TOS: A Kernel of a Distributed Systems Management System

Kare J. Lauvset*

Dag Johansen*

Keith Marzullof

March 2, 2000

Abstract

Distributed systems are becoming harder to man-
age, in part because the uses we put to distributed
systems are rapidly changing. Hence, the software
used to manage a distributed system needs to be
flexible enough to accommodate these new uses. It
also has to be secure enough to not allow unautho-
rized changes to be made to the system.

We present a library and o kernel that supports
the management of distributed systems. This ker-
nel, called the TACOMA Operating System (TOS),
is an outgrowth of our research into mobile agent
systems and applications. We have used TOS to
implement several novel distributed management
policies, one of which is discussed in detail in this
paper. We conclude the paper with a discussion on
the applicability of mobile agents to self-managing
distributed applications.

1 Introduction

Distributed systems are ubiquitous. The opera-
tions of virtually all organizations ranging from
small companies to international corporations de-
pend on networks of computers. Distributed com-
puter systems are rapidly becoming a critical cor-
porate resource.

Most of these organizations are facing the prob-
lem of managing their distributed systems. It is
rarely possible to set up a collection of machines
with a collection of software and leave this set un-
changed for a long period of time. For example,

*Department of Computer Science, University of Tromsg,
Tromsp, Norway. This work was supported by NSF (Nor-
way) grant No. 112578/431 (DITS program).

tDepartment of Computer Science and Engineering, Uni-
versity of California San Diego, La Jolla 92093-0114, Cali-
fornia, USA. In doing this work, Marzullo was supported by
NSF (Norway) grant No. 112578/431 (DITS program).

even if a company attempts to continue to use one
version of a document system, employees may re-
ceive external documents composed using a later
version of the same document system. To be able to
read these external documents, a company may find
itself forced to move forward to the newer version.
Another difficulty arises from heterogeneity. High-
performance computers are becoming ever more in-
expensive, and the cost of increasing the size of a
distributed system is low. Such increases, however,
exact a cost in maintenance, since newer machines
run software that often cannot be run on older ma-
chines. A third difficulty arises with software up-
grades. For example, distributed services such as
authentication servers, clock synchronization, and
web cache servers can be hard to upgrade without
first bringing the entire distributed system down.
The difficulty of distributed systems manage-
ment (which we abbreviate as DiSM) have led to a
number of projects (for example [2, 8]) and prod-
ucts (for example Zero Administration for Win-
dows by Microsoft, Zero Effort Networks by Nov-
ell, NetWizard Plus by Attachmate and Patrol by
BMC Software). Most have concentrated on one
key problem: the distribution, installation, and up-
grading of software in a heterogeneous distributed
system. This problem, while key, is not the only
hard problem that needs addressing. For example:

e Some programs, like many network services,
are distributed. Changing a distributed pro-
gram can require synchronized shutdown, in-
stallation, and start-up. Given the criticality
of many distributed system, the outage time
during this change over should be made as
small as possible.

e The legal ramifications of having pirated code
are severe and the laws are becoming more
stringently enforced. A system administrator

may find it necessary for legal reasons to peri-
odically sweep the system for unlicensed soft-
ware.

e E-commerce applications are growing in use.
The load being generated by e-commerce
clients is similarly growing and attacks tar-
geted to e-commerce sites are becoming fre-
quent. Specialized software to aid in the di-
agnosis and repair of the system (for example,
determining emerging system resource bottle-
necks or detecting novel intrusion attempts
both from within or outside of the company)
may need to be installed, upgraded, or re-
moved.

The above list is, of course, not exhaustive. In-
deed, because the uses of distributed systems are
rapidly changing, it is hard to identify what the
key DiSM problems will be a few years from now.
The DiSM system should be designed to be flexible
enough to accommodate existing and future man-
agement policies.

Rather than developing a suite of new DiSM ser-
vices as an end in itself, we have built a library,
called the TACOMA Operating System, or TOS,
that allows for the rapid deployment of new and
flexible DiSM services and the secure modification
of existing services. We have designed the runtime
support of TOS to be small enough to fit on any
programmable internet device, and we have devel-
oped several DiSM policies using the TOS library.

This paper proceeds as follows. In Section 2 we
describe requirements of a DiSM system. Section 3
describes the TOS library and runtime, and Sec-
tion 4 illustrates the use of our system by giving a
detailed example of a DiSM policy we have imple-
mented. In Section 5 we discuss our system in the
context of distributed systems management before
we present the conclusions in Section 6.

2 Requirements of a DiSM
System

One normally thinks of DiSM system requirements
in terms of the function that it provides: installing
software, monitoring load, and so on. Such a func-
tion is easily implemented using TOS. We believe,
however, that there are three non-functional re-
quirements that DiSM systems should meet:

1. There is a bootstrapping problem with deploy-
ing a DiSM system: the DiSM system can-
not initially install itself. The initial core of
the system should therefore be small, portable
across different platforms, and easily installed
using traditional techniques.

2. The DiSM system should not open new se-
curity holes. If care is not taken, then re-
mote software installation can be used to in-
stall malevolent software as well as it can in-
stall required software.

3. The DiSM system should be able to manage
itself. It should accommodate novel and com-
plex management policies, and accommodate
specific requirements and restrictions of differ-
ent system administrators. Operationally, it
should be able to add and remove its own func-
tional modules.

There are several different software systems that
meet some of these requirements. For example,
the Java Virtual Machine is a good platform upon
which to address the first requirement. A mo-
bile agent system can satisfy the third requirement.
Many DiSM problems can be solved efficiently with
specialized protocols that implement the required
synchronization among the machines being man-
aged. Encoding the protocol as a mobile agent
makes the deployment of these specialized proto-
cols easy [23]. Thus, it is not surprising that there
has been some effort into applying mobile agents to
network management [5]. The second requirement,
however, has not yet been satisfactorily solved by
mobile agent systems.

The original impetus for TOS was to make a
mobile agent system that is suitable for real mo-
bile agent applications including DiSM. We have
gone through several experimental cycles in the de-
sign and application of TOS. We have found that
the above requirements have changed the way we
think of mobile agent systems. The first version
(called TNT) was a port of the original TACOMA
to Windows NT and the Win32 API. In the second
version (also called TNT) we separated the meet
primitive into several primitives. One reason for
doing so was to separate the mechanism for mobil-
ity from inter-agent communication. Further, the
format of a marshalled briefcase was changed and
was binary compatible with the TACOMA version

for UNIX. The third major version, called TOS,
was implemented using Java and JVM and is the
direct predecessor of the current version. The most
important changes that were introduced with TOS
were related to the structure of both mobile agents
and the programming model. For example, in the
current version, we have introduced the term car-
rier instead of mobile agents to clarify the intended
usage. In addition, the core API is collected into
a separate library. Currently, the TOS library con-
sists of 9 Java classes about 12Kb of Java byte code.

One observation we have made is that distributed
systems management does not need all of the func-
tions that are associated with a full-blown mo-
bile agent system. Hence, TOS supplies only the
minimal amount of function needed to support its
extension to the functions that are actually re-
quired. In this sense, we have borrowed from the
work on extensibility in operating system kernels
(e.g., [18, 4, 6, 21]) by including in TOS only the
mechanisms needed to securely implement different
mobility functions. Doing so helps TOS meet the
third requirement listed above.

For example, we have found it rare for a DiSM
policy to require an itinerant agent—that is, an
agent that can move from machine to machine fol-
lowing a trajectory it determines on the fly [10].
Many recent systems that allow for self-managed
distributed systems (e.g. Elastic Servers [8], Ex-
tensible Servers [10] and Active Servers [1]) sup-
ply what would be considered “single-hop” mobil-
ity. And, reasoning about the effects of an itiner-
ant agent can be hard. Hence, TOS mobile agents
are not by default itinerant. However, if a system
administrator wishes to implement a DiSM policy
using an itinerant agent, then the required support
can be included with TOS.

Another observation we have made is that DiSM
policies are often most efficiently implemented
when the mobile agent primitives are used spar-
ingly. A simple example is software download: a
mobile agent is a convenient mechanism for send-
ing a rule to a machine that determines whether
or not a software package should be downloaded,
but ftp or scp/ssh are good mechanisms for copying
files. In general, a DiSM mobile agent is best split
into one part that implements the required synchro-
nization and local testing, and another part that
consists of transfer, installation, and other config-
uration management functions. We call the second

part the carrier of the DiSM policy. Carriers are
written in Java and reference the TOS library. The
remaining part of a DiSM policy can be written in
any language, and can often be supplied by existing
software tools on the target machine.

3 TOS

In this section we describe the TOS architecture.
We first define some terminology, and then describe
the major components of a TOS kernel. We con-
clude by describing the TOS library and give an
example of a simple TOS enabled application.

3.1 Terminology

A carrier is a specific kind of mobile agent: it is
written in Java and derives from the Carrier class
of the TOS library. Carriers are used to carry pro-
grams (written in any language) and data to remote
machines. Carriers also implement the logic and
the synchronization needed to implement a DiSM
policy. They are much like the Xerox worm [20]
which was separated into two functional units: a
control structure that determined which machine
to target and a payload that it started at the new
machine.

A TOS kernel is a running Java virtual machine
that accepts carriers. It provides the abstraction
that one associates with places [24], firewalls [13]
and landing pads [11]. It differs from places and
landing pads in that it is extensible. Specifically, a
TOS kernel can include extensions, each of which
provides additional functions available to carriers
(and to other extensions) executing at that kernel.

A TOS kernel need not be dynamically extensi-
ble, but a TOS kernel can have an extension that
allows other extensions to be downloaded and re-
moved. Such an extension would provide the de-
sired authentication and authorization required by
the system administration policies. For example,
one can implement an extension that downloads
other extensions that originate from a system ad-
ministrator and that are digitally signed by the cor-
porate security officer.

Readers familiar with the original TACOMA [14]
systems should be aware that the structure of TOS
is different. In designing TOS, we have concen-
trated on distilling the minimal set of functions

Shell < Messenger
Carrier
begin) { < Executor
y < Mobility
= < Download
Firewall
Java Virtual Machine

— >—inbox S thread [] extension

Figure 1: TOS kernel structure.

needed for a mobile agent system. In doing so,
we have separated the mobility aspects of a mobile
agent (which is the carrier) from the functional as-
pects. The TACOMA briefcase abstraction has
also been separated into three different TOS ab-
stractions. This is mainly because TOS has been
designed and implemented using an object-oriented
approach. The CODE folder, which is the main
thread of control of a TACOMA mobile agent, has
become the Java code that the carrier executes.
The HOST folder, which specifies the itinerary of the
TACOMA mobile agent, has become the TOS Path
class. A Path differs from the HOST folder in that
TOS assigns no meaning to its contents. Instead,
it is interpreted by an extension. The extension
can exert control, such as not allowing a carrier to
move to a TOS kernel outside of some administra-
tive domain. The remaining folders in a TACOMA
briefcase are instead held by an instance of the TOS
Data class.

3.2 TOS Architecture

Like a carrier, a TOS kernel is also written as a Java
program that references the TOS library. Figure 1
is a schematic illustration of a TOS kernel. We
explain the use of the various components of this
illustration below.

3.2.1 Extensions and the Firewall

Extensions are threaded objects that are included
with a TOS kernel to extend what a carrier can do.
For example, Figure 1 shows a kernel with four ex-
tensions: one that implements a service that sends
messages to other instances of itself at remote TOS
kernels, one that executes programs outside the ker-
nel, one that opens connections to a well-known lo-
cation and downloads files, and one that accepts se-
rialized versions of carriers and starts running them
in the kernel.

TOS leverages off the security mechanisms pro-
vided by the Java Virtual Machine (JVM). A JVM
can have a security manager that is invoked when-
ever a Java thread attempts to execute a potentially
dangerous operation, such as reading or writing a
local file or creating a new thread (the former can
destroy user data, and the latter can lead to a de-
nial of service attack in the JVM). TOS provides a
security manager called the firewall that prohibits
carriers from executing any potentially dangerous
operation. For carriers, the firewall is equivalent to
the default JVM security manager, which excludes
all dangerous operations. The firewall, however,
allows extensions to execute any operation. The
distinction between carriers and extensions is made
using Java thread groups: the default group is used
for extensions and another group is used for carri-
ers. If required, more fine-grained restriction on
executing dangerous operations can be easily done
by, for example, extending the firewall to use more
thread groups to represent different classes of ser-
vices.

There is a limit, however, in how much can be
gained by leveraging off the JVM security mecha-
nisms. [3, 15] For example, a thread can theoreti-
cally allocate any amount of free memory. Doing so
might lead to a denial of service for another thread
in the same JVM. And, a thread cannot be forced
to terminate without its cooperation, so once a re-
source is allocated it cannot, in the general case,
be preempted. In general, denial of service attacks
can not be prevented in Java/JVM. By using Java,
TOS inherits these weaknesses. Such attacks, of
course, only affect the behavior of carriers and not
the programs that they carry.

The security of a TOS kernel depends upon the
extensions that it runs. One could easily design
an extension that misused its abilities to execute

dangerous operations. Hence, we imagine that the
most secure way to use TOS is to have a few generic
extensions rather than many specialized extensions.
If this is done, then each extension can be carefully
designed and checked for possible security weak-
nesses. And, with fewer extensions, it is easier to
examine them for ways that one might interfere
with another.
Examples of extensions we have built include:

Atomic commit. The Commit extension allows a
set of carriers to participate in either a one-
phase or a two-phase atomic commit protocol.

FExtender. This extension installs or removes exten-
sions from the TOS kernel.

Executor. This extension runs a program in a new
process on behalf of a carrier. The extension
returns a handle for the process that is running
the program.

File downloading. The Download extension re-
trieves files named by URLs.

Inter-kernel communications. The Messenger ex-
tension allows communication between exten-
sions and carriers that are running in different
TOS kernels.

Mobility extensions. We have implemented two:
single-hop mobility (which provides a remote
evaluation facility [22]) and itinerant style mo-
bility (which is the most frequently used mobil-
ity pattern of mobile agent systems). Mobility
extensions should use some form of authentica-
tion; ours only accept carriers that have a valid
digital signature to ensure that they come from
a trusted source.

Norwegian Army Protocol. This extension (NAP)
provides a primary-backup like failure detec-
tion and recovery scheme for carriers [12].

Spawner. This extension creates a copy of the car-
rier that invokes this extension and moves that
copy to the processor that is the first element
of the path.

3.2.2 Folders and Inboxes

A carrier can, if desired, directly invoke an exten-
sion’s public methods. In fact, a carrier can directly

invoke a public method of any object for which it
can obtain a reference. We have found, though,
that using direct method invocation can often be
inconvenient. For example, a carrier rarely needs
to block waiting for the action an extension takes
on its behalf to complete. Multiple carriers can re-
quest service from an extension concurrently. This
requires synchronization, for example through syn-
chronized and public methods. To allow the car-
rier to continue as quickly as possible, the exten-
sion’s public method should enqueue the requests
thereby holding the critical section lock for as short
a period as possible. Another problem has to do
with protection: an extension may wish to restrict
some communication to occur only with other ex-
tensions. Hence, TOS provides another mechanism
for communications, called inbozes, that avoids di-
rect method invocation. Rather than being based
on invocation, it more closely resembles message
passing. While a method invocation mechanism
might be used that meets these requirements, mes-
sage passing is more convenient [16].

As in TACOMA, a TOS folder is a (key, value)
pair. Folders are used to hold and carry carrier-
interpreted data. A carrier can create any number
of folders. An inbox is a uniquely named queue of
folders. A carrier can enqueue one folder at a time
on an inbox, and an extension can dequeue fold-
ers from any inbox that it created. When creating
an inbox, an extension can specify that only other
extensions are allowed to enqueue folders on that
inbox. This restriction allows extensions to be able
to communicate without interference from carriers.
This illustrates another advantage of inbox-based
communication.

All of the extensions that we have implemented
use inbox-based communications. Figure 1 shows
four inboxes, one for each extensions with which
carriers communicate.

3.2.3 Mobility and the Shell

A carrier is derived from the TOS Carrier class.
This class contains one abstract method, called
begin. A carrier begins executing at a TOS ker-
nel by having its begin method invoked. When
this method returns, the appropriate mobility ex-
tension takes control and transfer the carrier to the
next entry in its path if such a move is legal (and
if the extension supports itinerant style mobility).

The representation of a carrier in transit is de-
fined by a TOS class called Shell. The shell is a
runtime context in which a carrier executes, and it
provides a method that writes the carrier to a Java
OutputStream. The constructor for Shell requires
a reference to a Carrier object (used when creat-
ing a new carrier). The static method load loads
a carrier from a Java InputStream (used, for ex-
ample, when receiving a carrier from another Java
program). The shell captures any exception that is
raised by the carrier it wraps, and so serves as a
simple form of fault containment.

A carrier does not immediately start executing
once the shell that wraps the carrier is created. Be-
fore starting its execution, its properties—namely
its path, its data, and its byte codes—can be in-
spected and modified by an extension having a ref-
erence to the shell. For example, an extension could
insert a security automaton into the carrier 7] or
modify the carrier’s path for the purpose of schedul-
ing! [11]. The extension starts the execution of the
carrier by an explicit method call to its shell: no
code of the carrier, including its constructor, is ex-
ecuted before this method is invoked.

Assuming the default mobility service, the flow of
control of moving a carrier is as follows. The carrier
terminates when it returns from its begin method.
This method returns no values, but it may throw
an exception. The mobility extension waits for the
shell to signal that the carrier has completed. As-
suming no exception is thrown, the mobility exten-
sion extracts the agent’s path and removes the first
element. It then creates a TCP/IP connection to
the named machine using a well-known port and
creates a Java OutputStream on top of this con-
nection. The mobility service then uses the shell to
save the carrier to the OutputStream.

On the receiving machine is a mobility extension
that, when a TCP/IP connection request arrives,
creates a Java InputStream and hands it to a new
thread of the extension. This new thread creates
a new shell using the InputStream and starts the
carrier.

LAt the least, this extension should check the carrier’s
name to ensure that it does not start with “tacoma.” or
“java.”, since if it did the carrier could be loaded as part of
a package critical to the security of TOS.

3.3 TOS Library

In this section we describe the important classes of
the TOS API. We first show how to write a carrier,
then how to launch a carrier, then how to write
an extension, and finally how to assemble a TOS
kernel.

3.3.1 Writing a Carrier

Figure 2 shows a simple Postman carrier that posts
a folder into the inbox of an extension. The folder
contains a message that is displayed on the machine
at which the TOS kernel is running.

This example does not illustrate the power of us-
ing carriers. A more realistic example would have
the carrier determine which version of a program
to download based on the configuration of the ma-
chine on which it is running. Such a carrier would
be more complex since it needs to determine the
configuration, but its structure would be essentially
the same as the one in figure 2.

(1) public class Hello extends Carrier {

(2) public void begin() {

(3) new Folder(null, "Hello, World").post("Echo");
4) }

(5) }

Figure 2: A simple Postman carrier.

A carrier is written by extending the Carrier
class (line 1). It must supply the begin method,
which serves as the main function of the carrier.
The carrier creates an unnamed folder (line 3; the
name is the first parameter to the constructor) that
has as a value the string “Hello, World”. The
carrier then posts this folder to the inbox named
“Echo” (line 3). Note that when inbox-based com-
munication is used, the carrier does not name an
extension, but rather its associated inbox.

When begin returns, the carrier moves to the
next TOS kernel listed in its path. In this simple
example, the carrier does not modify its path.

3.3.2 Launching a Carrier

Figure 3 shows a fragment of a Java program that
launches the carrier described above. The carrier is
sent to the TOS kernels at host0, hostl and host2.

To launch a carrier, a program first creates an in-
stance of the carrier’s class and also creates a Shell

...

(2) Shell sh = new Shell(new Hello());

(3) String[] pa = { "hostO", "hostl", "host2" };
(4) sh.path.set(pa);

(5) Socket so = new Socket(sh.path.next(), 21212);
(6) OutputStream os = so.getOutputStream();

(7) sh.save(os);

(8) os.close();

@ ...

Figure 3: Launching a carrier into the network.

object (line 2) that wraps the carrier. The program
then sets the carrier’s path (line 4). The launching
program does not use this shell to run the carrier
(although it could), but rather to send a serialized
version of the carrier (line 7) to the TOS kernel
running on the first machine in the carrier’s path
(line 5).

3.3.3 Writing an Extension

Figure 4 shows the code of the extension that cre-
ated the “Echo” inbox. It waits for folders to be
placed into this inbox and then prints their contents
to standard output.

(1) public class Echo implements Runnable {
(2) public void run() {

(3) Inbox ib = new Inbox("Echo");

(4) while (true) {

(5) while (ib.size() > 0)

(6) System.out.println((String)ib.next () .data);
(7 try {

(8) synchronized(ib) { ib.wait (5000); }
9) } catch (Exception e) {

(10) e.printStackTrace();

(11) }

(12) }

(13) }

(14) }

Figure 4: A simple display extension.

An extension is written by implementing the
Runnable interface (line 1), or by extending the
Java class Thread. An extension implements the
run method (line 2), which is the entry point for
the thread associated with the extension. Inboxes
are created by class instantiation (line 3), and fold-
ers are retrieved via the next method on inboxes
(line 6). The number of folders in an inbox can be
determined using the size method (line 5). Posting
a folder to an inbox causes the inbox to be notified,
and so the extension waits for that notification (line
8).

3.3.4 Assembling a TOS Kernel

Figure 5 shows how to build a TOS kernel that
supports the execution of the carrier of Figure 2.

(1) public class Kernel {

(2) public static void main(String[] args) {
(3) new Thread(new Echo()).start();

(4) new Thread(new Mobility()).start();
(5) }

6) }

Figure 5: A simple TOS kernel.

A TOS kernel is relatively easy to build. One de-
fines an object (line 1) that, when started (line 2)
creates a thread for each extension included with
the kernel (lines 3 and 4). Each TOS kernel should
include some mobility extension (line 4) since with-
out it no carrier can move to this kernel.

4 A DiSM Example

An important part of distributed systems manage-
ment is intrusion detection, and so we give an exam-
ple of using TOS from this field. One kind of attack
is called doorknob rattling. This type of attack ex-
ploits a net-accessible vulnerability. For example,
the Ping of Death attack exploits a vulnerability
to receiving echo request datagrams with a data
area of more than 65,507 octets [9]. Systems that
have this vulnerability may crash upon the receipt
of such an oversized echo request datagram.

Not all administrators are prompt in closing such
vulnerabilities, and so a viable attack method is
to write a script that sweeps across a set of ma-
chines trying to exploit the vulnerability. Even if
an administrator has closed the vulnerability, it is
still useful to know that such an attack is being at-
tempted: the administrator can use this knowledge
to try to trace back the source of the attack and to
get some idea of how exposed his machines are.

To detect a doorknob rattling attack, there needs
to be a sensor program that can detect the attempt
to exploit a vulnerability on the machine on which
it is running, and a correlator program that col-
lects information from the sensors. The admin-
istrator would probably wish to run the correla-
tor on a trusted machine. The correlator is, most
likely, fairly simple and general—it monitors for a
sequence of reports from sensors running on ma-

— < Messenger
— < Executor

correlator

Control Panel

<

I
-
S ——

Y5V
8
~

TOS

B
Ig - sensor) |/
B N
TOS sl
1
H 1
1
AY 1
\\ 1
L B 1
B
I;l = Sensor
B
TOS sh

Figure 6: Distributed doorknob rattling monitor.

chines listed in a local configuration file—while the
sensor is most likely specific—it is modified by the
administrator to test for an attempt to exploit a
specific vulnerability.

The role of TOS is to act as the glue that config-
ures the distributed application, monitors its exe-
cution, and causes (when requested) its controlled
termination. Figure 6 shows the application in the
deployed state. In this figure, machines are shown
as shaded rectangles, processes are shown as white
rectangles or ovals. The white rectangles represent
Java virtual machines running TOS kernels. A solid
line from a white rectangle to an oval indicates that
the rectangular process created the oval process.
Communication is shown as dashed arrows.

The TOS components of this application are:

Install carrier. A carrier is used to install and mon-
itor the execution of a sensor. Let S be the
set of machines to be monitored. A carrier is
launched to each machine s in S. Once arriv-
ing at s, the carrier copies over the sensor using

the Download extension and starts it execut-
ing using the Ezecutor extension. The carrier
then reports that the sensor has started via
the Messenger extension. At this point, the
carrier periodically reports via the Messenger
extension that the sensor is still running. The
carrier learns through the Messenger extension
when it is time to stop and deinstall the sensor
program, after which the carrier terminates.

Security is maintained via the Download ex-
tension; only programs from a well-known and
controlled location are downloadable, and the
transmission of the program is authenticated
and protected via ssh. Similarly, the Ezecutor
extension only executes programs that have
been downloaded via Download.

The above solution is satisfactory for small S.
If S is large, then this solution may put an un-
acceptably large load on the trusted processor
due to the large number of simultaneous down-
loads. If this is the case, then S can be divided
into k roughly equal subsets S, Ss, ..., Sy for
some value of k. Then, only k carriers are
launched. Carrier i is launched to the first
machine in S;. This carrier copies the sen-
sor from the trusted processor and then uses
the Spawner extension to create a copy on the
second machine in S;. This process continues
until a copy of the carrier is running on each
machine in S;.

Control Panel. The Control Panel is a Java appli-
cation that allows the system administrator to
control the deployment of the sensors, to moni-
tor their current status, and to terminate their
execution. The Control Panel is built using
TOS but, like the launcher described in Sec-
tion 3.3.2, is neither a carrier nor an extension.
It uses the Messenger extension to receive in-
formation about the status of the sensors, and
to notify the carriers which sensors should ter-
minate execution.

While not necessary, it is convenient to have
the Control Panel also be the application that
launches the carriers and that starts the corre-
lator running via the Ezecutor extension. By
doing so, the administrator needs to run only
a single application to deploy and start moni-
toring the system.

Having the configuration management separated
from the function of this application (that is, mon-
itoring for doorknob rattling attacks) allows one to
easily turn the above solution into a proactive mon-
itoring approach. The Control Panel can be rewrit-
ten to capture the standard output of the correlator
when it starts it executing via the FExecutor exten-
sion. By doing so, the Control Panel can actively
alert the system administrator when an attack is
detected and can initiate some suitable response.
For example, the administrator can be notified us-
ing an SMS (Short Message System) service to his
cellular telephone, and the IP address A of the ma-
chine that is originating the attack can be sent to
another program running on each processor in S.
This program would then exclude all communica-
tions originating from A (for example, by adding A
to the host.deny file).

5 Discussion

We have presented TOS as a kernel for DiSM sys-
tems. It provides a mechanism for writing DiSM
policies. Furthermore, it allows the DiSM system to
be modified as the demands on the system change.
TOS is configured using a modular structure so
that extensions can be easily added, removed, or
replaced at runtime without compromising the se-
curity of the system. In this way, TOS shares the
same extensibility benefits as microkernels and ex-
tensible kernels.

Distributed systems management, however, need
not be done only by a system administrator. A
distributed application can be self-managing. Such
applications are becoming more attractive as the
scale of and the load on distributed applications
are rapidly growing.

The processes of a distributed application use
some protocol that has been defined specifically
for that application. For example, the doorknob
rattling detection application of Section 4 uses a
simple protocol through which the sensors report
information to the correlator. This specialized pro-
tocol is deployed by installing the sensors and the
correlator, by writing a configuration file for the
correlator to read, and by running these programs.

What TOS provides is an easy way to build
and deploy another application specific protocol,
namely the protocol that controls the deployment,

redeployment, and monitoring of the application it-
self. Having this second protocol be separate from
the application itself makes good software engineer-
ing sense, because the functional aspects of the ap-
plication are usually independent from the configu-
ration aspects. Using TOS gives one the same ease
of use and flexibility that was provided by mod-
ule configuration languages such as C/Mesa [17]
that were used for building non-distributed appli-
cations. Distributed applications run in environ-
ments that are more complex than those for non-
distributed applications, and the languages that
have been developed for configuration management
in distributed systems are correspondingly more
complex (for example [19]). Rather than crafting
a specialized (and more complex) language, we use
a general-purpose language that can encode proto-
cols specific to the application at hand.

We believe that this separation of concerns—
functional from non-functional aspects in dis-
tributed applications—is an ideal application for
mobile agents. By being mobile, mobile agents can
easily deploy the non-functional protocol, and by
using a full-fledged language, the mobile agents can
implement the configuration and monitoring proto-
col. Using TOS encourages the programmer to sep-
arate these two concerns—functional from configu-
ration and monitoring—and it allows the systems
administrators to restrict how applications can be
run in their particular administrative domains.

6 Conclusion

We have presented TOS, which is the kernel of a
distributed systems management system. TOS in-
cludes a Java library and a set of extensions that
can be used to implement a mobile agent system.
We have described its architecture, given a simple
example in detail, and shown how a more complex
DiSM policy can be built. We also have argued that
TOS can be used to easily build self-managing dis-
tributed applications, which we believe is an ideal
application of mobile agents.

TOS is available for downloading from
http://www.tacoma.cs.uit.no/.

Acknowledgements We would like to thank the
other members of the TACOMA team. The ideas

behind TOS are based on the efforts of the whole
team.

References

[1]

2]

3]

[4]

[5]

[7]

Elan Amir, Steve McCanne, and Randy Katz.
An Active Service Framework and its Appli-
cation to Real-time Multimedia Transcoding.
In ACM SIGCOMM Conference, Vancouver,
British Columbia, Sep 1998.

Yair Amir, David Breitgand, Gregory V.
Chockler, and Danny Dolev. Group Communi-
cation as an Infrastructure for Distributed Sys-
tem Management. In The International Work-
shop on Services in Distributed and Networked
Environment, pages 84-91, Jun 1996.

Godmar Back and Wilson Hsieh. Drawing the
Red Line in Java. In The 7th IEEE Workshop
on Hot Topics in Operating Systems, Rio Rico,
Arizona, Mar 1999.

B. N. Bershad, S. Savage, P. Pardyak, E. G.
Sirer, M. Fiuczynski, D. Becker, S. Eggers, and
C. Chambers. Extensibility, Safety and Per-
formance in the SPIN Operating System. In
Proceedings of the 15th Symposium on Oper-
ating Systems Principles, pages 267-284, Cop-
per Mountain, Colorado, Dec 1995.

Andrzej Bieszczad, Bernard Pagurek, and
Tony White. Mobile Agents for Network Man-
agement. IEEE Communciations Surveys,
1(1), Sep 1998.

Dawson R. Engler, M. Frans Kaashoek, and
James O’Toole Jr. Exokernel: an operating
system architecture for application-level re-
source management. In Proceedings of the 15th
ACM Symposium on Operating Systems Prin-
ciples, pages 251-266, Copper Mountain, Col-
orado, Dec 1995.

Ulfar Erlingsson and Fred B. Schneider. SASI
Enforcement of Security Policies: A Retro-
spective. Technical Report TR99-1758, De-
partment of Computer Science, Cornell Uni-
versity, Jul 1999.

G. Goldszmidt and Y. Yemini. Distributed
Management by Delegation. In Proceedings

10

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

of the 15th International Conference on Dis-
tributed Computing Systems, pages 333-341,
Jun 1995.

B. Harris and R. Hunt. TCP/IP Security
Threats and Attack Methods. Computer Com-
munciations, 22(10):885-897, Jun 1999.

Dag Johansen. Mobile Agent Applicability. In
Proceedings of the Mobile Agents, pages 80-98,
Stuttgart, Germany, Sep 1998.

Dag Johansen, Keith Marzullo, and Kare J.
Lauvset. An Approach towards an Agent
Computing Environment. In The Workshop
on Middleware at the International Conference
on Distributed Computing Systems, Austin,
Texas, May 1999.

Dag Johansen, Keith Marzullo, Fred B.
Schneider, Kjetil Jacobsen, and Dmitrii
Zagorodnov. NAP: Practical Fault-Tolerance
for Itinerant Computations. In Proceedings
of the 19th IEEE International Conference
on Distributed Computing Systems, Austin,
Texas, May 1999.

Dag Johansen, Nils P. Sudmann, and Robbert
van Renesse. Performance Issues in TACOMA.
In Proceedings of the 3rd Workshop on Mobile
Object Systems, 11th Furopeean Conference
on Object-Oriented Programming, Jyvaskyla,
Finland, Jun 1997.

Dag Johansen, Robbert van Renesse, and
Fred B. Schneider. An Introduction to the
TACOMA Distributed System Version 1.0.
Technical Report 95-23, Department of Com-
puter Science, University of Tromsg, 1995.

Danny B. Lange and Mitsuru Oshima. Mo-
bile Agents with Java: The Aglet APIL. In De-
jan Milojicic, Frederick Douglis, and Richard
Wheeler, editors, Mobility, Mobile Agents and
Process Migration - An edited Collection. Ad-
dison Wesley, 1999.

H.C. Lauer and R.M. Needham. On the Dual-
ity of Operating System Structures. Operating
Systems Review, 13(2):3-19, 1979.

Hugh C. Lauer and Edwin H. Satterthwaite.
The Impact of Mesa on System Design. In

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Proceedings of the Fourth International Con-
ference on Software Engineering, 1979.

Jochen Liedtke. On p-Kernel Construction. In
Proceedings of the 15th Symposium on Operat-
ing System Principles, pages 237-250, Copper
Mountain, Colorado, Dec 1995.

O.G. Loques, J.C.B. Leite, A. Sztajnberg,
and M. Lobosco. Towards Integrating Meta-
Level Programming and Configuration Pro-
gramming. Technical Report CAA no. 1, In-
stituto de Computaao, Universidade Federal
Fluminense, Feb 1999.

John F. Shoch and Jon A. Hupp. The “Worm”
Programs - Early Experience with a Dis-
tributed Computation. Communications of the
ACM, 25(3):172-180, Mar 1982.

Christopher Small and Margo Seltzer. Struc-
turing the Kernel as a Toolkit of Extensible,
Reusable Components. In Proceedings of the
4th International Workshop on Object Orien-
tation in Operating Systems, pages 134-137,
Lund, Sweden, Aug 1995.

James W. Stamos and David K. Gifford. Re-
mote Evaluation. ACM Transactions on Pro-
gramming Languages and Systems, 12(4):537—
565, Oct 1990.

Jim Waldo. The Jini Architecture for network-
centric computing. Communications of the
ACM, 42(7), Jul 1999.

Jim White. Mobile Agents White Paper, 1996.

11

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

