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Abstract 

Quantifying the biomass, or number of indi viduals, di ver sity, and distribution of marine species is a critical aspect of understanding 

and managing marine ecosystems. In recent years, there has been growing interest in using environmental DNA (eDNA) for marine 
ecosystem management and biodi ver sity assessment. However, the main challenge hindering eDNA applicability has been the inability 
to infer absolute species abundances from multispecies analysis (eDNA metabarcoding). In this study, we demonstrate a way forward 

by estimating the abundance of commercially important fish species in a Norwegian fjord using a joint Bayesian statistical model of 
traditional trawl-catch data and molecular data derived from eDNA. Using this model, we accurately predict out-of-sample trawl catches 
using eDNA alone. Moreover, our model provides empirical estimates for key processes linking marine eDNA concentration to the fish 

population abundance estimated from trawl observations, including trawl catchability, DNA shedding, degradation, dilution, transport, 
recovery rate, and isolation efficiency. These processes, including amplification efficiencies correcting for Polymerase Chain Reaction 

(PCR) bias, are species-specific and enable the translation of eDNA metabarcoding data into abundances. These findings have broad 

implications for the use of eDNA in marine ecosystem management and conservation ef for ts. 
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ntroduction 

uantifying the abundance, diversity, and distribution of
pecies is a cornerstone of fisheries management and ecosys-
em conservation (Preston 1948 , Jetz et al. 2012 , Hill et al.
014 , Thomsen et al. 2016 , Callaghan et al. 2021 , Farr et al.
022 ). Traditional survey methods, including scientific, and
ommercial trawl catches, close kin mark-recapture, telemetry,
ydro-acoustics, and electrofishing surveys, have been widely
sed to gather ecological data and form the foundation for
ost fisheries management and conservation (Fraser et al.
007 , Neebling and Quist 2011 , Crossin et al. 2017 , Lees et al.
021 ). However, these methods are invasive, and a few have a
et negative ecological impact (Biju Kumar and Deepthi 2006 ,
igaard et al. 2017 ). Furthermore, trawl and acoustic surveys
re cost-intensive, requiring a large number of crew to sort the
rawl catches, taxonomists onboard to identify species, and
ay be unsuitable for specific habitats, such as rocky bottoms

Lacoursière-Roussel et al. 2016 ). 
Environmental DNA (eDNA), free genetic material shed by

rganisms which can be captured from environmental sam-
les and sequenced, has emerged as a promising molecular
pproach that offers a less invasive method to identify and
uantify species (Taberlet et al. 2012 , Thomsen et al. 2012 ).
hrough “eDNA metabarcoding”—molecular identification 

f multiple species—researchers and resource managers can
nfer community composition, biodiversity changes, and eco-
The Author(s) 2024. Published by Oxford University Press on behalf of Interna
rticle distributed under the terms of the Creative Commons Attribution License 
euse, distribution, and reproduction in any medium, provided the original work 
ogical shifts due to anthropogenic impacts (Hansen et al.
018 , Jeunen et al. 2019 , Atienza et al. 2020 , Larson et al.
022 , Turon et al. 2022 , Guri et al. 2023 ). Despite the re-
ent technological advancements, eDNA methods have not
et reached the level of accuracy to fully replace traditional
urveys for fish ecosystem monitoring or stock assessments.
owever, the integration of eDNA surveys with traditional
ethods can increase our understanding of marine ecosystems

Valdivia-Carrillo et al. 2021 , Pont et al . 2023 ), fisheries man-
gement (Stoeckle et al. 2021 ), and conservation (Hill et al.
014 , He et al. 2023 ). By combining these two survey types,
e can obtain more comprehensive and accurate information
n the species distribution and biological factors related to it
Veron et al. 2023 ). This becomes particularly pivotal when
onsidering the ecological repercussions of trawl surveys, in-
luding adverse effects on non-target species and vulnerable
enthic habitats (Lacoursière-Roussel et al. 2016 ). The inte-
ration of eDNA and trawl data can help to address some
f the drawbacks of traditional survey methods, such as their
igh costs, invasive nature, inability to access restricted or vul-
erable areas, and reliance on taxonomic expertise (Closek et
l. 2019 , Pont et al . 2023 , He et al. 2023 , Veron et al. 2023 ),
hereby mitigating the dependence solely on the latter survey
ethod (Valdivia-Carrillo et al. 2021 ). 
Despite the potential of eDNA as a method for understand-

ng marine ecosystems, there are still several challenges that
tional Council for the Exploration of the Sea. This is an Open Access 
( https:// creativecommons.org/ licenses/ by/ 4.0/ ), which permits unrestricted 
is properly cited. 
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need to be addressed (Ramírez-Amaro et al. 2022 ). Metabar- 
coding methods do not reflect absolute concentrations of 
eDNA in environmental samples due to a combination of PCR 

stochasticity and species-specific amplification efficiencies, es- 
pecially when using universal markers (12S, 16S, or COI).
Furthermore, the compositional nature of metabarcoding data 
provides only inferable proportions (Gloor et al. 2017 ). Con- 
sequently, quantitatively assessing biomass or the abundance 
of targeted organisms through metabarcoding remains elu- 
sive (Rourke et al. 2022 ). Such constraints have hindered the 
broader adoption and integration of eDNA metabarcoding 
methods in cross-disciplinary fields such as fisheries, conser- 
vation biology, and ecosystem-based management (Ramírez- 
Amaro et al. 2022 ). Species-specific quantitative PCR methods 
(real-time PCR—qPCR or digital droplet PCR—ddPCR; Pont 
et al . 2023 ) offer an attractive alternative to metabarcoding 
because they are quantitative, hence reflect absolute eDNA 

concentrations. For example, Salter et al. (2019) showed a 
strong correlation ( R 

2 = 0.66; P = 0.008) between absolute 
eDNA quantities and the biomass of Atlantic cod, and Shelton 

et al. (2022) showed reliable hake distributions from eDNA 

on a continental scale. More recently, Maes et al. (2023) em- 
ployed ddPCR and found eDNA concentrations can repre- 
sent fish abundance and biomass for two commercial flat- 
fishes ( Solea solea and Pleuronectes platessa ). In the context 
of ecosystem-based management of multiple species, however,
species-specific quantitative methods can be more expensive 
and less efficient than metabarcoding multi-species, primarily 
due to the requirement for prior knowledge or isolation of the 
target species (Schneider et al. 2016 ). 

eDNA metabarcoding has rapidly advanced as a tool for 
exploring fish communities. Several studies have shown pos- 
itive relationships between eDNA metabarcoding data and 

trawl data (Thomsen et al. 2016 , Afzali et al. 2021 , Stoeckle 
et al. 2021 , Yates et al. 2022 ). Stoeckle et al. (2021) com- 
pared log proportional metabarcoding reads to log propor- 
tional abundances from bottom trawls and observed a positive 
correlation when comparing across different months (mean 

R 

2 = 0.565). Taken together, the available evidence indicates 
that metabarcoding reads without any type of transformation 

accounting for PCR biases cannot yield absolute abundance 
but may reveal information of rank, relative, or semiquanti- 
tative abundances if differences in amplification rates among 
species are small (Salter et al. 2019 , Stoeckle et al. 2021 , Guri 
et al. 2023 , Veron et al. 2023 ). Pont et al . ( 2023 ) and Al- 
lan et al. (2023) addressed this issue by combining eDNA 

metabarcoding with qPCR (multiplying metabarcoding rela- 
tive read-abundances with total qPCR fish DNA concentra- 
tion) and found a strong correlation between total DNA con- 
centrations and total fish biomass measured through tradi- 
tional electrofishing in river systems. However, when compar- 
ing metabarcoding with the species-specific DNA concentra- 
tion, they found roughly two orders of magnitude variation,
which may have resulted from differences in species-specific 
amplification efficiencies. Alternatively, Shelton et al. (2023) 
developed a model to estimate initial DNA proportions in 

metabarcoding samples while accounting for species-specific 
amplification biases by sequencing mock community samples 
of known concentration of DNA extracts for a given list of 
taxa alongside environmental samples. To further improve the 
application of these models and methods, additional informa- 
tion is required to advance beyond proportions and provide 
absolute species concentrations from metabarcoding data. Ad- 
ressing all aforementioned challenges will be critical to the ef-
ectively applying eDNA metabarcoding in ecological research 

nd further integrating it into ecosystem-based management 
nd fisheries stock assessments. 

In this study, we developed a comprehensive and reliable 
ramework for analyzing eDNA data in conjunction with 

ther ecological data sources, such as trawl catch data, to
mprove the quantitative accuracy of metabarcoding analyses 
nd provide a more holistic understanding of aquatic ecosys- 
ems. Our Bayesian joint model framework integrated eDNA 

oncentrations from eDNA metabarcoding and ddPCR with 

sh density from trawl surveys ( Fig. 1 ) to estimate of biologi-
al parameters of interest, such as abundance, and parameters 
escribing the links between eDNA and traditional sampling 
ata. Additionally, using these links, we show how we can pre-
ict out-of-sample trawl catches solely using eDNA observa- 
ions. 

ethods 

e developed and joined five distinct datasets into a common
nalysis: trawl-catch counts, ddPCR observations of known 

oncentration from standard samples for a reference species,
dPCR observations of unknown concentration from envi- 
onmental samples for the reference species, metabarcoding 
f a known mixture of DNA extracts from multiple species of
nterest, and metabarcoding reads of environmental samples 
or target fish species. Below, we describe how each dataset
as produced before providing detailed information on the 

oint statistical model and subsequent analyses. 
In brief, the model uses species-specific ddPCR and a mock

ommunity to both calibrate metabarcoding results and to de- 
ive eDNA concentrations in environmental samples. We use 
his molecular dataset in combination with traditional trawl 
ata to estimate the abundances of several species and rigor-
usly test the resulting joint model against out-of-sample data 
o show its reliability. 

tudy area and samples 

alsfjord, northern Norway ( Supplementary Fig. S1 ), is 40 km
ong and averages 150 m in depth with a sill at the fjord’s
ntrance, and the archipelago limits the water exchange be- 
ween the fjord and the Norwegian Sea (open sea). Nearly
ll high-latitude Norwegian fjords, including Balsfjord, are 
ce-free and characterized by an Arctic light regime (Reigstad 

nd Wassmann 1996 ). GPS coordinates and other metadata 
f sampling stations including GPS coordinates are provided 

n Supplementary Table S1 . 

rawl surveys 

tudy samples were collected on research cruises in Octo- 
er 2019, 2020, and 2021 on the R/V Kristine Bonnevie
s part of the Norwegian coastal annual surveys. The main
im of the survey was to collect data for abundance estima-
ion of Norwegian coastal cod ( Gadus morhua ) and North-
ast Arctic saithe ( Pollachius virens ) and catch count and
eight of all fish species are recorded. Bottom trawl surveys
ere conducted annually in four distinct stations in Balsfjord 

longside eDNA samples ( Supplementary Fig. S1 ). Trawl sur-
eys used a standard Campelen 1800 sampling trawl with an
0 mm (stretched) mesh size in the front section and 22 mm
n the cod-end. The trawl sweeps were 40 m in length, and

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae097#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae097#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae097#supplementary-data
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Figure 1. Simplified schematic o v ervie w of the joint B a y esian model (three model compartments) w orkflo w including all the inferences and processes. 
The model indicates θ as the conversion between eDNA concentrations and fish densities ( θ , with units: fish/km2/copies/ μl). Processes (dashed lines) 
are shown for schematic underst anding , thus are circumvented (not measured) in this model. 
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ockhopper gear was employed. Samples of the catch were
orted, weighed, and measured according to the recommended
nstructions (Mjanger et al. 2019 ) by the Institute of Marine
esearch crew. 

DNA water sampling, filtration, and extraction 

ater was collected prior to trawling in three different 5-l
iskin bottles attached to a rosette which was raised and low-

red using a deck-mounted winch at the established sampling
tation ( Supplementary Fig. S1 ). At each station, we filtered
riplicates of 2 l of seawater through 0.22 μm Sterivex fil-
ers (MerckMillipore) from three depths, surface (10 m), pyc-
ocline (depth of highest density, ∼50 m) and bottom (10 m
bove bottom). Each filter was thereafter transferred to a ster-
le 50 ml Falcon centrifuge tubes and directly stored at −20 

◦C.
NA extraction of water samples followed the manufacturer’s
rotocol using the DNeasy PowerWater Sterivex Kit (Qiagen
mbH, Hilden Germany), with minor adjustments (exclud-

ng PowerBead Tubes steps). For more details regarding these
orkflows see Guri et al. (2023) . Negative controls such as
eld water and air blanks, laboratory blanks, and PCR blanks
ere taken throughout the workflow as described in Shu et al.

2020) . 

roplet digital PCR 

uantitative molecular assays targeting the mitochondrial
NA (mtDNA), specifically 103-bp region of the ATPase

ene of Atlantic cod ( Gadus morhua , Table 1 ) and the cy-
ochrome b sequence of Atlantic herring 86-bp ( Clupea haren-
us , Table 1 ), were performed using ddPCR on seawater sam-
les. Prior to running the environmental samples, assays were
ptimized using different primer/probe concentrations and
emperature gradient to give the greatest fluorescence con-
rast between positive and negative droplets. Herring and cod
dPCR assays were run in duplex reactions using 6-FAM and
IC dedicated channels, respectively. All ddPCR runs were

onducted using a QX200 ddPCR system (Bio-Rad) where
a. 20 000 droplets were generated in 20 μl reaction volumes.
ach reaction used 5 μl of DNA template from environmental
amples, 10 μl of ddPCR Supermix with no dUTP (Bio-Rad),
00 nM of final concentration of forward and reverse primers
 Table 1 ), and 250 nM final concentration of TaqMan probe
or each assay (cod and herring, respectively). The thermocy-
ler reactions were run in C1000 Touch Thermal Cycler with
6-Deep Well Reaction Module (Bio-Rad) using the PCR pro-
ram as follows: 10 min at 95 

◦C for enzyme activation, fol-
owed by 44 cycles of denaturation for 1 min at 95 

◦C and
rimer annealing and elongation for 2 min at 55.6 

◦C, with a
amp rate of 2 

◦C per s, followed by 10 min at 98 

◦C and stored
t 4 

◦C. Alongside the environmental samples, we ran standard
amples of known concentration from 10 

−2 –10 

4 copies/ μl for
ach species to construct the relationship between positive
roplets and known concentration ( Supplementary Table S2 ).

ock communities 

o calibrate metabarcoding observations and account for
mplification bias (Gold et al. 2023 , Shelton et al. 2023 a),
e selected ten fish species that were common in previous
etabarcoding or trawl surveys in the study area (Guri et

l. 2023 ). For the species Maurolicus muelleri (silvery light-
sh), Gadus morhua (cod), Leptoclinus maculatus (daubed
hanny), Hippoglossoides platessoides (long rough dab), My-
xocephalus scorpius (shorthorn sculpin), Cyclopterus lum-
us (lumpsucker), Pholis gunnellus (rock gunnel), Brosme
rosme (cusk), we used tissue samples collected by and DNA
xtracted at the University of Tromsø. The remaining species
issue samples, Mallotus villosus (capelin) and Pleuronectes

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae097#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae097#supplementary-data
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Table 1. Sequences for ddPCR assays targeting Gadus morhua and Clupea harengus (targeting 103-bp region of the ATPase gene and cytochrome b 
sequence of the mitochondrial DNA, respectively). 

Target Primers and probe Sequence 5’ Dye Size 

Gadus 
morhua 

Forward GAD-FII GCAA TCGAGTYGT A TCY CTHCAAGGA T 103 bp (Taylor et al. 2002 ) 
Reverse GAD-R III GCAA GWA GYGGHGCRCADTTGTG (Nash et al. 2012 ) 
Probe Custom MGBNFQ CTTTTT ACCTCT AAA TGTGGGAGG VIC 

Clupea 
harengus 

Forward Cluhar_CYBF14928 CCCA TTTGTGA TTGCAGGGG 86 bp (Knudsen et al. 2019 ) 
Reverse Cluhar_CYBR15013 CTGA GTTAA GTCCTGCCGGG (Knudsen et al., 2019 ) 
Probe Cluhar_CYBP14949 T ACT A TTCTCCACCTTCTGTTCCTC-BHQ1 6FAM 
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platessa (European plaice), were purchased from the local fish 

market in Tromsø (Dragøy Fisk AS). Genomic DNA from 

bought fish muscle tissue samples was thereafter extracted us- 
ing the DNeasy Blood & Tissue Kit (Qiagen GmbH, Hilden 

Germany) following the manufacturer’s protocol. A mock 

community of representative fish species was constructed 

from these genomic DNA samples by amplifying ca. 172 bp- 
long region of the 12S rRNA gene using MiFish-U universal 
primer set (Forward: 5 

′ ′ -GTCGGTAAAA CTCGTGCCA GC- 
3 

′ ′ ; Reverse: 5 

′ ′ -CA T AGTGGGGT A TCT AA TCCCAGTTTG- 
3 

′ ′ ; Miya et al. 2015 ). Reactions were run in 20 μl volume 
containing 12.5 μl of TaqMan Environmental Master Mix 

2.0, 1.25 μl of each forward and reverse primers (10 nM con- 
centration each), 8 μl of dH 2 O and 2 μl of DNA template of 
above-listed species. The thermocycler program consisted of 
an initial polymerase activation for 10 min at 95 

◦C, followed 

by 40 cycles of denaturation for 1 min at 95 

◦C, annealing 
for 1 min at 60 

◦C and primer extension for 1 min at 72 

◦C,
followed by a final extension for 10 min at 72 

◦C and lastly 
storage at 4 

◦C. PCR products were purified using the MinE- 
lute PCR Purification Kit (Qiagen GmbH, Hilden Germany) to 

ensure complete removal of primer-dimers. All samples were 
measured for concentration of dsDNA in purified PCR prod- 
ucts using the High Sensitivity dsDNA assay with Qubit quan- 
tification system. PCR products were diluted in 10-fold steps 
to achieve a final concentration of ∼10 

5 copies/ μl. 
In total, six separate (but similar in concentration) mock 

community samples (250 μl each ) were created by combin- 
ing 25 μl of amplicon DNA from all 10 species in equimolar 
concentrations resulting in ca. 10 

4 copies/ μl for each species 
( Supplementary Table S4 ). Mock community samples were 
amplified and sequenced alongside the environmental samples 
following the same workflow and protocol. Only six species 
in the mock community were also caught in trawl surveys 
( Supplementary Table S5 ) hence were selected for downstream 

analysis. 

Library preparation, and NGS sequencing 

In total, 109 samples divided into two libraries, including 
eDNA samples ( n = 84), PCR blanks ( n = 2), positive con- 
trols ( n = 6), extraction blanks ( n = 5), fieldwork water and 

air blank ( n = 9 and 3, respectively), were amplified using 
the same primer set used for mock community samples (see 
above). We used fusion primers (primers containing adaptor 
and index), allowing for a one-step PCR protocol, and fol- 
lowed a thermocycler program and all following steps as de- 
scribed in Guri et al. (2023) . Libraries were sequenced on Gen- 
eStudio S5 sequencer (Thermo Fisher Scientific) using the Ion 

540-sequencing chip with the 200 bp protocol (Thermo Fisher 
Scientific). 
ioinformatics 

equences were automatically demultiplexed and quality fil- 
ered after the sequencing process using Torrent Suite™ soft- 
are inbuilt in the sequencer following their default set- 

ings. The sampled sequence dataset was thereafter filtered 

or chimeric sequences using a uc hime-denov o algorithm in
SEARCH (Rognes et al. 2016 ). The sequences were clus-

ered into Molecular Operational Taxonomic Units (MOTU) 
sing SWARM 2 (Mahé et al. 2014 ) with a distance of d = 3,
nd subsequently the singletons were removed. MOTUs with 

 larger number of reads than 50 of the total library reads were
etained and annotated by performing BLAST search against 
CBI nucleotide (nt) database (23 August 2023) using the 
LASTn algorithm. We used an E-value threshold of 1e −30 ,
aximum target sequences of 50 and a minimal percentage 

dentity of 90. Lastly, we removed all taxa that were not as-
igned to fish (class: Actinopterygii or Chondrichthyes) and 

equences whose read abundance was larger than 10% in neg-
tive controls (cumulatively) compared to the environmental 
amples. 

ayesian model 

e developed a Bayesian joint model to synthesize informa- 
ion from trawl catches, ddPCR, and metabarcoding, to esti- 
ate fish quantities. We used mock community samples (box 

a in Fig. 1 ; only six species used) with known initial DNA
oncentrations to estimate species-specific amplification effi- 
iencies. Knowing the amplification efficiencies enables the 
odel to determine the species’ initial proportion and thus 
 species’ relative abundance in environmental samples of 
etabarcoding data (box 3b in Fig. 1 ; Shelton et al. 2023 ).

imultaneously, the model determines a link between known 

oncentrations and positive droplets observed by the ddPCR 

ystem (box 2a in Fig. 1 ). Using this link-function, the ddPCR
odel estimates the absolute concentration of the reference 

one) species arbitrarily chosen in ddPCR and mock commu- 
ity data in the environmental samples (box 2b in Fig. 1 ). Hav-
ng both the relative abundance of species and the absolute
oncentration of one species in the environmental samples,
he model expands proportion into absolute concentration for 
ll species, or at least all species for which amplification effi-
iency can be estimated. Lastly, the model assumed a species-
pecific correlation between trawl catches and absolute DNA 

oncentration which is a conversion parameter, and primary 
arameter of interest ( θ ) linking the two methods. See Fig. 1
or a simplified schematic representation of the joint Bayesian 

odel. 
In detail, in this model, we defined true fish density as N

units: fish/km 

2 ) and q for the catchability parameter on a

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae097#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae097#supplementary-data
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cale of 0 to 1 (Zhang et al. 2020 ). Subscripts i , j , y , d , b , r , m ,
nd p indicate species, station, year, depth category, biological
eplicate, technical replicate, observation in mock community
liquot samples, and observation in ddPCR standard aliquot
amples, respectively. 

he process (unmeasured biological 
arameters, Fig. 1 ) 

et X be the unobserved fish density detectable by trawling
fish/km 

2 for species i in sample j in year y . Based on equa-
ions 1 and 3 in Mahévas et al. (2011) , we model unobserved
sh density ( X ) as a function of catchability ( q ) and true fish
ensity ( N ): 

X i jy = N i jy q i . (1.1) 

Let C be the unobserved DNA concentration (copies/ μl)
rom the same subscripts as X and let λ be the “integrated
DNA factor”—the conversion factor between the true fish
ensity and unobserved DNA concentration. By analogy to
atchability in the context of trawl data, we model the con-
entration of environmental samples as a function of the true
sh density ( N ) and an integrated eDNA factor ( λ) expressed
s: 

C i jy = N i jy λi . (1.2) 

Note that we assume a simple proportional species-specific
orm for both catchability ( q i ) and the integrated DNA factor
 λi ). These proportionalities are a common and reasonable as-
umption both in fisheries (Beare et al. 2005 , Fraser et al. 2007 ,

ahévas et al. 2011 ) and environmental DNA (Stoeckle et al.
021 , Yates et al. 2022 ). However, different, and more com-
licated functional forms may certainly be reasonable and are
orth further exploration (see more in discussion). 

iological parameters ( Fig. 1 ) 

rawl model compartment (MC 1) 
e model species-specific trawl catch count observations

 Z ijy ) as negative binomial observations that are a function of
nnual mean fish density ( V iy ) for each species ( i ) and year ( y )
cross all the j stations ( j = 1, 2 , …, J y ), known fishing effort
 E jy , area-swept, km 

2 ; Fraser et al. 2007 ), and an overdisper-
ion term ϕ iy : 

Z i jy egativeBinomial 
(
V iy E jy , ϕ iy 

)
(2.1) 

The annual geometric mean fish density ( V ) provides a link
etween the trawl observations ( Z ) and the unobserved fish
ensity ( X ): 

ln 

(
V ij 

) = 

1 

J y 

J y ∑ 

j=1 

ln 

(
X i jy 

)
, (2.2) 

llowing X to be flexible at each station ( j ) but constrained
or each year (across all the stations J y ; see more in discussion
hy this flexibility is beneficial). 

dPCR model compartment (MC 2) 
et S be the DNA concentration (units: copies/ μl) from stan-
ards and C be the latent DNA concentration ( Equation 1.2 ).
he number of positive droplets ( W ) in ddPCR follows a bi-
omial distribution (Guri et al. 2024 , submitted), where the
robability of a droplet being positive ( ω) is a linear function
f log e DNA concentration ( S or C ) with an intercept ( β0 )
nd slope ( β1 ) using clog-log (link-function), given the total
umber of droplets generated ( U ) expressed as: 

W ip ∼ Binomial 
(
ω ip , U ip 

)
(3.1.1)

cloglog 
(
ω ip 

) = β0 i + β1 i ln 

(
S ip 

)
(3.1.2)

W ijydbr Binomial 
(
ω i jy , U ijydbr 

)
(3.1.3)

cloglog 
(
ω i jy 

) = β0 i + β1 i ln 

(
C i jy 

)
(3.1.4)

etabarcoding model compartment (MC 3) 
ased on Shelton et al. (2023) we established that the num-
er of observed reads ( Y ) from metabarcoding is a draw from
 multinomial distribution given the proportions for each
pecies ψ and the total number of reads per sample R : 

Y im 

Multinomial ( ψ im 

, R m 

) (4.1.1)

Y ijydb Multinomial 
(
ψ ijydb , R jydb 

)
(4.1.2)

Equations 4.2.1 and 4.2.2 link proportions ψ for each
pecies i to observations, via a softmax transformation of the
atios of species abundances γ . 

ψ im 

= 

e γim 

∑ I 
i =1 e γim 

(4.2.1)

ψ ijydb = 

e γijydb 

∑ I 
i =1 e 

γijydb 
(4.2.2)

The known initial concentrations of all species i from mock
ommunity samples is converted into additive log ratios ( alr i )
elative to a reference species of choice ( G. morhua in this
tudy, see Shelton et al. 2023 ), using the following equation: 

γim 

= al r i + ( NPCR × αi ) + ηim 

, (4.3.1)

here NPCR is the number of PCR cycles used to amplify
he amplicons, α is the species-specific amplification efficiency
again, expressed as a log-ratio relative to that of a reference
pecies; see Shelton et al. 2023 ), and η is the parameter that
llows for overdispersion in the counts beyond the variability
rovided by the multinomial distribution, capturing the sub-
tantial variance among replicates often observed in metabar-
oding data. 

ηim 

ormal ( 0 , τi ) (4.4.1)

ηijydb ormal ( 0 , τi ) (4.4.2)

Having estimated the species-specific amplification efficien-
ies in Equation 4.3.1 , we can derive the absolute DNA quan-
ities for each species, station, and year ( C ijy ), given the known
oncentration of the reference species ( C i = ref , G. morhua ) es-
imated in Equation 3.2.2 for the same samples. 

γijydb = ln 

(
C i jy 

) − ln 

(
C i = Re f , jy 

) + ( NPCR × αi ) + ηijydb . 

(4.3.2)

Note that because we have information about the abso-
ute concentration of DNA from some species the term alr
n Equation 4.3.1 can be replaced by the explicit ratio (differ-
nce in log-space) of DNA concentrations ( eq. 4.3.2 ). 

oining of the model compartments 

sing Equations 1.1 and 1.2 , we can derive the relationship
etween unobserved fish density and the eDNA concentration
s following: 
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N i jy = 

X i jy 

q i 
= 

C i jy 

λi 

X i jy 

C i jy 
= 

q i 

λi 
. (5.1) 

Without additional information, we can estimate neither 
the catchability ( q ) nor the integrated eDNA factor in the ma- 
rine environment ( λ; these two parameters are unidentifiable).
Therefore, we introduce a new parameter ( θ ) that encapsulates 
both the integrated eDNA factor and catchability, 

θi = 

q i 

λi 
. (5.2) 

For species detected by both trawl and eDNA we treat un- 
observed fish density ( X ) as a function of eDNA concentration 

( C ) and the new parameter ( θ ), which is interpreted as the con- 
version factor between fish density observed by trawl toward 

eDNA concentrations (units: fish/km 

2 /copies/ μl): 

X i jy = C i jy θi . (5.3) 

By extension of Equation 5.2 and 5.3 , where a species is 
observed in only one data stream, indicating no information 

on λ or q , θ inferences are uncertain (see the “Results” sec- 
tion, Fig. 3 b and d). The integrated eDNA factor ( λ) is a pa- 
rameter that encapsulates multiple biological processes such 

as DNA shedding and degradation rate, DNA transport and 

dilution, and DNA isolation and extraction efficiency ( θ , ϕ, ψ ,
and ξ parameters in Shelton et al. 2016 ). 

The joint model ( Supplementary Fig. S2 ) was implemented 

using the Stan language as implemented in R (package: Rstan) 
running four independent MCMC chains using 4000 warmup 

and 6000 sampling iterations ( Table 2 for parameters and 

their priors). The posterior predictions were diagnosed using 
ˆ R statistics (Gelman and Rubin 1992 ) and considered conver- 

gence for ˆ R values less than 1.1 and effective sample size (ESS) 
greater than 1000 for all parameters. 

To test the robustness of the parameters and the ability to 

use eDNA observations to estimate fish density, we conducted 

an out-of-sample analysis using two years of data as a train- 
ing subset (part I) and the remaining year as a test subset (part 
II). In part I, the model estimated the parameters ( θ , ϕ, β0,
β1, α, η, ψ , γ , and τ ) using observations (trawl, ddPCR, and 

metabarcoding) from only two years. Subsequently, for part 
II, we predicted fish density in the third year using the esti- 
mated parameters from part I in the trawl model (MC 1) and 

the eDNA model (MC 2 and 3). We defined delta ( δ) as the dif- 
ference between natural log fish density estimated by eDNA 

models and trawl models thus the log-fold difference for the 
out-of-sample year. Delta values closer to 0 indicate that trawl 
observations were well predicted using the eDNA model (or 
vice v er sa ). This process was iterated three times separately 
with a different year data left out each time. 

We included the seven species in the Bayesian model for 
which we had joint presence between trawl surveys or eDNA 

observations and ddPCR standard or mock community sam- 
ples ( Supplementary Table S5 ). 

Results 

The joint model successfully linked disparate datasets in a 
comprehensive and quantitative framework, yielding both 

meaningful estimates of fish abundances and derived param- 

s  
ters of substantial value. The posterior distribution of model 
arameters resulted in 

ˆ R values < 1.005 indicating that the 
hains converged to a common distribution, ensuring the sta- 
ility of the outcomes. Additionally, the model had weak au-
ocorrelation thus indicating efficient mixing as the effective 
ample sizes (ESS) were larger than ca. 2000. Posterior sum-
aries of parameters together with 

ˆ R and ESS can be found in
upplementary Table S6 . The results regarding trawl catches,
etabarcoding, ddPCR and mock community samples can be 

ound in Supplementary Material S1 . 
Posterior predictive checks consistently indicated substan- 

ial agreement between predicted and observed data across all
hree observation methods: ddPCR, metabarcoding, and trawl 
urveys ( Supplementary Fig. S3 a, b, and c, respectively). This
esult indicated the model’s capacity to accurately capture the 
haracteristics of the observed data and their ability to extrap-
late meaningful predictions forecasting future outcomes and 

eepening the understanding of the connections between these 
hree observation methods. 

The DNA concentration data generated by the eDNA mod- 
ls (ddPCR and metabarcoding) indicated a strong correla- 
ion with the unobserved fish density ( X ) on the trawl data
 Fig. 2 ) given the species-specific conversion factor ( θ ). Such
orrelation indicated the reliability of the parameters ( θ , β0,
1, α, η, and τ ) in accurately representing the intricate rela-

ionships between the underlying processes and the observed 

ata. This empirical evidence reinforced the dependency of the 
pecies-specific conversion factor ( θ ; Supplementary Table S7 ) 
or linking eDNA observation with other conventional meth- 
ds (i.e. trawl catches) as the explanatory variable for underly-
ng biological mechanisms between organisms and their shed 

nd captured DNA. 
The model output of the conversion factor ( θ ) ranged con-

iderably from e 5.95 for C. harengus to e 30 for P. platessa
with θ fish/km 

2 equalling 1 copy/ μl observed in a sample ex-
ract; Table 3 ). The posterior distribution of the conversion
actor differed significantly between the remaining species and 

aried between e 8 and e 14 fish/km 

2 per copies/ μl ( Table 3 ).
e noted that we observed no sequences of P. platessa in

he metabarcoding data ( Supplementary Table S7 ), thus the
values for that species was estimated at the lowest bound-

ry possible by the model. Similarly, due to extremely small
atch counts, the conversion parameter of C. lumpus was hard
or the model to estimate, thus a large standard deviation of
he parameter’s posterior distribution was observed. Rather 
han being reasonable estimates of θ , these two species in-
tead represented lack-of-data scenarios in which insufficient 
nformation–in one case, no sequencing observations, and in 

he other, no trawl observations–results in unreasonable esti- 
ates. We included them specifically to illustrate some of the
itfalls and model prerequisites with respect to observation 

ata. 
The out-of-sample analysis showed that molecular data 

lone reliably predicted trawl catches ( Fig. 3 a and c). Five of
even species demonstrated a strong correlation between the 
redicted and observed fish densities, thus resulting in small
-values ( Fig. 3 a and c). Among these, four species ( C. haren-
us , G. morhua , L. maculatus , and M. villosus ) resulted in δ-
alues of less than, or equal to, one for each predicted year,
nderscoring the robustness of the parameters governing the 
nderlying relationships. Notably, H. platessoides displayed 

reater variability than the other four species, thus suggested 

lightly less robust and reproducible parameters among years.

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae097#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae097#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae097#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae097#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae097#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae097#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae097#supplementary-data
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Table 2. Dat a, st ate processes, parameters, and subscripts emplo y ed in the joint B a y esian model and their prior distributions (N stands for normal 
distribution with mean and standard deviation; � stands for gamma distribution with shape and rate). 

Description Prior 

Data 
Z observed number trawl catch count N/A 

E trawling effort estimated in km 

2 N/A 

W positive droplets observed through ddPCR N/A 

P total number of droplets accepted by ddPCR N/A 

S known DNA concentration in c/ μl N/A 

Y observed number of reads through metabarcoding N/A 

R total number of reads for all I species N/A 

alr additive-log-ratio of initial concentration for all I species relative to the reference species prior to 
sequencing 

N/A 

NPCR number of PCR cycles run N/A 

State processes 
N true (unobserved) fish density in log of fish count/km 

2 Not estimated 
X unobserved estimated trawled fish density in log of fish count/km 

2 N(0,10) 
C estimated eDNA concentration in log of copies/ μl N(0,10) 
V trawled fish density in log of fish count/km 

2 (averaged across stations) N/A 

Parameters 
θ conversion factor between trawled fish and eDNA concentration N(0,10) 
ϕ negative binomial distribution overdispersion parameter �(50,1) 
β0 intercept of the linear relation between positive droplets and DNA concentration N(0,10) 
β1 regression slope of the linear relation between positive droplets and DNA concentration N(0,10) 
α amplification efficiency N(0,0.01) 
η multinomial distribution overdispersion parameter N(0, τ ) 
τ standard deviation parameter for η �(100,1000) 
ψ vector of probabilities for multinomial distribution N/A 

γ vector the log-concentration of all I species relative to the reference species after sequencing N/A 

λ integrated eDNA factor N/A 

q trawl catchability N/A 

Subscripts 
i species ( n = 7) 
j station ( n = 4) 
y year ( n = 3) 
d depth ( n = 3) 
b biological replicate ( n = 2 for year 2019 and 2020, n = 3 for 2021) 
r technical replicate ( n = 3 for ddPCR runs) 
p standard aliquote sample ( n = 160) 
m mock community aliquote sample ( n = 6) 

N/A stands for data or processes that do not require prior distributions. 
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his variation may be attributed to an outlier year, although it
as challenging to definitively ascertain this due to the limited
ataset of n = 3 years in total (and therefore n = 2 years in
raining-data subsets). Increased availability of coupled data
trawl and eDNA) could enhance the robustness of θ and δ

arameter estimation. 
The remaining two species, C. lumpus and P. platessa , of-

ered a useful illustration: when insufficient data were avail-
ble, no meaningful inferences could be made. These species
howed a notable average discrepancy of two orders of mag-
itude between the eDNA model-predicted fish densities and
hose derived from trawl observations ( Fig. 3 b and d). Fur-
hermore, the mean within-year-out variability spanned over
ight orders of magnitude, signifying the data insufficiency in
ither the trawl or the eDNA modules yielded challenges in
stimating parameters. 

iscussion 

he current study has successfully bridged the gap between
DNA and trawl surveys, quantifying their bias alongside
he biological relationships (jointly) between fish abundance
nd DNA concentration in the marine environment. Even
ore significantly, this bridge has been extended to multi-
le species, thereby enhancing the versatility and applicability
f eDNA methods for stock assessments and marine biologi-
al monitoring. Extensive discussion regarding the outputs of
etabarcoding, ddPCR and mock community can be found

n Supplementary Material S2 . 

iological interpretation of the model 

iven the inextricable nature of DNA shedding and degrada-
ion, transport and dilution, and recovery and isolation pro-
esses, we unified them under the comprehensive term “inte-
rated DNA factor–λ” in this study (framework in Shelton et
l. 2016 ). We emphasize that the processes of catchability ( q )
nd the integrated DNA factor ( λ) are not assessed through
his model but have been circumvented using the trawl to
NA conversion parameter ( θ ). Below, we discuss how these
rocesses biologically interplay with the latent parameters es-
imated in this model. 

The strong replicability of θ over years (for species with
vailable data on both survey methods), as indicated by small

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae097#supplementary-data
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Figure 2. The joint Bayesian model workflow translating metabarcoding reads (lower left corner) and ddPCR droplets (lower right corner) into fish density 
(expressed as DNA concentration ∗ conversion factor) and their correlation with the unobserved fish density ( X ; indicated as crosses) and estimated 
mean yearly fish density from trawl observations (V; indicated as filled dots) in the y -axis. C = DNA concentration and θ = conversion factor between 
DNA concentrations to fish density. Metabarcoding and ddPCR models indicated here are model compartments within the joint B a y esian model. The 
plot indicates model fit and reliable parameter estimation for linking trawl and eDNA observations. 
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values of δ in leave-one-out analysis, demonstrates that trawl 
metabarcoding and ddPCR observations yielded measurable 
and reliable results using the established model. Replicable 
results support the assumptions that trawl catchability ( q ) 
and the integrated DNA factor ( λ) have remained constant 
throughout the years of survey period. Our rationale for as- 
suming constant q is rooted in the standardized nature of the 
annual trawl surveys conducted by the IMR (Institute of Ma- 
rine Research) and λ in similar environmental and biological 
factors (Zhang et al. 2020 ) during the sampling period. 

The joint modelling of trawl and eDNA observations al- 
lows us to enhance the spatial resolution of fish densities. Fol- 
owing established research protocols, we model fish density 
s the annual average ( V ), based on four trawling catch count
bservations (assuming homogenous fish densities among sta- 
ions), given the trawling effort. This approach becomes nec- 
ssary because trawls at a specific location lack replication 

hus catches are commonly averaged over larger survey areas
Beare et al. 2005 ). Conversely, when we complement trawl
bservations using eDNA data, we gain the ability to develop
odels at the site level ( X ) and potentially future models at

he depth level, rather than restricting eDNA analysis to the
arge aggregated, fjord level in our study. This flexibility offers
 twofold advantage. First, it enables the ability to incorporate
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Table 3. Species-specific con v ersion parameter ( θ ) estimated by the joint model (10 0 0 0 iterations), with the mean, standard deviation (SD), and 95% 

credibility intervals (CI). 

Log( θ) (fish/km 

2 /copies/ μl) 

Species Estimate SD 95% CI Log( C ) Log( X ) 
Species (mean) (lo w er and upper) (copies/ μl) (fish/km 

2 ) 

Gadus morhua 8 .09 0 .09 8 .06 8 .40 -2 .04 6 .20 
Clupea harengus 5 .95 0 .13 5 .69 6 .22 -1 .49 4 .76 
Mallotus villosus 12 .96 0 .14 12 .67 13 .24 -3 .61 10 .20 
Cyclopterus lumpus 8 .93 1 .13 6 .33 10 .72 -9 .21 0 .40 
Leptoclinus maculatus 14 .56 0 .17 14 .22 14 .89 -9 .08 5 .76 
Hippoglossoides platessoides 12 .28 0 .15 12 .00 12 .57 -2 .58 9 .73 
Pleuronectes platessa 30 .84 3 .90 24 .43 39 .70 -27 .40 3 .89 

For perspective, the mean values of unobserved fish density (X) and eDNA concentration (C) across stations and years are shown. Values are presented in 
natural logarithm scale for easier interpretation hence log(X) = log(C) + log( θ ) (from Equation 5.3 ). 

(a) (b)

(c) (d)

Figure 3. L ea v e-one-y ear-out analy sis indicating the correlation betw een the predicted ( x -axis) and observ ed fish densities ( y -axis; a and b). T he 
species-specific posterior distribution of δ variable ( ± 95% confidence interval of the posterior distribution) indicates the difference between predicted 
and observed fish densities (c and d). Due to the infrequent presence in the observed data species C yclopter us lumpus and Pleuronectes platessa are 
considered outliers and thus presented separately (b and d). 
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eplicates of observation at different unit levels (site, area, sta-
ion, and depth) thus increasing the accuracy of estimates. Sec-
nd, it enables the model to establish the link between eDNA
oncentrations and fish densities without requiring a fixed re-
ationship at every individual station, a factor that has been
he downfall of previous studies attempting to establish this
onnection (Pont et al . 2023 ; Veron et al. 2023 ). This matches
ur understanding of the ecology of eDNA, in which DNA
an be transported among stations (Rourke et al. 2022 ). This
odel advantage is thus particularly important as it mitigates

ssues related to lateral transport and dilution of eDNA (An-
ruszkiewicz et al. 2019 ), corresponding in maintaining the
onsistency of λ. Additionally, factors of eDNA recovery and
solation efficiency must have remained the same as the sam-
ling technique and the laboratory workflow remained un-
hanged among the entire set of samples. Lastly, since all ob-
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servations were conducted in October of different years, we 
posit that the behaviours of the fish population must have re- 
mained largely consistent, as did the relevant abiotic factors,
both responsible for DNA shedding and degradation (Gold- 
berg et al. 2011 , Strickler et al. 2015 , Jo et al. 2019 , Mau- 
visseau et al. 2022 ). These results lead us to conclude that 
the integrated DNA factor ( λ) has likely remained unchanged,
particularly for species with small δ values. 

For species with large δ values, several factors may explain 

variations of the θ parameter among years, which in turn 

could indicate either changes in q or λ between those years of 
observation. In the case of C. lumpus , the metabarcoding data 
suggest relatively small quantities, but trawl surveys observed 

minimal to no catches, suggesting small fish densities, or con- 
sequently pointing to an exceptionally small catchability term.
This catchability term has been previously observed and indi- 
cated that bottom trawl surveys rarely catch C. lumpus , es- 
pecially at depths greater than 60 m (Kennedy et al. 2016 ).
Conversely pelagic trawls have been indicating larger catch 

rates of such species (Eriksen et al. 2014 ). Consequently, an 

unidentifiable catchability term can hinder the parametriza- 
tion of θ . Conversely, flatfish species like H. platessoides and 

P. platessa exhibit strong catchability due to their preference 
for sandy and muddy bottoms. Trawl observations revealed 

relatively large fish densities for these species. However, in the 
case of P. platessa , no reads were observed through metabar- 
coding data, indicating an apparent absence of eDNA in the 
water, thus rendering the λ term ambiguous (hence also θ ). An 

additional cause to this could be our filtering pipeline, as we 
removed amplicons with less than 50 reads, thus considered 

rare species (Jerde et al. 2016 ). Nevertheless, H. platessoides 
exhibited substantial read numbers and relatively large eDNA 

concentrations, but its δ values were substantial, indicating 
variation in the θ parameter among years of observation. This 
presents a more complex problem, and additional observa- 
tions may be necessary to identify the source of this issue. We 
hypothesize that two potential errors could contribute to this 
problem. First, there may be an abnormality in the catchabil- 
ity terms in one of the years, making the outlier year uniden- 
tifiable given only three years of observations. Second, water 
samples instead of sediment samples could introduce biases 
for benthic species in the processes encompassed by the inte- 
grated DNA factor, such as DNA vertical transport and DNA 

recovery. 
The variability among species highlights a general point 

that biological knowledge matters for the interpretation and 

use of eDNA observations, and that the use of eDNA for 
biomass estimation is likely species- and context-specific. Ad- 
ditional applications using eDNA information need to be 
developed to understand the kinds and magnitudes of un- 
certainty associated with using eDNA information in differ- 
ent contexts and with different species. Having a deeper un- 
derstanding of these parameters and estimating their empir- 
ical value can enhance our biological understanding of the 
molecular sampling tools, thus boosting the applicability of 
eDNA to fisheries management and stock assessments (Jo et 
al. 2019 ). However, our work provides a roadmap for moving 
away from simple sample-to-sample correlations among sam- 
pling methods and toward a method that can inform and im- 
prove management and conservation actions. In this study, the 
specific conversion parameters are associated with the catch- 
ability of bottom trawling (the method’s inherent bias), and 

therefore, their applicability cannot be broadly extended to 
ther methods or study areas. However, this statistical frame- 
ork can be adapted to other sampling methods. 

he future of eDNA and the trawl joint model 

o our knowledge, this is the first empirical demonstration 

f species-specific conversion factors between eDNA metabar- 
oding and bottom trawl datasets. Future refinements should 

xpand upon the existing model to include alternative sam- 
ling techniques and further generalize the framework and 

arameters we have presented here. 
One potential area for improvement is the external estima- 

ion of trawl catchability ( q ; Fraser et al. 2007 ), which could
ead to a more robust conversion parameter θ and also in-
orm estimates of the integrated DNA factor ( λ). Making λ
 function of biological or environmental variables could al-
ow for complex relationships between the trawl catchabil- 
ty and λ. However, exploring alternative forms is beyond the
cope of this paper. One aspect of interest is understanding the
ffect sample depth, which could affect spatial- and species- 
pecific DNA recovery and inform apparent differences be- 
ween eDNA and trawl sampling (Jeunen et al. 2019 , Canals
t al. 2021 ). A further point of interest is accounting for the
otential influence of allometric scaling on DNA shedding,
etabolic rate, consumption, and excretion, and how poten- 

ial interactions with environmental factors may affect the 
nterpretation of eDNA survey results (Urban et al. 2023 ).
n understanding of the effect of allometric scaling seems 

ikely to be important for enabling molecular tools to estimate
he size distribution of populations in marine environments 
Yates et al. 2022 ). This could significantly further enhance
he application of eDNA surveys into stock and population 

ssessments. 
The model can also be adapted to accommodate alternative 
onitoring techniques and data inputs. For example, catch- 

elease, acoustic surveys, and trawl biomass data could either 
eplace or be used in conjunction with the trawl model by
dding another model compartment similarly to the presented 

odel compartments (MC1, MC2, and MC3). Incorporating 
hese additional methods would expand the range of available
ata collection techniques and provide further insight into the 
iological processes that underpin the molecular tools used in 

cological assessments. Although this may alter the interpre- 
ation of parameters such as θ or λ, it would contribute to a
ore comprehensive understanding of their underlying biol- 
gy. Our work shows how eDNA can inform and be included
n the class of integrated analyses which are the foundation for
odern stock assessments and fisheries management (Maun- 
er and Punt 2013 ). 
In summary, the future of this model holds significant po-

ential for development and improvement. By meticulously 
ocumenting and mapping all parameters used in the model,
long with the specific biological processes they represent,
e can increase transparency and facilitate comparisons with 

ther studies. This, in turn, enhances the replicability and reli-
bility of surveys, a capability that conventional surveys alone 
annot offer. Ultimately, these advances will contribute to the 
evelopment of molecular sampling tools and their applica- 
ility in fisheries management and stock assessments. 

anagement applications 

rawl surveys provide consistent time-series data essential for 
tock and ecosystem assessments. However, the reliability and 
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ontinuity of these time series can be influenced by various
actors. Area accessibility (i.e. closed areas for conservation or
nergy transition), the necessity to explore new areas as fish
tocks migrate, funding limitations, vessel availability, and ad-
erse weather conditions can all impact the consistency of data
ollection. In response to these challenges, embracing inno-
ative molecular tools and coupling them with conventional
ethods can provide more flexibility and resilience to chang-

ng circumstances while significantly reducing the ecological
mpact and maximizing the efficiency of surveys (Schneider et
l. 2016 , Di Muri et al. 2020 , Veron et al. 2023 ). This strate-
ic fusion can enhance the robustness and adaptability of sur-
ey programs, thereby strengthening our capacity for effective
tock and ecosystem assessments in an ever-changing marine
nvironment. 

onclusions 

his study establishes the framework for species quantifica-
ion and community composition of eDNA metabarcoding.

e stress the need for species-specific conversion parame-
ers to accurately estimate species abundances from eDNA
etabarcoding. Furthermore, accounting for amplification ef-
ciencies is necessary for ensuring the accuracy and replicabil-
ty of metabarcoding data. These insights hold considerable
mplications for the application of eDNA in the management
nd conservation of marine ecosystems. 
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