice for the root system
Cn , that is, for the integer lattice �(Cn) = Z

n . In this case, the chromatic number is
known to be 2n , see [3] for a counting argument that does not involve spectral bounds.
We reprove this fact with the spectral bound by taking aW-invariant measure, which
is supported on the vertices and centers of edges, faces, etc. of Vor(�(Cn)).

Proposition 4.17 The spectral bound is sharp for χm(Rn, ∂Vor(�(Cn))) = 2n.

Proof The set of dominant weightsμ ∈ �+ of Cn with 〈μ, ρ∨0 〉 = 1 consists precisely
of the fundamentalweightsω1, . . . , ωn .We set (2n−1) ci :=

(n
i

)
. Then c1, . . . , cn ≥ 0

with c1 + . . .+ cn = 1 and the polynomial

∑

〈μ,ρ∨0 〉=1
cμ Tμ(z) =

n∑

i=1
ci zi .

is an admissible choice for Eq. (4.5). We show that it provides the optimal bound 2n .
To do so, we rely on the formula for the fundamental weights from Eq. (C), which
gives us

(2n − 1) ci ci (u) = σi (cos(2πu1), . . . , cos(2πun)),
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Table 8 The optimal coefficients for F(r , 7), respectively F(r , 6)

r B4 D4

1− 1/F(r , 7) cα 1− 1/F(r , 6) cα

1 3.99961 c1000 = 0.33303 3.99496 c1000 = 0.33305

c0010 = 0.33348

c0001 = 0.66697 c0001 = 0.33348

2 10.02434 c0100 = 0.40062 10.02432 c0100 = 0.40188

c1001 = 0.35491 c1001 = 0.17692

c1010 = 0.17692

c0010 = 0.17769 c0011 = 0.17726

c0002 = 0.04444 c0002 = 0.02228

c0020 = 0.02228

c2000 = 0.02234 c2000 = 0.02245

The coefficients associated to μ = α1 ω1 + . . .+ α4 ω4 are denoted by cα

where σi is the i-th elementary symmetric function. When we substitute zi = ci (u)

for u ∈ R
n , then

(2n − 1)
n∑

i=1
ci zi =

n∑

i=1
(2n − 1) ci ci (u) =

n∑

i=1
σi (cos(2πu1), . . . , cos(2πun))

=
n∏

k=1
(1+ cos(2πuk))︸ ︷︷ ︸

≥0
−1 ≥ −1

follows from Vieta’s formula and equality holds for u = 1/2ω j . Altogether,

2n ≥ χm(Rn, ∂Vor(�(Cn))) ≥ 1− 1

min
z∈T

∑n
i=1 ci zi

≥ 1− 2n − 1

−1 = 2n

completes the proof. ��
Remark 4.18 The choice for the coefficients ci in the proof of Proposition 4.17 comes
from the following observation: Let P ∈ R[z]n×n be the matrix polynomial from
Theorem 2.9. For small n (say n ≤ 10), one can check that the determinant Det(P)

has two factors of degree 1 and one of them is the polynomial in the proof, namely

p := 1+
n∑

i=1

(
n

i

)
zi ∈ R[z].

The image of the generalized cosines T is contained in the halfspace {z ∈ R
n | p(z) ≥

0}, see Fig. 5. This simplifies the proof, giving it completely in terms of generalized
Chebyshev polynomials.

The computations for the examples in this subsection are documented here:

https://tobiasmetzlaff.com/html_guides/chromatic_Rn_voronoi_cells.html
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Table 9 We compare the previous lower bounds on χm (V , S) and our estimates on the spectral bounds (V
vertices, S avoided set)

V S Previous lower bound for χm (V , S) Spectral bound

Z
n

B
1
2r+1 (discrete crosspolytope) 2† [27] 2 [Proposition 4.10]

Z
n

B
1
2 2n† [27] 2n [Theorem 4.11]

Z
2

B
1
2r 4† [27] 4 [Corollary 4.12]

Z
3

B
1
4 7 [27] > 6.30 [Table 3]

Z
4

B
1
4 9 [27] > 10.86 [Table 4]

R
2 Hhexagon 4† [3] > 3.57 [Table 5]

R
3 Rhombic dodecahedron 8† [3] > 6.10 [Table 6]

R
4 Icositetrachoron 15 [3] > 10.02 [Table 7]

R
n Hypercube 2n† [3] 2n [Proposition 4.17]

The symbol † means that the lower bound gives the chromatic number of the graph

4.5 Discussion on the results

Beyond the numerical lower bounds obtained on the chromatic numbers of several
graphs, our results can be analyzed through several different points of view. First,
Theorem 4.6 shows how the reformulation in terms on Chebyshev polynomials may
lead to simple analytic computations of the spectral bound for discrete graphs, already
computed in [23] without any polynomial reformulation. Then, this allowed us to
compute estimations on the spectral bound for other infinite graphs that were so far
studied only with different, mostly combinatorial, tools. Table 9 shows a comparison
between our approach and previous results.

In the case of the discrete graph Z
n with the �1-norm, on the one hand we could

show that for the few cases in which the chromatic number was exactly computed,
the spectral bound is sharp, namely it gives the chromatic number. One the other
hand, while in Z

3 we recover the lower bound 7 by rounding up our bound 6.3 to the
next integer, we are able to improve the best known lower bound for Z

4. For the last
set of results about R

n endowed with norms coming from Voronoi cells of lattices,
except for the case of the hypercube, the numbers we obtain might look far from
the expected chromatic number of R

n . This might happen for several reasons. First,
when considering our discretemeasures supported on lattices, we are always implicitly
computing a bound for a discrete subgraph of R

n , that might have a chromatic number
smaller than R

n . However, this is not the only reason: in the case of the hexagon,
the measure supported on the vertices and the middles of edges we consider gives a
bound for a discrete graph. However, it was proven in [3] that this graph has chromatic
number 4. In this case, it is likely that the spectral bound is exactly 25/7, and does
not give the chromatic number. Such a phenomenon was already observed in [23],
where, for the lattice E7, the optimal spectral bound was computed to be 10, while the
chromatic number of this lattice is 14.

Since we do not know a priori how large is the gap between the spectral bound and
the actual chromatic number, it is interesting to understand better the behavior of the
spectral bound for such graphs in itself. In this direction, in addition to provide bounds
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on the chromatic number of the graphs that we consider, our method gives information
on the discrete measures supported on lattice points up to scaling. For example, in the
case of the hexagon, even by increasing the number of support points, we did not
get a discrete measure providing a better bound, see Table 5. Our experiments then
suggest that the optimal measure supported on rational points is the one supported
by two orbits: the vertices of the hexagon, with weight 1/3, and the middle of the
edges, with weight 2/3. In the case of the cross-polytope from Sect. 4.3, we observe
a different phenomenon: when increasing the number of possible support points, the
optimal measure distribution does not appear to stabilize. It seems then reasonable to
expect the bound to get better when increasing the number of points, even though it is
hard to conjecture for an optimal discrete measure after our experiments, see Fig. 11.
Moreover, we note that the larger the set of possible support points is, the higher we
need to go in the order of the hierarchy to get a good bound. This can be explained by
the fact that the weighted degrees of the involved Chebyshev polynomials get higher,
making the semi-definite programs harder to solve.

Finally, let us mention that we only provide in the tables the numerical results
from the solver. In general, since SDP solvers work with floating point numbers, the
solution observed might only be an approximation of a feasible solution, and one need
further work to certify a rigorous bound. This can be done for instance by using interval
arithmetics (see for example [20]), or general procedures to round numerical solutions
to rational solutions (see the introduction of [22]). However, in our situation, if we are
only interested in bounding chromatic numbers that are integers, we are less sensitive
to numerical precision. On the other hand, when we prove that the spectral bound is
sharp, we could do it analytically. Another approach that can be interesting consists
in the combination of both methods, like in Sect. 4.4.1: numerical computations help
us to guess a good weight distribution for the measure, and then we can compute the
corresponding bound analytically. However, unfortunately, for the other examples,
computations did not suggest obvious optimal measures.

Conclusion

We give an algorithm to minimize a trigonometric polynomial with crystallographic
symmetry. To do so, we rewrite the problem in terms of generalized Cheby-
shev polynomials and use established techniques from polynomial optimization
with matrix inequalities. This results in a hierarchy of SDPs, similar to Lasserre’s
hierarchy but with Chebyshev moments and matrix sums of squares. We pro-
vide a Maple package that supports the examples and symbolic computations
(https://github.com/TobiasMetzlaff/GeneralizedChebyshev).

For the chromatic number of set avoiding graphs, we present a hierarchy of semi-
definite lower bounds that originates from a bilevel polynomial optimization problem.
For suchproblems, itwould be interesting to compute the spectral bound for continuous
measures supported on the boundary of our polytopes, to conclude whether such an
approach could be at least as powerful as the combinatorial approach. Improving the
implementation would allow at some point to handle the famous E8 lattice.
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A Irreducible root systems of type An−1, Cn, Bn, Dn, G2

For 1 ≤ i ≤ n, we denote by ei ∈ R
n the Euclidean standard basis vectors.

An−1 [7, Planche I]

The group Sn acts on R
n by permutation of coordinates and leaves the subspace

V = R
n/〈[1, . . . , 1]t 〉 = {u ∈ R

n | u1 + . . . + un = 0} invariant. The root system
An−1 given in [7, Planche I] is a root system of rank n − 1 in V with base and
fundamental weights

ρi = ei − ei+1 and ωi =
i∑

j=1
e j − i

n

n∑

j=1
e j = 1

n
[n − i, . . . , n − i︸ ︷︷ ︸

i times

,−i, . . . ,−i︸ ︷︷ ︸
n−i times

]t . (A)

The Weyl group of An−1 isW ∼= Sn and the reflection sρi permutes the coordinates i
and i+1.Thus,−ωn−i ∈W ωi and the orbitW ωi has cardinality

(n
i

)
for 1 ≤ i ≤ n−1.

Cn [7, Planche III]

The groupsSn and {±1}n act on R
n by permutation of coordinates and multiplication

of coordinates by ±1. The root system Cn given in [7, Planche III] is a root system in
R
n with base and fundamental weights

ρi = ei − ei+1, ρn = 2 en and ωi = e1 + . . .+ ei . (C)
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TheWeyl group of Cn isW ∼= Sn�{±1}n .We have−In ∈W and thus,−ωi ∈W ωi .
Furthermore, the orbit W ωi has cardinality 2i

(n
i

)
for 1 ≤ i ≤ n.

Bn [7, Planche II]

The root system Bn given in [7, Planche II] is a root system in R
n . Its Weyl group is

isomorphic to that of Cn . The base and fundamental weights are

ρi = ei − ei+1, ρn = en and ωi = e1+ . . .+ ei , ωn = (e1+ . . .+ en)/2. (B)

TheWeyl group of Bn is that of Cn , that is,W ∼= Sn � {±1}n . We have−In ∈W and
thus, −ωi ∈W ωi . Furthermore, the orbit W ωi has cardinality 2i

(n
i

)
for 1 ≤ i ≤ n.

Dn [7, Planche IV]

The groups Sn and {±1}n+ := {ε ∈ {±1}n | ε1 . . . εn = 1} act on R
n by permutation

of coordinates and multiplication of coordinates by ±1, where only an even amount
of sign changes is admissible. The root system Dn given in [7, Planche IV] is a root
system in R

n with base and fundamental weights

ρi = ei − ei+1, ρn = en−1 + en and
ωi = e1 + . . .+ ei , ωn−1 = (e1 + . . .+ en−1 − en)/2, ωn = (e1 + . . .+ en)/2.

(D)
The Weyl group of Dn is W ∼= Sn � {±1}n+. For all 1 ≤ i ≤ n, we have −ωi ∈
W ωi , except when n is odd, where−ωn−1 ∈W ωn . Furthermore, the orbitW ωi has
cardinality 2i

(n
i

)
for 1 ≤ i ≤ n − 2 and |W ωn−1| = |W ωn| = 2n−1.

G2 [7, Planche IX]

The group S3 � {±1} acts on R
3 by permutation of coordinates and scalar multipli-

cation with ±1. The subspace V = R
3/〈[1, 1, 1]t 〉 = {u ∈ R

n | u1 + u2 + u3 = 0} is
left invariant. The root system G2 given in [7, Planche IX] is a root system of rank 2
in V with base and fundamental weights

ρ1 = [1,−1, 0]t , ρ2 = [−2, 1, 1]t and ω1 = [1,−1, 0]t , ω2 = [−2, 1, 1]t .
(G)

TheWeyl group of G2 isW ∼= S3 � {±1}. We have−I3 ∈W and thus,−ω1 ∈W ω1
as well as −ω2 ∈W ω2. Furthermore, |W ω1| = |W ω2| = 6.

B Coefficients for discrete measures

See Table 10.
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