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Abstract—This paper aims to contribute to understanding how
physically large and complex systems of systems (SoS) can be
digitally modeled. Ensuring the modeled SoS accurately repre-
sents real-world systems is challenging. Due to the significant
amount of interaction these models have with the actors using
them throughout the design lifecycle, their reliability can often be
unpredictable and typically degrade unless constant verification
and quality assurance protocols are followed. This paper aims
to shed light on ways to address this concern, particularly by
gleaming into how information systems (IS) can be made robust
to aid in making data models less vulnerable to change.

Index Terms—robustness, information model, information sys-
tem, data persistence, provenance

I. IMPORTANCE OF DIGITAL INFORMATION ROBUSTNESS

Systems of Systems (SoS) are defined by INCOSE as a
‘collection of components organized to accomplish a specific
function or set of functions’. To be considered an SoS,
individual components need to be able to maintain managerial
and operational independence from each other [1]. In the case
of physically large SoS, these components and subsystems
are also typically highly connected and coupled. Therefore,
modeling a physically large SoS is quite challenging [2] given
the level of scale and complexity expected in retaining the
independence but also the interconnectedness of the various
subsystems.

For engineer-to-order (ETO) industries that can benefit from
virtual modeling for greater design visibility, having the means
to model physically large and complex SoS digitally is be-
coming a rising challenge. More specifically, the data model1

of such systems needs to be critically considered. Unlike
model-based engineering, an SoS model does not represent
the system’s behavior but rather the knowledge surrounding
such a system. A data model is a shared information resource
of a system that serves as a reliable basis or Single Source
of Truth (SSoT) of knowledge throughout its life cycle. The

1In line with the data, information, knowledge and wisdom hierarchy
(DIKW), knowledge discovery and data mining (KDD) and data-driven
decision making (DDD) concepts.

concept is similar to the understanding of Building Information
Models (BIM) in construction and Digital Mock-ups (DMUs)
in aerospace, among others. In the maritime industry, specifi-
cally ship design and construction which will be the use case
focused in this paper, this data model is closely tied to the asset
information model (AIM) of the vessel developed in design
and construction.

While the importance of a data model is related to the
operational benefits that a consolidated SSoT solution will
provide for information retrieval, there are other benefits of
having an accurate data model. An accurate model can help
transform a complex system’s design methodology, especially
in enabling better visibility of design risks in reference to
specifications or design goals. Most importantly, accurate
models reduce inaccuracies, information entropy, and noise
related to knowledge about the system.

This paper focuses on ensuring that robust information
systems (IS) are in place to maintain the accuracy of a system’s
data model. An IS collects, processes, stores, analyzes, and
disseminates information within an organization for a specific
purpose [3]. A robust IS is one that can accommodate and
tackle change, whether imposed over time or as alterations to
the system’s understanding by various actors using the system.
Maintaining a robust IS is crucial to ensure that the data model
of complex systems remains effective in representing real-
world equivalents.

To illustrate the critical elements that need to be considered
in order to develop a robust IS for a large-scale and complex
SoS, a case study is developed in this paper specifically for the
change management of a subsystem in a physically large and
complex SoS (i.e., a vessel). Additionally, the complications
that arise in terms of delay and error propagation from the
lack of robustness are also described.

II. VULNERABLE INFORMATION SYSTEMS

Vulnerable information systems that are sensitive to inter-
actions with the environment and human actors are prone to
noisy data and risk inaccuracies in data modeling. In this



section, we will explore the meaning of a robust and less
vulnerable IS and the different types of change that may affect
the data within an IS.

A. Robustness

The ability of a system to function correctly despite changes
in its inputs or environment is called robustness [4]. For an
enterprise IS, robustness is well-understood to be connected
with the interfacing and interaction of the data model with the
agents and actors using and transforming such data model in
the IS.

An actor-focused IS is based on the hypothesis that most
concurrent communication systems today that share infor-
mation regarding an asset can be modeled, understood, and
reasoned in correlation to the actors using such models. The
basis of such a hypothesis is the premise that in order to ensure
the scalability and robustness of information systems, the
consideration of ‘actors as universal primitives’ for concurrent
digital computation is necessary. Hence, tied with the under-
standing of robustness, assessing the IS’ scalability and the
level of concurrent data usage are critical [5]. With the actor-
focused definition of robustness in mind, general properties of
what is desirable for a robust IS need to be considered [5].
Notable properties are defined below:

1) Persistence - All information is gathered and organized
in a systematic manner without losing the original data.

2) Concurrency - Work is processed interactively and
developed simultaneously over time.

3) Pluralism - Information can vary greatly in type, with
different sources often presenting overlapping and some-
times conflicting details.

4) Provenance - The origin or source of information is
closely monitored and documented for accuracy and
accountability, such that there is information provenance
or a documented information trail.

The well-accepted understanding of an IS comprises six
main elements covering hardware referring to the machinery
and equipment; software referring to computer programs and
the manuals that support them; procedures referring to the
policies that govern the IS’ operation; people referring to the
actors using the data, the networks enabling the bridge be-
tween hardware and people, and finally the data or associated
databases [6]. Additionally, an IS has historically been viewed
as having different use cases that support the users of such
systems in various ways. For instance, workers may focus
on Transaction Processing IS, middle managers may need
Management IS, senior managers may need Decision Support
IS, and executives may require Operational and Strategic IS.
Hence, overall, people are the most sensitive component of
the system. Their usage, as well as their needs, inform and
determine the system’s success or failure. Therefore, it is
essential to evaluate the vulnerabilities of the IS based on the
interactions made by users with these systems.

Given the components and properties discussed in this
section, a robust IS in this paper is considered to provide
a means for processing information and carefully recording

its provenance. That is, an IS supports the reduction in
information loss, which may disrupt a development workflow.

B. Types of Change for Data Models

A data model can encounter different types of change. These
can range from well-known or expected changes, as in the
case of version control changes to the data model, or they can
involve uncertain and unexpected disruptions. Responding to
the latter is a critical feature of resiliency and is outside the
scope of this paper. For this paper, the following types of
change are considered:

1) Version Change - Change in the entire data modeling
compelling a full version update. For example, when
designing a system that involves variableA, the user
changes the number assigned to such variable.

2) Model Change - Changes in the boundaries of the
model, such as changes in the types of variables or
attributes used to describe the model. For example, a
user determines that variableA is no longer needed and
removes this variable.

3) Goal Change - Changes in the model’s reference,
especially for verification and checking purposes. For
example, a user determines that the model no longer
meets certain thresholds, which changes the model’s
sensitivity to its goals. These changes can also include
changes in the context of the system.

4) Modality Change - Changes in the means by which
users can interface with the model, including the types
of software and the modalities available to interact with
the model. This may be related to software changes
affecting how users format or interact with the model.
For example, due to a switch from hard-copy design
processes to online processes, users may be required
to redefine the model to match the new digital format
requirements.

III. MECHANISMS TO TRACK AND ENABLE INFORMATION
CHANGE

In current practice, various industries have their own pro-
cedures to manage change within their own enterprise IS.
To understand how these can be made more robust, we
explore current practices for change management as well as
various conceptual mechanisms and practical applications in
this section.

A. Current Practice

In current practice, various IS and data models have vari-
able degrees of receptiveness to change, depending on the
industry. Ensuring that information or an SSoT model is built
for changes is quite challenging and requires industry-wide
acceptance. An example of an industry-wide protocol is GIT
in software development, which was created to manage code
revisions. GIT is a distributed version control system that
tracks changes to computer files and enables collaborative
and non-linear programming workflows. Outside software, this
process is called Engineering Change Management (ECM),



Fig. 1. Version Diagrams for Fully, Partial, and Confluent Persistence

which is an operational-focused and often manual approach
to managing changes. Currently, these ECM methods are
highly cumbersome and time-consuming, but they are the only
alternative for large ETO companies. Without these practices
and/or funnels, there is no way to harmonize design changes
in some companies; instead, the proliferation of various data
models that are distributed among actors involved in the design
development process is likely.

To determine how to address this problem from the data
modeling perspective, we gleam into the topic of data struc-
tures. In computing, a persistent data structure allows holding
multiple versions of a data structure at any given time, enabling
users to view, access, or even modify previous versions and
faciliating historical auditing. Persistence is categorized by
permitted operations on past versions [7], as described in
the following section. Figure 1 illustrates these differences,
where the diamonds represent versions of a document. Colored
diamonds represent read-only or immutable versions, and
unfilled diamonds represent read-write versions.

B. Types of Persistence

1) Full Persistence: Fully persistent data structures enable
access or queries and modification of all historical versions
without modification restrictions. This is displayed in Figure
1a, where a new version branch is created when historical
versions are revisited and modified.

2) Partial Persistence: Partially persistent data structures
allow access or query of all historical versions but not mod-
ification. Only the newest version can be modified, making
historical versions immutable, as displayed in Figure 1b.

3) Confluent Persistence: Confluent data structures enable
modifying historical versions while merging them with exist-
ing ones to create a new version, as shown in Figure 1c. An
example of a fully confluent persistent structure is that of GIT,
which supports the ‘merging’ of version branches (forked or

cloned) back into the source code. In this case, users need to
‘commit’ before merging and providing a label for the changes
committed to the source code. Due to the number of versions
being developed in parallel, tools such as GitKraken that allow
a visual graphics user interface (GUI) to understand which
parties are committing to the root are helpful.

C. Conceptual Applications

In software engineering, specific advanced algorithms and
methods are applied to achieve such persistence [8]. This
section discusses these further to understand how persistence
can be achieved conceptually.

1) Fat Node: A data structure can be made more persistent
by incorporating a modification history of every node of
information. In this context, a node is a basic data structure
unit that may be linked to other nodes. Thus, this method
is often given the moniker ‘Fat Node’ as every new node
contains imprints of its value at any previous time. For a fully
persistent structure, each node would include a version tree
and not simply a version instance.

Unfortunately, using this method to access imprints in time
is highly cumbersome. Accessing the desired version of a node
would take an enormous amount of time to search, depending
on the number of modifications made. In terms of partially
persistent models, this is applied by using a binary search that
can help to access a version given a timestamp that the user
must be aware of.

2) Path Copying: This alternative method addresses the
problem by ‘copying’ the node before changing it. After that,
any changes to the old node must be cascaded to the new node.
The root is, therefore, the node that no other version points to,
but the cascading changes will always reach the root to some
extent.

Accessing time is not as intensive in this structure; however,
space is easily consumed, given that a copy of the entire
structure is duplicated for every new change.

D. Implementation

The previous two methods provide persistence at a data
level, which can typically be implemented in terms of user-
developed data structures, whether in lists or arrays. In coding
these structures, persistent implementation is often done in
languages such as Clojure, Haskell, and JavaScript, and more
explicit applications are done for Python or other languages
with specific immutable data structures.

However, in terms of unstructured data in databases, as in
enterprise data context, persistence may be enabled manually
following the same logic described in the previous section. For
example, a file can be made read-write or read-only to ensure
it is partially persistent. The simple undo/redo functionalities
are also an example of persistence in text editing.

In terms of implementation, the limiting constraint is related
to storage. Storage mechanisms are, therefore, critical to
facilitating provenance and persistence. In most applications,
various file states can be stored within a computer’s memory,
typically in Random Access Memory (RAM). However, this



type of memory is often volatile, despite its speed advantages,
and can be affected in instances of power outages or similar.
On the other hand, disk-based storage of the use of persistent
storage systems such as hard drives provides a less volatile
means to store data at a state that cannot be overridden unless
done manually. These two are further described below.

Hence, in terms of implementation, persistence can be
applied through manual and automated means but constrained
by storage. For this reason, computer systems design still
relies on defining memory hierarchies such that storage device
preferences are arranged based on access speed and size. This
enables more frequently accessed data to be available readily
compared to data that is used less often. Additionally, these
considerations affect overall data dependability and security
(i.e., data integrity) such that data is still available despite
unforeseen and external circumstances.

However, it is important to note that capturing as much data
to have a complete view and provenance of the information
generated is not solely dependent on storage but also on the un-
derstanding of the data ecosystem, including the platform and
tools used for data management. These components include
hardware and operating systems. Additionally, persistence is
just one aspect of database design, and designers should also
consider the performance of the database.

These other considerations make scalability a huge chal-
lenge, especially when it comes to implementing persistence
and provenance into tangible storage and memory. For in-
stance, a single-ship program may require up to 10 gigabytes
of data as of the early 2000s [9]. According to Wang (2015),
to get any fine-grain data provenance will require space that
is several times larger than the actual data being processed. In
the case of enabling this, there is a large number of collection
overhead that could be expected. Hence, full persistence and
complete provenance often come at a steep cost. Handling
provenance and persistence at scale is a rising field that now
merits the use of the term veracity specifically for the prove-
nance of Big Data [10]. New storage mechanisms are also
being considered, such as cloud storage, to enable provenance
in today’s cloud-centric environment [11]. In the context of a
distributed cloud environment where there is high-velocity and
high-volume data, centralizing the metadata that captures this
provenance and persistence is still a relevant obstacle today
[10].

IV. CASE STUDY

In enterprise applications, varying file formats and multiple
actors interacting with the IS make the efficient application of
persistence not often easy to implement. For most industries,
such as manufacturing, having a streamlined process and
development pipeline can circumvent change management
challenges. Unfortunately, designs are often bespoke for ETO
industries and may vary from project to project - making
change management an integral but largely reactive process.
To describe this case, the maritime industry, specifically ship
design and shipbuilding as a complex ETO industry, is used.

A. Ship Design ECM

Early-stage ship concept design is fast-paced and iterative,
requiring quick change management and constant validation.
Multiple teams and departments often concurrently manage
several steps, and various versions of a concept (whether the
entire ship or subsystems in the ship) are matured in parallel
to best explore the design space.

For this study, we focus on early systems design in the
concept stage, primarily on the selection and specification
of a propulsion system within the ship. There are various
components in a ship, covering ship propulsion, electrical
systems, and mission equipment, among others. To some ex-
tent, these systems can be highly independent of one another,
especially in the case when modular shipbuilding practices
are applied, and redundancies are built such that these major
subsystems can operate independently. These steps, for the
design and management of the design of a single subsystem
(i.e., propulsion system) in the SoS, are oversimplified and
inspired by the work of Gale (2003) [12]:

1) Validate the top-level ship performance requirements
and develop second-tier requirements

2) Establish preliminary system dimensions and configura-
tion constraints

3) Select major ship propulsion components and equipment
4) Quantify ship performance
5) Evaluate costs
6) For second-tier performance requirements, derive perfor-

mance thresholds from the higher-level ship performance
requirements

7) Develop and evaluate alternative system configurations
8) Select system configuration from alternatives
9) Complete engineering work on the selected system, and

finally
10) Develop propulsion system specifications and drawings

Figure 2 shows the theoretical versioning sequence of
these steps applied and the potential vessel design iterations
developed in the process. In this figure, the change process
is illustrated where the numbered diamonds describe the edits
made to accommodate the steps as numerically ordered above.
In contrast, the filled diamonds are the versions developed
after the modifications are complete. In this illustration, the
data model is simplified to be an SSoT database with unstruc-
tured data covering the shareable and consolidated data from
supporting information and modeling work. The horizontal
axis represents the design maturity, although not representative
of any company’s engineering timeline. The different lanes
visualize the actors or departments working on these versions,
including the engineering team focused on supporting informa-
tion, the integration team working on the data model, and the
outfitting and modeling team working on the 3D model of the
vessel. The various interactions between these departments are
illustrated via the exchange of data from one lane to another.
For example, version A of the SSoT database or data model
is developed after data from various preliminary analyses and
3D modeling are integrated together. A new version, version



Fig. 2. Ideal Theoretical Version Changes for an ECM

B, is then developed after major components are selected by
the engineering team and then verified by the outfitting and
modeling team. These departments, therefore, have to manage
multiple revisions and ensure that data from different analyses,
models, and calculations are incorporated into only the latest
version of the data model.

These departments are simplified for this visualization;
however, a company can have various overlaps between such
teams depending on their organizational structure. The demon-
stration also assumes that changes are performed linearly,
not concurrently; that is, a version in a different format is
strictly not modified by other parties until a version update
is complete. Hence, challenges that arise from parties and
personnel interacting with the information over time are not
completely covered in this case.

Unfortunately, this change process is ideal and does not
display the possible complications arising from errors, delays,
and actors not following proper protocols. Figures 3 and 4
illustrate these dilemmas.

Figure 3 shows an example scenario of intermediary ver-
sions developed when errors are made into an internally
issued design version. As design revisions based on error
correction are common in engineering processes, this type of
ECM disruption is to be expected. It is, therefore, possible
to have multiple loops of intermediary versions, which may
be challenging to track and require more time than expected,
placing pressure on executing the subsequent task.

On the other hand, Figure 4 shows the effects of delay
on the process. For example, in the event that task 3 in
3D modeling is delayed in verifying the systems fitment in
the model, and other departments work with the outdated
version (such as version a), then an erroneous version of the
design with mismatched degrees of maturity can be developed.

Fig. 3. Intermediary versions due to errors

Unfortunately, this erroneous version will likely be carried
forward as the design matures. These two cases are examples
of the potential propagation of error and the sensitivity to
delays of current data models due to the manual and highly
process-oriented ECM methods today.

B. Persistence Applied to this Case

As we are only drawing inspiration from computational
concepts, it is essential to keep in mind that a persistent data
model is realizable when we have a data structure encoded in
machine-readable language or format. For example, to arrive
at confluent persistence, modifications should be mergeable,
which is achievable when changes are made in a more or



Fig. 4. Errors due to delays

less similar format. Unfortunately, most data repositories are
highly unstructured, such as file systems that will include
a combination of text and visual elements. Hence, for the
application of persistence in this case, it is assumed that such
a structure with consolidated ship data exists and serves as the
‘root’ file from which version trees can be forked.

Provided that we are using a persistence data structure
described, the methods of path copying and fat node may be
conceptually applicable. In order to avoid relying on periodic
data saving or snapshotting, we also rely on disk-based storage
when implementing the solution.

As previously described in terms of the elements of an IS,
having hardware, procedures, and motivated persons to imple-
ment such robust IS and ECM processes is paramount. For
instance, similar to GIT practices, requiring a commit before
merging with the root is imperative, as discussed; otherwise,
a merge should be rejected at risk of creating erroneous edits.
Figure 5 illustrates what this change management process
would look like if all these components were to come together:

• IS that has persistent data model: In this case, a fat
node application is considered, where old versions are
stored whenever a new version is created. This type of
persistence is partial but provides a way to view older
versions and work only on the latest version. Hence, this
creates a ‘root’ file or source, which is always going to
have the latest version, removing any disruptions that may
be caused by persons manually picking the wrong version
to work on. Any delays will be transparent as changes
will be instantly reflected in the same root. Additionally,
this guarantees that designers and even clients are always
viewing the latest design version.

• Hardware to enable better storage for such persis-
tence: Having a fat node would require a significant
amount of storage to ensure past versions are never lost.

Hence, hardware with enough disk space and reliable
database infrastructure is considered.

• IS with procedures in place to enforce such collab-
orative change management: In this case, confluence
can be achieved manually if users follow strict steps
and rules in implementing changes back to the root.
Such changes should be applied with verifiable reasons
and after thorough quality assurance of engineering or
modeling work.

Fig. 5. Partial Persistence applied to this case

V. ROBUST INFORMATION SYSTEMS FOR COMPLEX SOS

The example provided shows the dilemma of version and
change management for a single system in a vessel. The
partially persistent fat node for version A in Figure 5 is only
one part of a more extensive physical and functional vessel
system, as illustrated in Figure 6. At the same time, within the
enterprise context, the more extensive vessel system it is part
of is among many other projects that have their own individual
ship data models. Where physically large and complex SoS is
involved, the challenges related to version delays and errors
from subsystem design can propagate rapidly and compromise
the understanding of the SoS as a whole.

As discussed regarding actor-focused robustness, the robust
IS characteristics described by Hewitt (2010) will need to
be carefully assessed for concerns in scalability, especially
in handling technical limits such as storage. Robustness can
be more challenging with more dynamic SoS, where there is
greater concurrency and data pluralism [5].

VI. CONCLUSION AND NEXT STEPS

This paper reviewed the concept of robustness in consid-
ering the IS of large-scale and complex SoS, especially in
ensuring that SoS’ data model remains accurate amid change.

While the conceptual understanding of a robust IS at a
focused subsystem level is explored in the case study, the
implementation and development of such IS is still underway.



Fig. 6. Information Exchange within SoS

For the case described herein, the Smart European Shipbuild-
ing (SEUS) Project [13] is currently tackling the development
of such a smart platform that takes change management
into consideration. The project’s goal is for these tools to
ultimately be used within yards and design firms, facilitating
more reliable and collaborative design practices.

The authors hope that awareness about more robust IS
to enable digital change management can help sectors that
work with physically large and complex SoS arrive at a more
efficient means to retain the accuracy of information models
related to these systems.
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